U210B1 [TEMIC]

Phase Control Circuit Load Current Feedback Applications; 相位控制电路负载电流反馈应用
U210B1
型号: U210B1
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Phase Control Circuit Load Current Feedback Applications
相位控制电路负载电流反馈应用

模拟IC 信号电路 光电二极管
文件: 总12页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U210B1  
Phase Control Circuit–Load Current Feedback Applications  
Description  
The interated circuit, U210B1, is designed as a phase- and soft-start functions. The voltage obtained due to load  
control circuit for load-current feedback application in current proportionality, can be used according to the  
bipolar technology. To realize motor control systems, it application i.e., load-current compensation or load-  
has integrated load current detection, voltage monitoring current regulation.  
Features  
Externally controlled integrated amplifier  
Internal supply voltage monitoring  
Temperature constant reference source  
Current requirement 3 mA  
Variable soft start  
Automatic retriggering  
Voltage and current synchronization  
Triggering pulse typ. 125 mA  
Package: DIP14  
14  
1
4
Output  
pulse  
Voltage  
detector  
Current  
detector  
Automatic  
retriggering  
5
6
Control  
amplifier  
8
7
+
Phase  
control unit  
= f (V12)  
3
2
–V  
Supply  
voltage  
S
GND  
limitation  
13  
Reference  
voltage  
Voltage  
monitoring  
Load  
current  
Soft start  
detection  
12  
11  
9
10  
95 10686  
Figure 1. Block diagram  
TELEFUNKEN Semiconductors  
1 (12)  
Rev. A1, 28-May-96  
U210B1  
Figure 2. Block diagram with external circuitry Open loop control with load current compensation  
2 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  
U210B1  
Description  
When the potential on Pin 6 reaches the nominal value  
predetermined at Pin 9, then a trigger pulse is generated  
Mains Supply  
The U210B1 is fitted with voltage limiting and can there-  
fore be supplied directly from the mains. The supply  
voltage between Pin 2 (+pol/ ) and Pin 3 builds up  
whose width t is determined by the value of C (the value  
p
2
of C and hence the pulse width can be evaluated by  
2
assuming 8 s/nF). At the same time, a latch is set, so that  
as long as the automatic retriggering has not been  
activated, then no more pulses can be generated in that  
half cycle.  
across D and R and is smoothed by C . The vaIue of the  
1
1
1
series resistance can be approximated using:  
V –V  
M
S
R =  
1
The current sensor on Pin 1 ensures that, for operation  
with inductive loads, no pulse will be generated in a new  
half cycle as long as current from the previous half cycle  
is still flowing in the opposite direction to the supply volt-  
age at that instant. This makes sure that “Gaps” in the load  
current are prevented.  
2 I  
S
Further information regarding the design of the mains  
supply can be found in the data sheets in the appendix.  
The reference voltage source on Pin 13 of typ. –8.9 V is  
derived from the supply voltage. It represents the refer-  
ence level of the control unit.  
The control signal on Pin 9 can be in the range 0 V to –7 V  
(reference point Pin 2).  
Operation using an externally stabiIised dc voltage is not  
recommended.  
If V = –7 V then the phase angle is at maximum =  
9
max  
If the supply cannot be taken directly from the mains be-  
i .e. the current flow angle is a minimum. The minimum  
phase angle is when V = V .  
cause the power dissipation in R would be too large, then  
1
min  
9
2
the circuit shown in the following figure 3 should be  
employed.  
Voltage Monitoring  
~
As the voltage is built up, uncontrolled output pulses are  
avoided by internal voltage surveillance. At the same  
time, all of the latches in the circuit (phase control, soft  
start) are reset and the soft-start capacitor is short cir-  
cuited. Used with a switching hysteresis of 300 mV, this  
system guarantees defined start-up behaviour each time  
the supply voltage is switched on or after short interrup-  
tions of the mains supply.  
24 V~  
1
2
3
4
5
C
1
Soft-Start  
R
1
95 10362  
As soon as the supply voltage builds up (t ), the integrated  
1
soft-start is initiated. The figure below shows the  
behavior of the voltage across the soft-start capacitor and  
is identical with the voltage on the phase control input on  
Pin 9. This behaviour allows a gentle start-up for the  
motor.  
Figure 3. Supply voltage for high current requirements  
Phase Control  
The function of the phase control is largely identical to  
that of the well known component TEA1007. The phase  
angle of the trigger pulse is derived by comparing the C is first charged with typ. 30 A. The charging current  
4
ramp voltage, which is mains synchronized by the voltage then increases as the voltage across C increases giving a  
4
detector, with the set value on the control input Pin 9. The progressively rising charging function with more and  
slope of the ramp is determined by C and its charging more strongly accelerates the motor with increasing rota-  
2
current. The charging current can be varied using R on tional speed. The charging function determines the  
2
Pin 5. The maximum phase angle  
can also be acceleration up to the set point. The charging current can  
have a maximum value of 85 A.  
max  
adjusted using R .  
2
TELEFUNKEN Semiconductors  
3 (12)  
Rev. A1, 28-May-96  
U210B1  
96 11565  
Pulse Output Stage  
V
10  
The pulse output stage is short circuit protected and can  
typically deliver currents of 125 mA. For the design of  
V
9
smaller triggering currents, the function I = f (R ) has  
GT  
GT  
been given in the data sheets in the appendix. In contrast  
to the TEA1007, the pulse output stage of the U210B1 has  
no gate bypass resistor.  
Automatic Retriggering  
The automatic retriggering prevents half cycles without  
current flow, even if the triac is turned off earlier e.g., due  
to not exactly centred collector (brush lifter) or in the  
event of unsuccessful triggering. After a time lapse of  
t
t
1
t
2
t
pp  
= 4.5 t is generated another triggering pulse which is  
p
repeated until either the triac fires or the half cycle  
finishes.  
t
tot  
General Hints and Explanation of Terms  
To ensure safe and trouble-free operation, the following  
points should be taken into consideration when circuits  
are being constructed or in the design of printed boards.  
Figure 4. Soft–start  
t
= build-up of supply voltage  
= run-up time  
= total start-up time to required speed  
1
2
The connecting lines from C to Pin 6 and Pin 2 should  
be as short as possible, and the connection to Pin 2  
should not carry any additional high current such as  
2
t
t
tot  
the load current. When selecting C , a low tempera-  
ture coefficient is desirable.  
2
Control Amplifier  
95 10716  
The integrated control amplifier with differential input  
has a bipolar current output, with typically ±110 A at  
Pin 9 and a transmittance of typ. 1000 A/V. The amplifi-  
cation and frequency response are determined by external  
circuit. For operation as a power control, it should be con-  
nected with Pin 7. Phase angle of the firing pulse can be  
adjusted by using the voltage at Pin 8. An internal limiting  
circuit prevents the voltage on Pin 9 becoming more  
V
Mains  
Supply  
/2  
3/2  
2
V
GT  
Trigger  
Pulse  
t
p
negative than V + 1 V.  
t
pp  
= 4.5 t  
p
13  
V
Load Current Detection, Figure 2  
L
Load  
Voltage  
Voltage drop across R , dependent of load current, gener-  
8
ates an input-current at Pin 11 limited by R . Proportional  
5
output current of 0.44 x I (CTR) is available at Pin 12.  
11  
It is proportional with respect to phase and amplitude of  
load current.  
I
L
Load  
Current  
Capacitor C integrates the current whereas resistor R  
3
7
evaluates it. The voltage obtained due to load current  
proportionality, can be used according to the application  
i.e., load current compensation or load current regulation.  
Figure 5. Explanation of terms in phase relationship  
4 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  
U210B1  
Absolute Maximum Ratings  
Reference point Pin 2, unless otherwise specified  
Parameters  
Symbol  
–I  
Value  
30  
Unit  
mA  
Current requirement  
Pin 3  
S
–i  
s
100  
t 10 s  
Synchronisation current  
Pin 1  
Pin 14  
Pin 1  
–I  
5
5
35  
35  
mA  
sync.I  
–I  
sync.V  
t 10 s  
t 10 s  
–i  
I
Pin 14  
i
v
Load current monitoring  
Input current  
Pin 11  
Pin 11  
–I  
–I  
2
5
mA  
V
A
mA  
I
t 10 s  
I
Phase control  
Input voltage  
Input current  
Pin 9  
Pin 9  
Pin 5  
–V  
I
–I  
0 to 7  
500  
1
I
I
I
Soft–start  
Input voltage  
Pulse output  
Reverse voltage  
Amplifier  
Pin 10  
Pin 4  
–V  
V
to 0  
V
V
I
13  
V
o
V to 5  
S
Input voltage  
Pin 8  
Pin 7  
V
–V  
0 to V  
S
I
V
13  
to 0  
V
I
Reference voltage source  
Output current  
Storage temperature range  
Junction temperature  
Pin 13  
I
7.5  
–40 to +125  
125  
mA  
°C  
°C  
o
T
stg  
T
j
Ambient temperature range  
T
amb  
–10 to +100  
°C  
Thermal Resistance  
Parameters  
Symbol  
R
thJA  
Value  
120  
Unit  
K/W  
Junction ambient  
DIP14  
Electrical Characteristics  
–V = 13 V, T  
= 25°C, reference point Pin 2, unless otherwise specified  
s
amb  
Parameters  
Supply voltage for mains  
operations  
Test Conditions / Pins  
Pin 3  
Symbol  
Min.  
13.0  
Typ.  
Max.  
V
Limit  
Unit  
V
–V  
S
Supply voltage limitation  
–I = 3 mA  
–I = 30 mA  
S
Pin 3  
–V  
14.6  
14.7  
16.6  
16.8  
V
S
S
DC supply current  
Reference voltage source  
–V =13 V  
Pin 3  
Pin 13  
–I  
1.2  
8.6  
8.3  
2.5  
8.9  
3.0  
9.2  
9.1  
mA  
V
S
S
–I = 10 A  
–V  
L
Ref  
–I = 5 mA  
L
Temperature coefficient  
Voltage monitoring  
Turn-on threshold  
Pin 13 –TC  
0.5  
mV/K  
VRef  
Pin 3  
Pin 3  
–V  
11.2  
10.9  
13.0  
V
V
SON  
Turn-off threshold  
–V  
9.9  
SOFF  
TELEFUNKEN Semiconductors  
5 (12)  
Rev. A1, 28-May-96  
U210B1  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
mA  
V
Phase control currents  
Current synchronization  
Voltage synchronization  
Voltage limitation  
Pin 1  
Pin 14  
I
0.35  
0.35  
8.0  
8.0  
3.5  
3.5  
9.5  
9.5  
sync.I  
I
sync.V  
±I = 5 mA  
Pin 1  
V
I
V
I
8.9  
8.9  
S
Pin 14  
Reference ramp, figure 6  
Load current  
I = f(R )  
Figure 6  
6
F
R = 1 K ... 820 K Pin 6  
I
1
1.06  
20  
1.18  
A
V
mV/K  
f
6
R –reference voltage  
Temperature coefficient  
Pulse output, figure 11  
Output pulse current  
Reverse current  
Output pulse width  
Automatic retriggering  
Repetition rate  
180 °  
Pin5,3  
Pin 5  
V
TC  
1.13  
0.5  
Ref  
V Ref  
R
= 0, V =1.2 V Pin 4  
I
o
100  
125  
0.01  
80  
150  
3.0  
mA  
A
s
GT  
GT  
Pin 4  
Pin4,2  
I
or  
C = 10 nF  
t
p
Pin 4  
t
pp  
3
4.5  
6
t
p
Amplifier  
Common mode voltage  
range  
Input bias current  
Input offset voltage  
Output current  
Pin7,8  
V
V
–1  
1
V
7,8  
13  
Pin 8  
Pin7,8  
Pin 9  
I
0.01  
13  
110  
120  
A
mV  
A
IB  
V
–I  
+I  
Y
IO  
Figure 9  
= f(V  
75  
88  
145  
165  
O
O
Short circuit forward trans-  
mittance  
I
)
Pin 9  
1000  
A/V  
12  
10-11  
f
Soft-start, figures 7, 8  
Starting current  
Final current  
Discharge current, restart  
pulse  
Pin 10  
V
V
= V  
= –0.5 V  
I
I
–I  
20  
50  
0.5  
30  
85  
3
50  
130  
10  
A
A
mA  
10  
13  
O
O
10  
O
Load current detection, figure 10  
Pin 11  
Input current voltage  
I
I
0
300  
500  
308  
A
A
I
V = 300 mV, R = 1 K  
I
1
I
Input offset voltage  
Output open current  
Output current  
V
I
–8  
1.9  
0
5.5  
mV  
A
IO  
O
V = 0 V, R = 1 K Pin 12  
I
1
V = 300 mV, R = 1 K  
I
1
V
= V  
= 150 A  
= 300 A  
Pin 12  
Pin 12/11  
Pin 12/11  
I
120  
127  
0.44 ± 5%  
0.42 ± 6%  
134  
A
12  
13  
O
I
CTR  
TC  
12  
Current transfer ratio  
I
12  
I12  
I11  
CTR  
0
Temperature coefficient of  
current transfer ratio  
Pin 12/11  
0.2  
/ /K  
00  
6 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  
U210B1  
240  
200  
160  
Phase Control  
Reference Point Pin 2  
100  
50  
Control Amplifier  
10nF  
4.7nF  
2.2nF  
0
120  
80  
0
–50  
–100  
C
=1.5nF  
0.8  
/t  
Reference Point Pin 13  
300  
–300 –200 –100  
0
100  
200  
1.0  
0
0.2  
0.4  
0.6  
)
96 11615  
V
( V )  
7–8  
95 10302  
R ( M  
Figure 6.  
Figure 9.  
100  
80  
500  
400  
300  
Reference Point for:  
Soft Start  
R =100  
5
I
12  
Pin 13, V Pin 2  
R8  
220  
500  
60  
1k  
40  
20  
0
200  
100  
0
2k  
f/V-Converter non–active  
Reference Point Pin 13  
10  
0
2
4
6
8
0.75  
0
0.15  
0.3  
0.45  
( V )  
0.6  
96 11616  
V
( V )  
10  
95 10336  
V
(R8)  
Figure 7.  
Figure 10.  
10  
8
100  
80  
Pulse Output  
Soft Start  
6
60  
4
2
0
40  
20  
0
V
GT  
= 0.8V  
1.4V  
f/V-Converter non–active  
Reference Point Pin 13  
1000  
0
200  
400  
600  
)
800  
96 11617  
t=f  
95 10313  
R
(
(C4)  
GT  
Figure 8.  
Figure 11.  
TELEFUNKEN Semiconductors  
7 (12)  
Rev. A1, 28-May-96  
U210B1  
50  
40  
30  
Design Calculations for Mains Supply  
The following equations can be used for the evaluation of  
Mains Supply  
the series resistor R for worst case conditions:  
1
VMmin – VSmax  
VM – VSmin  
2 ISmax  
R1max  
0.85  
R1min  
2 Itot  
20  
10  
2
(VMmax – VSmin  
2 R1  
)
P(R1max)  
where:  
0
0
V
VS  
= Mains voltage, 230 V  
= Supply voltage on Pin 3  
M
16  
40  
15  
4
8
12  
95 10315  
I
( mA )  
I
= Total DC current requirement of the circuit  
= I + I + I  
tot  
tot  
Figure 12.  
Smax  
p
x
6
5
4
3
2
1
0
I
I
= Current requirement of the IC in mA  
= Average current requirement of the triggering  
pulses  
= Current requirement of other peripheral  
components  
Smax  
p
Mains Supply  
I
x
R can be easily evaluated from the diagrams figures 12  
1
to 14.  
0
10  
20  
30  
95 10316  
R ( k  
)
1
Figure 13.  
6
5
4
3
2
1
0
Mains Supply  
0
3
6
9
12  
95 10317  
I
tot  
( mA )  
Figure 14.  
8 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  
U210B1  
Applications  
In contrast to simple speed controller, the circuits shown The integrated load current proportional signal at C  
3
in figures 15 and 16, react to the load dependent speed effects in the same direction on the control input as the set  
drop in which the magnitude of the load current acts on point i.e., by the increase of load current follows an auto-  
the speed compensation.  
matic increase of manipulated set point, so that a  
compensation of speed falls.  
For this purpose, the load current is measured by shunt Compensation arrangement is influenced with resistance  
resistor R . The voltage drop generates a current at Pin 11 values i.e. R (= 100 to 5 k ) and R (= 10 k to 150 k )  
8
5
7
dependent of R , which reflects in the specified current at whereas the higher effect is achieved by increasing the  
5
the output of Pin 12.  
value of R and decreasing R . Influence of compensation  
7 5  
can be increased up to the value where the drive system  
(motor) starts to oscillate.  
Rated impedance of the output current at Pin 12 is repre-  
sented through the coupling resistance R and the total Dimensioning in the applications are with the drill  
7
impedance of the set point.  
machine of 700 W power.  
R
6
L
4.7 k  
BC308B  
T
220 nF  
1
min  
R
7
R
220 k  
3
R
15  
230 V~  
10 k  
C
3
22 k  
max  
C
4
N
M
D
1
15 F  
10 V  
1N4004  
R
10  
100 k  
14  
12  
11  
9
6
8
7
13  
10  
R
18 k  
1.5 W  
1
R
2 k  
5
U210B  
1
2
3
5
4
R
4
R
2
470 k  
BTA  
R
12  
12–800  
220 k  
100  
C
1
R
50 m  
8
22 F  
25 V  
C
2
10 nF  
Figure 15. Speed control with load current compensation  
TELEFUNKEN Semiconductors  
9 (12)  
Rev. A1, 28-May-96  
U210B1  
R
6
L
6.8 k  
min  
R
15  
C
R
3
3
R
7
220 k  
max  
230 V~  
N
220 k  
20 k  
220 nF  
C
4
M
D
1
R
10 k  
R
11  
10  
1N4004  
15 F  
10 V  
100 k  
14  
12  
11  
9
8
7
13  
10  
R
18 k  
1.5 W  
1
R
2 k  
5
U210B  
1
2
3
5
6
4
R
4
R
2
470 k  
BTA  
12–800  
R
12  
220 k  
100  
C
1
R
50 m  
22 F  
25 V  
8
10 nF  
C
2
Figure 16. Speed control with load current compensation  
10 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  
U210B1  
L
R
3
R
7
R
6
2.2 k  
220 k  
330 k  
C
3
230 V~  
4.7 F  
10 V  
C
5
C
4
470 nF  
C
6
min  
N
D
1
Load  
15 F  
10 V  
1N4004  
P
1
0.1 F  
8
100 k  
max  
14  
12  
11  
9
6
13  
10  
R
9
47 k  
R
1
R
5
U210B  
18 k  
1.5 W  
2 k  
1
2
3
5
4
7
R
4
R
2
470 k  
BTA  
12–800  
R
12  
220 k  
100 k  
C
1
R
50 m  
22 F  
25 V  
8
C
10 nF  
Figure 17. Load current regulation with soft start  
Current regulation is achieved by the integrated opera- (actual value).  
tional amplifier as P -controller (R , C , C ). Inverted  
1
7
5
6
input (Pin 7) of the operational amplifier is directly con- Desired value is obtained with the help of potentiometer  
nected at C with load current proportional test signal at Pin 8.  
3
Dimensions in mm  
Package: DIP14  
94 9445  
TELEFUNKEN Semiconductors  
11 (12)  
Rev. A1, 28-May-96  
U210B1  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and  
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban  
on these substances.  
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of  
continuous improvements to eliminate the use of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain  
such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized  
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,  
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or  
unauthorized use.  
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423  
12 (12)  
TELEFUNKEN Semiconductors  
Rev. A1, 28-May-96  

相关型号:

U210B1-A

Analog Circuit, 1 Func, PDIP14, DIP-14
TEMIC

U210BFP

Micro Peripheral IC,
VISHAY

U211

Miniature Rocker Lever Handle Switches
CK-COMPONENTS

U211B

Phase Control Circuit - General Purpose Feedback
TEMIC

U211B

Phase Control IC with Overload Limitation for Tacho Applications
ATMEL

U211B-MFPY

Analog Circuit
ATMEL

U211B-MY

Analog Circuit, BIPolar, PDIP18
ATMEL

U211B-X

Analog Circuit, 1 Func, BIPolar, PDIP18, 0.300 INCH, PLASTIC, DIP-18
ATMEL

U211B-X

Analog Circuit, 1 Func, BIPolar, PDIP18, DIP-18
TEMIC

U211B-XFP

Analog Circuit, 1 Func, BIPolar, PDSO16, SO-16
TEMIC

U211B-XFPG3

Analog Circuit, 1 Func, BIPolar, PDSO16, SO-16
TEMIC

U211B-XFPG3Y

Phase Control IC with Overload Limitation for Tacho Applications
ATMEL