U3900BM-AFN [TEMIC]

Programmable Telephone Audio Processor; 程控电话音频处理器
U3900BM-AFN
型号: U3900BM-AFN
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Programmable Telephone Audio Processor
程控电话音频处理器

电话
文件: 总34页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U3900BM  
Programmable Telephone Audio Processor  
Description  
The programmable telephone audio processor U3900BM adaptation to the line. The U3900BM can also be supplied  
is a linear integrated circuit for use in feature phones, via an external power supply. An integrated voice switch  
answering machines, fax machines and cordless phones. with loudspeaker amplifier enables hands-free or loud-  
It contains the speech circuit, tone-ringer interface with hearing operation. With an anti-feedback function,  
DC/DC converter, sidetone equivalent and ear-protection acoustical feedback during loudhearing can be reduced  
rectifiers. The circuit is line-powered and contains all significantly. The generated supply voltage is suitable for  
components necessary for signal amplification and a wide range of peripheral circuits.  
Features  
Benefits  
Speech circuit with anti-clipping  
Savings of one piezoelectric transducer  
Tone ringer interface with DC/DC converter  
Speaker amplifier with anti-distortion  
Complete system integration of analog signal  
processing on one chip  
Power-supply management, regulated, unregulated  
and a special supply for electret microphone  
Very few external components  
Voice switch  
Highly integrated solution  
CLID + SCWID  
DTMF generator  
Switch matrix  
Extremely versatile due to full programmability  
Applications  
Line current information  
Fully programmable  
Watchdog  
Feature phone, answering machine, fax machine, speaker  
phone, base station of cordless phone  
Speech  
circuit  
Voice  
switch  
Audio  
amplifier  
Clock  
Data  
Serial  
bus  
DTMF  
MCU  
Reset  
Tone  
ringer  
Class  
14602  
Ordering Information  
Extended Type Number  
U3900BM-AFN  
U3900BM-AFNG3  
Package  
SSO44  
SSO44  
Remarks  
Taped and reeled  
Rev. A2, 25-Aug-98  
1 (34)  
Target Specification  
U3900BM  
Pin Description  
Pin Symbol  
Function  
Input of A/D converter  
1
44  
43  
42  
41  
40  
39  
38  
37  
SAO1  
TSACL  
MIC2  
11  
12  
13  
ADIN  
CLI2  
CLI1  
2
SAO2  
CLID input 2  
CLID input 1  
3
4
GND  
VB  
MIC1  
VMIC  
14 VRING Input for ringer supply  
5
ES  
MIC3  
15  
16  
IMPA  
Input for adjusting the ringer input impedance  
COSC 70-kHz oscillator for ringing power converter  
6
VMPS  
SENSE  
VL  
TXACL  
RECO2  
RECO1  
TLDR  
17 SWOUT Output for driving the external switching  
transistor  
7
8
18  
VMP  
Regulated output voltage for supplying the  
microcontroller (typ. 3.3 V/ 6 mA in speech  
mode)  
IND  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RECIN  
10  
11  
12  
13  
14  
15  
16  
INLDR  
INLDT  
19  
20  
21  
22  
INT  
BCL  
BDA  
Interrupt line for serial bus  
Clock input for serial bus  
Data line for serial bus  
ADIN  
CLI2  
TLDT  
HFTX  
CEAR  
CMIC  
AMREC  
AMPB  
STO  
OSCIN Input for 3.58-MHz oscillator  
CLI1  
23 OSCOUT Clock output for the microcontroller  
24 RESET Reset output for the microcontroller  
VRING  
IMPA  
COSC  
25  
26  
27  
28  
STC  
STRC  
STO  
Input for sidetone network  
Input for sidetone network  
Output for connecting the sidetone network  
SWOUT  
VMP  
17  
18  
19  
20  
AMPB Input for playback signal of answering  
machine  
INT  
STRC  
STC  
29 AMREC Output for recording signal of answering  
machine  
BCL  
30  
31  
32  
CMIC Input for cordless telephone  
CEAR Output for cordless telephone  
BDA  
21  
22  
24  
23  
RESET  
OSCOUT  
OSCIN  
HFTX Output for transmit-level detector in intercom  
mode  
14761  
33  
34  
TLDT Time constant of transmit-level detector  
INLDT Input of transmit-level detector  
Figure 1. Pinning  
Function  
Pin Symbol  
35 INLDR Input of receive-level detector  
36 TLDR Time constant of receive-level detector  
1
2
3
SAO1  
SAO2  
GND  
Positive output of speaker amplifier  
(single ended and push-pull operation)  
37 RECO1 Positive output of the receive amplifier, also  
used for sidetone network  
Negative output of speaker amplifier  
(push-pull only)  
38 RECO2 Negative output of the receive amplifier  
Ground, reference point for DC- and  
AC signals  
39 TXACL Time-constant adjustment for transmit anti-  
clipping  
4
5
6
VB  
ES  
Unstabilized supply voltage  
40  
41  
MIC3  
Input of hands-free microphone  
Input for external supply indication  
VMIC Reference node for microphone amplifier,  
supply for electret microphone  
VMPS Unregulated supply voltage for the micro-  
controller (via series regulator to VMP)  
42  
43  
MIC1  
Inverting input of symmetrical microphone  
amplifier with high common-mode rejection  
ratio  
7
8
SENSE Input for sensing the available line current  
VL  
Positive supply-voltage input to the device in  
speech mode  
MIC2  
Non-inverting input of symmetrical micro-  
phone amplifier with high common-mode  
rejection ratio  
9
IND  
The internal equivalent inductance of the  
circuit is proportional to the value of the  
capacitor at this pin. A resistor connected to  
ground may be used to adjust the DC mask.  
44 TSACL Time-constant for speaker amplifier anti-  
clipping  
10  
RECIN Receive amplifier input  
2 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Table of Contents  
1
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Class Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.1 CLID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
5
5
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Carrier Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Data Recovery and Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CLID: Logical Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Carrier Detect, Bandpass Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Low Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
High Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Special Carrier Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
5
5
5
6
6
6
6
6
2.1.8  
7
2.2  
SCWID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Guard Time, Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Up Guard Time, Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Early Guard Time, Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Down Guard Time, Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wetting Pulse Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCWID: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CAS Detect Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
7
8
8
8
9
9
10  
10  
12  
12  
12  
13  
13  
13  
13  
14  
14  
18  
18  
20  
21  
22  
24  
26  
26  
26  
26  
33  
3
4
DC Line Interface and Supply-Voltage Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1 Supply Structure of the Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ringing Power Converter (RPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1 Ringing Frequency Detector (RFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
6
Clock Output Divider Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.1  
DTMF Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.1 Melody – Confidence Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
8
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Acoustic Feedback Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Switch Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sidetone System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
10  
11  
12  
13  
14  
14.1  
14.2  
14.3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
15  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Rev. A2, 25-Aug-98  
3 (34)  
Target Specification  
VL  
39  
25 26 10  
27  
8
7
9
41  
6
TXACL  
42  
43  
40  
Power  
supply  
18  
STBAL  
4
3
AGATX  
MICRO  
AGARX  
TXA  
VMIC  
11  
17  
DTMF/  
melody  
Offset  
Offset  
30  
32  
28  
Filter  
canceler  
canceler  
16  
14  
15  
Ringing  
power  
converter  
MUX  
ADC  
VRING  
AMPB CMIC LRX  
DTMF  
MIC  
Switch matrix  
LIDET VMP RFDO  
POR  
AMREC CEAR EPO RXLS  
LTX  
29  
31  
AGC  
RA  
REG  
Filters  
TIP  
37  
13  
12  
DIV.  
1/8/16/32  
AFS  
control  
CLID  
BIDIR  
serial  
bus  
38  
44  
SACL  
SA  
OSC.  
3.58 MHz  
RING  
1
2
35 36 33 34  
20 21 19  
22  
23 5 24  
14604  
C
VMP  
RECO1  
TXOUT  
U3900BM  
2 Class Function  
The U3900BM includes a class function Calling Line a capture window (see the tables next page), and avoid a  
IDentification (CLID) for on-hook and Spontaneous Call false detection.  
Waiting IDentifier (SCWID) for off-hook status.  
With the use of SCD bit the carrier detect function is  
improved, because after a normal carrier detection  
(NCD), a part (10 bits) of the channel seizure is taken in  
2.1 CLID  
count before alerting the microprocessor.  
CLID is designed to demodulate CCITT V23 and BELL  
202 (1200 bauds FSK asynchronous data) and is  
compatible with both formats without external  
intervention. It fulfils the CS B14-10W requirements.  
Note:  
When the CPE is off hook (SCWID mode) the CO sends  
FSK  
data  
without  
channel  
seizure.  
The  
mark signal = 80 bits ±10 at 1200 bauds (1300 Hz con-  
tinuously during 67 ms).  
The main feature of this part is to provide, for the user,  
information about the caller before answering the call.  
The information is a DATA message sent from the Central  
Office (CO) to the CPE during the silent interval, and  
after the first ringing burst.  
For this case a selected bandpass 1000 Hz to 1700 Hz  
could be very useful for the carrier detect ...  
After the interrupt due to the carrier detect the micro-  
processor can change the bandpass frequencies according  
to the FSK band.  
2.1.1  
Description  
On the receive side, the received signal coming from  
CLI1 and CLI2 first goes to an antialiasing filter after the  
differential op-amp.  
The normal carrier detect guard time is 26.4 ms.  
The improved carrier detect guard time is 34.7 ms.  
The carrier lost guard time is 8.8 ms, in all the cases.  
The next section is a bandpass filter composed of an FSK  
filter composed of a fifth order high-pass followed by a  
third order low-pass filter. The low-pass and high-pass  
cut-off frequencies are about 300 Hz and 3400 Hz  
respectively.  
2.1.3  
Demodulator  
This part is enabled with the carrier detect signal.  
The reference signal is at 1700 Hz, (the same frequency  
for BELL 202 and V23). All the incoming signals are  
compared to this value to make a digital square wave  
frequency varying in frequency and in phase as a function  
of the input frequencies.  
2.1.2  
Carrier Detect  
The carrier detect provides an indication (to the micro-  
processor with an interrupt request) of the presence of a  
signal in the FSK band. It detects a sufficient amplitude  
signal at the output of the FSK bandpass filter.  
2.1.4  
Clock Recovery  
Note that signals such as speech or DTMF tones also lie  
in the FSK frequency band and the carrier detect may be  
activated by these signals. The signals will be  
demodulated and presented as DATA. To avoid false  
DATA detection, a command bit is used to disable the  
demodulator when no FSK signal is expected.  
The process starts at the first low-level bit received from  
the demodulator. After that the CLOCK is generated for  
the 10 serial bits (1 bit start, 8 bits data, 1 bit stop).When  
all the data are received DATA READY is generated. This  
signal loads the serial data in a parallel buffer.  
DATA READY provides an indication (to the micro-  
processor with an interrupt request) of the presence data  
byte available.  
Four bits are provided to improve carrier detection  
[CD_CD <3..0>]. With these bits it is possible to select  
Rev. A2, 25-Aug-98  
5 (34)  
Target Specification  
U3900BM  
2.1.5  
Data Recovery and Buffer  
The incoming serial data are stored and sent to the SSB is generated, the INT pin will become active, and data  
each 10 bits (1 start bit, 8 data, 1 stop bit ). When after a ready interrupt bit is set in the status register (bit 3). The  
start bit 8 data bits and a stop bit are received, an interrupt received data is available in the CLID DATA register.  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop  
DATA  
INT pin  
14605  
Figure 3. Interrupt treatment for SLID DATA register  
2.1.6  
CLID: Logical Part  
Command bit SCD  
from serial bus  
Command bits  
CD_CD < 3...0 >  
from serial bus  
CD  
NCD  
FSK  
signal  
Data recovery  
and  
DATA  
DR  
Carrier  
detect  
buffer  
Serial  
data  
Clock  
Data ready  
Clock  
recovery  
Demodulator  
From/to  
14606  
demodulator analog filter  
Figure 4. Block diagram for CLID logical part  
2.1.7  
Carrier Detect, Bandpass Frequencies  
Low Frequencies  
High Frequencies  
CD_CD<0>  
CD_CD<1>  
Value  
290 Hz  
515 Hz  
770 Hz  
1000 Hz  
CD_CD<2>  
CD_CD<3>  
Value  
0
1
0
1
0
0
1
1
0
1
0
1
0
0
1
1
3400 Hz  
3100 Hz  
2665 Hz  
1700 Hz  
6 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
2.1.8  
Special Carrier Detect  
If SCD = 0 Detect guard time = 26.4 ms  
If SCD = 1 Detect guard time = 34.7 ms (26.4 ms + 10 bits of the channel seizure)  
FSK signal  
Channel seizure: 010101...  
SCD = 0 SCD = 1  
Mark: 1111...  
Clid Data  
Carrier detect  
(Interrupt)  
Carrier lost  
26.4 ms  
8.3 ms  
8.8 ms  
14077  
Figure 5. Timing diagram for carrier detect in CLID mode  
2.2 SCWID  
CAS detector should also be immune to imitation from  
near and far end speech.  
Mark: 1111...  
Clid Data  
FSK signal  
Carrier lost  
Note that the term “near end” refers to the end of the  
telephone connection receiving the caller ID service, “far  
end” refers to the other end of the connection, the Central  
Office (CO).  
Carrier detect  
(Interrupt)  
ncd (SCWID)  
26.4 ms  
8.8 ms  
14078  
There are two aspects of speech immunity: talk-off and  
talk-down.  
Figure 6. Timing diagram for carrier detect in SCWID mode  
Talk-off is the condition where signals are falsely  
detected because of imitation by speech or music. An  
imitation can be caused from the far end or the near end.  
The Spontaneous Call Waiting IDentifier (SCWID) part  
is designed to meet:  
Talk-down is the condition where signals are missed  
because of interference from speech or music.  
The Bellcore “Customer Premises Equipment  
Alerting Signal (CAS)”: TR-NWT-000030  
&
SR-TSV-002476 specifications.  
A CAS can be talked down only from the near end  
because the far end has already been muted by the CO.  
The British Telecom “Idle State Tone Alert Signal”:  
SIN227 & SIN242 specifications.  
2.2.2  
Description  
The European Telecommunication Standard: ETS300  
778-1 & ETS300 778-2 specifications.  
The SCWID part is a complete dual-tone receiver  
designed to detect the two frequencies 2750 Hz and  
2130 Hz dedicated for this alerting function. An output  
interrupt is provided to the microprocessor when  
detecting the alert signal.  
2.2.1  
Overview  
SCWID is a feature that allows a subscriber who is  
already engaged in a telephone call to receive caller ID  
information about an incoming call.  
This device part provides all necessary filtering without  
any external component.  
The on-chip filtering provides excellent signal-to-noise  
performance.  
The European Telecommunication Standard specifies  
Dual-Tone Alerting Signal (DT-AS) for off-line data  
transmission (on-hook) and on-line data transmission  
(off-hook).  
The dual-tone alert signal is divided into a high and a low  
bandpass switched capacitor filters:  
The British Telecom caller ID uses a Idle State Tone Alert  
Signal in on-hook mode.  
The high alert filter is a 2750 Hz bandpass design,  
with a notch placed at 2130 Hz for low frequency  
rejection.  
Bellcore specifies a Dual-Tone Alert Signal called CPE  
Alerting Signal (CAS) for use in off-hook data  
transmission. Bellcore states that the CPE should be able  
to detect the CAS in the presence of near end speech. The  
The low alert filter is a 2130 Hz bandpass design, with  
a notch placed at 2750 Hz for high frequency  
rejection.  
Rev. A2, 25-Aug-98  
7 (34)  
Target Specification  
U3900BM  
The filter outputs are smoothed and then limited by high-  
gain comparators which have hysteresis to reduce  
sensitivity to unwanted low-level signals, jitter and noise.  
The outputs of the comparators are square-wave signals.  
2.2.4  
Up Guard Time, Description  
The up guard time circuitry prevents false detection from  
speech or music (talk-off).  
The input signal (both 2130 Hz and 2750 Hz) must be  
continuously high for a duration depending on the  
2 programmable bits UGT0 and UGT1.  
The two resulting rectangular waves are applied to the  
digital circuitry where a counting algorithm measures and  
averages their periods. This averaging prevents dual-tone  
SCWID simulation by extraneous signals such as voice.  
DGT0  
DGT1  
UGT Value  
20 ms  
0
1
0
1
0
0
1
1
25 ms  
The averaging algorithm has been optimized to provide  
excellent immunity to “talk-off” and tolerance to the  
presence of interfering frequencies (third tones) and  
noise.  
30 ms  
35 ms  
If a drop occurs at any time before the selected value, the  
detection system is cleared.  
When both digital circuitries simultaneously detect a  
valid tone (2130 Hz and 2750 Hz), the signal applied at  
the guard-time block goes high. Should the alert tone  
signal be lost, the input signal at the guard-time block will  
go low.  
Nevertheless, there is the possibility to improve such a  
system using early guard time circuitry.  
2.2.5  
Early Guard Time, Description  
The early guard time system, when enabled, helps the up  
guard time to detect a CAS signal even if there are drops  
in it. But there are conditions before validating such a  
polluted signal.  
2.2.3  
Guard Time, Overview  
The input signal (both 2130 Hz and 2750 Hz) must be  
continuously high for duration depending on the  
2 programmable bits EGT0 and EGT1.  
To prevent false detection due to talk-off effects and to  
detect real CAS signals even with drops, a guard-time  
system is necessary. A guard-time system improves the  
detection performance and verifies that the duration of a  
valid signal is sufficient before alerting the  
microprocessor with an interrupt. It rejects detection of  
insufficient duration (up guard time) and mask dropouts  
(down guard time).  
EGT0  
EGT1  
EGT Value  
Disabled  
8.5 ms  
0
1
0
1
0
0
1
1
10.3 ms  
13.7 ms  
After that, the input signal is filtered and a drop can occur  
without clearing the system if it is not too long . The  
maximum time value depends on the command filter bit  
FFD.  
There are nine bits for controlling the guard-time block:  
2 bits, EGT0 and EGT1, for controlling the early  
guard time  
FFD  
Filter Value  
(Maximum Drop Duration)  
2 bits, UGT0 and UGT1, for controlling the up guard  
time  
0
1
2 ms  
4 ms  
2 bits, DGT0 and DGT1, for controlling the down  
guard time  
If there are too many drops, the system is cleared. The  
count of drops admitted depends on the command count  
bit FDC.  
1 bit, FFD, for controlling the width filter  
1 bit, FDC, for controlling the drops count  
FDC  
Count Value  
(Maximum Drop Count)  
0
1
4
3
1 bit, WP, for enabling the wetting pulse function  
One bit is dedicated for enabling the SCWID part.  
The early guard time with filter and count drops allow a  
good compromise to achieve talk-off and talk-down  
immunity.  
8 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
2.2.6  
Down Guard Time, Description  
2.2.7  
Wetting Pulse Function  
The down guard time circuitry prevents drops from  
speech or music (talk-down).  
The input signal (both 2130 Hz and 2750 Hz) must be  
continuously low for a duration depending on the  
2 programmable bits DGT0 and DGT1.  
British Telecom states that the TE is required to apply a  
DC wetting pulse and an AC load 205 ms after the end of  
the alerting signal (the Idle State* Tone Alert Signal); the  
duration of the wetting pulse is 151 ms; the TE shall rise  
to a minimum of 25 mA and maintain that current for a  
total time of not less than 5 ms.  
The early guard time is used like for up guard time, but  
the drop counter is not activated.  
OCTEL3 provides a 15-ms counter (which starts at the  
end of the alerting signal delayed by the down guard time  
value) to help the microprocessor to fulfil this  
requirement.  
* Note:  
The Idle State is an electrical condition into which the TE  
(when connected to the network) is placed such that it  
draws minimum current and does not activate the  
exchange.  
The signals at the output of the guard time system are sent  
to the SSB-INTERRUPT treatment.  
DGT0  
DGT1  
DGT Value  
15 ms  
An interrupt occurs at each edge of the OUT SCWID  
detector.  
0
1
0
1
0
0
1
1
17 ms  
When the wetting pulse is enabled (CDE8. mode  
UK = 1), an interrupt is sent to the microprocessor 15 ms  
after the falling edge of the WP detector.  
18 ms  
19 ms  
Idle state tone alert signal duration: 100 ±10 ms  
frequencies: 2130 Hz + 2750 Hz  
IN SCWID  
detector  
Choice of 4  
UGT values  
Choice of 4  
DGT values  
Up guard  
time  
Down guard  
time  
Interrupt  
OUT SCWID  
detector  
to the µP  
OUT WP  
detector  
15 ms  
Interrupt  
Interrupt  
to the µP  
to the µP  
WETTING PULSE  
(Under µP control)  
20 ±5 ms  
1 ms  
15 ±  
Not less  
than 5 ms  
Not less  
than 25 mA  
Current that  
TE shall draw  
14607  
Figure 7. Alert detection timing diagram with wetting pulse  
Rev. A2, 25-Aug-98  
9 (34)  
Target Specification  
U3900BM  
2.2.8  
SCWID: Overview  
CLASS  
signal  
Command bits CDE < 0...8 >  
from serial bus  
To interrupt  
system  
2130 Hz  
Alert signal  
low-frequency  
logic part  
Analog  
filter  
W pulse  
Wetting  
pulse  
EGT UGT DGT FC  
Alert  
Time guard  
2750 Hz  
Alert signal  
high-frequency  
logic part  
Analog  
filter  
14608  
To CLID FSK filter  
Figure 8. Alert detection  
General information:  
All the control bits provided for the SCWID function can be modified at any time with the microprocessor.  
2.2.9  
CAS Detect Process  
Typical application:  
The incoming signal from the CO is not polluted with speech or music. (The feature early guard time is not used)  
CAS signal duration: 80 ±  
5 ms  
frequencies: 2130 Hz + 2750 Hz  
IN SCWID  
detector  
Choice of 4  
UGT values  
Choice of 4  
DGT values  
Up guard  
time  
Down guard  
time  
OUT SCWID  
detector  
Interrupt  
Interrupt  
to the µP  
to the µP  
14609  
Figure 9. Timing diagram of standard alert detection  
If any drop in the CAS signal occurs before the end of the If any spike in the blank signal occurs before the end of  
UGT specified value, then the time counter restarts and the DGT specified value, then the time counter restarts  
the OUT SCWID detector remains low.  
and the OUT SCWID detector remains high.  
10 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
CAS Detect Process (continued)  
Improved process:  
To prevent false detection from speech and music by the far and the near end (talk-off), and to detect the incoming CAS  
signal from the CO, polluted with speech or music by the near end (talk-down), a new feature is used: the early and  
up guard time.  
CAS signal duration: 80 ±  
5 ms  
frequencies: 2130 Hz + 2750 Hz mixed with speech and music frequencies  
Values permitted for drops after  
a successful early guard time  
IN SCWID  
detector  
3 Drops had no effect (FDD = 4 ms, FDC = 4)  
Drops  
In signal  
Restart  
Early  
guard time  
Up guard time  
Interrupt  
OUT SCWID  
detector  
to the µP  
Choice of 3  
EGT values  
Choice of 4  
UGT values  
14610  
Figure 10. Timing diagram for early and up guard time  
Note: In the case above, the EGT counter restarts 3 times. After a sucessful 10.3-ms EGT, 3 drops occured but without  
any effect because the duration and the number is less than the maximum permitted.  
CAS signal duration: 80 ±  
5 ms  
frequencies: 2130 Hz + 2750 Hz mixed with speech and music frequencies  
Filter values permitted for spikes  
after a successful early guard time  
Spikes  
in signal  
mixed with speech and music frequencies  
IN SCWID  
detector  
5 Spikes had no effect (FDD = 4 ms)  
Restart  
Early guard time  
Down guard time  
OUT SCWID  
detector  
Interrupt  
to the µP  
Choice of 3  
EGT values  
Choice of 4  
DGT values  
14611  
Figure 11. Timing diagram of early and down guard time  
Note: In the case above, the EGT counter restarts 3 times. After a sucessful 13.7-ms EGT, 5 spikes occured but without  
any effect because the duration is less than the maximum permitted.  
Rev. A2, 25-Aug-98  
11 (34)  
Target Specification  
U3900BM  
For line voltages below 2 V, the switches remain in  
quiescent state as shown in the diagram.  
3 DC Line Interface and  
Supply-Voltage Generation  
2. When the chip is in power-down mode (Bit  
LOMAKE), e.g., during pulse dialing, all internal  
blocks are disabled via the serial bus, except the  
oscillator. In this condition, the voltage regulators and  
their internal bandgap are the only active blocks.  
The DC line interface consists of an electronic inductance  
and a dual-port output stage which charges the capacitors  
at VMPS and VB. The value of the equivalent inductance  
is given by:  
3. During ringing, the supply for the system is fed into  
VB via the Ringing Power Converter (RPC).  
Normally, the speaker amplifier in single-ended mode  
is used for ringing. The frequency for the melody is  
generated by the DTMF/Melody generator.  
L = 2  
R
C
(R  
R ) / (R + R )  
30 DC 30  
SENSE  
IND  
DC  
The U3900BM contains two identical series regulators  
which provide a supply voltage VMP of 3.3 V suitable for  
a microprocessor. In speech mode, both regulators are  
active because VMPS and VB are charged  
simultaneously by the DC-line interface. The output  
current is 6 mA. The capacitor at VMPS is used to provide  
the microcomputer with sufficient power during long line  
interruptions. Thus, long flash pulses can be bridged or an  
LCD display can be turned on for more than 2 seconds  
after going on-hook. When the system is in ringing mode,  
VB is charged by the on–chip ringing power converter. In  
this mode, only one regulator is used to supply VMP with  
maximum 3 mA.  
4. In an answering machine, the chip is powered by an  
external supply via Pin VB. The answering machine  
connections could be directly put to U3900BM. The  
answering machine is connected to the Pin AMREC.  
For the output AMREC, an AGC function is select-  
able via the serial bus. The output of the answering  
machine will be connected to the Pin AMPB, which is  
directly connected to the switching matrix, and thus  
enables the signal to be switched to every desired  
output.  
3.1 Supply Structure of the Chip  
V
R
SENSE  
L
As main benefit of the U3900BM is the easy implementa-  
tion of various applications due to the flexible system  
structure of the chip.  
10Ω  
V
MPS  
5.5 V  
C
470µF  
1 µF  
Possible applications:  
Group listening phone  
Hands-free phone  
+
+
IND  
3.3 V  
V
MP  
R
+
R
47µF  
300 kΩ  
V
5.5 V  
B
V
Phones which feature ringing with the built-in speaker  
amplifier  
220µF  
14573  
Answering machine with external supply  
Figure 12. Supply generator  
The special supply topology for the various functional  
blocks is illustrated in figure 11.  
4 Ringing Power Converter  
(RPC)  
There are four major supply states:  
The RPC transforms the input power at VRING (high  
voltage/ low current) into an equivalent output power at  
VB (low voltage/ high current) which is capable of  
driving the low-ohmic loudspeaker. The input impedance  
at VRING is adjustable from 3 k to 12 k by RIMPA  
1.  
2.  
3.  
4.  
Speech condition  
Power down (pulse dialing)  
Ringing  
External supply  
1. In speech condition, the system is supplied by the line (ZRING = RIMPA / 100) and the efficiency of the step-  
current. If the LIDET-block detects a line voltage  
above approximately 2 V, the internal signal VLON is  
activated. This is detected via serial bus, all necessary  
the blocks have to be switched on via the serial bus.  
down converter is approximately 65%.  
12 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
4.1 Ringing Frequency Detector  
(RFD)  
6 Serial Bus Interface  
The circuit is controlled by an external microcontroller  
through the serial bus. The serial bus is a bi-directional  
system consisting of a one-directional clock line (BCL)  
which is always driven by the microcontroller, and a  
bi-directional data-signal line. It is driven by the  
microcontroller as well as from the U3900BM (see  
figure 12). The serial bus requires external pull-up  
resistors as only open-collector transistors (Pin BDA) are  
integrated.  
The U3900BM provides an output signal for the  
microcontroller. This output signal is always double the  
value of the input signal (ringing frequency). It is  
generated by a current comparator with hysteresis. The  
levels for the on-threshold are programmable in 16 steps  
and the off-level is fixed. Every change of the comparator  
output generates a high level at the interrupt output INT.  
The information can then be read out by means of a serial  
bus with either a normal or a fast read mode. The block  
RFD is always enabled.  
WRITE:  
The data is a 12-bit word:  
A0 – A3: address of the destination register (0 to 15)  
D0 – D7: content of the register  
RINGTH[0:3]  
min. 0  
VRING  
7 V  
22 V  
1 V  
max. 15  
step  
The data line must be stable when the clock is high. Data  
must be shifted serially.  
5 Clock Output Divider  
Adjustment  
The Pin OSCOUT is a clock output which is derived from  
the crystal oscillator of the ceramic resonator. It can be  
used to drive a microcontroller or another remote  
component and thereby reduces the number of crystals  
required. The oscillator frequency can be divided by 1, 8,  
16, 32. During power-on reset, the divider will be reset to  
1 until it is changed by setting the serial bus.  
After 12 clock periods, the write indication is sent. Then,  
the transfer to the destination register is (internally)  
generated by a strobe signal transition of the data line  
when the clock is high (see figure 13).  
READ:  
There is a normal and a fast-read cycle.  
In the normal read cycle, the microcontroller sends a 4-bit  
address followed by the read indicator, then an 8-bit word  
is read out. The U3900BM drives the data line (see  
figure 14).  
CLK[0:1]  
Divider  
Frequency  
3.58 MHz  
447 kHz  
224 kHz  
112 kHz  
0
1
2
3
1
8
16  
32  
The fast read cycle is indicated by a strobe signal. With  
the following two clocks the U3900BM reads out the sta-  
tus bits RFDO and LIDET which indicate that a ringing  
signal or a line signal is present (see figure 15).  
6.1 Bus Timing  
BDA  
t
wSTA  
t
r
t
f
t
hSTA  
BCL  
t
t
t
H
t
sSTA  
t
t
L
sSTOP  
hDAT  
hSTA  
t
hDAT  
S
f
S
f
S
r
14793  
S = Strobe falling, S = Strobe rising  
f
R
Figure 13. Bus timing  
Rev. A2, 25-Aug-98  
13 (34)  
Target Specification  
U3900BM  
DTMFF[2:3]  
in DTMF  
Mode  
Frequency  
Error / %  
7 DTMF Dialing  
The DTMF generator sends a multi-frequency signal  
through the matrix to the line. The signal is the result of  
the sum of two frequencies and is internally filtered. The  
frequencies are chosen from a low and a high frequency  
group.  
0
1
2
3
00  
01  
10  
11  
1209  
1336  
1477  
1633  
–0.110  
0.123  
–0.020  
–0.182  
The circuit conforms to the CEPT recommendation  
concerning DTMF option (rec. T/CF 46–03).  
DTMFF4 in DTMF mode  
Preemphasis Selection  
2.5 dB  
3.5 dB  
Two different levels for the low level group and two  
different preemphasis (2.5 dB and 3.5 dB) can be chosen  
by means of the serial bus.  
0
1
7.1 Melody – Confidence Tone  
Generation  
DTMFF  
[0:4]  
f
Hz  
Tone- Error/%  
Name  
DTMF  
Key  
1
0
1
2
3
4
5
6
7
8
9
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
440.0  
466.2  
493.9  
523.2  
554.4  
587.3  
622.3  
659.3  
698.5  
740.0  
784.0  
830.0  
880.0  
932.3  
987.8  
1046.5  
a
b
h
–0.008  
–0.016  
–0.003  
0.014  
697 1209  
770 1209  
852 1209  
941 1209  
697 1336  
770 1336  
852 1336  
941 1336  
697 1477  
770 1477  
852 1477  
941 1477  
697 1633  
770 1633  
852 1633  
941 1633  
697 1209  
770 1209  
852 1209  
941 1209  
697 1336  
770 1336  
852 1336  
941 1336  
697 1477  
770 1477  
852 1477  
941 1477  
697 1633  
770 1633  
852 1633  
941 1633  
1
4
Melody/confidence tone frequencies are given in the  
table below.  
1
1
7
2
The frequencies are provided at the DTMF input of the  
switch matrix. A sinus wave, a square wave or a pulsed  
wave can be selected by the serial bus. Square signal  
means output is half of frequency cycle high and half low,  
so duty cycle of 50% square wave or 50% for pulsed  
signal.  
c
*
2
des  
0.018  
2
2
d
–0.023  
–0.129  
0.106  
5
2
es  
8
2
e
0
2
f
–0.216  
–0.222  
0.126  
3
2
ges  
6
DTMFM[0:2]  
2
10 01010  
g
9
0
1
000  
001  
DTMF generator OFF  
Confidence tone melody  
on (sinus)  
2
11  
12  
13  
14  
15  
01011  
01100  
01101  
01110  
01111  
as  
–0.169  
0.288  
#
2
a
b
h
A
B
C
D
1
2
2
–0.014  
–0.004  
–0.335  
–0.355  
–0.023  
–0.129  
0.106  
2
3
010  
011  
Ringer melody (pulse)  
Ringer melody  
(square signal)  
3
c
3
16 10000  
17 10001  
18 10010  
1108.7 des  
4
5
6
7
100  
101  
110  
111  
DTMF(high level)  
DTMF(low level)  
3
1174.7  
1244.5  
1318.5  
1396.9  
d
4
3
es  
7
3
19  
10011  
e
*
3
20 10100  
21 10101  
f
–0.214  
–0.222  
0.126  
2
3
1480.0 ges  
5
3
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1568.0  
1661.2  
1760.0  
1864.6  
1975.5  
2093.0  
g
8
3
as  
–0.241  
–0.302  
–0.014  
0.665  
0
DTMFF[0:1]  
in DTMF  
Mode  
Frequency  
Error / %  
3
a
b
h
3
3
6
3
9
0
1
2
3
00  
01  
10  
11  
697  
770  
852  
941  
–0.007  
–0.156  
0.032  
4
c
0.367  
#
4
2217.5 des  
0.387  
A
B
C
D
4
2349.3  
2663.3  
2983.0  
d
0.771  
0.316  
–––  
–––  
14 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Write cycle  
CLOCK  
DATA  
R/W=0  
A0  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
A3  
A2  
A1  
Data fromµP  
Strobe  
fromµP  
14574  
Figure 14. Write cycle  
Normal read cycle  
CLOCK  
DATA  
A3 A2  
A1  
A0  
R/W=1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data fromµP  
Strobe  
Data from U3900BM  
14794  
fromµP  
Figure 15. Normal read cycle  
Fast read cycle  
CLOCK  
DATA  
D7=IZC D6=IVE  
Data from U3900BM  
Strobe  
from µP  
14795  
Figure 16. Fast read cycle  
Rev. A2, 25-Aug-98  
15 (34)  
Target Specification  
U3900BM  
Table 1. Names and functions of the serial bus registers  
Register  
R0  
Group  
Enables  
No  
Name  
ENRING  
ERX  
Description  
Status  
1
R0B0  
R0B1  
R0B2  
R0B3  
R0B4  
R0B5  
R0B6  
R0B7  
R1B0  
R1B1  
R1B2  
R1B3  
R1B4  
R1B5  
R1B6  
R1B7  
R2B0  
R2B1  
R2B2  
R2B3  
R2B4  
R2B5  
R2B6  
R2B7  
R3B0  
R3B1  
R3B2  
R3B3  
R3B4  
R3B5  
R3B6  
R3B7  
R4B0  
R4B1  
R4B2  
R4B3  
R4B4  
R4B5  
R4B6  
R4B7  
R5B0  
R5B1  
R5B2  
R5B3  
R5B4  
R5B5  
R5B6  
R5B7  
Enable ringer  
Enable receive part  
0
ETX  
Enable transmit part  
0
ENVM  
ENMIC  
ENSTBAL  
MUTE  
ENRLT  
ENSACL  
ENSA  
ENSAO  
ENAM  
ENCT  
ANAMAGC  
ENCLID  
ENSCWID  
I1O1  
Enable VM generator  
1
1
Enable microphone  
0
0
0
Enable sidetone balancing  
Muting earpiece amplifier  
Enable POR low threshold  
Enable anti-clipping for speaker amplifier  
Enable speaker amplifier and AFS  
Enable output stage speaker amplifier  
Enable answering machine connections  
Enable cordless telephone connections  
Enable answering machine AGC  
Enable CLID  
R1  
R2  
R3  
R4  
R5  
Enables  
Matrix  
Matrix  
Matrix  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Enable SCWID  
Switch on MIC / LTX  
I1O2  
Switch on MIC / RXLS  
I1O3  
Switch on MIC / EPO  
I1O4  
Switch on MIC / CEAR  
I1O5  
Switch on MIC / AMREC  
Switch on DTMF / LTX  
Switch on DTMF / RXLS  
Switch on DTMF / EPO  
Switch on DTMF / CEAR  
Switch on DTMF / AMREC  
Switch on LRX / LTX  
I2O1  
I2O2  
I2O3  
I2O4  
I2O5  
I3O1  
I3O2  
Switch on LRX / RXLS  
I3O3  
Switch on LRX / EPO  
I3O4  
Switch on LRX / CEAR  
Switch on LRX / AMREC  
Switch on CMIC / LTX  
I3O5  
I4O1  
I4O2  
Switch on CMIC / RXLS  
Switch on CMIC / EPO  
I4O3  
I4O4  
Switch on CMIC / CEAR  
Switch on CMIC / AMREC  
Switch on AMPB / LTX  
Switch on AMPB / RXLS  
Switch on AMPB / EPO  
Switch on AMPB / CEAR  
Switch on AMPB / AMREC  
Gain transmit AGA LSB  
Gain transmit AGA  
I4O5  
I5O1  
I5O2  
I5O3  
I5O4  
Matrix  
I5O5  
AGATX  
MICLIM  
AGATX0  
AGATX1  
AGATX2  
MICHF  
DBM5  
MIC0  
Gain transmit AGA MSB  
Select RF-microphone input  
Max. transmit level for anti-clipping  
Gain microphone amplifier LSB  
Gain microphone amplifier MSB  
MIC1  
16 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Register  
R6  
Group  
Sidetone  
No  
Name  
FOFFC  
Description  
Speed up offset canceller  
Status  
0
R6B0  
R6B1  
R6B2  
R6B3  
R6B4  
R6B5  
R6B6  
R6B7  
R7B0  
R7B1  
R7B2  
R7B3  
R7B4  
R7B5  
R7B6  
R7B7  
R8B0  
R8B1  
R8B2  
R8B3  
R8B4  
R8B5  
R8B6  
R8B7  
R9B0  
R9B1  
R9B2  
R9B3  
R9B4  
R9B5  
R9B6  
R9B7  
DTAMAGC  
SL0  
Decay time answering machiune AGC  
Slope adjustment for sidetone LSB  
Slope adjustment for sidetone MSB  
Low-frequency adjustment for sidetone LSB  
Low-frequency adjustment for sidetone  
Low-frequency adjustment for sidetone  
Low-frequency adjustment for sidetone MSB  
Pole adjustment for sidetone LSB  
Pole adjustment for sidetone  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SL1  
LF0  
LF1  
LF2  
LF3  
R7  
Sidetone  
AGARX  
P0  
P1  
P2  
Pole adjustment for sidetone  
P3  
Pole adjustment for sidetone  
P4  
Pole adjustment for sidetone MSB  
Gain receive AGC LSB  
AGARX0  
AGARX1  
AGARX2  
EA0  
Gain receive AGC  
Gain receive AGC MSB  
R8  
EARA  
PS  
Gain earpiece amplifier LSB  
Gain earpiece amplifier  
EA1  
EA2  
Gain earpiece amplifier  
EA3  
Gain earpiece amplifier  
EA4  
Gain earpiece amplifier MSB  
IMPSEL  
LOMAKE  
SD  
Line-impedance selection (1 = 1 k  
Short circuit during pulse dialing  
Shut down  
)
R9  
AFS  
AFS0  
AFS1  
AFS2  
AFS3  
AFS4  
AFS5  
AFSM  
ALT  
AFS gain adjustment LSB  
AFS gain adjustment  
AFS gain adjustment  
AFS gain adjustment  
AFS gain adjustment  
AFS gain adjustment MSB  
AFS mode  
Antilarsen threshold  
R10  
SA  
R10B0  
R10B1  
R10B2  
R10B3  
R10B4  
R10B5  
R10B6  
R10B7  
R11B0  
R11B1  
R11B2  
R11B3  
R11B4  
R11B5  
R11B6  
R11B7  
SA0  
Gain speaker amplifier LSB  
Gain speaker amplifier  
Gain speaker amplifier  
Gain speaker amplifier  
Gain speaker amplifier MSB  
SA1  
SA2  
SA3  
SA4  
SE  
Speaker amplifier single-ended mode  
Speaker amplifier charge-current adjustment LSB  
Speaker amplifier charge-current adjustment MSB  
Input selection ADC  
LSCUR0  
LSCUR1  
ADC0  
ADC1  
ADC2  
ADC3  
NWT  
SOC  
R11  
ADC  
Input selection ADC  
Input selection ADC  
Input selection ADC  
Network tuning  
Start of ADC conversion  
ADCR  
MSKIT  
Selection of ADC range  
Mask for interrupt bits  
Rev. A2, 25-Aug-98  
17 (34)  
Target Specification  
U3900BM  
Register  
R12  
Group  
DTMF  
No  
R12B0  
Name  
DTMFF0  
DTMFF1  
DTMFF2  
DTMFF3  
DTMFF4  
DTMFM0  
DTMFM1  
DTMFM2  
CLK0  
Description  
DTMF frequency selection  
Status  
0
R12B1  
R12B2  
R12B3  
R12B4  
R12B5  
R12B6  
R12B7  
R13B0  
R13B1  
R13B2  
R13B3  
R13B4  
R13B5  
R13B6  
R13B7  
R14B0  
R14B1  
R14B2  
R14B3  
R14B4  
R14B5  
R14B6  
R14B7  
R15B0  
R15B1  
R15B2  
R15B3  
R15B4  
R15B5  
R15B6  
R15B7  
DTMF frequency selection  
DTMF frequency selection  
DTMF frequency selection  
DTMF frequency selection  
Generator mode selection  
Generator mode selection  
Generator mode selection  
Selection clock frequency for  
Selection clock frequency for  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R13  
R14  
R15  
CLK  
RTH  
TM  
C
C
CLK1  
RTH0  
Ringer threshold adjustment LSB  
Ringer threshold adjustment  
Ringer threshold adjustment  
Ringer threshold adjustment MSB  
Test mode enable (low active)  
Test mode enable (high active)  
Test mode enable (high active)  
Test mode enable (low active)  
RTH1  
RTH2  
RTH3  
TME0  
TME1  
TM  
TME2  
CLID  
TME3  
ENRXCL  
GSCWID  
WP  
Selection of internal CLID input signals  
Gain adjustment of SCWID behind sidetone  
Wetting pulse  
CLID  
UGT0  
SCWID up guard time  
UGT1/SCD  
SCWID up guard time/ CLIB special carier detect  
DGT0/CDLF0 SCWID down guard time/ CLID LF carrier detect  
DGT1/CDLF1 SCWID down guard time/ CLID LF carrier detect  
EGT0/CDHF0 SCWID early guard time/ CLID HF carrier detect  
EGT1/CDHF1 SCWID early guard time/ CLID HF carrier detect  
FDD  
FDC  
Filter drop duration  
Filter drops count  
8 Power-on Reset  
9 Watchdog Function  
To avoid undefined states of the system when it is  
powered on, an internal reset clears the internal registers.  
To avoid the system operating the microcontroller in a  
wrong condition, the cicuit provides a watchdog function.  
The system (U3900BM + microcontroller) is woken up The watchdog has to be retriggered every second by  
by any of the following conditions:  
VMP > 2.75 V and VB > 2.45 V and  
line voltage (VL)  
triggering the serial bus (sending information to the IC or  
other remoted components at the serial bus). If there has  
been no bus transmission for more than one second the  
watchdog iniates a reset.  
or  
or  
ringer (VRING)  
external supply (ES)  
The power-down of the circuit is caused by a shut-down  
sent by the serial bus (SD = 1), low-voltage reset or by the  
watchdog function (see figures 16, 17 and 18).  
18 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Line  
LID  
IVDD  
OSCOUT  
ton  
VMP  
Reset  
trt  
14585  
trt – t = 4.5 ms  
ton =osntart–up oscillator  
Figure 17. Power-on reset (line)  
VRING  
VB  
IVDD  
VMP  
OSCOUT  
ton  
Reset  
trt  
14586  
Figure 18. Power-on reset (ringing)  
Line  
LID  
VMP  
IVDD  
LVR  
IVDD  
Reset  
OSCOUT  
14612  
Figure 19. Power-on reset if low voltage reset enabled  
Rev. A2, 25-Aug-98  
19 (34)  
Target Specification  
U3900BM  
10 Acoustic Feedback Suppression  
Acoustical feedback from the loudspeaker to the decision is made by the differential pair as to which  
microphone may cause instability of the system. The direction should be transmitted.  
U3900BM has a very efficient feedback-suppression  
The attenuation of the controlled amplifiers TXA and SAI  
circuit which uses a modified voice switch topology.  
is determined by the emitter current IAFS which is bus  
Figure 20 shows the basic system configuration.  
programmable.  
Two attenuators (TXA and SAI) reduce the critical loop  
gain via the serial bus either in the transmit or in the  
receive path. The sliding control in block AFS control  
(figure 19) determines whether the TX or the RX signal  
has to be attenuated. The overall loop gain remains  
constant under all operating conditions.  
IDTXA  
IDSAI  
Selection of the active channel is made by a comparison  
of the logarithmically compressed TX- and RX- envelope  
curve. Figure 19 shows the AFS control.  
TLDT  
TLDR  
+
The system configuration for group listening, which is  
implemented in the U3900BM, is illustrated in figure 21.  
TXA and SAI represent the two attenuators, whereas the  
logarithmic envelope detectors are shown in a simplified  
way (operational amplifiers with two diodes).  
IAFS  
BUS  
Receive and transmit signals are first processed by  
logarithmic rectifiers in order to produce the envelopes of  
the speech at TLDT and RLDT. After amplification a  
14613  
Figure 20. AFS control  
TXA  
MICRO  
LOG  
Line  
AFS  
control  
LOG  
SA  
SAI  
14591  
Figure 21. Basic system configurations  
20 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
TLDT  
TXA  
SAI  
TX  
TX  
INLDT  
INLDR  
+
I
I
BUS  
BUS  
AFS  
GSA  
14614  
TLDR  
Figure 22. System configuration for group listening  
11 Analog-to-Digital Converter (ADC)  
The circuit is a 7-bit successive approximation analog-  
to-digital converter in switched capacitor technique. An  
SOC  
50 µs  
internal bandgap circuit generates a 1.25-V reference  
voltage which is the equivalent of  
1
MSB.  
1 LSB = 19.5 mV. The possible input voltage at ADIN is  
0 to 2.48 V.  
EOC  
14594  
Figure 23. Timing of ADC  
The ADC needs an SOC (Start Of Conversion) signal. In  
the ‘High’ phase of the SOC signal, the ADC is reset.  
50 s after the beginning of the ‘Low’ phase of the SOC  
signal the ADC generates an EOC (End Of Conversion)  
signal which indicates that the conversion is finished. The  
rising edge of EOC generates an interrupt at the INT  
output. The result can be read out by the serial bus.  
SOC  
ADC  
EOC  
IL 20mV/(1mA S)  
ADIN  
0.4 VB  
MSB  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
LSB  
0.4 VMPS  
0.75 VMP  
Voltages higher than 2.48 V have to be divided. The  
signal which is connected to the ADC is determined by  
5 bits ADC0, ADC1, ADC2, ADC3 and NWT.  
TLDR/TLDT measuring is possible relative to a preced-  
ing reference measurement. The current range of IL can  
be doubled by ADCR. If ADCR is ‘High’, S has the value  
0.5, otherwise S = 1.  
8
8
(TLDR–REF)  
(TLDT–REF)  
0.4 SAO1  
0.4 OFF1  
0.4 OFF2  
0.4 OFF3  
The source impedance at ADIN must be lower than  
250 k .  
14595  
Accuracy: 1 LSB ± 3%  
Figure 24. ADC input selection  
Rev. A2, 25-Aug-98  
21 (34)  
Target Specification  
U3900BM  
Table 2. Input selection AD converter  
ADC[0:3]  
Value  
0
1
2
3
4
5
6
7
8
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
OFF  
IL  
ADIN external  
VB  
VMPS  
VMP  
TLDR  
TLDT  
Free  
SAO1  
Offcan1  
Offcan2  
Offcan3  
Free  
I1 = S 127 mA D / 127  
V2 = 2.5 V D / 127 (max. 2.5 V)  
V3 = (2.5 V / 0.4) D / 127  
V4 = (2.5 V / 0.4) D / 127  
V5 = (2.5 V / 0.75) D / 127  
V6 = 1/8 (Vp – Ref) D / 127  
V7 = 1/8 (Vp – Ref) D / 127  
9
V4 = (2.5 V / 0.4) D / 127  
TEMIC internal use  
TEMIC internal use  
10  
11  
12  
13  
14  
15  
TEMIC internal use  
Free  
Free  
D = measured digital word (0 < = D < = 127)  
S = programmable gain 0.5 or 1  
Vp = peak value of the measured signal  
12 Switch Matrix  
AMPB CMIC LRX DTMF MIC  
The switch matrix has 5 inputs and 5 outputs. Every pair  
of input and output can be connected. The inputs and  
outputs used must be enabled. If 2 or more inputs are  
switched to an output, the sum of the inputs is available  
at the output. The inputs MIC and LRX have offset  
cancellers with a 3-dB corner frequency of 270 Hz.  
AMPB and CMIC have a 60-k input impedance. The  
TXO output has a digitally-programmable gain stage with  
a gain of 2, 3 to 9 dB depending on AGATX0 (LSB),  
AGATX1, AGATX2 (MSB) and a first-order low-pass  
filter with 0.5 dB damping at 3300 Hz and 3 dB damping  
at 9450 Hz. The outputs RXLS, EPO and CEAR have a  
gain of 0 dB. If a switch is open, the path has a damping  
of more than 60 dB.  
Offset  
canceller  
Offset  
canceller  
I5  
I4  
I3  
I2  
I1  
Lowpass  
O1  
O5  
O4  
O3  
O2  
AGATX0  
AGATX1  
AGATX2  
2 ... 9 dB  
LTX  
AGC  
AGCI AMREC EPO RXLS  
TXO  
–10 dB  
14079  
STO  
Figure 25. Diagram of switch matrix  
22 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Table 3. Table of bits and corresponding switches  
Register  
R2  
Group  
Matrix  
No.  
Name  
Description  
R2B0  
R2B1  
R2B2  
R2B3  
R2B4  
R2B5  
R2B6  
R2B7  
R3B0  
R3B1  
R3B2  
R3B3  
R3B4  
R3B5  
R3B6  
R3B7  
R4B0  
R4B1  
R4B2  
R4B3  
R4B4  
R4B5  
R4B6  
R4B7  
R5B0  
I1O1  
I1O2  
I1O3  
I1O4  
I1O5  
I2O1  
I2O2  
I2O3  
I2O4  
I2O5  
I3O1  
I3O2  
I3O3  
I3O4  
I3O5  
I4O1  
I4O2  
I4O3  
I4O4  
I4O5  
I5O1  
I5O2  
I5O3  
I5O4  
I5O5  
Switch on MIC / LTX  
Switch on MIC / RXLS  
Switch on MIC / EPO  
Switch on MIC / CEAR  
Switch on MIC / AMREC  
Switch on DTMF / LTX  
Switch on DTMF / RXLS  
Switch on DTMF / EPO  
Switch on DTMF / CEAR  
Switch on DTMF / AMREC  
Switch on LRX / LTX  
R3  
R4  
R5  
Matrix  
Matrix  
Matrix  
Switch on LRX / RXLS  
Switch on LRX / EPO  
Switch on LRX / CEAR  
Switch on LRX / AMREC  
Switch on CMIC / LTX  
Switch on CMIC / RXLS  
Switch on CMIC / EPO  
Switch on CMIC / CEAR  
Switch on CMIC / AMREC  
Switch on AMPB / LTX  
Switch on AMPB / RXLS  
Switch on AMPB / EPO  
Switch on AMPB / CEAR  
Switch on AMPB / AMREC  
Rev. A2, 25-Aug-98  
23 (34)  
Target Specification  
U3900BM  
13 Sidetone System  
The Sidetone Balancing (STB) has the task to reduce the The 3 programmable parameters are  
crosstalk from LTX (microphone) to LRX (earpiece) in  
the frequency range of 0.3 to 3.4 kHz. The LTX signal is  
converted into a current in the MOD block. This current  
is transformed into a voltage signal (LINE) by the line  
impedance ZL. The LINE signal is fed into the summing  
amplifier DIFF1 via capacitor CK and attenuator AMP1.  
1. LF (gain at low frequency).  
LF has 15 programming steps. LF(0) gives –2 dB  
gain, LF(15) gives 5.5 dB gain.  
LF  
0
1
2
3
4
5
6
7
Step gain –2 –1.3 –0.6 0.1 0.6 1.0 1.3 1.6  
On the other side the LTX buffered by STOAMP drives  
an external low-pass filter (RST, CST). The external low-  
pass filter and the internal STB have the transfer function  
drawn in the STB box. The amplified STB-output signal  
drives the negative input of the summing block. If both  
signals at the DIFF1 block are equal in level and phase,  
we have a good suppression of the LTX signal. In this  
condition the frequency and phase response of the STB  
block will represent the frequency curve on line.  
LF  
8
9
10  
11  
12  
13  
14  
15  
Step gain 1.9 2.2 2.5 3.0 3.6 4.2 4.8 5.5  
STO_DIFF(LF)= (–10 dB – 2 dB + 0.5 dB LF + 9 dB) LTX  
2. P (the pole position of the lowpass).  
The P adjustment has 31 Steps. P(0) means the  
lowpass determined by the external application  
(RST, CST). The internally processed low-pass  
frequency is fixed by this equation.  
1
f(P)  
1.122P  
In real live the line impedance ZL varies strongly for  
different users. To reach a good suppression with one  
application for all different line impendances, the STB  
function is programmable.  
2
CST RST  
3. SL  
(sidetone slope; the pole frequency of the highpass)  
The SL have 3 steps. SL(0) is a lower frequency of the  
highpass. SL(3) is a higher frequency of the highpass.  
With SL we can influence the suppression at high  
frequencies.  
LTX  
LINE  
8dB  
CK  
ZL  
MOD  
LRX  
RECIN  
DIFF1  
+
–10dB  
0–7dB  
STO  
AGARX  
AMP1  
STO_DIFF  
–10dB  
STOAMP  
9dB AMP2  
STO  
8.2 kΩ  
Sidetone balancing  
P
STRC  
STC  
LF  
g
CTO  
33 nF  
SL  
f
14579  
LF  
P
SL  
Figure 26. Programmable sidetone supression circuit  
24 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
< = 32 dB  
0 / 6 dB  
LSCUR  
[
]
1:2  
SE  
V
V
B
M
CFN  
Offset  
canceler  
CHARLSC  
ENSA  
200 kΩ  
100 kΩ  
SAI  
V
B
100 kΩ  
V
B
SAO1  
+
+
ENSA  
47 µF  
V
V
ENSA  
SACL  
M
M
V
B
100 kΩ  
30 kΩ  
50 Ω  
VB_REG  
100 kΩ  
100 kΩ  
V
B
100 kΩ  
V
B
ENSA  
SAO2  
+
+
[
]
EN 1:6  
PROG_SAI  
V
V
EN  
M
M
ENSA  
IDSAI  
Ron = 2 Ω  
ENSACL  
TSACL  
ENSA ENSAO SE  
14593  
Figure 27. Speaker amplifier  
–10dB  
Offset  
cancel  
–3dB ... –10dB and 7dB (NWT)  
7dB0dB and  
ST  
32dB  
–14.5dB  
20dB (NWT)  
SAO1  
Sidetone  
balancing  
Offset  
cancel  
Loud–  
speaker  
6dB  
LRX  
RXLS  
EPO  
VL  
Line  
1.5dB steps  
1dB steps  
SAO2  
26dB-3dB and  
–10dB (DTMF)  
RECO1  
Earpiece  
DTMF  
Filter  
DTMF  
< –24dBm/  
–22dBm >  
DTMF  
< –40dBm/  
–38dBm >  
DTMF  
generator  
MIC1  
1dB steps  
RECO2  
VL  
Switching  
matrix  
Handset  
micro–  
phone  
30dB12dB  
9dB2dB  
0dB  
7dB  
Offset  
cancel  
MIC2  
MIC3  
8dB  
MIC  
LTX  
Line  
TXA  
Handsfree  
micro–  
1dB steps  
MOD  
6dB steps  
1dB steps  
0dB  
phone  
CEAR  
0dB  
0dB  
Cordless  
AMPB AMREC  
CMIC  
AMREC  
Answering  
machine  
0dB  
0dB  
Answering  
machine  
AGCO  
AGCI  
AGC  
AMPB  
14620  
Figure 28. Audio frequency signal management U3900BM  
Rev. A2, 25-Aug-98  
25 (34)  
Target Specification  
U3900BM  
14 Technical Data  
14.1 Absolute Maximum Ratings  
Parameters  
Line current  
DC line voltage  
Symbol  
Value  
140  
12  
Unit  
mA  
V
I
L
V
L
Maximum input current  
Junction temperature  
Ambient temperature  
Storage temperature  
I
15  
125  
–25 to +75  
–55 to +150  
0.9  
mA  
°C  
°C  
°C  
W
RING  
T
j
T
amb  
T
stg  
Total power dissipation,  
T
amb  
= 60°C  
P
tot  
14.2 Thermal Resistance  
Parameters  
SSO44  
Symbol  
R
thJA  
Value  
70  
Unit  
K/W  
Junction ambient  
14.3 Electrical Characteristics  
f = 1 kHz, 0 dBm = 775 mV , IVMIC = 0.3 mA, IMP = 3 mA, R = 1.3 M, T  
= 25°C, Z = 68 nF + 100 ,  
ear  
rms  
DC  
amb  
Z
= 68 nF, f = 3.58 MHz, all bits in reset condition, unless otherwise specified.  
M
Parameters  
DC characteristics  
DC voltage drop-over  
circuit  
Test Conditions / Pins  
I = 2 mA  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Fig.  
2.4  
5.0  
7.5  
9.4  
L
I = 14 mA  
V
L
4.6  
8.8  
5.4  
L
I = 60 mA  
L
I = 100 mA  
L
10.0  
Transmission amplifier, I = 14 mA, V  
= 2 mV  
, MICG[0:1] = 2, AGATX[0:2] = 7  
RMS  
L
MIC  
ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, (G = 48 dB)  
T
Transmit amplification MICG[0:1] = 2  
AGATX[0:2] = 7  
G
46  
47  
48  
0
dB  
dB  
dB  
T
Frequency response  
(see note 1)  
I 14 mA,  
f = 3.4 kHz  
G
–1  
L
T
T
T
Gain change with  
current  
I = 14 to 100 mA  
L
G
G
±0.5  
±0.5  
Gain deviation  
T
amb  
= –10 to +60°C  
dB  
dB  
CMRR of microphone  
amplifier  
Input resistance of  
MIC amplifier  
CMRR  
60  
75  
80  
50  
R
R
kΩ  
kΩ  
dB  
i
Input resistance of  
MIC3 amplifier  
Gain difference  
between MIC1, MIC2  
to MIC3  
MICHF = 1  
MICHF = 1  
150  
300  
i
G
±0.4  
T
Distortion at line  
I 14 mA  
L
d
t
2
%
V = 700 mV  
L
rms  
Note 1)  
26 (34)  
Frequency response is due to internal filters  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Maximum output  
voltage  
Test Conditions / Pins  
I 19 mA, d < 5%  
Symbol  
Min.  
1.3  
Typ.  
2.5  
Max.  
3.7  
Unit  
dBm  
Fig.  
V
Lmax  
L
V
MIC  
= 10 mV  
CTXA = 1 µF  
DBM5 = 0  
DBM5 = 1, V  
= 14 mV  
V
3.8  
5.0  
–5.2  
6.2  
dBm  
dBm  
MIC  
Lmax  
V
MIC  
= 20 mV  
V
MICOmax  
MICG[0:1] = 3  
Noise at line psopho-  
metrically weighted  
I 14 mA  
MICG[0:1] = 2  
AGATX[0:2] = 7  
no  
L
– 80  
– 72  
dBmp  
ms  
Anti-clipping:  
attack time  
CTXA = 1 F  
each 3 dB overdrive  
t
a
0.5  
16  
release time  
Gain at low operating  
current  
t
r
ms  
dB  
I = 8 mA  
G
T
46.5  
49.5  
5
L
I
= 1 mA  
MP  
R
DC  
= 680 kΩ  
V
= 0.5 mV  
= 300 A  
MIC  
I
VMIC  
Distortion at low oper- I = 8 mA  
d
t
%
L
ating current  
I
= 1 mA  
MP  
R
DC  
= 680 kΩ  
V
MIC  
= 5 mV  
I
= 300 A  
VMIC  
Receiving amplifier  
I = 14 mA, V  
L
= 300 mV,  
GEN  
ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, SL[0:1] = 0, LF[0:3] = 1, P[0:4] = 31,  
AGARX[0:2] = 0  
Adjustment range of  
receiving gain  
Single ended,  
I 14 mA,  
L
G
R
–25  
11  
dB  
Mute = 1,  
EA[0:4] = 2 – 31  
AGARX[0:2] = 0 – 7  
Receiving amplifica-  
tion  
Differential  
AGARX[0:2] = 0  
EA[0:4] = 21  
EA[0:4] = 31  
G
R
–1  
10  
0
11  
1
12  
dB  
dB  
Frequency response  
Gain change with cur- I = 14 to 100 mA  
I 14 mA, f = 3.4 kHz  
G
G
–1  
0
±0.5  
dB  
dB  
L
RF  
L
R
rent  
Gain deviation  
T
amb  
= –10 to +60°C  
G
R
±0.5  
dB  
Ear protection  
differential  
I 14 mA,  
EP  
3
V
rms  
L
V
GEN  
= 11 V  
rms  
MUTE suppression  
I = 14 mA  
L
G
R
60  
dB  
Output voltage d < 2% I = 14 mA  
L
differential  
Z
= 68 nF + 100 Ω  
tbd.  
V
rms  
ear  
EA[0:4] = 11  
Z = 100 Ω  
ear  
EA[0:4] = 31  
Maximum output  
current d < 2%  
10  
mAp  
Rev. A2, 25-Aug-98  
27 (34)  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Test Conditions / Pins  
I = 14 mA  
Symbol  
Ro  
Min.  
Typ.  
– 80  
Max.  
– 77  
Unit  
dBmp  
Fig.  
Receiving noise  
psophometrically  
weighted  
Sidetone suppression  
Output resistance  
L
Z
= 68 nF + 100 Ω  
ear  
EA[0:4] = 21  
Z = 600 Ω  
Each output against GND  
20  
–2  
dB  
dB  
10  
2
Gain at low operating  
current (receive only)  
I = 5 mA, I = 1 mA  
G
R
0
L
MP  
I
= 300 A  
M
V
GEN  
= 200 mV  
R
DC  
= 680 kΩ,  
EA[0:4] = 21,  
ENMIC = ETX = I101 = 0  
AC impedance  
IMPH = 0  
IMPH = 1  
Z
Z
570  
950  
600  
1000  
640  
1050  
imp  
imp  
Distortion at low  
operating current  
I = 8 mA, I = 1 mA  
dR  
5
%
L
MP  
V
GEN  
= 400 mV  
R
DC  
= 680 kΩ  
EA[0:4] = 21  
Adjustment step:  
ear-piece amplifier  
Adjustment step:  
AGARX  
AGARX[0:4] = 1  
0.8  
0.8  
1
1
1.2  
1.2  
dB  
dB  
EA[0:4] = 1  
Gain for DTMF signal AMPB RECO1/2  
EA[0:4] = 1  
–16  
dB  
DTMF, I = 14 mA, ETX = I201 = 1, AGATX[0:2] = 7, DTMFM[0:2] = 4, DTMFF[0:2] = 0  
L
Max. level at line  
Sum level, 600  
DTMFM[0:2] = 5  
Sum level, 600  
DTMFM[0:2] = 4  
–5.1  
–3.6  
–2.1  
dBm  
dBm  
DTMF level at line  
(low gain)  
–7.6  
–6.1  
–4.6  
Preemphasis  
600  
DTMFF4 = 0  
DTMFF4 = 1  
2
3
2.5  
3.5  
3
4
dBm  
dBm  
Speaker amplifier, differential mode  
AMPB SAO1/2  
ENSACL = ENSA = ENSAO = ENAM = I5O2 = 1, SA[0:4] = 0  
Minimum line current  
for operation  
Gain from AMPB to  
SAO  
No AC signal  
= 3 mV, I = 15 mA,  
SA[0:4] = 31  
SA[0:4] = 0  
I
8
mA  
Lmin  
V
AMPB  
G
SA  
L
37  
38  
–8.5  
1.5  
39  
dB  
dB  
Adjustment step  
speaker amplifier  
SA[0:4] = –1  
1.3  
1.7  
Output power  
single ended  
Load resistance:  
R = 50 , d < 5%  
L
V
AMPB  
= 20 mV, SE = 1  
I = 15 mA  
I = 20 mA  
L
P
SA  
P
SA  
3
7
20  
mW  
mW  
L
Max. output power  
differential  
Load resistance:  
R = 50 , d < 5%  
L
P
SA  
200  
mW  
V
AMPB  
= 20 mV, SE = 0  
V = 5 V  
B
28 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Output noise  
(input AMPB open)  
psophometrically  
weighted  
Test Conditions / Pins  
I > 15 mA  
Symbol  
Min.  
Typ.  
Max.  
240  
Unit  
Fig.  
L
n
SA  
V
psoph  
Gain deviation  
I = 15 mA  
L
T
= –10 to +60°C  
G
VSAO  
±1  
dB  
dB  
amb  
SA  
Mute suppression  
I = 15 mA, V = 0 dBm,  
60  
–1  
L
L
V
= 4 mV, I5O2 = 0  
AMPB  
Gain change with  
current  
Gain change with  
frequency  
Attack time of  
anti-clipping  
Release time of  
anti-clipping  
Charge current  
Pin SAO2  
Discharge current  
Pin SAO2  
Adjustment step of  
charge current  
Adjustment step of  
discharge current  
I = 15 to 100 mA  
L
G
G
±1  
dB  
dB  
ms  
ms  
mA  
mA  
A
SA  
I = 15 mA f = 3.4 kHz  
L
0
SA  
20 dB over drive  
t
r
5
t
f
80  
ENSAO = 0, SE = 1  
LSCUR[0:1] = 3  
ENSAO = 0, SE = 0  
LSCUR[0:1] = 3  
ENSAO = 0, SE = 1  
LSCUR[0:1] = 1  
ENSAO = 0, SE = 0  
LSCUR[0:1] = 1  
I
–1.45  
0.95  
–480  
320  
–1.2  
1.2  
–0.95  
1.45  
–320  
480  
CHA  
I
DIS  
–400  
400  
A
Microphone amplifier,  
V = 5 V, V  
B
= 2 mV, V  
= 2 mV, ENMIC = ENCT = I1O4 = 1, MICHF = 0  
MIC  
MIC3  
Gain MIC Amp.:  
MIC1/2 CEAR  
MICG[0:1] = 0  
MICG[0:1] = 1  
MICG[0:1] = 2  
MICG[0:1] = 3  
18.4  
24.4  
30.4  
36.4  
36.4  
19  
25  
31  
37  
37  
19.6  
25.6  
31.6  
37.6  
37.6  
dB  
dB  
dB  
dB  
dB  
MIC3 CEAR  
MICHF = 1, MICG[0:1] = 3  
Input suppression:  
MIC3 MIC1/2  
MIC1/2 MIC3  
Settling time  
MICG[0:1] = 3, MICHF = 0  
MICHF = 1  
FOFFC = 0  
60  
60  
dB  
dB  
ms  
9
12  
offset-cancellers, 5  
Settling time offset-  
cancellers in speed-up  
mode, 5  
FOFFC = 1  
1.8  
2.4  
ms  
AGC for answering machine, AMPB AMREC,  
ENAM = I5O5 = 1  
Nominal gain  
Max. output level  
Attack time  
V
= 5 mV  
= 50 mV, d< 5%  
–1  
160  
0
200  
2
1
240  
dB  
mVp  
ms  
AMPB  
V
AMPB  
20 dB overdrive  
Release time  
100  
ms  
Rev. A2, 25-Aug-98  
29 (34)  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Fig.  
Switching matrix, VL = 0, VB = 5 V, ENCT =ENAM = I4O4 = I5O4 = 1, V  
= V  
= 1 V  
rms  
AMPB  
CMIC  
Input impedance  
AMPB, CMIC  
50  
60  
70  
kΩ  
Gain CMIC CEAR,  
AMREC CEAR  
–0.4  
0
0.4  
dB  
Max. input level  
AMPB, CMIC  
600  
mV  
Max. output level  
CEAR  
VB–  
600 mV  
V
PP  
Offset  
I4O4: 1 0  
V
AMREC  
±30  
mV  
dB  
Mute switching matrix I4O4 = 0  
60  
Power-on reset  
VL = 0, V = 3.3 V, V = 5 V, U3900BM in power-down mode  
MP B  
Power-on reset by V  
threshold, VL or  
V = 4 V, ES = 4 V,  
rise VMP  
VMPon  
2.65  
2.75  
2.85  
3.05  
V
V
MP  
B
V
RING  
or ES high  
Power-on reset by V  
V
MP  
= 3 V, ES = 3 V,  
VBon  
2.85  
2.95  
B
threshold, V or V  
rise V  
L
RING  
B
or ES high  
Low voltage interrupt  
V = 0, V = 3.3 V, V = 0 V  
L MP B  
VMP decreasing  
Decrease VMP until INT  
returns to high  
VLVI  
2.5  
2.6  
2.7  
V
Power-off reset  
V = 0, V = 3.3 V, V = 0 V  
L MP B  
Low voltage reset  
Decrease VMP until RESET  
returns to low  
VLVI – VLVR  
VLVR  
2.35  
100  
2.45  
150  
2.55  
V
Difference voltage  
between low voltage  
interrupt and reset  
mV  
Logical part  
V = 3.3 V, V = 5 V  
MP B  
Output impedance at  
OSCOUT  
0.5  
1.0  
kΩ  
Pins BCL,  
BDA (input mode)  
Low level  
High level  
0.2  
V
V
V
MP  
0.8 V  
MP  
Input leakage current  
Pins INT,  
BDA (output mode)  
0 < V < V  
Output low  
(resistance to GND)  
–1  
220  
1
A
i
MP  
310  
400  
AFS acoustic feedback suppression, I = 14 mA, V  
= 300 mV,  
GEN  
L
ERX = ETX = ENMIC = ENSTBAL = I1O1 = I3O3 = 1, SL[0:1] = 0, LF[0:3] = 1, P[0:4] = 31,  
AGARX[0:2] = 0  
Adjustment range of  
attenuation  
Attenuation of transmit I 15 mA, I  
I 15 mA  
0
50  
52  
52  
dB  
dB  
dB  
L
= 0 A  
G
T
48  
48  
50  
50  
L
INLDT  
INLDT  
gain  
I
= 10 A  
INLDR  
Attenuation of speaker I 15 mA, I  
= 10 A  
G
SA  
L
amplifier  
30 (34)  
I
= 0 A  
INLDR  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Supply voltages, V  
Test Conditions / Pins  
= 25 mV, T = – 10 to + 60°C  
Symbol  
Min.  
3.1  
Typ.  
3.3  
Max.  
Unit  
Fig.  
MIC  
amb  
V
MP  
V
MPS  
V
MIC  
V
B
I = 14 mA, R = 680 k  
V
MP  
3.5  
5.7  
4
V
V
V
V
L
DC  
I
= 3 mA  
MP  
I = 100 mA, R = inf.,  
V
MPS  
L
DC  
I
= 0 mA  
MP  
I
I
14 mA, R = 1.3 M  
= 700 A  
V
MIC  
1.5  
L
DC  
M
I = +20 mA, I = 0 mA  
V
B
5.5  
20  
6.3  
B
L
VL = 100 mA  
Ringing power converter, I = 1 mA, I = 0 R = 500 k  
IMPA  
Maximum output  
power  
MP  
M
V
RING  
= 20.6 V,  
P
SA  
mW  
DTMFM[0:2] = 3  
I2O2 = ENSA = ENSAO =  
SE = 1  
Threshold  
V
: high to low  
6.5  
7
7
V
V
RING  
low to high  
RINGTH [0:3] = 0  
6.3  
7.7  
low to high  
RINGTH [0:3] = 15  
RINGTH = 1  
20  
0.8  
22  
1
24  
1.2  
V
V
Adjustment steps  
threshold  
Input impedance  
Z-diode voltage  
V
= 30 V  
= 25 mA  
4
30.8  
5
6
kΩ  
V
RING  
I
V
RING  
RINGmax  
Serial bus BCL, BDA, AS, VMP = 3.3 V, RBDA = RBCL = RINT = 12 k  
Input voltage  
HIGH  
LOW  
BDA, BCL,  
V
iBUS  
INT  
3.0  
0
V
1.5  
V
V
DD  
Output voltage  
Acknowledge LOW  
Clock frequency  
BDA  
BCL  
I
= 3 mA  
V
f
BCL  
0.4  
100  
1
V
kHz  
s
BDA  
O
Rise time BDA, BCL  
Fall time BDA, BCL  
t
r
t
f
300  
ns  
Period of BCL  
HIGH  
LOW  
HIGH  
LOW  
t
t
4.0  
4.7  
s
s
H
L
Setup time  
Start condition  
Data  
t
4.7  
250  
4.7  
4.7  
s
ns  
s
sSTA  
t
sDAT  
Stop condition  
t
sSTOP  
1)  
Time space  
t
s
wSTA  
Hold time  
Start condition  
DATA  
t
t
4.0  
0
s
s
hSTA  
hDAT  
1)  
This is a space of time where the bus must be free from data transmission and before a new transmission can be started  
Rev. A2, 25-Aug-98  
31 (34)  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Fig.  
Alert tone detection  
Low tone frequency  
High tone frequency  
Frequency deviation  
accept  
f
2130  
2750  
Hz  
Hz  
%
l
f
h
Range within which tones  
are accepted  
Range within which tones  
are rejected  
±0.75  
±3.5  
Frequency deviation  
reject  
%
Accept signal level per  
tone  
Reject signal level per  
tone  
Positive and Negative  
twist accept  
Noise tolerance  
37.78  
0.22  
dBm  
dBm  
dBm  
dB  
–43.78  
7
Band-limited random noise  
300 to 3400 Hz. Present  
only when tone is present.  
Speech level is in ASL  
(Active Speech Level).  
Over the CAS signal level  
range –16 dBm to –30 dBm  
per performance objectives  
stated in SR-TSV-002476  
appendices A&B.  
SNR  
TONE  
tbd  
20  
tbd  
tbd  
Speech tolerance  
tbd  
tbd  
dB  
Tone alert guard time and wetting pulse signal  
Early guard time – 1  
Disabled  
egt  
ugt  
8.3  
8.5  
8.7  
ms  
ms  
ms  
ms  
– 2  
– 3  
– 4  
10.1  
13.4  
19.5  
24.5  
29.5  
34.5  
17.5  
19.5  
21.5  
24.5  
10.3  
13.7  
20  
25  
30  
35  
18  
20  
22  
25  
10.5  
14.0  
20.5  
25.5  
30.5  
35.5  
18.5  
20.5  
22.5  
25.5  
Up guard time  
– 1  
– 2  
– 3  
– 4  
Down guard time – 1  
dgt  
– 2  
– 3  
– 4  
Wetting pulse signal  
delay  
Delay after the Alert Signal  
falling edge  
wpd  
14.8  
15  
15.2  
32 (34)  
Rev. A2, 25-Aug-98  
Target Specification  
U3900BM  
Electrical Characteristics (continued)  
Parameters  
FSK detection  
Input signal power level  
Test Conditions / Pins Symbol  
Min.  
Typ.  
Max.  
–1.5  
–1.5  
1212  
Unit  
Fig.  
1)  
On-HOOK mode  
On-HOOK mode  
Off-HOOK mode  
Off-HOOK mode  
Pifon  
Prjon  
Pifoff  
Prjoff  
–38  
–44  
–38  
–44  
1188  
dBm  
dBm  
dBm  
dBm  
baud  
2)  
2)  
Reject signal level (threshold)  
3)  
Input signal level  
Reject signal level (threshold)  
Transmission rate  
T
r
1200  
(CCITT V23 & BELL 202)  
Space frequency (CCITT V23)  
Mark frequency (CCITT V23)  
Space frequency (BELL 202)  
Mark frequency (BELL 202)  
Signal-to-noise ratio  
SfV  
MfV  
SfB  
MfB  
S/N fsk  
2079  
1287  
1178  
1188  
20  
2100  
1300  
2200  
1200  
2121  
1313  
2222  
1212  
200 – 340 baud  
dBm  
1)  
2)  
3)  
Referenced to a 600 termination at the CPE Tip and Ring interface. Input signal at Pins CLI1 and CLI2.  
Signal lower than –43.8 dBm is rejected.  
Referenced to a 600 termination at the CPE Tip and Ring interface. With a maximum gain in the RX chain.  
Input signal at Pin VL.  
15 Package Information  
9.15  
8.65  
Package SSO44  
Dimensions in mm  
18.05  
17.80  
7.50  
7.30  
2.35  
0.3  
0.8  
0.25  
0.10  
0.25  
10.50  
10.20  
16.8  
44  
23  
technical drawings  
according to DIN  
specifications  
13040  
1
22  
Rev. A2, 25-Aug-98  
33 (34)  
Target Specification  
U3900BM  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and  
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban  
on these substances.  
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of  
ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized  
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,  
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or  
unauthorized use.  
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423  
34 (34)  
Rev. A2, 25-Aug-98  
Target Specification  

相关型号:

U3900BM-AFNG3

Programmable Telephone Audio Processor
TEMIC

U3900BM-RFN

Telephone Multifunction Circuit, PDSO44, SSOP-44
TEMIC

U3900BM-RFNG3

Telecom IC,
TEMIC

U3910

Ultra Low On-Resistance
KERSEMI

U3958NL

Small Signal Field-Effect Transistor, N-Channel, Junction FET
VISHAY

U3990-F3

SPWM 芯片
ETC

U3990F3

U3990F3 中文PDF U3990F3中文规格书 U3990F3数据手册V3
ETC

U3990F6

U3990F6数据手册.pdf U3990F6数据手册 U3990F6中文PDF
ETC

U3AB

SURFACE MOUNT ULTRAFAST RECOVERY RECTIFIER
MDD

U3B

Surface Mount Ultrafast Plastic Rectifier
VISHAY

U3B-E3/9AT

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-214AB, ROHS COMPLIANT, PLASTIC, SMC, 2 PIN, Rectifier Diode
VISHAY

U3B-M3

Surface Mount Ultrafast Plastic Rectifier
VISHAY