28973-DSH-001-A_15 [TE]

Single-Chip SDSL/HDSL Transceiver;
28973-DSH-001-A_15
型号: 28973-DSH-001-A_15
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

Single-Chip SDSL/HDSL Transceiver

文件: 总119页 (文件大小:974K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Information  
This document contains information on a product under development. The parametric information  
contains target parameters that are subject to change.  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
The RS8973 is a full-duplex 2B1Q transceiver based on Conexants HDSL technology,  
with a built-in frequency synthesizer to support variable rate SDSL applications. It offers  
2320 kbps operation, low power consumption, and pin-for-pin compatibility with  
Bt8970 and Bt8960.  
The RS8973 is a highly integrated device that includes all of the active circuitry  
needed for a complete 2B1Q transceiver. In the receive portion of the device, a variable  
gain amplifier optimizes the signal level according to the dynamic range of the  
analog-to-digital converter. Once the signal is digitized, sophisticated adaptive echo  
cancellation, equalization, and detection DSP algorithms reproduce the originally  
transmitted far-end signal.  
In the transmitter, the transmit source and scrambler operation are programmable  
through the microcomputer interface. A highly linear digital-to-analog converter with  
programmable gain sets the transmission power for optimal performance. A pulse  
shaping filter and a low-distortion line driver generate the signal characteristics needed  
to drive a large range of subscriber lines at low distortion.  
The integrated frequency synthesizer is ideal for variable rate SDSL applications. The  
RS8973 can be programmed to operate at data rates ranging from 144 kbps to  
2320 kbps, using a single crystal as a reference clock source.  
Distinguishing Features  
Supports data rates ranging from  
144 kbps to 2320 kbps  
Integrated frequency synthesizer  
Meets ETSI TS 101 135 (formerly  
ETR 152) pulse template, output  
power and PSD specifications at 784,  
1168 and 2320 kbps data rates,  
using the same external support  
circuit  
Meets ANSI T1/E1.4/94-006 pulse  
template, output power and PSD  
specifications at 784 kbps.  
Pin-for-pin and software compatible  
with Bt8970 and Bt8960  
Supports automatic rate adaptation  
Single-chip 2B1Q transceiver  
solution  
Low power consumption (under  
685 mW at 784 kbps operation)  
Glueless interface to Motorola and  
Intel processors  
The RS8973 is fully compliant with standards for HDSL 2B1Q transmission. Key to  
variable rate applications, it can meet the PSD, output power, and pulse shape  
requirements, as specified in ETSI TS 101 135 (formerly ETR 152) with the same  
support circuit. Therefore, a single design using the RS8973 can be configured through  
a simple software command to operate at either 784, 1168, or 2320 kbps and will still  
meet these ETSI requirements. No hardware changes are required.  
Flexible monitoring and control  
Backwards compatible with Bt8952,  
Bt8960, and Bt8970 software API  
commands  
ZipStartupavailable for faster link  
establishment  
RS8953B companion SDSL/HDSL  
framers available  
JTAG/IEEE Std 1149.1 compliant  
100-pin PQFP package  
Startup and performance monitoring operations are controlled through the  
microprocessor interface. C-language source code supporting these operations is  
supplied under a no-fee license agreement from Conexant. The RS8973 includes a  
glueless interface to both Intel and Motorola microprocessors.  
Functional Block Diagram  
–40 °C to +85 °C operation  
Applications  
Variable rate data access systems  
Data access concentrators  
E1 and T1 HDSL transport  
Internet connectivity  
Voice and/or data Pair Gain systems  
N × 64 data transport  
ISDN BRI concentrators  
Cellular base station data links  
Campus modems  
Variable  
Gain  
Amplifier  
Analog-  
to-Digital  
Converter  
Digital  
Signal  
Processor  
Recovered  
Data and  
Clock  
Analog  
Receive  
Framer/  
Channel  
Unit  
Clock  
Synthesizer  
Interface  
MPU  
Bus  
Microcomputer  
Interface  
Program-  
mable  
Gain  
Pulse  
Shaping  
Filter  
Analog  
Transmit  
Line  
Driver  
Transmit  
Data  
DAC  
Data Sheet  
Preliminary Information  
N8973DSD  
June 15, 1999  
Ordering Information  
Model Number  
Package  
Operating Temperature  
RS8973EPF  
100-Pin Plastic Quad Flat Pack  
–40 °C to +85 °C  
Information provided by Conexant Systems, Inc. (Conexant) is believed to be accurate and reliable. However, no responsibility is  
assumed by Conexant for its use, nor any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent rights of Conexant other than for circuitry embodied in Conexant  
products. Conexant reserves the right to change circuitry at any time without notice. This document is subject to change without  
notice.  
Conexant and “What’s Next in Communications Technologies” are trademarks of Conexant Systems, Inc.  
Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered  
trademarks of their respective companies. All other marks mentioned herein are the property of their respective holders.  
© 1999 Conexant Systems, Inc.  
Printed in U.S.A.  
All Rights Reserved  
Reader Response: To improve the quality of our publications, we welcome your feedback. Please send comments or  
suggestions via e-mail to Conexant Reader Response@conexant.com. Sorry, we can't answer your technical  
questions at this address. Please contact your local Conexant sales office or local field applications engineer if you  
have technical questions.  
N8973DSD  
Conexant  
Preliminary Information  
Table of Contents  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  
1.0  
System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1 Functional Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
Transmit Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Receive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Timing Recovery and Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Microcomputer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Test and Diagnostic Interface (JTAG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
1.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
1.3 Regenerator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
2.0  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1 Transmit Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Symbol Source Selector/Scrambler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Variable Gain Digital-to-Analog Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Pulse-Shaping Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Analog CT Reconstruction Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.2 Receive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.2.1  
2.2.2  
2.2.3  
Variable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
2.2.3.1  
2.2.3.2  
2.2.3.3  
2.2.3.4  
2.2.3.5  
2.2.3.6  
2.2.3.7  
Digital Front-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Offset Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
DC Level Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Signal Level Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Overflow Detection and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Far-End Level Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Far-End Level Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
2.2.4  
Impulse Shortening Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
N8973DSD  
Conexant  
Preliminary Information  
iii  
Table of Contents  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.2.5  
Echo Canceller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
2.2.5.1  
2.2.5.2  
Linear Echo Canceller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Nonlinear Echo Canceller (NEC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
2.2.6  
Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
2.2.6.1  
2.2.6.2  
2.2.6.3  
2.2.6.4  
2.2.6.5  
Digital Automatic Gain Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Feed Forward Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Error Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Decision Feedback Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Microcoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.2.7  
Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.2.7.1  
2.2.7.2  
2.2.7.3  
2.2.7.4  
2.2.7.5  
2.2.7.6  
Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Error Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Scrambler Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Sync Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Detector Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
2.3 Timing Recovery and Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
2.3.1  
2.3.2  
2.3.3  
Timing Recovery Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Crystal Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Clock Synthesizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
2.4 Channel Unit Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
2.5 Microcomputer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
2.5.1  
2.5.2  
Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
Microcomputer Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
2.5.2.1  
2.5.2.2  
2.5.2.3  
RAM Access Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
Multiplexed Address/Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
Separated Address/Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
2.5.7  
Interrupt Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Scratch Pad Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21  
2.6 Test and Diagnostic Interface (JTAG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
iv  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
Table of Contents  
Single-Chip SDSL/HDSL Transceiver  
3.0  
3.0  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.2 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
0x00—Global Modes and Status Register (global_modes). . . . . . . . . . . . . . . . . . . . . . . . 3-7  
0x01—Serial Monitor Source Select Register (serial_monitor_source). . . . . . . . . . . . . . . 3-8  
0x02—Interrupt Mask Register Low (mask_low_reg) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
0x03—Interrupt Mask Register High (mask_high_reg) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
0x04—Timer Source Register (timer_source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
0x05—IRQ Source Register (irq_source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
0x06—Channel Unit Interface Modes Register (cu_interface_modes) . . . . . . . . . . . . . . 3-11  
0x07—Receive Phase Select Register (receive_phase_select) . . . . . . . . . . . . . . . . . . . . 3-12  
0x08—Linear Echo Canceller Modes Register (linear_ec_modes) . . . . . . . . . . . . . . . . . 3-12  
0x09—Nonlinear Echo Canceller Modes Register (nonlinear_ec_modes) . . . . . . . . . . . . 3-13  
0x0ADecision Feedback Equalizer Modes Register (dfe_modes). . . . . . . . . . . . . . . . . 3-13  
0x0BTransmitter Modes Register (transmitter_modes) . . . . . . . . . . . . . . . . . . . . . . . 3-14  
0x0CTimer Restart Register (timer_restart) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
0x0DTimer Enable Register (timer_enable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
0x0ETimer Continuous Mode Register (timer_continuous). . . . . . . . . . . . . . . . . . . . . 3-16  
0x0FMiscellaneous/Test Register (misc_test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
0x10, 0x11—Startup Timer 1 Interval Register (sut1_low, sut1_high) . . . . . . . . . . . . . . 3-16  
0x12, 0x13—Startup Timer 2 Interval Register (sut2_low, sut2_high) . . . . . . . . . . . . . . 3-16  
0x14, 0x15—Startup Timer 3 Interval Register (sut3_low, sut3_high) . . . . . . . . . . . . . . 3-17  
0x16, 0x17—Startup Timer 4 Interval Register (sut4_low, sut4_high) . . . . . . . . . . . . . . 3-17  
0x18, 0x19—Meter Timer Interval Register (meter_low, meter_high). . . . . . . . . . . . . . . 3-17  
0x1A, 0x1BSNR Alarm Timer Interval Register (snr_timer_low, snr_timer_high) . . . . 3-17  
0x1C, 0x1DGeneral Purpose Timer 3 Interval Register (t3_low, t3_high) . . . . . . . . . . 3-17  
0x1E, 0x1FGeneral Purpose Timer 4 Interval Register (t4_low, t4_high) . . . . . . . . . . . 3-17  
0x20—Clock Frequency Select Register (clock_freq_select) . . . . . . . . . . . . . . . . . . . . . 3-18  
0x21—ADC Control Register (adc_control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
0x22—PLL Modes Register (pll_modes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19  
0x23—Test Register (test_reg23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
0x24, 0x25—Timing Recovery PLL Phase Offset Register  
(pll_phase_offset_low, pll_phase_offset_high) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
0x26, 0x27—Receiver DC Offset Register (dc_offset_low, dc_offset_high) . . . . . . . . . . 3-20  
0x28—Transmitter Calibration Register (tx_calibrate) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
0x29—Transmitter Gain Register (tx_gain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
0x2A, 0x2BNoise-Level Histogram Threshold Register  
(noise_histogram_th_low, noise_histogram_th_high) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
0x2C, 0x2DError Predictor Pause Threshold Register  
(ep_pause_th_low, ep_pause_th_high). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
0x2EScrambler Synchronization Threshold Register (scr_sync_th) . . . . . . . . . . . . . . 3-22  
0x30, 0x31—Far-End High Alarm Threshold Register  
(far_end_high_alarm_th_low, far_end_high_alarm_th_high) . . . . . . . . . . . . . . . . . . . . . 3-22  
N8973DSD  
Conexant  
Preliminary Information  
v
Table of Contents  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
0x32, 0x33—Far-End Low Alarm Threshold Register  
(far_end_low_alarm_th_low, far_end_low_alarm_th_high) . . . . . . . . . . . . . . . . . . . . . . 3-22  
0x34, 0x35—SNR Alarm Threshold Register (snr_alarm_th_low, snr_alarm_th_high) . . 3-22  
0x36, 0x37—Cursor Level Register (cursor_level_low, cursor_level_high). . . . . . . . . . . 3-22  
0x38, 0x39—DAGC Target Register (dagc_target_low, dagc_target_high) . . . . . . . . . . . 3-22  
0x3ASymbol Detector Modes Register (detector_modes). . . . . . . . . . . . . . . . . . . . . . 3-23  
0x3BPeak Detector Delay Register (peak_detector_delay) . . . . . . . . . . . . . . . . . . . . . 3-24  
0x3CDigital AGC Modes Register (dagc_modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25  
0x3DFeed Forward Equalizer Modes Register (ffe_modes). . . . . . . . . . . . . . . . . . . . . 3-25  
0x3EError Predictor Modes Register (ep_modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26  
0x40, 0x41—Phase Detector Meter Register (pdm_low, pdm_high). . . . . . . . . . . . . . . . 3-26  
0x42—Overflow Meter Register (overflow_meter). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26  
0x44, 0x45—DC Level Meter Register (dc_meter_low, dc_meter_high) . . . . . . . . . . . . . 3-27  
0x46, 0x47—Signal Level Meter Register (slm_low, slm_high) . . . . . . . . . . . . . . . . . . . 3-27  
0x48, 0x49—Far-End Level Meter Register (felm_low, felm_high) . . . . . . . . . . . . . . . . . 3-27  
0x4A, 0x4BNoise Level Histogram Meter Register  
(noise_histogram_low, noise_histogram_high). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28  
0x4C, 0x4DBit Error Rate Meter Register (ber_meter_low, ber_meter_high). . . . . . . . 3-28  
0x4ESymbol Histogram Meter Register (symbol_histogram) . . . . . . . . . . . . . . . . . . . 3-28  
0x50, 0x51—Noise Level Meter Register (nlm_low, nlm_high) . . . . . . . . . . . . . . . . . . . 3-29  
0x5E, 0x5FPLL Frequency Register (pll_frequency_low, pll_frequency_high). . . . . . . 3-29  
0x70—LEC Read Tap Select Register (linear_ec_tap_select_read) . . . . . . . . . . . . . . . . . 3-29  
0x71—LEC Write Tap Select Register (linear_ec_tap_select_write) . . . . . . . . . . . . . . . . 3-29  
0x72—NEC Read Tap Select Register (nonlinear_ec_tap_select_read) . . . . . . . . . . . . . . 3-30  
0x73—NEC Write Tap Select Register (nonlinear_ec_tap_select_write) . . . . . . . . . . . . . 3-30  
0x74—DFE Read Tap Select Register (dfe_tap_select_read) . . . . . . . . . . . . . . . . . . . . . 3-30  
0x75—DFE Write Tap Select Register (dfe_tap_select_write). . . . . . . . . . . . . . . . . . . . . 3-30  
0x76—Scratch Pad Read Tap Select (sp_tap_select_read). . . . . . . . . . . . . . . . . . . . . . . 3-31  
0x77—Scratch Pad Write Tap Select (sp_tap_select_write) . . . . . . . . . . . . . . . . . . . . . . 3-31  
0x78—Equalizer Read Select Register (eq_add_read) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32  
0x79—Equalizer Write Select Register (eq_add_write) . . . . . . . . . . . . . . . . . . . . . . . . . 3-33  
0x7AEqualizer Microcode Read Select Register (eq_microcode_add_read). . . . . . . . . 3-33  
0x7BEqualizer Microcode Write Select Register (eq_microcode_add_write) . . . . . . . . 3-33  
0x7C0x7FAccess Data Register (access_data_byte3:0) . . . . . . . . . . . . . . . . . . . . . . 3-33  
4.0  
Interconnection Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.1 Transmission Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
4.1.1  
4.1.2  
4.1.3  
Compromise Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
Impedance-Matching Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Line Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4.2 DC Blocking Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
vi  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
Table of Contents  
Single-Chip SDSL/HDSL Transceiver  
4.3 Voltage Reference and Compensation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.4 Crystal/Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
5.0  
Electrical and Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.4 Clock Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
5.5 Channel Unit Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5.6 Microcomputer Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5.7 Test and Diagnostic Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
5.8 Analog Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16  
5.9 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22  
5.10 Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23  
5.11 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25  
Appendix A: Acronym List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  
N8973DSD  
Conexant  
Preliminary Information  
vii  
Table of Contents  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
viii  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
List of Figures  
Single-Chip SDSL/HDSL Transceiver  
List of Figures  
Figure 1-1.  
Figure 1-2.  
Figure 1-3.  
Figure 1-4.  
Figure 2-1.  
Figure 2-2.  
Figure 2-3.  
Figure 2-4.  
Figure 2-5.  
Figure 2-6.  
Figure 2-7.  
Figure 2-8.  
Figure 4-1.  
Figure 4-2.  
Figure 5-1.  
Figure 5-2.  
Figure 5-3.  
Figure 5-4.  
Figure 5-5.  
Figure 5-6.  
Figure 5-7.  
Figure 5-8.  
Figure 5-9.  
Figure 5-10.  
Figure 5-11.  
Figure 5-12.  
Figure 5-13.  
Figure 5-14.  
Figure 5-15.  
Figure 5-16.  
Figure 5-17.  
Figure 5-18.  
Figure 5-19.  
Figure 5-20.  
Figure 5-21.  
Figure 5-22.  
Figure 5-23.  
Figure 5-24.  
HDSL T1/E1 Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Regenerator System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
Transmit Section Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
First-Order Echo Cancellation Using the Variable Gain Amplifier. . . . . . . . . . . . . . . . . . . . . 2-5  
Receiver Digital Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
Digital Front-End Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Timing Recovery and Clock Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Serial Sign-Bit First Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Parallel Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Parallel Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Line Interface Interconnection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
Crystal Oscillator Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
MCLK Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
Clock Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
Channel Unit Interface Timing, Parallel Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
Channel Unit Interface Timing, Parallel Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
Channel Unit Interface Timing, Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
MCI Write Timing, Intel Mode (MOTEL = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
MCI Write Timing, Motorola Mode (MOTEL = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
MCI Read Timing, Intel Mode (MOTEL = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
MCI Read Timing, Motorola Mode (MOTEL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
Internal Write Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
JTAG Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15  
SMON Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15  
Transmit Pulse Template for Two- and Three-Pair Systems; Normalized Pulse Mask. . . . 5-18  
Transmit Pulse Template for One-Pair Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19  
Upper Bound of the Average PSD of a 392 kbaud System . . . . . . . . . . . . . . . . . . . . . . . . 5-20  
Upper Bound of the Average PSD of a 584 kbaud System . . . . . . . . . . . . . . . . . . . . . . . . 5-20  
Upper Bound of the Average PSD of a 1160 kbaud System . . . . . . . . . . . . . . . . . . . . . . . 5-21  
Transmitter Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22  
Standard Output Load (Totem Pole and Three-State Outputs) . . . . . . . . . . . . . . . . . . . . . 5-22  
Open-Drain Output Load (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22  
Input Waveforms for Timing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23  
Output Waveforms for Timing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23  
Output Waveforms for Three-state Enable and Disable Tests . . . . . . . . . . . . . . . . . . . . . . 5-24  
100-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25  
N8973DSD  
Conexant  
Preliminary Information  
ix  
List of Figures  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
x
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
List of Tables  
Single-Chip SDSL/HDSL Transceiver  
List of Tables  
Table 1-1.  
Table 1-2.  
Table 2-1.  
Table 2-2.  
Table 2-3.  
Table 2-4.  
Table 2-5.  
Table 2-6.  
Table 2-7.  
Table 3-1.  
Table 3-2.  
Table 4-1.  
Table 4-2.  
Table 4-3.  
Table 4-4.  
Table 4-5.  
Table 4-6.  
Table 4-7.  
Table 4-8.  
Table 4-9.  
Table 4-10.  
Table 5-1.  
Table 5-2.  
Table 5-3.  
Table 5-4.  
Table 5-5.  
Table 5-6.  
Table 5-7.  
Table 5-8.  
Table 5-9.  
Table 5-10.  
Table 5-11.  
Table 5-12.  
Table 5-13.  
Table 5-14.  
Table 5-15.  
Table 5-16.  
Table 5-17.  
Table 5-18.  
Table 5-19.  
Table 5-20.  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Hardware Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Symbol Source Selector/Scrambler Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Four-Level Bit-to-Symbol Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Two-Level Bit-to-Symbol Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Two-Level Symbol-to-Bit Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Four-Level Symbol-to-Bit Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21  
JTAG Device Identification Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Address Map of Shared Register Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32  
Compromise Hybrid Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
Antialias Filter Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Line Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Line Transformer Application-Specific Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Recommended Line Transformer Suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
DC Blocking Capacitor Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
Compensation Capacitor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
Bias Current Resistor Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
Crystal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
Recommended Crystal Suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
MCLK Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
HCLK Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
QCLK Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
Channel Unit Interface Timing Requirements, Parallel Master Mode. . . . . . . . . . . . . . . . . . . 5-6  
Channel Unit Interface Switching Characteristics, Parallel Master Mode. . . . . . . . . . . . . . . . 5-6  
Channel Unit Interface Timing Requirements, Parallel Slave Mode . . . . . . . . . . . . . . . . . . . . 5-7  
Channel Unit Interface Switching Characteristics, Parallel Slave Mode . . . . . . . . . . . . . . . . . 5-7  
Channel Unit Interface Timing Requirements, Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
Channel Unit Interface Switching Characteristics, Serial Mode . . . . . . . . . . . . . . . . . . . . . . . 5-8  
Microcomputer Interface Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
Microcomputer Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
Test and Diagnostic Interface Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
Test and Diagnostic Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
Receiver Requirements and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16  
Transmitter Analog Requirements and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
Transmit Pulse Template for Two- and Three-Pair Systems . . . . . . . . . . . . . . . . . . . . . . . . 5-18  
Transmit Pulse Template for One-Pair Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19  
N8973DSD  
Conexant  
Preliminary Information  
xi  
List of Tables  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
xii  
Conexant  
Preliminary Information  
N8973DSD  
1
1.0 System Overview  
1.1 Functional Summary  
The RS8973 High-bit-rate Digital Subscriber Line (HDSL) transceiver is an  
integral component of Conexant's HDSL chipset. System performance of the  
chipset allows 2-pair T1, 1-pair E1, 2-pair E1, and 3-pair E1 transmission. With  
its built-in frequency synthesizer, it can easily be configured through software for  
variable rate Symmetric DSL over Single Pair (SDSL) applications, using a single  
10.24 MHz crystal/clock as reference. It can operate at data rates between  
144 kbps and 2320 kbps. The major building blocks of a typical HDSL T1/E1  
terminal are shown in Figure 1-1.  
Figure 1-1. HDSL T1/E1 Terminal  
Transformer  
and  
Hybrid  
HDSL  
Twisted  
Pair  
RS8973  
Transceiver  
T1/E1  
RS8953B/  
Bt8953A  
T1/E1 HDSL  
Channel  
Unit  
Receive  
Bt8370  
T1/E1  
Framer  
Line  
Transformer  
and  
Hybrid  
HDSL  
Twisted  
Pair  
RS8973  
Transceiver  
T1/E1  
and LIU  
Transmit  
Line  
HDSL  
Twisted  
Pair  
Transformer  
and  
Hybrid  
RS8973  
Transceiver  
OPTIONAL SECOND, THIRD PAIR  
N8973DSD  
Conexant  
Preliminary Information  
1-1  
1.0 System Overview  
1.1 Functional Summary  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
The RS8973 comprises five major functions: a transmit section, a receive  
section, a timing recovery and clock interface, a microcomputer interface, and a  
test and diagnostic interface. Figure 1-2 details the connections within and  
between each of these functional blocks.  
Figure 1-2. Detailed Block Diagram  
Receive Section  
RXP  
RXN  
Receive  
Channel  
Unit  
Digital  
Front  
End  
IS  
RQ[1]/RDAT  
RQ[0]/BCLK  
Echo  
Canceller  
Equalizer  
Detector  
ADC  
VGA  
Filter  
RXBP  
RXBN  
Interface  
RBCLK  
Timing  
Recovery/  
PLL  
HCLK  
QCLK  
Microcomputer  
Interface and  
System Control  
Clock  
Synthesizer  
XTALI/MCLK  
AD[7:0]  
ADDR[7:0]  
MUXED  
MOTEL  
WR/R/W  
RD/DS  
CS  
Crystal  
Amplifier  
Control  
and  
Status  
XTALO  
XOUT  
Registers  
RBIAS  
Microcomputer  
Interface  
VCOMO  
VCOMI  
Voltage  
Reference  
Generator  
VCCAP  
ALE  
VRXP,VRXN  
VTXP,VTXN  
RST  
Timers  
READY  
IRQ  
Diag-  
nostics  
SMON  
TMS  
TDI  
TCK  
TDO  
JTAG  
Transmit Section  
TBCLK  
Analog  
CT  
Reconstruc-  
tion Filter  
Transmit  
Channel  
Unit  
TXP  
TXN  
Symbol  
Source/  
Scrambler  
Pulse-  
Shaping  
Filter  
Variable-  
Gain  
DAC  
TQ[1]/TDAT  
TQ[0]  
Line  
Driver  
Interface  
1-2  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
1.0 System Overview  
1.1 Functional Summary  
Single-Chip SDSL/HDSL Transceiver  
1.1.1 Transmit Section  
The source of transmitted symbols is programmable through the microcomputer  
interface. The primary choices include external 2B1Q-encoded data presented to  
the TQ[1,0]/TDAT pins of the channel unit interface, internally looped-back  
receive symbols from the detector, or a constant “all 1s” source. The symbols are  
then optionally scrambled. Isolated pulses can also be generated to support the  
testing of pulse templates.  
The digital symbols are transformed to an analog signal by means of the DAC,  
which is highly linear to maximize the echo cancellation and detection properties  
of the signal. In addition, the transmit power level of the DAC can be adjusted by  
means of the Transmitter Gain Register [tx_gain; 0x29] to optimize performance.  
The Transmitter Calibration Register [tx_calibrate; 0x28] contains the nominal  
setting for the transmitter gain, which is calibrated and hard-coded at the factory.  
The pulse-shaping filters, along with the analog continuous time (CT)  
reconstruction filter, then condition the signal to minimize crosstalk to adjacent  
subscriber lines. This filtering enables the output signal to meet requirements of  
ETSI TS 101 135 (formerly ETR 152) specifications for pulse shape, power  
spectral density and output power at 784 kbps, 1168 kbps, and 2320 kbps without  
any changes required to external components, including the line transformer.  
Finally, the differential line driver provides the current driving capabilities and  
low-distortion characteristics needed to drive a large range of subscriber lines.  
1.1.2 Receive Section  
The differential variable gain amplifier (VGA) receives the data from the  
subscriber line. Balancing inputs (RXBP, RXBN) are provided to accommodate  
first-order transmit echo cancellation through an external hybrid. The gain is  
programmable so that the dynamic range of the analog-to-digital converter (ADC)  
can be utilized according to the attenuation of the subscriber line.  
Digitized receive data is passed to the digital signal processor (DSP) portion  
of the RS8973. After DC offset cancellation, the impulse shortening (IS) filter  
eliminates long tails caused by the line transformer. A replica of the transmit  
signal is subtracted from the total receive signal by a digital echo canceller. The  
resultant far-end signal is then conditioned by an equalization stage consisting of  
automatic gain control (AGC), a feed-forward equalizer, a decision-feedback  
equalizer, and an error predictor. A mode-dependent detector is then used to  
recover the 2B1Q-encoded data from the equalized signal. The channel unit  
interface then provides an optional descrambling function, followed by parallel or  
serial output of the sign, and magnitude bits on pins RQ[1,0]/RDAT. A number of  
meters are implemented within the receiver to provide average level indications at  
various points in the receive signal path. The receive section also performs remote  
unit clock recovery through an on-chip phase lock loop (PLL) circuit.  
N8973DSD  
Conexant  
Preliminary Information  
1-3  
1.0 System Overview  
1.1 Functional Summary  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
1.1.3 Timing Recovery and Clock Interface  
The clock interface includes a crystal amplifier and a clock synthesizer module to  
reduce the external components needed for clock generation. The crystal  
frequency should be 10.24 MHz.  
The Clock Synthesizer generates the required internal clock from this  
reference clock based on the data rate, as specified by the Clock Frequency Select  
Register [clk_select [7:0]; 0x20] and PLL Modes Register [clk_select [9,8];  
0x22]. When configured as a remote unit, the PLL module recovers the incoming  
data clock and outputs it on the QCLK pin (on the BCLK pin for serial mode  
operation). The HCLK output, which is synchronized to the QCLK signal, can be  
configured to cycle at 16, 32, or 64 times the symbol rate.  
1.1.4 Microcomputer Interface  
The microcomputer interface (MCI) provides access to a 256-byte address space  
within the transceiver. A combination of direct and indirect addressing methods  
are used to access all internal locations. The MCI is designed to interface with  
both Intel- and Motorola-style processors with no additional glue logic. A  
MOTEL control pin is provided to configure the bus interface control/handshake  
lines to conform to common Motorola/Intel conventions. A MUXED control pin  
is provided to configure the bus interface address and data lines for multiplexed  
or independent data/address bus operation. Little-endian data formatting (least  
significant byte of a multibyte word stored at the lowest byte-address location) is  
used in all cases, regardless of MOTEL pin selection. A READY control pin is  
provided to support wait-state insertion. An Interrupt Request (IRQ) output pin  
supports low-latency responses to time-critical events within the transceiver.  
Eight 16-bit timers and 10 measurement meters are integrated into the  
transceiver. The timers support various metering functions within the receiver  
section and off-load the external microcomputer from complex timing operations  
associated with startup procedures. Control and monitoring access to the timers  
and meters is provided through the MCI.  
1.1.5 Test and Diagnostic Interface (JTAG)  
The test and diagnostic interface comprises a test access port and a serial monitor  
output (SMON). The test access port conforms to IEEE Std 1149.1-1990, (IEEE  
Standard Test Access Port and Boundary Scan Architecture). Also referred to as  
JTAG, this interface provides direct serial access to each of the transceivers I/O  
pins. This capability can be used during an in-circuit board test to increase the  
testability and reduce the cost of the in-circuit test process.  
The serial monitor output can be viewed as a real-time virtual probe for  
looking at the transceivers internal signals. The programmable signal source is  
shifted out serially at 16 times the symbol rate. Most of the receive signal path is  
accessible through this output.  
1-4  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
1.0 System Overview  
1.2 Pin Descriptions  
Single-Chip SDSL/HDSL Transceiver  
1.2 Pin Descriptions  
The RS8973 is packaged in a 100-pin plastic quad flat pack (PQFP). The pin  
assignments are shown in Figure 1-3. Pin labels, numbers, and I/O assignments  
are listed in Table 1-1.  
Figure 1-3. Pin Diagram  
VDD1  
CS  
RD/DS  
WR/R/W  
ALE  
IRQ  
READY  
AD[0]  
AD[1]  
AD[2]  
AD[3]  
AD[4]  
AD[5]  
AD[6]  
DGND  
DGND  
VDD2  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RXBN  
RXBP  
RXN  
RXP  
AGND  
AGND  
TXN  
AGND  
VAA  
TXP  
NC  
NC  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
NC  
ATEST2  
ATEST1  
VAA  
RS8973  
AD[7]  
VAA  
MOTEL  
MUXED  
ADDR[7]  
ADDR[6]  
ADDR[5]  
ADDR[4]  
ADDR[3]  
ADDR[2]  
ADDR[1]  
ADDR[0]  
SMON  
VDD1  
AGND  
VTXN  
VTXP  
VCCAP  
VCOMO  
VCOMI  
RBIAS  
VAA  
VAA  
AGND  
VRXN  
VRXP  
N8973DSD  
Conexant  
Preliminary Information  
1-5  
1.0 System Overview  
1.2 Pin Descriptions  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 1-1. Pin Descriptions  
Pin  
Pin  
Label  
Pin  
I/O  
Pin  
Pin Label  
I/O  
Pin  
I/O  
Pin  
Pin Label  
I/O  
Label  
1
VDD1  
CS  
I
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
ADDR[2]  
ADDR[1]  
ADDR[0]  
SMON  
VDD1  
I
I
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
VRXP  
VRXN  
AGND  
VAA  
OA  
OA  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AGND  
RXP  
IA  
IA  
IA  
IA  
2
3
RD/DS  
WR/R/W  
ALE  
I
I
RXN  
4
I
O
I
RXBP  
5
I
VAA  
RXBN  
VAA  
6
IRQ  
OD  
OD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DGND  
DGND  
VDD2  
RBIAS  
VCOMI  
VCOMO  
VCCAP  
VTXP  
VTXN  
AGND  
VAA  
OA  
OA  
OA  
OA  
OA  
OA  
7
READY  
AD[0]  
AGND  
VDD1  
8
9
AD[1]  
RST  
DGND  
TQ[1]/TDAT  
TQ[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AD[2]  
HCLK  
O
O
O
I
I
AD[3]  
XOUT  
I
AD[4]  
DGND  
VDD1  
QCLK  
O
O
O
I
AD[5]  
RQ[1]/RDAT  
RQ[0]/BCLK  
RBCLK  
TBCLK  
DTEST5  
DTEST6  
TDO  
AD[6]  
XTALO  
XTALI/MCLK  
VPLL  
VAA  
DGND  
DGND  
VDD2  
ATEST1  
ATEST2  
NC  
IA  
IA  
OA  
OA  
IA  
IA  
OA  
I
I
PGND  
I
AD[7]  
I/O  
I
DTEST1  
DTEST2  
DTEST3  
VPLL  
NC  
I
MOTEL  
MUXED  
ADDR[7]  
ADDR[6]  
ADDR[5]  
ADDR[4]  
ADDR[3]  
I
NC  
O
I
I
I
NC  
TDI  
I
I
TXP  
TMS  
I
I
PGND  
VAA  
TCK  
I
I
DTEST4  
AGND  
AGND  
TXN  
VDD2  
I
OA  
DGND  
DGND  
I
AGND  
AGND  
1-6  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
1.0 System Overview  
1.2 Pin Descriptions  
Single-Chip SDSL/HDSL Transceiver  
Signal definitions are provided in Table 1-2. This is the coding used in the I/O  
column:  
O
= digital output  
OA = analog output  
OD = open-drain output  
I
= digital input  
IA = analog input  
I/O = bidirectional  
NC = no connect  
Table 1-2. Hardware Signal Definitions (1 of 4)  
Pin Label  
Signal Name  
I/O  
Definition  
Microcomputer Interface (MCI)  
MOTEL  
Motorola/Intel  
I
Selects between Motorola and Intel handshake conventions for the RD/DS and  
WR/R/W signals.  
MOTEL = 1 for Motorola protocol: DS, R/W  
MOTEL = 0 for Intel protocol: RD, WR  
ALE  
Address Latch  
Enable  
I
Falling-edge-sensitive input. The value of AD[7:0] when MUXED = 1, or  
ADDR[7:0] when MUXED = 0, is internally latched on the falling edge of ALE.  
CS  
Chip Select  
I
I
Active-low input used to enable read/write operations on the MCI.  
RD/DS  
Read/Data Strobe  
Bimodal input for controlling read/write access on the MCI.  
When MOTEL = 1 and CS = 0, RD/DS behaves as an active-low data strobe  
DS. Internal data is output on AD[7:0] when DS = 0 and R/W = 1. External data  
is internally latched from AD[7:0] on the rising edge of DS when R/W = 0.  
When MOTEL = 0 and CS = 0, RD/DS behaves as an active-low read strobe  
RD. Internal data is output on AD[7:0] when RD = 0. Write operations are not  
controlled by RD in this mode.  
WR / R/W  
Write/  
I
Bimodal input for controlling read/write access on the MCI.  
Read/Write  
When MOTEL = 1 and CS = 0, WR/R/W behaves as a read/write select line  
R/W. Internal data is output on AD[7:0] when DS = 0 and R/W = 1. External data  
is internally latched from AD[7:0] on the rising edge of DS when R/W = 0.  
When MOTEL = 0 and CS = 0, WR/R/W behaves as an active-low write strobe  
WR. External data is internally latched from AD[7:0] on the rising edge of WR.  
Read operations are not controlled by WR in this mode.  
AD[7:0]  
Address-Data[7:0]  
I/O  
An 8-bit, bidirectional multiplexed address-data bus. AD[7] = MSB, AD[0] =  
LSB. Usage is controlled using MUXED.  
ADDR[7:0]  
MUXED  
Address Bus (not  
multiplexed)[7:0]  
I
I
Provides a glueless interface to microcomputers with separate address and data  
buses. ADDR[7] = MSB, ADDR[0] = LSB. Usage is controlled using MUXED.  
Addressing Mode  
Select  
Controls the MCI addressing mode.  
When MUXED = 1, the MCI uses AD[7:0] as a multiplexed signal for address  
and data.  
When MUXED = 0, the MCI uses ADDR[7:0] as the address input, and  
AD[7:0] for data only.  
READY  
IRQ  
Ready  
OD  
OD  
Active-low, open-drain output that indicates the MCI is ready to transfer data.  
Can be used to signal the microcomputer to insert wait states.  
Interrupt Request  
Active-low, open-drain output that indicates requests for interrupt. Asserted  
whenever at least one unmasked interrupt flag is set. Remains inactive  
whenever no unmasked interrupt flags are present.  
N8973DSD  
Conexant  
Preliminary Information  
1-7  
1.0 System Overview  
1.2 Pin Descriptions  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 1-2. Hardware Signal Definitions (2 of 4)  
Pin Label  
RST  
Signal Name  
Reset  
I/O  
Definition  
I
Asynchronous, active-low, level-sensitive input that places the transceiver in an  
inactive state by setting the power-down mode bit of the Global Modes and  
Status Register [global_modes; 0x00], and zeroing the clk_freq [7:0] bits of the  
Clock Frequency Select Register [clock_freq;0x20], clk_freq[9,8] bits of the PLL  
Modes Register [pll_modes; 0x22], and the hclk_freq[1,0] bits of the Serial  
Monitor Source Select Register [serial_monitor_source; 0x01]. All RAM  
contents are lost. Does not affect the state of the test access port, which is reset  
automatically at power-up only.  
Channel Unit Interface  
RQ[1]/  
RDAT  
Receive Quat 1/  
Receive Data  
O
O
RQ[1]/RDAT and RQ[0]/BCLK are bimodal outputs that represent the sign and  
magnitude bits of the received quaternary output symbol in parallel channel unit  
modes (RQ[1], RQ[0]), and the serial-data and bit-clock outputs in serial  
channel unit modes (RDAT, BCLK). Behavior of these outputs is configurable  
through the Channel Unit Interface Modes Register [CU_interface_modes;  
0x06] for parallel master, parallel slave, serial magnitude-bit-first, and serial  
sign-bit-first operations.  
RQ[0]/ BCLK Receive Quat 0/ Bit  
Clock  
For parallel mode operation:  
RQ[1] = Sign bit output  
RQ[0] = Magnitude bit output  
Both outputs are updated at the symbol rate on the rising edge of QCLK  
(master mode) or the rising/falling edge (programmable) of RBCLK (slave  
mode).  
For serial mode operation:  
RDAT = Serial quaternary data output  
BCLK = Bit-rate (two times symbol rate) clock output  
RDAT is updated at the bit rate on the rising edge of BCLK  
TQ[1]/ TDAT  
TQ[0]  
Transmit Quat 1/  
Transmit Data  
I
I
TQ[1]/TDAT and TQ[0] are bimodal inputs that represent the sign and magnitude  
bits of the quaternary input symbol to be transmitted in parallel channel unit  
modes (TQ[1], TQ[0]), and the serial data input in serial channel unit modes  
(TDAT). Interpretation of these inputs is configurable through the Channel Unit  
Interface Modes Register [CU_Interface_modes; 0x06] for parallel master,  
parallel slave, serial magnitude-bit-first and serial sign-bit-first operations.  
For parallel mode operation:  
Transmit Quat 0  
TQ[1] = Sign bit input  
TQ[0] = Magnitude bit input  
Both inputs are sampled at the symbol rate on the falling edge of QCLK  
(master mode) or the rising/falling edge (programmable) of TBCLK (slave  
mode).  
For serial mode operation:  
TDAT = Serial quaternary data input  
TQ0 = Dont care (tie or pull up to supply rail)  
TDAT is sampled at the bit rate (two times the symbol rate) on the falling  
edge of BCLK.  
QCLK  
Quaternary Clock  
O
Runs at the symbol rate. It defines the data on the TQ and RQ interfaces. QCLK  
is also used to frame transmit/receive quats in serial mode.  
1-8  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
1.0 System Overview  
1.2 Pin Descriptions  
Single-Chip SDSL/HDSL Transceiver  
Table 1-2. Hardware Signal Definitions (3 of 4)  
Pin Label  
Signal Name  
Transmit  
I/O  
Definition  
TBCLK  
I
Functions as the transmit baud-rate clock input. It must be frequency-locked to  
QCLK. This input is used only when the channel unit interface is in parallel slave  
mode. If it is unused, it should be tied to VDD2 or DGND.  
Baud-Rate Clock  
RBCLK  
ReceiveBaud-Rate  
Clock  
I
Functions as the receive baud-rate clock input. It must be frequency-locked to  
QCLK. This input is used only when the channel unit interface is in parallel slave  
mode. If it is unused, it should be tied to VDD2 or DGND.  
Analog Transmit Interface  
TXP, TXN  
Transmit Positive,  
Negative  
OA  
Differential transmit line driver outputs. These signals are used to drive the  
subscriber line after passing through the hybrid and line transformer.  
Analog Receive Interface  
RXP, RXN  
Receive Positive,  
Negative  
IA  
IA  
Differential receiver inputs. RXP and RXN receive the signal from the subscriber  
line.  
RXBP, RXBN  
Receive Balance  
Positive, Negative  
Differential receiver balance inputs. RXBP and RXBN are used to subtract the  
echo of the signal being transmitted on the subscriber line. They should be  
connected to the TXP, TXN output pins through the hybrid circuit. This signal is  
subtracted from the signal being received by the RXP and RXN inputs in the  
VGA.  
Voltage Reference Generator Interface  
RBIAS  
Resistor Bias  
OA  
Connection point for external bias resistor.  
VCOMO  
Common Mode  
Voltage Outputs  
OA  
OA  
OA  
Common mode voltage for the analog circuitry. This pin should be connected to  
an external filtering capacitor.  
VCOMI  
VCCAP  
Common Mode  
Voltage Inputs  
Common mode voltage for the analog circuitry. This pin should be connected to  
an external filtering capacitor.  
Voltage  
Compensation  
Capacitor  
Analog voltage compensation capacitor. This pin should be connected to an  
external filtering capacitor.  
VRXP, VRXN  
VTXP, VTXN  
Receiver Voltage  
Reference  
Positive, Negative  
OA  
OA  
Analog receive circuitry reference voltages. These pins should be connected to  
external filtering capacitors.  
Transmit Voltage  
Reference  
Analog transmit circuitry reference voltages. These pins should be connected to  
external filtering capacitors.  
Positive, Negative  
Clock Interface  
XTALI/  
MCLK  
Crystal In/Master  
Clock  
I
A bimodal input that can be used as the crystal input or as the master clock  
input. The frequency of the crystal or clock should be 10.24 MHz.  
XTALO  
Crystal Output  
O
O
Connection point for the crystal. If an external clock is connected to  
XTALI/MCLK, XTALO should be left floating.  
HCLK  
High Speed Clock  
Out  
HCLK can be configured to run at 16, 32, or 64 times the symbol rate. Upon  
reset, it is set to 16 times the symbol rate. This clock will be phase locked to the  
incoming data when the RS8973 is configured as the remote unit.  
XOUT  
Crystal Clock Out  
O
Buffered-crystal oscillator output.  
N8973DSD  
Conexant  
Preliminary Information  
1-9  
1.0 System Overview  
1.2 Pin Descriptions  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 1-2. Hardware Signal Definitions (4 of 4)  
Pin Label  
Signal Name  
I/O  
Definition  
Test and Diagnostic Interface  
TDI  
JTAG Test Data  
Input  
I
JTAG test data input per IEEE Std 1149.1-1990. Used for loading all serial  
instructions and data into internal test logic. Sampled on the rising edge of TCK.  
TDI can be left unconnected if it is not being used because it is pulled up  
internally.  
TMS  
TDO  
JTAG Test Mode  
Select  
I
JTAG test mode select input per IEEE Std 1149.1-1990. Internally pulled-up  
input signal used to control the test-logic state machine. Sampled on the rising  
edge of TCK. TMS can be left unconnected if it is not being used because it is  
pulled up internally.  
JTAG Test Data  
Output  
O
JTAG test data output per IEEE Std 1149.1-1990. Three-state output used for  
reading all serial configuration and test data from internal test logic. Updated on  
the falling edge of TCK.  
TCK  
JTAG Test Clock  
Input  
I
JTAG test clock input per IEEE Std 1149.1-1990. Used for all test interface and  
internal test logic operations. If unused, TCK should be pulled low.  
SMON  
Serial Monitor  
O
Serial data output used for real-time monitoring of internal signal-path registers.  
The source register is selected through the Serial Monitor Source Select  
Register [serial_monitor_source; 0x01]. The 16-bit words are shifted out, LSB  
first, at 16 times the symbol rate. The rising edge of QCLK defines the start LSB  
of each word. The output is updated on the rising edge of an internal clock  
running at 16 times QCLK.  
DTEST[1:4]  
DTEST[5, 6]  
ATEST[1,2]  
Digital Tests 1–4  
Digital Test 5, 6  
Analog Test 1, 2  
I
I
Active-high test inputs used by Conexant to enable internal test modes. These  
inputs should be tied to digital ground (DGND).  
Active-low test inputs used by Conexant to enable internal test modes. These  
inputs should be tied to the I/O buffer power supply (VDD2).  
IA  
Analog test inputs used by Conexant for internal test modes. These inputs  
should be left floating (No Connect, NC).  
Power and Ground  
VDD1  
VDD2  
VPLL  
PGND  
DGND  
VAA  
Core Logic Power  
Supply  
Dedicated supply pins powering the digital core logic functions.  
Connect to 3.3 V.  
I/O Buffer Power  
Supply  
Dedicated supply pins powering the digital I/O buffers. Connect to 5 V.  
PLL Power Supply  
Dedicated supply pins powering the PLL and the crystal amplifier.  
Connect to 5 V.  
PLL Ground  
Dedicated ground pins for the PLL and the crystal amplifier. Must be held at the  
same potential as DGND and AGND.  
Digital Ground  
Dedicated ground pins for the digital circuitry. Must be held at same potential as  
AGND and PGND.  
Analog Power  
Supply  
Dedicated supply pins powering the analog circuitry.  
AGND  
Analog Ground  
Dedicated ground pins for the analog circuitry. Must be held at the same  
potential as DGND and PGND.  
1-10  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
1.0 System Overview  
Single-Chip SDSL/HDSL Transceiver  
1.3 Regenerator Configuration  
1.3 Regenerator Configuration  
Figure 1-4 shows the interconnection between two RS8973s for a single loop  
regenerator system. Bt8953A/RS8953B provides an internal cross-connect data  
path between REG-R and REG-C.  
Figure 1-4. Regenerator System Block Diagram  
REG–R  
RS8973  
REG–C  
RS8973  
Bt8953A/  
RS8953B  
To COT  
To RT  
HCLK (35)  
HCLK (35)  
XTALO (39)  
XTALI/MCLK (40)  
XTALO (39)  
NC  
XTALI/MCLK (40)  
10.24 MHz  
HCLK on REG–R is configured to run at 16 times the symbol rate, which is  
the power-on default.  
The reg_clk_en bit of Miscellaneous/Test Register (0x0F) is reset (0) on  
REG–R.  
The reg_clk_en bit of Miscellaneous/Test Register (0x0F) is set (1) on  
REG–C. In this mode, the internal clock synthesizer is bypassed.  
N8973DSD  
Conexant  
Preliminary Information  
1-11  
1.0 System Overview  
RS8973  
1.3 Regenerator Configuration  
Single-Chip SDSL/HDSL Transceiver  
1-12  
Conexant  
Preliminary Information  
N8973DSD  
2
2.0 Functional Description  
2.1 Transmit Section  
The transmit section block diagram is shown in Figure 2-1. It comprises five  
major functions: a symbol source selector/scrambler, a variable gain  
digital-to-analog converter (DAC), a pulse-shaping filter, an analog CT  
reconstruction filter, and a line driver.  
Figure 2-1. Transmit Section Block Diagram  
Transmit  
Channel Unit  
Interface  
TQ[1,0]  
Pulse-  
Shaping  
Filter  
Analog CT  
Reconstruction  
Filter  
Symbol  
Source/  
Scrambler  
Variable-Gain  
DAC  
Line  
Driver  
TXP  
TXN  
Isolated Pulses  
Detector Loopback  
Ones (1s)  
Control  
Registers  
N8973DSD  
Conexant  
Preliminary Information  
2-1  
2.0 Functional Description  
2.1 Transmit Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.1.1 Symbol Source Selector/Scrambler  
The input source selector/scrambler can be configured through the Transmitter  
Modes Register [transmitter_modes; 0x0B] data_source [2:0] bits. It selects the  
source of the data to be transmitted and determines whether the data is scrambled.  
The symbol source selector/scrambler modes are described in Table 2-1.  
Table 2-1. Symbol Source Selector/Scrambler Modes  
data_source[2:0]  
Symbol Source Selector/Scrambler Mode  
000  
Isolated pulse. Level selected by isolated_pulse[1,0]. The meter timer must be enabled and in  
continuous mode. The pulse repetition interval is determined by the meter timer countdown interval.  
001  
Four-level scrambled detector loopback. Sign and magnitude bits from the receiver detector are  
scrambled and looped back to the transmitter. Feedback polynomial determined by the htur_lfsr control  
bit.  
010  
011  
100  
Four-level unscrambled data. Transmits the four-level (2B1Q) sign and magnitude bits from the transmit  
channel unit transmit interface without scrambling.  
Four-level scrambled 1s. Transmits a scrambled, constant high-logic level as a four-level (2B1Q) signal.  
Feedback polynomial determined by the htur_lfsr control bit.  
Alternating symbol mode. Outputs symbols of alternating polarity. Level is selected by  
isolated_pulse [1:0]. The meter timer must be enabled and in continuous mode. The half period of the  
output signal is defined by the meter timer countdown interval.  
101  
110  
Four-level scrambled data. Scrambles and transmits the four-level (2B1Q) sign and magnitude bits from  
the channel unit transmit interface. Feedback polynomial determined by the htur_lfsr control bit.  
Two-level unscrambled data. Constantly forces the magnitude bit from the transmit channel unit  
interface to a logic 0, and transmits the resulting two-level signal (as determined by the sign bit)  
without scrambling. Valid output levels are limited to + 3 and – 3.  
111  
Two-level scrambled 1s. Transmits a scrambled, constant high-logic level as a two-level signal.  
Feedback polynomial determined by the htur_lfsr control bit. Scrambler is run at the symbol rate  
(half-bit rate) to produce the sign bit of the transmitted signal, while the magnitude bit is sourced with a  
constant logic 0. Valid output levels are limited to + 3 and – 3.  
The bit stream is converted into symbols for the four-level cases, as shown in  
Table 2-2.  
Table 2-2. Four-Level Bit-to-Symbol Conversions  
First Input Bit  
(Sign)  
Second Input Bit  
(Magnitude)  
Output Symbol  
0
0
1
1
0
1
1
0
– 3  
– 1  
+ 1  
+ 3  
2-2  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.1 Transmit Section  
Single-Chip SDSL/HDSL Transceiver  
In two-level mode, the magnitude bit is forced to a 0. This forces the symbols  
to be + 3 and – 3, as shown in Table 2-3.  
Table 2-3. Two-Level Bit-to-Symbol Conversions  
First Input Bit  
(Sign)  
Second Input Bit  
(Magnitude)  
Output Symbol  
0
1
Dont Care  
Dont Care  
– 3  
+ 3  
The scrambler is essentially a 23-bit-long Linear Feedback Shift Register  
(LFSR). The feedback points are programmable for central office and remote  
terminal applications using the htur_lfsr bit of the Transmitter Modes Register.  
The LFSR polynomials for local (HTU-C/LTU) and remote (HTU-R/NTU) unit  
operations are:  
local x–23 x–5  
1
remote x–23 x–18  
1
The scrambler operates differently depending on whether a two-level or  
four-level mode is specified. In two-level scrambled-1s mode, the LFSR is  
clocked once per symbol; in four-level mode, the LFSR is clocked twice per  
symbol.  
The Transmitter Modes Register can also be used to zero the output of the  
transmitter using the transmitter_off control bit.  
The RS8973 can generate isolated pulses to support the testing of pulse  
templates. When in the isolated pulse mode, the output consists of a single pulse  
surrounded by 0s.  
NOTE: Zero is not a valid 2B1Q level and occurs only in this special mode or  
when the transmitter is off. The repetition rate of the pulses is controlled by  
the meter timer. Any of the four 2B1Q levels can be chosen through the  
Transmitter Modes Registers isolated_pulse[1,0] control bits.  
2.1.2 Variable Gain Digital-to-Analog Converter  
A four-level DAC is integrated into the RS8973 to convert the output of the  
symbol source to analog form. The normalized values of these four analog levels  
are + 3, + 1, – 1 and – 3. Each represents a symbol, or quat.  
To provide precise adjustment of transmitted power, the level of the DAC can  
be adjusted. The Transmitter Gain Register [tx_gain; 0x29] sets the level.  
During the manufacturing of the RS8973, process variations can cause  
changes in transmitter levels. The Transmitter Calibration Register [tx_calibrate;  
0x28] contains a read-only value which nulls this variation. The value in this  
register is determined for each RS8973 device during production testing. Upon  
initialization, the Transmitter Gain Register should be loaded based on the  
Transmitter Calibration Register.  
If there are other sources of transmit power variation (e.g., a nonstandard  
hybrid or attenuative lightening protection), the transmitter gain must be adjusted  
to include these effects. The range of adjustment of the transmitter gain is from  
– 1.60 dB to 1.40 dB.  
N8973DSD  
Conexant  
Preliminary Information  
2-3  
2.0 Functional Description  
2.1 Transmit Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.1.3 Pulse-Shaping Filter  
The pulse-shaping filter is used to filter the quats output from the variable-gain  
DAC. This filter, when combined with other filtering in the signal path, produces  
a transmitted signal on the line that meets the power spectral density, the  
transmitted power, and the pulse-shaping requirements, as specified in  
Chapter 5.0, Electrical and Mechanical Specifications.  
2.1.4 Analog CT Reconstruction Filter  
The analog CT reconstruction filter removes the discrete-time images from the  
transmit signal before it is amplified by the line driver.  
2.1.5 Line Driver  
The line driver buffers the output of the CT reconstruction filter to drive diverse  
loads. The output of the line driver is differential.  
2-4  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.2 Receive Section  
Single-Chip SDSL/HDSL Transceiver  
2.2 Receive Section  
Like the transmit section, the receive section consists of both analog and digital  
circuitry. The VGA provides the interface to the analog signals received from the  
line and the hybrid. The ADC then digitizes the analog signal so it can be further  
processed in the DSP section of the receiver. The receiver DSP section includes  
front-end processing, echo cancellation, equalization, and symbol detection.  
2.2.1 Variable Gain Amplifier  
The VGA has two purposes. The first is to provide a dual-differential analog input  
so the pseudo-transmit signal created by the hybrid can be subtracted from the  
signal received from the line transformer. This subtraction provides first-order  
echo cancellation, which results in a first-order approximation of the signal  
received from the line. Figure 2-2 illustrates the recommended echo-cancellation  
circuit interconnections. All off-chip circuitry, including the hybrid and anti-alias  
filters, consists entirely of passive components. Further echo cancellation occurs  
in the receiver DSP.  
Figure 2-2. First-Order Echo Cancellation Using the Variable Gain Amplifier  
RXP  
RXN  
+
+
Line  
Transformer  
Anti-alias  
Filter  
To  
ADC  
Line  
(Twisted Pair)  
TXP  
TXN  
+
Line  
Driver  
+
Line  
RXBP  
RXBN  
Impedance  
Matching  
Resistors  
+
+
Anti-alias  
Filter  
Gain[2:0]  
Hybrid  
Off-Chip Circuitry  
On-Chip Circuitry  
The second purpose of the VGA is to provide programmable gain of the  
received signal prior to passing it to the ADC. This reduces the resolution  
required for the ADC. There are six gain settings ranging from 0 dB to 15 dB (this  
is the gain setting range in relative terms; the physical settings range from – 3 dB  
to 12 dB). The gain is controlled through the gain[2:0] control bits in the ADC  
Control Register [adc_control; 0x21]. See Chapter 3.0, Registers, for a more  
detailed description of the gain[2:0] control bits.  
2.2.2 Analog-to-Digital Converter  
The ADC provides 16 bits of resolution. The analog input from the variable gain  
amplifier is converted into digital data and output at the symbol rate.  
N8973DSD  
Conexant  
Preliminary Information  
2-5  
2.0 Functional Description  
2.2 Receive Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.2.3 Digital Signal Processor  
The DSP includes five Least Mean Squared (LMS) filters:  
Echo Canceller (EC)  
Digital Automatic Gain Controller (DAGC)  
Feed Forward Equalizer (FFE)  
Error Predictor (EP)  
Decision Feedback Equalizer (DFE).  
These filters are used to equalize the received signal so that the symbols  
transmitted from the far-end can be reliably recovered. The DSP uses symbol rate  
sampling for all processing functions. Figure 2-3 shows the interconnections and  
relationships to the digital front-end and the detector.  
Figure 2-3. Receiver Digital Signal Processing  
Detector  
SLM  
FELM  
PKD  
Channel  
Unit  
Digital  
Front-End  
IS  
FILTER  
Interface  
DAGC  
FFE  
Slicer  
NEC  
EP  
Transmit  
Symbol  
LEC  
DFE  
Echo Canceller  
Equalizer  
2-6  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.2 Receive Section  
Single-Chip SDSL/HDSL Transceiver  
2.2.3.1 Digital  
Front-End  
Prior to the main signal processing, the input signal must be adjusted for any DC  
offset. The front-end module also monitors the input signal level, which includes  
measuring DC and AC input signal levels, detecting and counting overflows, and  
detecting alarms based on the far-end signal level. Figure 2-4 summarizes the  
features of the digital front-end module.  
Figure 2-4. Digital Front-End Block Diagram  
High Threshold  
from MCI  
Echo-Free  
Absolute  
Signal  
from NEC  
high_felm  
Interrupt  
Comparator  
Comparator  
Value  
low_felm  
Interrupt  
Accumulator  
Low Threshold  
from MCI  
Far-End  
Alarms  
Result  
Register  
Far-End  
Level Meter  
+
r, To EC  
ADC Data  
Absolute  
Value  
Accumulator  
DC Offset  
from MCI  
Result  
Accumulator  
Register  
Result  
Register  
DC Level  
Meter  
Signal Level  
Meter  
Overflow  
Counter  
Overflow  
Detector  
Result  
Register  
Overflow Monitor  
N8973DSD  
Conexant  
Preliminary Information  
2-7  
2.0 Functional Description  
2.2 Receive Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.2.3.2 Offset  
Adjustment  
A nonzero DC level on the input can be corrected by a DC offset value  
[dc_offset_low, dc_offset_high; 0x26, 0x27], which is subtracted from the input.  
The DC offset is a 16-bit number and is programmed through the microcomputer  
interface.  
2.2.3.3 DC Level Meter  
The DC level meter provides the monitoring needed for adaptive offset  
compensation. The offset-adjusted input signal is accumulated over the meter  
timer interval [meter_low, meter_high; 0x18, 0x19]. The 16 MSBs are placed into  
the DC Level Meter Registers [dc_meter_low, dc_meter_high; 0x44, 0x45].  
2.2.3.4 Signal Level  
Meter  
The Signal Level Meter provides the monitoring needed for adjusting the analog  
gain circuit located before the ADC. The absolute value of the offset adjusted  
input signal is accumulated over the meter timer interval [meter_low, meter_high;  
0x18, 0x19]. The 16 MSBs are placed in the Signal Level Meter Registers  
[slm_low, slm_high; 1; 0x46, 0x47].  
2.2.3.5 Overflow  
Detection  
and Monitoring  
The overflow sensor detects ADC overflows. The overflow monitor counts the  
number of overflows, as indicated by the overflow sensor during the meter timer  
interval [meter_low, meter_high; 0x18, 0x19]. The counter is limited to 8 bits. In  
the case of 256 or more overflows during the measurement interval, the counter  
will hold at 255. The counter is loaded into the Overflow Meter Register  
[overflow_meter; 0x42] at the end of each measurement interval.  
2.2.3.6 Far-End Level  
Meter  
The Far-end Level Meter monitors the output of the echo canceller, which is  
called the far-end signal because the echo of the transmitted signal is subtracted  
from it. This value is accumulated over the meter timer interval [meter_low,  
meter_high; 0x18, 0x19]. The 16 MSBs are placed into the Far-End Level Meter  
Register [felm_low, felm_high; 0x48, 0x49].  
2.2.3.7 Far-End Level  
Alarm  
The result of the far-end level meter is compared to two thresholds. When these  
are exceeded, an interrupt is sent to the microcomputer interface if the  
corresponding FELM interrupt is enabled. The thresholds are determined by the  
value in the Far-End High Alarm Threshold Registers  
[far_end_high_alarm_th_low, far_end_high_alarm_th_high; 0x30, 0x31] and the  
Far-End Low Alarm Threshold Registers [far_end_low_alarm_th_low,  
far_end_low_alarm_th_high; 0x32, 0x33].  
The interrupts high_felm and low_felm are bits 2 and 1, respectively, of the  
IRQ Source Register [irq_source; 0x05]. The interrupts high_felm and low_felm  
can be masked by writing a 1 to bits 2 and 1, respectively, of the Interrupt Mask  
Register High [mask_high_reg; 0x03].  
2.2.4 Impulse Shortening Filter  
The impulse shortening (IS) filter is a high pass filter which pre-equalizes the  
channel and eliminates long tails caused by the transformer.  
2-8  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.2 Receive Section  
Single-Chip SDSL/HDSL Transceiver  
2.2.5 Echo Canceller  
The echo canceller (EC) removes images of the transmitted symbols from the  
received signal and consists of two blocks: a linear and nonlinear echo canceller.  
The organization of the blocks is displayed in Figure 2-3, Receiver Digital Signal  
Processing.  
2.2.5.1 Linear Echo  
Canceller  
The linear echo canceller (LEC) is a conventional LMS, finite impulse response  
(FIR) filter, which removes linear images of the transmitted symbols from the  
received signal. It consists of a 120-tap FIR filter with 32-bit adapted  
coefficients.  
When LEC is enabled, the last data tap of the echo canceller is treated  
specially; the data value is set to a constant 1. This serves to cancel any DC offset  
that may be present.  
These modes, used less often, can also be enabled through the MCI:  
A freeze coefficient mode disables the coefficient updates.  
A special mode zeros all of the coefficients.  
An additional mode zeros the output of the FIR with no effect on the  
coefficients.  
Individual EC coefficients can be read and written through the MCI.  
2.2.5.2 Nonlinear Echo  
Canceller (NEC)  
The nonlinear echo canceller (NEC) reduces the residual echo power in the echo  
canceller output caused by nonlinear effects in the transmitter, receiver, analog  
hybrid circuitry, or line cables.  
The delay of the transmit-symbol input to the NEC can be specified through  
the MCI, Nonlinear Echo Canceller Mode Register [nonlinear_ec_modes; 0x09].  
This allows the NEC to operate on the peak of the echo regardless of differing  
delays in the echo path.  
These modes, used less often, can also be enabled through the MCI:  
A freeze coefficient mode disables the coefficient updates.  
A special mode zeros all of the coefficients.  
An additional mode zeros the output of the look-up table with no effect on  
the coefficients.  
The 64 14-bit, individual NEC coefficients can be read and written  
through the MCI.  
2.2.6 Equalizer  
Four LMS filters are used in the equalizer to process the echo canceller output so  
that received symbols can be reliably recovered. The filters are a digital automatic  
gain controller, a feed forward equalizer, an error predictor, and a decision  
feedback equalizer. Their interconnections are shown in Figure 2-3, Receiver  
Digital Signal Processing.  
2.2.6.1 Digital  
Automatic Gain Control  
The digital automatic gain control (DAGC) scales the echo-free signal to the  
optimum magnitude for subsequent processing.  
Two other modes, used less often, can also be enabled through the MCI:  
A freeze coefficient mode disables the coefficient update.  
The DAGC gain coefficient can be read or written through the MCI.  
N8973DSD  
Conexant  
Preliminary Information  
2-9  
2.0 Functional Description  
2.2 Receive Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.2.6.2 Feed Forward  
Equalizer  
The feed forward equalizer (FFE) removes precursors from the received signal.  
The FFE can be operated in a special adapt last mode. In this mode, which is  
useful during startup, only the last coefficient is updated. The last coefficient is  
multiplied with the oldest data sample (sample #7).  
Other modes, used less often, can be enabled through the MCI:  
A freeze coefficient mode disables the coefficient updates.  
A special mode zeros all of the coefficients.  
Individual FFE coefficients can be read and written through the MCI.  
2.2.6.3 Error Predictor  
The error predictor (EP) improves the performance of the equalizer by  
prognosticating errors before they occur.  
Other modes, used less often, can be enabled through the MCI:  
A freeze coefficient mode disables the coefficient updates.  
A special mode zeros all of the coefficients.  
Individual EP coefficients can be read and written through the MCI.  
2.2.6.4 Decision  
Feedback Equalizer  
The decision feedback equalizer (DFE) removes postcursors from the received  
signal.  
Other modes, used less often, can be enabled through the MCI:  
A freeze coefficient mode disables the coefficient updates.  
A zero coefficients mode zeros all of the coefficients.  
A zero filter output mode zeros the output of the FIR with no effect on the  
coefficients.  
Individual DFE coefficients can be read and written through the MCI.  
2.2.6.5 Microcoding  
The DAGC, FFE, and EP filters are implemented using an internal  
microprogrammable DSP, optimized for LMS filters. Internal DSP  
micro-instructions are stored in an on-chip RAM. This microcode RAM is loaded  
after power-up through the MCI when the transceiver is initialized.  
2.2.7 Detector  
The detector converts the equalized received signal into a 2B1Q symbol and  
produces two error signals used in adapting the receiver equalizers. The signal  
detection uses two sub-blocks, a slicer, and a peak detector. Additionally, the  
detector contains a scrambler and bit error rate (BER) meter for use during the  
start-up sequence.  
2.2.7.1 Slicer  
The slicer thresholds the equalized signal to produce a 2B1Q symbol. The input  
to the slicer is the FFE output minus the DFE and EP outputs.  
The slicer can operate in two modes: two-level and four-level. In the two-level  
mode, which is used during start-up when the only transmitted symbols are + 3 or  
– 3, the slicer threshold is set at zero.  
In the four-level mode, the cursor level is specified through the MCI. It is a  
16-bit, 2s complement number, but must be positive and less than 0x2AAA for  
proper operation.  
2.2.7.2 Peak Detector  
The peak detector (PKD) is used only during the two-level transmission part of  
start-up. It operates on the echo-free signal. A signal is detected to be a + 3 if it is  
higher than both of its neighbors, or a – 3 if it is lower than both of its neighbors.  
If neither of the peaked conditions exist, the output of the slicer is used.  
2.2.7.3 Error Signals  
The detector computes two error signals for use in the equalizer: a 16-bit slicer  
and a 16-bit equalizer.  
2-10  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.2 Receive Section  
Single-Chip SDSL/HDSL Transceiver  
2.2.7.4 Scrambler  
Module  
The scrambler can operate as either a scrambler or as a descrambler. The  
scrambler block is used during the scrambled-1s part of the start-up sequence.  
This provides an error-free signal for equalizer adaptation. This scrambler is  
essentially a 23-bit-long Linear Feedback Shift Register (LFSR). The feedback  
point depends on whether the transceiver is being used in a central-office or  
remote-terminal application.  
When the LFSR is operating as a descrambler, the input source is the detector  
output. The symbol is converted to a bit stream as shown in Table 2-4 for the  
two-level case.  
Table 2-4. Two-Level Symbol-to-Bit Conversion  
Input Symbol  
Output Bit  
– 3  
+ 3  
0
1
The symbol is converted to a bit stream as shown in Table 2-5 for the  
four-level case.  
Table 2-5. Four-Level Symbol-to-Bit Conversion  
First Output Bit  
(Sign)  
Second Output Bit  
(Magnitude)  
Input Symbol  
– 3  
– 1  
+ 1  
+ 3  
0
0
1
1
0
1
1
0
The LFSR operates in the same way in both cases, except that in the two-level  
case it is clocked once per symbol, and in the four-level case it is clocked twice  
per symbol.  
When operating as a scrambler, the LFSR must first be locked to the far-end  
source. Once locked, it is then able to replicate the far-end input sequence when  
its input is held at all 1s. The locking sequence is controlled internally, initiated  
through the MCI by setting the lfsr_lock bit of the detector_modes register. The  
locking sequence consists of the following four steps:  
1. Operate the LFSR as a descrambler for 23 bits.  
2. Operate the LFSR as a scrambler for 127 bits. The sync detector is active  
during this period.  
3. Go to Step 1 if synchronization was not achieved; otherwise, continue to  
Step 4.  
4. Send an interrupt to the microcomputer if unmasked, indicating successful  
locking, and continue operating as a scrambler.  
The sequence continues until the lfsr_lock control bit is cleared by the  
microcomputer.  
N8973DSD  
Conexant  
Preliminary Information  
2-11  
2.0 Functional Description  
2.2 Receive Section  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.2.7.5 Sync Detector  
The sync detector compares the output of the scrambler with the output of the  
symbol detector. The number of equivalent bits is accumulated for 128  
comparisons. The result is then compared to a Scrambler Synchronization  
Threshold Register [scr_sync_th; 0x2E], a lock is declared, and the sync bit of the  
irq_source register is set if the count is greater than the threshold. For a count less  
than or equal to the threshold, no lock condition is declared and the sync bit is  
unaffected.  
2.2.7.6 Detector Meters  
BER Meter  
The detector consists of five meters: a BER meter, a symbol histogrammer, a  
noise-level meter, a noise-level histogram meter, and an SNR alarm meter.  
The BER meter provides an estimate of the bit error rate when the received  
symbols are known to be scrambled 1s. When the LFSR is operating as a  
descrambler, the meter counts the number of 1s on the descrambler output. When  
the LFSR is operating as a scrambler, the BER meter counts the number of equal  
scrambler and symbol detector outputs. The counter operates over the meter timer  
interval [meter_low, meter_high; 0x18, 0x19]. The counter is saturated to 16 bits.  
At the end of the measurement interval the counter is loaded into the Bit Error  
Rate Meter Registers [ber_meter_low, ber_meter_high; 0x4C, 0x4D].  
Symbol Histogrammer  
The symbol histogrammer computes a coarse histogram of the received symbols.  
It operates by counting the number of 1s received during the meter timer interval  
[meter_low, meter_high; 0x18, 0x19]. That is, at the start of the measurement  
interval a counter is cleared. For each detector output which is + 1 or – 1, the  
counter is incremented. If the detector output is + 3 or – 3, the count is held at its  
previous value. The count is saturated to 16 bits. At the end of the measurement  
interval, the 8 MSBs of the counter are loaded into the Symbol Histogram Meter  
Register [symbol_histogram; 0x4E]. This can be used during start-up to detect the  
transition from two-level to four-level signalling.  
Noise Level Meter  
The noise level meter estimates the noise at the input to the slicer. It operates by  
accumulating the absolute value of the slicer error over meter timer interval  
[meter_low, meter_high; 0x18, 0x19]. At the end of the measurement interval, the  
16 MSBs of the 32-bit accumulator are loaded into the Noise Level Meter  
Register [nlm_low, nlm_high; 0x50, 0x51].  
Noise Level Histogram Meter  
The noise level histogram meter counts the number of high noise-level conditions  
which occur during each meter countdown interval. A high noise-level condition  
is defined as the absolute value of the slicer error signal exceeding the threshold  
specified in the noise level histogram threshold register [0x2A,2B].  
SNR Alarm  
The SNR alarm provides a rapid indication of impulse noise disturbances and loss  
of signal so that corrective action can be taken. The alarm is based on a second  
noise level meter. The meter is the same as the preceding noise level meter except  
it operates on a dedicated timer, the SNR alarm timer. The absolute value of the  
slicer error is accumulated during the timer period. At the end of the  
measurement interval, the 16 MSBs of the accumulator are compared against the  
SNR Alarm Threshold Register [snr_alarm_th_low, snr_alarm_th_high; 0x34,  
0x35]. If the result is greater than this threshold, an interrupt is set in the  
irq_source register. The threshold is set through the MCI.  
2-12  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
Single-Chip SDSL/HDSL Transceiver  
2.3 Timing Recovery and Clock Interface  
2.3 Timing Recovery and Clock Interface  
The timing recovery and clock interface block consists of the timing recovery  
circuit, the crystal amplifier, and the clock synthesizer, as detailed in Figure 2-5.  
The main purpose of this circuitry is to generate the internal clocks, including  
BCLK and QCLK, from the 10.24 MHz input MCLK, based on the selected data  
rate, and to recover the clock from received data. Control fields include the  
following:  
Clock Frequency Select Register [clk_select; 0x20]  
PLL Modes Register [clk_select; 0x22]  
hclk_freq[1,0] bits of the Serial Monitor Source Select Register  
[serial_monitor_source; 0x01]  
PLL Modes Register [pll_modes; 0x22]  
Timing Recovery PLL Phase Offset Register [pll_phase_offsset_low,  
pll_phase_offset_high; 0x24, 0x25]  
PLL Frequency Register [pll_frequency_low, pll_frequency_high; 0x5E,  
0x5F].  
See Chapter 3.0, Registers, for descriptions of these control fields.  
N8973DSD  
Conexant  
Preliminary Information  
2-13  
2.0 Functional Description  
RS8973  
2.3 Timing Recovery and Clock Interface  
Single-Chip SDSL/HDSL Transceiver  
Figure 2-5. Timing Recovery and Clock Interface Block Diagram  
Phase Detector  
Meter Register  
[0x40, 0x41]  
Control  
Registers  
Detected  
Symbol  
QCLK (87)  
HCLK (35)  
Timing  
Recovery  
Circuit  
Equalizer  
Error  
Clock  
Synthesizer  
XOUT (36)  
Crystal  
Amplifier  
XTALI (40)  
XTALO (39)  
C11  
Y1  
C10  
Y1 = 10.24 MHz  
(For all data rates)  
2-14  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
Single-Chip SDSL/HDSL Transceiver  
2.3 Timing Recovery and Clock Interface  
2.3.1 Timing Recovery Circuit  
The timing recovery circuit uses the RS8973s internal detected symbol and  
equalizer error signals to regenerate the received data symbol clock (QCLK). The  
HCLK output is synchronized with the edges of the symbol clock (QCLK), unlike  
the XOUT output, which is a buffered output of the crystal amplifier. HCLK can  
be programmed for rates of 16, 32, or 64 times the symbol rate.  
The timing recovery circuit includes a phase detector meter that measures the  
average value of a phase correction signal. This information can be used during  
start-up to set the phase offset in the Receive Phase Select Register  
[receive_phase_select; 0x07]. The output of the phase detector is accumulated  
over the meter timer interval [meter_low, meter_high; 0x18, 0x19]. At the end of  
the measurement interval, the value is loaded into the Phase Detector Meter  
Register [pdm_low, pdm_high; 0x40, 0x41].  
The user can also bypass the timing recovery circuit and directly specify the  
frequency through the PLL Frequency Register [pll_frequency_low,  
pll_frequency_high; 0x5E, 0x5F].  
2.3.2 Crystal Amplifier  
The crystal amplifier reduces the support circuitry needed for the RS8973 by  
eliminating the need for an external crystal oscillator (XO). A crystal of  
10.24 MHz frequency can be connected directly to the XTALI and XTALO pins.  
The crystal amplifier can also accommodate an external clock input by  
connecting the external clock to the XTALI input pin.  
2.3.3 Clock Synthesizer  
The clock synthesizer takes the 10.24 MHz input clock as a reference and  
generates internal clocks required for data rates ranging from 144 kbps to  
2320 kbps. The appropriate internal clock frequency can be selected by  
specifying the data rate in the Clock Frequency Select Register [clk_select [7:0];  
0x20] and PLL Modes Register [clk_select [9,8]; 0x22].  
N8973DSD  
Conexant  
Preliminary Information  
2-15  
2.0 Functional Description  
2.4 Channel Unit Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.4 Channel Unit Interface  
The quaternary signals of the channel unit interface have four modes which are  
programmable through bits 0 and 1 of the Channel Unit Interface Modes Register  
[cu_interface_modes; 0x06]. They are serial sign-bit first, serial magnitude-bit  
first, parallel master, and parallel slave.  
In serial mode, a Bit-Rate Clock (BCLK) is output at twice the symbol rate.  
The sign and magnitude bits of the receive data are output through RDAT on the  
rising edge of BCLK. The sign and magnitude bits of the transmit data are  
sampled on the falling edge of BCLK at the TDAT input. The sign bit is  
transferred first, followed by the magnitude bit of a given symbol in sign-bit first  
mode, while the opposite occurs in magnitude-bit first mode. The clock  
relationships for serial sign-bit first mode are illustrated in Figure 2-6.  
Figure 2-6. Serial Sign-Bit First Mode  
BCLK  
Bit-Rate Clock  
QCLK  
Sign0  
Sign0  
Magnitude0  
Magnitude0  
Sign1  
Sign1  
Magnitude1  
Magnitude1  
Sign2  
Sign2  
RDAT  
TDAT  
In parallel master mode, the sign and magnitude receive data is output through  
RQ[1] and RQ[0], respectively, on the rising edge of QCLK. The quaternary  
transmit data is sampled on the falling edge of QCLK. This clock and data  
relationship is illustrated in Figure 2-7.  
Figure 2-7. Parallel Master Mode  
QCLK  
Sign1  
Sign0  
Sign2  
RQ[1]/TQ[1]  
RQ[0]/TQ[0]  
Magnitude0  
Magnitude1  
Magnitude2  
2-16  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.4 Channel Unit Interface  
Single-Chip SDSL/HDSL Transceiver  
The parallel slave mode uses RBCLK and TBCLK inputs to synchronize data  
transfer. RBCLK and TBCLK must be frequency-locked to QCLK, though the  
use of two internal FIFOs allows an arbitrary phase relationship to QCLK. TQ[1]  
and TQ[0] are sampled on the active edge of TBCLK, as programmed through the  
MCI. RQ[1] and RQ[0] are output on the active edge of RBCLK, also as  
programmed through the MCI. Figure 2-8 shows the clock relationships, when  
TBCLK is programmed to be falling-edge active and RBCLK is rising-edge  
active.  
Figure 2-8. Parallel Slave Mode  
TBCLK  
Sign1  
Sign0  
Sign2  
TQ[1]  
TQ[0]  
Magnitude0  
Magnitude1  
Magnitude2  
RBCLK  
RQ[1]  
RQ[0]  
Sign1  
Sign0  
Sign2  
Magnitude0  
Magnitude1  
Magnitude2  
N8973DSD  
Conexant  
Preliminary Information  
2-17  
2.0 Functional Description  
2.5 Microcomputer Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.5 Microcomputer Interface  
The microcomputer interface provides operational mode control and status  
through internal registers. A microcomputer write sets the operating modes to the  
appropriate registers. A read to a register verifies the operating mode or provides  
the status. The MCI can be programmed to generate an interrupt on certain  
conditions.  
2.5.1 Source Code  
Conexant provides portable C-source code under a no-cost licensing agreement.  
This source code provides a start-up procedure, as well as diagnostic and system  
monitoring functions.  
2.5.2 Microcomputer Read/Write  
The MCI uses either an 8-bit-wide multiplexed address-data bus, or an 8-bit-wide  
data bus and a separate 8-bit-wide address bus for external data communications.  
The interface provides access to the internal control and status registers,  
coefficients, and microcode RAM. The interface is compatible with Intel or  
Motorola microcomputers, and is configured with the inputs, MOTEL and  
MUXED.  
MOTEL high selects Motorola-type microcomputer and uses control  
signals ALE, CS, DS, and R/W. MOTEL low selects Intel-type  
microcomputer and uses control signals ALE, CS, RD, and WR.  
MUXED high configures the interface to use the multiplexed address-data  
bus with both the address and data on the AD[7:0] pins. MUXED low  
configures the interface to use separate address and data bus with the data  
on the AD[7:0] pins and the address on the ADDR[7:0] pins.  
The READY pin is provided to indicate when the RS8973 is ready to  
transfer data and can be used by the microcomputer to insert wait states in  
read or write cycles.  
The MCI provides access to a 256-byte internal address space. The registers in  
this address space provide configuration, control, status, and monitoring  
capabilities.  
Meter values are read lower-byte, then upper-byte. When the lower-byte is  
read, the upper-byte is latched at the corresponding value. This ensures that  
multiple byte values correspond to the same reading.  
Most information can be directly read or written; however, the filter  
coefficients require an indirect access.  
2-18  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.5 Microcomputer Interface  
Single-Chip SDSL/HDSL Transceiver  
2.5.2.1 RAM Access  
Registers  
The internal RAM of the scratch pad, LEC, NEC, DFE, equalizer, and microcode  
are accessed indirectly. They all share a common data register which is used for  
both read and write operations: Access Data Register [access_data_byte[3:0];  
[0x7C–0x7F]. Each RAM has an individual read select and write select register.  
Writes to these registers specify the location to access and trigger the actual RAM  
read or write.  
To perform a read, the address of the desired RAM location is first written to  
the corresponding read tap select register. Two symbol periods afterward, the  
individual bytes of that location are available for reading from the Access Data  
Register.  
To perform a write, the value to be written is first stored in the Access Data  
Register. The address of the affected RAM location is then written to the  
corresponding write tap select register. When writing the same value to multiple  
locations, it is not necessary to rewrite the Access Data Register.  
To ensure reliable access to the embedded RAM, internal read and write  
operations are performed synchronous to the symbol clock. This limits access to  
the internal RAM to one every other cycle.  
When reading or writing multiple filter coefficients, it may be desirable to  
freeze adaptation so that all values correspond to the same state.  
2.5.2.2 Multiplexed  
Address/Data Bus  
The timing for a read or write cycle is stated explicitly in Chapter 5.0, Electrical  
and Mechanical Specifications. During a read operation, an external  
microcomputer places an address on the address-data bus, which is then latched  
on the falling edge of ALE. Data are placed on the address-data bus after CS and  
RD, or CS and DS go low. The read cycle is completed with the rising edge of CS  
or RD or DS.  
A write operation latches the address from the address-data bus at the falling  
edge of ALE. The microcomputer places data on the address-data bus after CS,  
and WR or CS and DS go low. Motorola MCI has R/W falling edge preceding the  
falling edge of CS and DS. The rising edge of R/W occurs after the rising edge of  
CS and DS. Data are latched from the address-data bus on the rising edge of CS  
or WR or DS.  
2.5.2.3 Separated  
Address/  
The timing for a read or write cycle using the separated address and data buses is  
essentially the same as over the multiplexed bus. The one exception is that the  
address must be driven onto the ADDR[7:0] bus rather than the AD[7:0] bus.  
Data Bus  
2.5.3 Interrupt Request  
The 12 interrupt sources consist of 8 timers, a far-end signal high alarm, a far-end  
signal low alarm, a SNR alarm, and a scrambler synchronization detector. All of  
the interrupts are requested on a common pin, IRQ. Each interrupt can be  
individually enabled or disabled through the Interrupt Mask Registers  
[mask_low_reg, mask_high_reg; 0x02, 0x03]. The cause of an interrupt is  
determined by reading the Timer Source Register [timer_source; 0x04] and the  
IRQ Source Register [irq_source; 0x05].  
The timer interrupt status is set only when the timer transitions to zero. Alarm  
interrupts cannot be cleared while the alarm is active. In other words, it cannot be  
cleared while the condition still exists.  
IRQ is an open-drain output and must be tied to a pull-up resistor. This allows  
IRQ to be tied to a common interrupt request.  
N8973DSD  
Conexant  
Preliminary Information  
2-19  
2.0 Functional Description  
2.5 Microcomputer Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
2.5.4 Reset  
The reset input (RST) is an active-low input that places the transceiver in an  
inactive state by setting the mode bit (0) in the Global Modes and Status Register  
[global_modes; 0x00]. An internal supply monitor circuit ensures that the  
transceiver is in an inactive state upon initial application of power to the chip.  
2.5.5 Registers  
2.5.6 Timers  
The RS8973 has many directly addressable registers that include control and  
monitoring functions. Write operations to undefined registers have unpredictable  
effects. Read operations from undefined registers have undefined results.  
Eight timers are integrated into the RS8973 to control the various on-chip meters  
and to aid the microcomputer in stepping through the events of the start-up  
sequence.  
The structure of each timer includes down counter, zero detect logic, and  
control circuitry, which determines when the counter is reloaded or decremented.  
For each of the 8 timers, there is a 2-byte timer interval register that  
determines the value from which the timer decrements. There are three 8-bit  
registers:  
Timer Restart Register [timer_restart; 0x0C]  
Timer Enable Register [timer_enable; 0x0D]  
Timer Continuous Mode Register [timer_continuous; 0x0E].  
These registers control the operation of the timers. Each bit of the 8-bit  
registers corresponds to a timer. Each logic-high bit in timer_restart acts as an  
event that causes the corresponding timer to reload. Each logic-high bit in  
timer_enable acts to enable the corresponding timer. Each logic-high bit in  
timer_continuous acts to reload the counter after timing out.  
Each counter is loaded with the value in its interval register. The counter  
decrements until it reaches zero. Upon reaching zero, an interrupt is generated if  
enabled by the Interrupt Mask Low Register [mask_low_reg, mask_high_reg;  
0x02, 0x03]. The interrupt is edge-triggered so that only one interrupt is caused  
by a single time-out.  
A prescaler can precede the timer. This increases the time span available at the  
expense of resolution. Only the start-up timers have prescalers. Table 2-6 provides  
summary information on the timers.  
2-20  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
2.0 Functional Description  
2.5 Microcomputer Interface  
Single-Chip SDSL/HDSL Transceiver  
Table 2-6. Timers  
Timer Name  
Purpose  
Clock Rate  
Control Bits  
Startup Timer 1  
Startup Timer 2  
Startup Events  
Startup Events  
Startup Events  
Startup Events  
SNR Measurement  
Measurement  
Symbol rate ÷ 1024  
Symbol rate ÷ 1024  
Symbol rate ÷ 1024  
Symbol rate ÷ 1024  
Symbol rate  
sut 1  
sut 2  
sut 3  
sut 4  
snr  
Startup Timer 3  
Startup Timer 4  
SNR Alarm Timer  
Meter Timer  
Symbol rate  
meter  
t3  
General Purpose Timer 3  
General Purpose Timer 4  
Miscellaneous  
Miscellaneous  
Symbol rate  
Symbol rate  
t4  
Four timers are provided for use in timing start-up events. These timers share a  
single prescaler, which divides the symbol clock by 1024 and supplies this slow  
clock to the four counters. The timers are Startup Timer 1, Startup Timer 2,  
Startup Timer 3, and Startup Timer 4. Each one is independent, with separate  
interval timer values and interrupts.  
Two timers control the measurement intervals for the various meters: the SNR  
Alarm Timer and the Meter Timer. The SNR Alarm Timer is used only by the low  
SNR, while the Meter Timer is used by all other meters, excluding the low SNR  
meter. Their respective interrupts are set when each of these two timers expires.  
There are no prescalers for these timers; they count at the symbol rate. Both  
timers are normally used in the continuous mode.  
Two identical timers are provided for general use: General Purpose Timer 3  
and General Purpose Timer 4. There are no prescalers for these timers; they count  
at the symbol rate. Each timer signals an interrupt when it expires.  
2.5.7 Scratch Pad Memory  
The scratch pad memory consists of 64 bytes of RAM available to the external  
microcomputer. This is used by Conexant-supplied software to minimize system  
memory requirements.  
N8973DSD  
Conexant  
Preliminary Information  
2-21  
2.0 Functional Description  
RS8973  
2.6 Test and Diagnostic Interface (JTAG)  
Single-Chip SDSL/HDSL Transceiver  
2.6 Test and Diagnostic Interface (JTAG)  
To access individual chips for PCB verification, special circuitry is incorporated  
within the transceiver, which complies with IEEE Std 1149.1-1990, Standard Test  
Access Port and Boundary Scan Architecture set by the Joint Test Action Group  
(JTAG).  
JTAG has four dedicated pins that comprise the test access port (TAP):  
1. Test Mode Select (TMS)  
2. Test Clock (TCK)  
3. Test Data Input (TDI)  
4. Test Data Out (TDO)  
Verification of the integrated circuits connection to other modules on the  
printed circuit board can be achieved through these four TAP pins.  
JTAGs approach to testability uses boundary scan cells placed at each digital  
pin, both inputs and outputs. All scan cells are interconnected in a boundary-scan  
register which applies or captures test data used for functional verification of the  
PC board interconnection. JTAG is particularly useful for board testers using  
functional testing methods.  
The boundary-scan cells at each digital pin provide the ability to apply and  
capture the respective logic levels. Since all of the digital pins are interconnected  
as a long shift register, the TAP logic has access and control of all necessary pins  
to verify connectivity. For mixed signal ICs, the chip boundary definition is  
expanded to include the on-chip interface between digital and analog circuitry.  
During a power-up sequence, internal supply-monitor circuitry ensures that each  
pin is initialized to operate as a 2B1Q transceiver, instead of JTAG test mode.  
The JTAG standard defines an optional device identification register. This  
register is included and contains a revision number, a part number, and a  
manufacturers identification code specific to Conexant (see Table 2-7). Access to  
this register is through the TAP controller through a standard JTAG instruction.  
A variety of verification procedures can be performed through the TAP  
controller. Board connectivity can be verified at all digital pins through a set of  
two instructions accessible through the use of a state machine, standard to all  
JTAG controllers. Refer to the IEEE Std 1149.1 specification for details  
concerning the Instruction Register and JTAG state machine. A Boundary Scan  
Description Language (BSDL) file for the RS8973 is also available from the  
factory upon request.  
Table 2-7. JTAG Device Identification Register  
Version(1)  
Part Number  
Manufacturer ID  
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0x0  
0x230D (RS8973)  
16 bits  
0x0D6  
11 bits  
TDO  
4 bits  
NOTE(S):  
(1) Consult factory for current version number.  
2-22  
Conexant  
Preliminary Information  
N8973DSD  
3
3.0 Registers  
3.1 Conventions  
Unless otherwise noted, the following conventions apply to all applicable register  
descriptions:  
For storage of multiple-bit data fields within a single byte-wide register,  
the LSBs of the field are located at the lower register-bit positions, whereas  
the MSBs are located at the higher positions.  
If only a single data field is stored in a byte-wide register, the field is  
justified so that the LSB of the field is located in the lowest register-bit  
position, bit 0.  
For storage of multiple-byte data words across multiple byte-wide  
registers, the LSBs of the word are located at the lower byte-address  
locations, while the MSBs are located at the higher byte-address locations.  
When writing to any control or data register with less than all 8-bit  
positions defined, a logical 0 value must be assigned to each  
unused/undefined/reserved position. Writing a logical 1 value to any of  
these positions may cause undefined behavior.  
When reading from any control/status or data register with less than all  
8-bit positions defined, an indeterminate value is returned from each  
unused/undefined/reserved position.  
Register values are not affected by RST pin assertion, except for the mode  
bit of the Global Modes and Status Register [global_modes; 0x00], the  
hclk_freq[1,0] field of the Serial Monitor Source Select Register  
[serial_monitor_source; 0x01] and the clk_freq[1,0] field of the PLL  
Modes Register [pll_modes; 0x22]. After RST pin assertion, all device  
parameters should be reinitialized.  
The initial values of all registers and RAM are undefined after power is  
applied. Exceptions include the mode bit of the Global Modes and Status  
Register, the hclk_freq[1,0] field of the Serial Monitor Source Select  
Register, the clk_freq[9,8] field of PLL Modes Register, and the Clock  
Frequency Select Register. In addition, the JTAG state is reset when power  
is applied.  
The register and bit mnemonics used here are based on the mnemonics  
used in the Conexant bit pump software.  
Writing to unspecified registers may cause unpredictable behavior.  
N8973DSD  
Conexant  
Preliminary Information  
3-1  
3.0 Registers  
RS8973  
3.2 Register Summary  
Single-Chip SDSL/HDSL Transceiver  
y
1(fo5)  
lbe  
a
lb3-1.gRisrteT  
a
T
3.2RgisteSumar  
3-2  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.2 Register Summary  
(2of5)  
ble  
a
bl3-1.RgisterT  
a
T
N8973DSD  
Conexant  
Preliminary Information  
3-3  
3.0 Registers  
RS8973  
3.2 Register Summary  
Single-Chip SDSL/HDSL Transceiver  
(3of5)  
ble  
a
bl3-1.RgisterT  
a
T
3-4  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.2 Register Summary  
(4of5)  
ble  
a
bl3-1.RgisterT  
a
T
N8973DSD  
Conexant  
Preliminary Information  
3-5  
3.0 Registers  
RS8973  
3.2 Register Summary  
Single-Chip SDSL/HDSL Transceiver  
(of5)  
ble  
a
bl3-1.RgisterT  
a
T
3-6  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
3
3.3 Register Description  
0x00—Global Modes and Status Register (global_modes)  
7
6
5
4
3
2
1
0
hw_revision[3] hw_revision[2] hw_revision[1] hw_revision[0]  
part_id[2]  
part_id[1]  
part_id[0]  
mode  
hw_revision[3:0] Chip Revision Number—Read-only unsigned binary field encoded with the chip revision  
number. Smaller values represent earlier versions, while larger values represent later versions.  
The zero value represents the original prototype release. Consult factory for current values and  
revision.  
part_id[2:0]  
Part ID—Read-only binary field set to binary 011, identifying the part as RS8973.  
The following table shows Part IDs for different DSL transceivers:  
part_id[2]  
part_id[1]  
part_id[0]  
Device Name  
0
0
0
0
0
0
1
1
0
1
0
1
Bt8952  
Bt8960  
Bt8970  
RS8973  
mode  
Power Down Mode—Read/write control bit. When set, stops all filter processing and zeros the  
transmit output for reduced power consumption. All RAM contents are preserved. The mode  
bit is automatically set by RST assertion and upon initial power application. It can be cleared  
only by writing a logic 0, at which time filter processing and transmitter operation can proceed.  
N8973DSD  
Conexant  
Preliminary Information  
3-7  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x01—Serial Monitor Source Select Register (serial_monitor_source)  
7
6
5
4
3
2
1
0
hclk_freq[1]  
hclk_freq[0]  
smon[5]  
smon[4]  
smon[3]  
smon[2]  
smon[1]  
smon[0]  
hclk_freq[1,0]  
HCLK Frequency Select—Read/write binary field selects the frequency of the HCLK output.  
hclk_freq[1]  
hclk_freq[0]  
HCLK Frequency  
0
0
Upon assertion of the RST pin and power-on detection, hclk_freq[1,0]  
is set to 00. Symbol Frequency (F  
) × 16.  
QCLK  
Upon assertion of the RST pin and power-on detection,  
hclk_freq[1,0] is set to 00.  
0
1
1
1
0
1
Symbol Frequency (F  
) × 16  
QCLK  
Symbol Frequency (F  
) × 32  
QCLK  
Symbol Frequency (F  
) × 64  
QCLK  
smon[5:0]  
Serial Monitor Source Select—Read/write binary field selects the Serial Monitor (SMON)  
output source.  
smon[5:0]  
Source  
Decimal  
Binary  
0 – 47  
48  
00 0000 – 10 1111  
11 0000  
Equalizer register file  
Digital front-end output/IS input  
Linear echo replica  
49  
11 0001  
50  
11 0010  
DFE subtractor output  
51  
11 0011  
EP subtractor output/slicer input  
Timing recovery phase detector output/loop filter input  
Timing recovery loop filter output/frequency synthesizer input  
52  
11 0100  
53  
11 0101  
3-8  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x02—Interrupt Mask Register Low (mask_low_reg)  
Independent read/write mask bits for each of the Timer Source Register [timer_source; 0x04] interrupt flags. A  
logical 1 represents the masked condition. A logical 0 represents the unmasked condition. All mask bits behave  
identically with respect to their corresponding interrupt flags. Setting a mask bit prevents the corresponding  
interrupt flag from affecting the IRQ output. Clearing a mask allows the interrupt flag to affect IRQ output.  
Unmasking an active interrupt flag will immediately cause the IRQ output to go active, if currently inactive.  
Masking an active interrupt flag will cause IRQ to go inactive, if no other unmasked interrupt flags are set.  
7
6
5
4
3
2
1
0
t4  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
t4  
General Purpose Timer 4  
General Purpose Timer 3  
SNR Alarm Timer  
Meter Timer  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
Startup Timer 4  
Startup Timer 3  
Startup Timer 2  
Startup Timer 1  
0x03—Interrupt Mask Register High (mask_high_reg)  
Independent read/write mask bits for each of the IRQ Source Register [irq_source; 0x05] interrupt flags.  
Individual mask bit behavior is identical to that specified for Interrupt Mask Register Low [mask_low_reg;  
0x02].  
7
6
5
4
3
2
1
0
sync  
high_felm  
low_felm  
low_snr  
sync  
Sync Indication  
high_felm  
low_felm  
low_snr  
Far-End Level Meter High Alarm  
Far-End Level Meter High Alarm  
Signal-to-Noise Ratio Low Alarm  
N8973DSD  
Conexant  
Preliminary Information  
3-9  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x04—Timer Source Register (timer_source)  
Independent read/write (zero only) interrupt flags, one for each of eight internal timers. Each flag bit is set and  
stays set when its corresponding timer value transitions from 1 to 0. If unmasked, this event causes the IRQ  
output to be activated. Flags are cleared by writing them with a logical 0 value. Once a flag is cleared, a  
steady-state timer value of 0 does not reassert the flag. Clearing an unmasked flag causes the IRQ output to  
return to the inactive state, if no other unmasked interrupt flags are set.  
7
6
5
4
3
2
1
0
t4  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
t4  
General Purpose Timer 4  
General Purpose Timer 3  
SNR Alarm Timer  
Meter Timer  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
Startup Timer 4  
Startup Timer 3  
Startup Timer 2  
Startup Timer 1  
0x05—IRQ Source Register (irq_source)  
Independent read/write (0 only) interrupt flags, one for each of four internal sources. Each flag bit is set and  
stays set when its corresponding source indicates that a valid interrupt condition exists. If unmasked, this event  
causes the IRQ output to be activated. Writing a logical 0 to an interrupt flag whose underlying condition no  
longer exists causes the flag to be immediately cleared. Attempting to clear a flag whose underlying condition  
still exists does not immediately clear the flag, but allows it to remain set until the underlying condition expires,  
at which time the flag is cleared automatically. The clearing of an unmasked flag causes the IRQ output to return  
to an inactive state, if no other unmasked interrupt flags are set.  
7
6
5
4
3
2
1
0
sync  
high_felm  
low_felm  
low_snr  
sync  
Sync Indication—Active when the sync detector is enabled and its accumulated equivalent  
comparison is greater than the threshold value stored in the Scrambler Sync Threshold  
Register [scr_sync_th; 0x2E].  
high_felm  
low_felm  
low_snr  
Far-End Level Meter High Alarm—Active when the far-end level meter value is greater than  
the threshold stored in the Far-End High Alarm Threshold Registers  
[far_end_high_alarm_th_low, far_end_high_alarm_th_high; 0x30–0x31].  
Far-End Level Meter Low Alarm—Active when the far-end level meter value is less than the  
threshold stored in the Far-End Low Alarm Threshold Registers [far_end_low_alarm_th_low,  
far_end_low_alarm_th_high; 0x32–0x33].  
Signal-to-Noise Ratio Low Alarm—Active when the SNR Alarm meter value is greater than  
the threshold stored in the SNR Alarm Threshold Registers [snr_alarm_th_low,  
snr_alarm_th_high; 0x34–0x35].  
3-10  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x06—Channel Unit Interface Modes Register (cu_interface_modes)  
7
6
5
4
3
2
1
0
tbclk_pol  
rbclk_pol  
fifos_mode  
interface_mode[1] interface_mode[0]  
tbclk_pol  
rbclk_pol  
fifos_mode  
Transmit Baud Clock Polarity—Read/write control bit defines the polarity of the TBCLK  
input while in the parallel slave interface mode. When tbclk_pol is set, TQ[1,0] is sampled on  
the falling edge of TBCLK; when cleared, TQ[1,0] is sampled on the rising edge.  
Receive Baud Clock Polarity—Read/write control bit defines the polarity of the RBCLK input  
while in the parallel slave interface mode. When rbclk_pol is set, RQ[1,0] is updated on the  
falling edge of RBCLK; when cleared, RQ[1,0] is updated on the rising edge.  
FIFOs Mode—Read/write control bit used to stagger the transmit and receive the FIFOs read  
and write pointers while in the parallel slave interface mode. A logical 1 forces the pointers to  
a staggered position; a logical 0 allows them to operate normally. To maximize phase-error  
tolerance, fifos_mode must be first set, then cleared once after QCLK-TBCLK-RBCLK  
frequency lock is achieved.  
interface_  
mode[1,0]  
Interface Mode—Read/write binary field specifies one of four operating modes for the  
channel unit interface.  
Interface  
Mode  
Pin Functions  
Mode  
91  
90  
88  
89  
85  
86  
[1:0]  
00  
Parallel master—Parallel quat transfer  
synchronized to QCLK out.  
Not  
used  
Not  
used  
RQ[1]  
RQ[0]  
TQ[1]  
TQ[0]  
01  
Parallel slave—Parallel quat transfer  
synchronized to separate TBCLK and  
RBCLK inputs.  
TBCLK  
RBCLK  
RQ[1]  
RDAT  
RQ[0]  
BCLK  
TQ[1]  
TDAT  
TQ[0]  
10  
11  
Serial, magnitude first—Serial quat  
transfer synchronized to BCLK out;  
magnitude-bit first, followed by sign  
bit.  
Not  
used  
Not  
used  
Not  
used  
Serial, sign first—Serial quat transfer  
synchronized to BCLK out; sign-bit  
first, followed by magnitude bit.  
Not  
used  
Not  
used  
RDAT  
BCLK  
TDAT  
Not  
used  
N8973DSD  
Conexant  
Preliminary Information  
3-11  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x07—Receive Phase Select Register (receive_phase_select)  
7
6
5
4
3
2
1
0
imp_short[2]  
imp_short[1]  
imp_short[0]  
rphs[3]  
rphs[2]  
rphs[1]  
rphs[0]  
imp_short[2:0]  
rphs[3:0]  
Impulse Shortening Filter—Read/write binary field that determines the coefficient of the  
impulse shortening filter. It must be set per the software provided by Conexant.  
Receive Phase Select—Read/write binary field that defines the relative phase relationship  
between QCLK and the sampling point of the ADC. The rising edges of QCLK correspond to  
the ADC sampling points when rphs equals 0000. Each binary increment of rphs represents a  
one-sixteenth QCLK period delay in the sampling point relative to QCLK.  
0x08—Linear Echo Canceller Modes Register (linear_ec_modes)  
7
6
5
4
3
2
1
0
adapt_  
coefficients  
enable_dc_tap  
zero_coefficients  
zero_output  
adapt_gain[1]  
adapt_gain[0]  
enable_dc_tap  
Enable DC Tap—Read/write control bit which, when set, forces a constant + 1 value into the  
last data tap of the LEC. This condition enables cancellation of any residual DC offset present  
at the input to the LEC. When cleared, the last data tap operates normally, as the oldest  
transmit data sample.  
adapt_coefficents Adapt Coefficients—Read/write control bit which enables coefficient adaptation when set;  
disables/freezes adaptation when cleared. Coefficient values are preserved when adaptation is  
disabled.  
zero_coefficients Zero Coefficients—Read/write control bit that continuously zeros all coefficients when set;  
allows normal coefficient updates if enabled, when cleared. This behavior differs slightly from  
the similar function (zero_coefficients) of the FFE and EP filters.  
zero_output  
Zero Output—Read/write control bit which, when set, zeros the echo replica before  
subtraction from the input signal. Achieves the affect of disabling or bypassing the echo  
cancellation function. Does not disable coefficient adaptation. When cleared, normal echo  
canceller operation is performed.  
adapt_gain[1,0]  
Adaptation Gain—Read/write binary field which specifies the adaptation gain.  
adapt_gain[1,0]  
Normalized Gain  
00  
01  
10  
11  
1
4
64  
512  
3-12  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x09—Nonlinear Echo Canceller Modes Register (nonlinear_ec_modes)  
7
6
5
4
3
2
1
0
adapt_  
coefficients  
negate_symbol symbol_delay[2] symbol_delay[1] symbol_delay[0]  
zero_coefficients  
zero_output  
adapt_gain  
negate_symbol  
Negate Symbol—Read/write control bit which, when set, inverts (2s complement) the receive  
signal path at the output of the nonlinear echo canceller. When cleared, the signal path is  
unaffected. This function is independent of all other NEC mode settings.  
symbol_delay[2:0] Symbol Delay—Read/write binary field which specifies the number of symbol delays inserted  
in the transmit symbol input path.  
adapt_coefficients Adapt Coefficients—Same function as LEC Modes Register [linear_ec_modes; 0x08].  
zero_coefficients Zero Coefficients—Same function as LEC Modes Register.  
zero_output  
adapt_gain  
Zero Output—Same function as LEC Modes Register.  
Adaptation Gain—Read/write control bit which specifies the adaptation gain. When  
adapt_gain is set, the adaptation gain is eight times higher than when cleared.  
0x0ADecision Feedback Equalizer Modes Register (dfe_modes)  
7
6
5
4
3
2
1
0
adapt_  
coefficients  
zero_coefficients  
zero_output  
adapt_gain  
adapt_coefficents Adapt Coefficients—Read/write control bit which enables coefficient adaptation when set;  
disables/freezes adaptation when cleared. Coefficient values are preserved when adaptation is  
disabled.  
zero_coefficients Zero Coefficients—Read/write control bit which continuously zeros all coefficients when set;  
allows normal coefficient updates, if enabled, when cleared.  
zero_output  
adapt_gain  
Zero Output—Read/write control bit which, when set, zeros the filter output before subtraction  
from the FFE output. Achieves the affect of disabling or bypassing the equalization function.  
Does not disable coefficient adaptation. When cleared, the normal equalizer operation is  
performed.  
Adaptation Gain—Read/write control bit which specifies the adaptation gain. When  
adapt_gain is set, the adaptation gain is eight times higher than when cleared.  
N8973DSD  
Conexant  
Preliminary Information  
3-13  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x0BTransmitter Modes Register (transmitter_modes)  
7
6
5
4
3
2
1
0
isolated_pulse[1] isolated_pulse[0] transmitter_off  
htur_lfsr  
data_source[2] data_source[1] data_source[0]  
isolated_pulse[1,0] Isolated Pulse Level Select—Read/write binary field that selects one of four output pulse  
levels while in the isolated pulse or alternating symbol transmitter mode.  
isolated_pulse[1,0]  
Output Pulse Level  
00  
01  
10  
11  
– 3  
– 1  
+ 3  
+ 1  
transmitter_off  
htur_lfsr  
Transmitter Off—Read/write control bit that zeros the output of the transmitter when set;  
allows normal transmitter operation (as defined by data_source[2:0]) when cleared.  
Remote Unit (HTU-R/NT) Polynomial Select—Read/write control bit selects one of two  
feedback polynomials for the transmit scrambler. When set, this bit selects the remote unit  
transmit polynomial (x– 23 + x– 18 + 1) ; when cleared, it selects the local unit (HTU-C/LT)  
polynomial (x– 23 + x– 5 + 1) .  
data_source[2:0] Data Source—Read/write binary field that selects the data source and mode of the transmitter  
output. The transmitter must be enabled (transmitter_off = 0) for these modes to be active.  
data_source [2:0]  
Transmitter Mode  
000  
Isolated pulse. Level selected by isolated_pulse[1:0]. The meter timer must be enabled and in the  
continuous mode. The pulse repetition interval is determined by the meter timer countdown interval.  
001  
Four-level scrambled detector loopback. Sign and magnitude bits from the receiver detector are  
scrambled and looped back to the transmitter. Feedback polynomial determined by the htur_lfsr control  
bit.  
010  
011  
100  
Four-level unscrambled data. Transmits the four-level (2B1Q) sign and magnitude bits from the channel  
unit transmit interface without scrambling.  
Four-level scrambled 1s. Transmits a scrambled, constant high-logic level as a four-level (2B1Q) signal.  
Feedback polynomial determined by the htur_lfsr control bit.  
Alternating symbol mode. Outputs symbols of alternating polarity. Level is selected by  
isolated_pulse[1:0]. The meter timer must be enabled and in continuous mode. The half period of the  
output signal is defined by the meter timer countdown interval.  
101  
110  
Four-level scrambled data. Scrambles and transmits the four-level (2B1Q) sign and magnitude bits from  
the channel unit transmit interface. Feedback polynomial determined by the htur_lfsr control bit.  
Two-level unscrambled data. Constantly forces the magnitude bit from the channel unit transmit interface  
to a logical 0 and transmits the resulting two-level signal (as determined by the sign bit) without  
scrambling. Valid output levels limited to + 3, – 3.  
111  
Two-level scrambled 1s. Transmits a scrambled, constant high-logic level as a two-level signal. The  
feedback polynomial is determined by the htur_lfsr control bit. The scrambler is run at the symbol rate  
(half-bit rate) to produce the sign bit of the transmitted signal while the magnitude bit is sourced with a  
constant logical 0. Valid output levels are limited to + 3, – 3.  
3-14  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x0CTimer Restart Register (timer_restart)  
Independent read/write restart bits, one for each of the eight internal timers. Setting an individual bit causes the  
associated timer to be reloaded with the contents of its interval register. For the four symbol-rate timers (meter,  
snr, t3, t4), reloading occurs within 1 symbol period. For the four start-up timers (sut1–4), reloading occurs  
within 1024 symbol periods. Once the timer is reloaded, the restart bit is automatically cleared. If a restart bit is  
set and then cleared (by writing a logical 0) before the reload actually takes place, no timer reload occurs. Once  
reloaded, if enabled in the Timer Enable Register [timer_enable; 0x0D], the timer begins counting down toward  
zero; otherwise, it holds at the interval register value.  
7
6
5
4
3
2
1
0
t4  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
t4  
General Purpose Timer 4  
General Purpose Timer 3  
SNR Alarm Timer  
Meter Timer  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
Startup Timer 4  
Startup Timer 3  
Startup Timer 2  
Startup Timer 1  
0x0DTimer Enable Register (timer_enable)  
Independent read/write enable bits, one for each of the eight internal timers. When any individual bit is set, the  
corresponding timer is enabled for counting down from its current value toward 0. For the four symbol-rate  
timers (meter, snr, t3, t4), counting begins within 1 symbol period. For the four start-up timers (sut1-4), counting  
begins within 1024 symbol periods. When an enable bit is cleared, the timer is disabled from counting and holds  
its current value. If an enable bit is set and then cleared before a count actually takes place, no timer countdown  
occurs.  
7
6
5
4
3
2
1
0
t4  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
t4  
General Purpose Timer 4  
General Purpose Timer 3  
SNR Alarm Timer  
Meter Timer  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
Startup Timer 4  
Startup Timer 3  
Startup Timer 2  
Startup Timer 1  
N8973DSD  
Conexant  
Preliminary Information  
3-15  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x0ETimer Continuous Mode Register (timer_continuous)  
Independent read/write mode bits, one for each of the eight internal timers. When any individual bit is set, the  
corresponding timer is placed in the continuous count mode. While in this mode, after reaching the 0 count, an  
enabled timer will reload the contents of its interval register and continue counting. When a mode bit is cleared,  
the timer is taken out of the continuous mode. While in this configuration, after reaching the zero count, an  
enabled timer will simply stop counting and remain at 0.  
7
6
5
4
3
2
1
0
t4  
t3  
snr  
meter  
sut4  
sut3  
sut2  
sut1  
For a description of bit-fields, refer to the description given above for register 0x0DTimer Enable Register  
(timer_enable).  
0x0F—Miscellaneous/Test Register (misc_test)  
A 1-byte read/write register that is automatically initialized to 0x00 upon RST assertion and initial power  
application.  
7
6
5
4
3
2
1
0
res[6]  
res[5]  
reg_clk_en  
res[4]  
res[3]  
res[2]  
res[1]  
async_mode  
res[6:1]  
Reserved Bits—Read/write binary field that is automatically initialized to 0x00 upon RST  
assertion and initial power application.  
reg_clk_en  
Regenerator Clock Enable—When set, it bypasses the frequency synthesizer and timing  
recovery. In this mode, the symbol rate equals MCLK ÷ 16. Normally this bit is reset and  
should be set only for the transceiver configured as REG–C in a regenerator configuration.  
Refer to Section 1.3, Regenerator Configuration.  
async_mode  
Asynchronous Mode—Read/write control bit that selects asynchronous MCI timing mode,  
when set. When reset it selects synchronous mode MCI timing. Refer to  
Table 5-13, Microcomputer Interface Timing Requirements, and Table 5-14, Microcomputer  
Interface Switching Characteristics, for MCI timing requirements and switching  
characteristics.  
0x10, 0x11—Startup Timer 1 Interval Register (sut1_low, sut1_high)  
A 2-byte read/write register that stores the countdown interval for Startup Timer 1 in unsigned binary format.  
Each increment represents 1024 symbol periods. The contents of this register are automatically loaded into its  
associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the continuous  
mode.  
0x12, 0x13—Startup Timer 2 Interval Register (sut2_low, sut2_high)  
A 2-byte read/write register that stores the countdown interval for Startup Timer 2 in unsigned binary format.  
Each increment represents 1024 symbol periods. The contents of this register are automatically loaded into its  
associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the continuous  
mode.  
3-16  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x14, 0x15—Startup Timer 3 Interval Register (sut3_low, sut3_high)  
A 2-byte read/write register that stores the countdown interval for Startup Timer 3 in unsigned binary format.  
Each increment represents 1024 symbol periods. The contents of this register are automatically loaded into its  
associated timer after the timer_restart bit is set, or after the timer counts down to zero while in the continuous  
mode.  
0x16, 0x17—Startup Timer 4 Interval Register (sut4_low, sut4_high)  
A 2-byte read/write register that stores the countdown interval for Startup Timer 4 in unsigned binary format.  
Each increment represents 1024 symbol periods. The contents of this register are automatically loaded into its  
associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the continuous  
mode.  
0x18, 0x19—Meter Timer Interval Register (meter_low, meter_high)  
A 2-byte read/write register that stores the countdown interval for the Meter Timer in unsigned binary format.  
Each increment represents one symbol period. The contents of this register are automatically loaded into its  
associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the continuous  
mode.  
0x1A, 0x1BSNR Alarm Timer Interval Register (snr_timer_low, snr_timer_high)  
A 2-byte read/write register that stores the countdown interval for the SNR Alarm Timer in unsigned binary  
format. Each increment represents one symbol period. The contents of this register are automatically loaded into  
its associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the  
continuous mode.  
0x1C, 0x1DGeneral Purpose Timer 3 Interval Register (t3_low, t3_high)  
A 2-byte read/write register that stores the countdown interval for General Purpose Timer 3 in unsigned binary  
format. Each increment represents one symbol period. The contents of this register are automatically loaded into  
its associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the  
continuous mode.  
0x1E, 0x1F—General Purpose Timer 4 Interval Register (t4_low, t4_high)  
A 2-byte read/write register that stores the countdown interval for General Purpose Timer 4 in unsigned binary  
format. Each increment represents one symbol period. The contents of this register are automatically loaded into  
its associated timer after the timers timer_restart bit is set, or after it counts down to zero while in the  
continuous mode.  
N8973DSD  
Conexant  
Preliminary Information  
3-17  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x20—Clock Frequency Select Register (clock_freq_select)  
7
6
5
4
3
2
1
0
clk_freq[7]  
clk_freq[6]  
clk_freq[5]  
clk_freq[4]  
clk_freq[3]  
clk_freq[2]  
clk_freq[1]  
clk_freq[0]  
clk_freq[7:0]  
Read/write binary field, which along with clk_freq[9,8] of the PLL Modes Register (0x22),  
specifies the data rate used by the clock synthesizer to generate the appropriate internal clock.  
clk_freq = 18 to 290  
data rate = clk_freq × 8 kbps (144 kbps to 2320 kbps)  
The power-on default is clk_freq = 0 which selects the internal clock corresponding to  
1280 kbps.  
0x21—ADC Control Register (adc_control)  
7
6
5
4
3
2
1
0
cont_time[1]  
cont_time[0]  
loop_back[1]  
loop_back[0] switch_cap_pole  
gain[2]  
gain[1]  
gain[0]  
cont_time[1,0]  
Continuous Time Control—Read/write binary field that controls the cut-off frequency of the  
analog RC reconstruction filter, according to the data rates.  
cont_time[1,0]  
Data Rate Range  
800 to 1200 kbps  
Less than 800 kbps  
Above 1200 kbps  
Reserved  
00  
01  
10  
11  
The “00” setting of the continuous_time control bits enables an output pulse shape that  
conforms to the ETSI HDSL specifications at 1168 kbps.  
The “01” setting enables an output pulse shape that conforms to the ANSI and ETSI HDSL  
specifications at 784 kbps.  
The “10” setting enables an output pulse shape that conforms to the ETSI HDSL  
specifications at 2320 kbps.  
loop_back[1,0]  
Loopback Control—Read/write binary field that specifies if loopback is enabled, and the type  
of loopback that is enabled. During transmitting loopback, the differential receiver inputs  
(RXP, RXN) are disabled. The loopback path is intended to go from the transmitter outputs  
(TXP, TXN) through the external hybrid circuit and back into the differential receiver balance  
inputs (RXBP, RXBN). During silent loopback, the transmitter is turned off. The output of the  
pulse-shaping filter in the transmit section is internally connected to the input of the ADC in  
the receive section.  
loop_back[1,0]  
Function  
00  
01  
10  
11  
Normal Operation (Loopback Disabled)  
Hybrid Inputs Disabled (RXBP, RXBN)  
Transmitting Loopback  
Silent Loopback  
3-18  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
switch_cap_pole  
Switch Cap Pole Control—Read/write control bit, specifies the pulse shaping filter  
characteristics. When switch_cap_pole is set, it enables output pulse shape conforming to  
ETSI specifications for 2320 kbps operation. When reset, it enables output pulse shape for  
other data rates.  
gain[2:0]  
Gain Control—Read/write binary field that specifies the gain of the VGA.  
gain[2:0]  
000  
VGA Gain  
0 dB  
001  
3 dB  
010  
6 dB  
011  
9 dB  
100  
101  
110  
111  
12 dB  
15 dB  
15 dB  
15 dB  
0x22—PLL Modes Register (pll_modes)  
7
6
5
4
3
2
1
0
phase_detector_ phase_detector_  
gain[1] gain[0]  
clk_freq[9]  
clk_freq[8]  
freeze_pll  
pll_gain[1]  
pll_gain[0]  
clk_freq[9,8]  
Clock Frequency Select—See description for 0x20Clock Frequency Select Register  
(clock_freq_select).  
phase_detector_  
gain[1,0]  
Phase Detector Gain—Read/write binary field that specifies one of three gain settings for the  
timing-recovery phase detector function.  
phase_detector_gain[1,0]  
Normalized Gain  
00  
01  
10  
11  
1
2
4
Reserved  
freeze_pll  
Freeze PLL—Read/write control bit. When set, this bit zeros the proportional term of the loop  
compensation filter and disables accumulator updates, causing the PLL to hold its current  
frequency. When this bit is cleared, proportional term effects and accumulator updates are  
enabled, allowing the PLL to track the phase of the incoming data.  
pll_gain[1,0]  
PLL Gain—Read/write binary field that specifies the gain (proportional and integral  
coefficients) of the loop compensation filter.  
Normalized  
Normalized  
pll_gain[1:0]  
Proportional Coefficients  
Integral Coefficients  
00  
01  
10  
11  
1
4
16  
64  
1
32  
256  
4096  
N8973DSD  
Conexant  
Preliminary Information  
3-19  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x23—Test Register (test_reg23)  
A 3-byte read/write register used for device testing by Conexant. This register is automatically initialized to  
0x000000 upon RST assertion and initial power application. This register must be initialized according to the  
software provided by Conexant.  
0x24, 0x25—Timing Recovery PLL Phase Offset Register (pll_phase_offset_low,  
pll_phase_offset_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The value of this register is  
subtracted from the output of the timing-recovery phase detector after the phase-detector meter, but before the  
loop compensation filter.  
0x26, 0x27—Receiver DC Offset Register (dc_offset_low, dc_offset_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The value of this register is  
subtracted from the receiver signal path at the output of the ADC block, ahead of the DC level and signal level  
meters.  
0x28—Transmitter Calibration Register (tx_calibrate)  
7
6
5
4
3
2
1
0
tx_calibrate[3]  
tx_calibrate[2]  
tx_calibrate[1]  
tx_calibrate[0]  
tx_calibrate[3:0]  
Transmit Calibrate—4-bit, 2s-complement, read-only field containing the nominal setting for  
the transmitter gain. The value of the Transmit Calibration Register is set during  
manufacturing testing by Conexant, and corresponds to the value required to operate the  
RS8973 at a nominal 13.5 dBm transmit power, assuming the recommended transformer  
coupling/hybrid circuit is used. Users can override this calibration by writing their own value  
into the Transmitter Gain Register [tx_gain; 0x29].  
3-20  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x29—Transmitter Gain Register (tx_gain)  
7
6
5
4
3
2
1
0
tx_gain[3]  
tx_gain[2]  
tx_gain[1]  
tx_gain[0]  
tx_gain[3:0]  
Transmit Gain—A 4-bit, 2s-complement, read/write field controlling the transmitter gain.  
Upon initialization, the value in the Transmitter Calibration Register [tx_calibrate; 0x28] can  
be written into this register by software, to set the transmitter gain to the nominal value.  
Alternatively, the user can set it to another desired value. The transmitter gain settings are  
relative to the setting that provides a nominal output power of 13.5 dBm.  
tx_gain[3:0]  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Relative Transmitter Gain (dB)  
–1.60  
–1.36  
–1.13  
–0.91  
–0.69  
–0.48  
–0.27  
–0.07  
0.13  
0.32  
0.51  
0.70  
0.88  
1.05  
1.23  
1.40  
0x2A, 0x2BNoise-Level Histogram Threshold Register (noise_histogram_th_low,  
noise_histogram_th_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is compared to the absolute  
value of the slicer error signal produced by the detector. A count of error samples that exceeds this threshold  
(greater than) is accumulated in the noise-level histogram meter.  
0x2C, 0x2DError Predictor Pause Threshold Register (ep_pause_th_low,  
ep_pause_th_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is compared to the absolute  
value of the slicer error signal produced by the detector. The result of this comparison (slicer error greater than  
this threshold) is used to initiate a pause condition by zeroing the output of the error predictor correction signal  
before subtraction from the receive signal path. Error predictor coefficient updates are not affected. The pause  
condition lasts for a fixed 5-symbol period from the time the threshold was last exceeded.  
N8973DSD  
Conexant  
Preliminary Information  
3-21  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x2EScrambler Synchronization Threshold Register (scr_sync_th)  
A 7-bit read/write register representing an unsigned binary number. The contents of this register are used to test  
for scrambler synchronization during the automatic-scrambler synchronization mode of the symbol detector.  
The test passes when the count of equivalent scrambler and detector output bits is greater than the value of this  
register. When the auto-scrambler sync mode is not enabled, the contents of this register are not used.  
7
6
5
4
3
2
1
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x30, 0x31—Far-End High Alarm Threshold Register (far_end_high_alarm_th_low,  
far_end_high_alarm_th_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is compared to the value of  
the far-end level meter. If the meter reading is greater than this threshold, the high_felm interrupt flag is set in  
the IRQ Source Register [irq_source; 0x05].  
0x32, 0x33—Far-End Low Alarm Threshold Register (far_end_low_alarm_th_low,  
far_end_low_alarm_th_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is compared to the value of  
the far-end level meter. If the meter reading is less than this threshold, the low_felm interrupt flag is set in the  
IRQ Source Register [irq_source; 0x05].  
0x34, 0x35—SNR Alarm Threshold Register (snr_alarm_th_low, snr_alarm_th_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is compared to the value of  
the SNR alarm meter. If the meter reading is greater than this threshold, the low_snr interrupt flag is set in the  
IRQ Source Register [irq_source; 0x05].  
0x36, 0x37—Cursor Level Register (cursor_level_low, cursor_level_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x2AAA (one-third of the maximum positive value). The value  
of this register represents the expected level of a noise-free + 1 receive symbol at the slicer input. It is multiplied  
by 2 to produce the positive and negative slicing levels, in addition to 0, used by the symbol detector in  
four-level slicing mode. This value is also used to scale the detector output when computing the equalizer error  
and slicer error signals. The detected symbol (– 3, – 1, + 1, + 3) is multiplied by the value of this register to  
produce the scaled output.  
0x38, 0x39—DAGC Target Register (dagc_target_low, dagc_target_high)  
A 2-byte read/write register interpreted as a 16-bit, 2s-complement number. The range of meaningful values is  
limited to positive integers between 0x0000 and 0x7FFF. The value of this register is subtracted from the  
absolute value of the receive signal at the output of the DAGC function. The difference is used as the error input  
to the DAGC while in the self-adaptation mode. In the DAGCs equalizer-error adaptation mode, the contents of  
this register are not used.  
3-22  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x3ASymbol Detector Modes Register (detector_modes)  
7
6
5
4
3
2
1
0
enable_peak_  
detector  
output_mux_  
control[1]  
output_mux_  
control[0]  
scr_out_to_dfe  
two_level  
lfsr_lock  
htur_lfsr  
descr_on  
enable_peak_  
detector  
Enable Peak Detector—Read/write control bit that enables the peak detection function when  
set; disables the function when cleared. When enabled, the peak detector output overrides the  
slicer output if the peak detection criteria are met. If the criteria are not met, or if the function  
is disabled, the slicer output is used and peak detector output is ignored.  
output_mux_  
control[1,0]  
Output Multiplexer Control—Read/write binary field that selects the source of the detector  
output connected to the channel unit receive interface.  
output_mux_control[1,0]  
Detector Output to CU Receive Interface  
Same as scr_out_to_dfe selection  
Transmitter loopback output from CU  
transmit interface  
00  
01  
10  
11  
Scrambler/descrambler output  
Reserved  
scr_out_to_dfe  
two_level  
Scrambler Output to DFE—Read/write control bit that selects the source of the detector output  
connected to the DFE and timing recovery module inputs and the transmitters detector  
loopback input. When set, this bit selects the scrambler/descrambler function; when cleared, it  
selects the slicer/peak detector output.  
Two-Level Mode—Read/write control bit that selects two-level mode when set, four-level  
mode when cleared. Affects the slicer and the scrambler/descrambler function. In two-level  
mode, the slicer uses a single threshold set at zero to recover sign bits only; all magnitude  
information is lost. Scrambler/descrambler updates are slowed to the symbol rate (half the  
normal bit rate) to process only sign information as well; all magnitude output bits are sourced  
with a constant logic zero value, producing two-level symbols constrained to +3 and –3 values.  
In four-level mode, the slicer uses two thresholds derived from the Cursor Level Register  
[cursor_level_low, cursor_level_high; 0x36–0x37], as well as the zero threshold, to recover  
both sign and magnitude information. The scrambler/descrambler is updated at the full bit rate  
to process both sign and magnitude bits as well.  
N8973DSD  
Conexant  
Preliminary Information  
3-23  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
lfsr_lock  
LFSR Lock—Read/write control bit that enables the auto-scrambler synchronization mode  
(lfsr_lock) in the detector when set and disables this mode when cleared. Affects the behavior  
of the scrambler/descrambler function, overriding the descr_on setting. When enabled, the  
scrambler/descrambler is forced into the descrambler mode for 23 cycles. It is then switched to  
the scrambled-1s mode for 128 cycles. While in this mode, the outputs of the scrambler and the  
slicer/peak detector are compared against one another. The number of equivalent bits (equal  
comparisons) is accumulated and compared to the value of the Scrambler Synchronization  
Threshold Register [scr_sync_th; 0x2E].  
At any time during the 128 cycles, if the count exceeds the threshold (greater than), the sync  
interrupt flag is set in the IRQ source register [irq_source; 0x05] and the process terminates  
with the scrambler/descrambler left in the scrambled-1s mode. (The sync interrupt flag cannot  
be cleared while lfsr_lock remains high.) After 128 cycles, if the threshold is not exceeded, the  
accumulator is cleared, the scrambler/descrambler re-enters the descrambler mode for another  
23 cycles, and the process repeats until either sync is achieved or this mode is disabled. Once  
disabled, the sync interrupt flag can be cleared (if active) and the scrambler/descrambler  
returns to the mode specified by descr_on.  
htur_lfsr  
descr_on  
Remote Unit (HTU-R/NT) Polynomial Select—Read/write control bit that selects one of two  
feedback polynomials for the scrambler/descrambler. When set, this bit selects the remote unit  
– 23  
– 5  
(HTU-R/NT) receive polynomial (x  
+ x + 1); when cleared, it selects the local unit  
+ 1).  
– 23  
– 18  
(HTU-C/LT) polynomial (x  
+ x  
Descrambler/Scrambler Select—Read/write control bit that configures the  
scrambler/descrambler function as a descrambler when set, and as a scrambler when cleared.  
As a scrambler, this bit enables the scrambler/descrambler to generate a scrambled-all-1s  
sequence (constant high logic-level input); all incoming data is ignored. In the auto-scrambler  
synchronization mode (lfsr_lock = 1), this selection is overwritten though the value of the  
control bit is unaffected.  
0x3BPeak Detector Delay Register (peak_detector_delay)  
A 4-bit read/write register interpreted as an unsigned binary number. Specifies a number of additional symbol  
delays inserted in the peak detector input path of the symbol detector. Must be set to a value that equalizes the  
total path delay in each of the peak detector and slicer input paths according to the following formula: peak  
detector delay register value = DAGC delays + FFE delays – fixed peak detector input delays. The DAGC and  
FFE delays are not fixed, but result from the microprogrammed implementation of these functions. The value  
should be set according to software supplied by Conexant.  
7
6
5
4
3
2
1
0
D[3]  
D[2]  
D[1]  
D[0]  
3-24  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x3CDigital AGC Modes Register (dagc_modes)  
7
6
5
4
3
2
1
0
eq_error_  
adaptation  
adapt_coefficients  
adapt_gain  
eq_error_  
adaptation  
Equalizer Error Adaptation—Read/write control bit that selects between the equalizer-error  
adaptation mode when set, and the self-adaptation mode when cleared. Equalizer error  
adaptation uses the equalizer error signal produced by the slicer as the DAGC error input  
signal. In self-adaptation, the value of the DAGC Target Register [dagc_target_low,  
dagc_target_high; 0x38–0x39] is subtracted from the absolute value of the receive signal at the  
output of the DAGC, and this difference is used as the error input signal.  
adapt_coefficients Adapt Coefficients—Read/write control bit that enables coefficient adaptation when set;  
disables/freezes adaptation when cleared. Coefficient values are preserved when adaptation is  
disabled.  
adapt_gain  
Adaptation Gain—Read/write control bit that specifies the adaptation gain. When this bit is  
set, the adaptation gain is eight times higher than when cleared.  
0x3DFeed Forward Equalizer Modes Register (ffe_modes)  
7
6
5
4
3
2
1
0
adapt_  
coefficients  
adapt_last_coeff zero_coefficents  
adapt_gain  
adapt_last_coeff Adapt Last Coefficient—Read/write control bit that enables adaptation of the last (oldest)  
coefficient only when set; allows all coefficient adaptation when cleared. Overall coefficient  
adaptation must be enabled (adapt_coefficients = 1) for this behavior to occur. If coefficient  
adaptation is disabled (adapt_coefficients = 0), the value of this control bit is not used.  
zero_coefficients Zero Coefficients—Read/write control bit that, with coefficient adaptation enabled  
(adapt_coefficients = 1), continuously zeros all coefficients when set; allows normal  
coefficient updates when cleared. If coefficient adaptation is disabled (adapt_coefficients = 0),  
this control bit has no affect. This behavior differs slightly from the similar function  
(zero_coefficients) of the LEC, NEC, and DFE filters. Whenever this bit is set, it must be  
accompanied by adapt_coefficients (set) for a 2-symbol time period.  
adapt_coefficents Adapt Coefficients—Read/write control bit that enables coefficient adaptation when set;  
disables/freezes adaptation when cleared. Coefficient values are preserved when adaptation is  
disabled. This overall coefficient adaptation must be enabled for adapt_last_coeff to have an  
affect.  
adapt_gain  
Adaptation Gain—Read/write control bit that specifies the adaptation gain. When set, the  
adaptation gain is four times higher than when cleared.  
N8973DSD  
Conexant  
Preliminary Information  
3-25  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x3EError Predictor Modes Register (ep_modes)  
7
6
5
4
3
2
1
0
adapt_  
coefficients  
zero_output  
zero_coefficients  
adapt_gain  
zero_output  
Zero Output—Read/write control bit that, when set, zeros the error predictor correction signal  
before subtraction at the slicer. Achieves the affect of disabling, or bypassing, the error  
predictor function. Does not disable coefficient adaptation. When cleared, normal error  
predictor operation is performed.  
zero_coefficients Zero Coefficients—Read/write control bit that, with coefficient adaptation enabled  
(adapt_coefficients = 1), continuously zeros all coefficients when set; allows normal  
coefficient updates when cleared. If coefficient adaptation is disabled (adapt_coefficients = 0),  
this control bit has no affect. This behavior differs slightly from the similar function  
(zero_coefficients) of the LEC, NEC, and DFE filters. Whenever this bit is set, it must be  
accompanied by adapt_coefficients (set) for a 2-symbol time period.  
adapt_coefficents Adapt Coefficients—Read/write control bit that enables coefficient adaptation when set and  
disables/freezes adaptation when cleared. Coefficient values are preserved when adaptation is  
disabled.  
adapt_gain  
Adaptation Gain—Read/write control bit that specifies the adaptation gain. When this bit is  
set, the adaptation gain is four times higher than when cleared.  
0x40, 0x41—Phase Detector Meter Register (pdm_low, pdm_high)  
A 2-byte read-only register containing the 16 MSBs of the 26-bit, 2s-complement phase detector meter  
accumulator. This meter sums the output of the timing recovery modules phase detector over each Meter Timer  
countdown interval, before being offset by the Phase Offset Register [pll_phase_offset_low,  
pll_phase_offset_high; 0x24, 0x25]. Automatically loaded at the end of each interval, the meter register must be  
read low byte first, followed by high byte, unseparated by any other meter access (addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[17]  
D[25]  
D[16]  
D[24]  
D[15]  
D[23]  
D[14]  
D[22]  
D[13]  
D[21]  
D[12]  
D[20]  
D[11]  
D[19]  
D[10]  
D[18]  
0x42—Overflow Meter Register (overflow_meter)  
A single-byte read-only register containing all 8 bits of the unsigned overflow meter accumulator. This meter  
counts the number of ADC overflow conditions which occur during each meter timer countdown interval,  
limited to a maximum count of 255 (0xFF). The meter register is automatically loaded at the end of each  
countdown interval.  
7
6
5
4
3
2
1
0
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
3-26  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x44, 0x45—DC Level Meter Register (dc_meter_low, dc_meter_high)  
A 2-byte read-only register containing the 16 MSBs of the 32-bit, 2s-complement DC-level meter accumulator.  
This meter sums the value of the receive signal input path—after DC offset correction but before echo  
cancellation—over each Meter Timer countdown interval. Automatically loaded at the end of each interval, the  
meter register must be read low byte first, followed by high byte, unseparated by any other meter access  
(addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[23]  
D[31]  
D[22]  
D[30]  
D[21]  
D[29]  
D[20]  
D[28]  
D[19]  
D[27]  
D[18]  
D[26]  
D[17]  
D[25]  
D[16]  
D[24]  
0x46, 0x47—Signal Level Meter Register (slm_low, slm_high)  
A 2-byte read-only register containing 16 MSBs of the 32-bit unsigned signal-level meter accumulator. This  
meter sums the absolute value of the receive signal input path—after DC offset correction but before echo  
cancellation (same point as the DC level meter)—over each Meter Timer countdown interval. Automatically  
loaded at the end of each interval, the meter register must be read low byte first, followed by high byte,  
unseparated by any other meter access (addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[23]  
D[31]  
D[22]  
D[30]  
D[21]  
D[29]  
D[20]  
D[28]  
D[19]  
D[27]  
D[18]  
D[26]  
D[17]  
D[25]  
D[16]  
D[24]  
0x48, 0x49—Far-End Level Meter Register (felm_low, felm_high)  
A 2-byte read-only register containing 16 MSBs of the 32-bit unsigned far-end level meter accumulator. This  
meter sums the absolute value of the receive signal path—after echo cancellation but before the DAGC  
function—over each Meter Timer countdown interval. Automatically loaded at the end of each interval, this  
meter register must be read low byte first, followed by high byte, unseparated by any other meter access  
(addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[23]  
D[31]  
D[22]  
D[30]  
D[21]  
D[29]  
D[20]  
D[28]  
D[19]  
D[27]  
D[18]  
D[26]  
D[17]  
D[25]  
D[16]  
D[24]  
N8973DSD  
Conexant  
Preliminary Information  
3-27  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x4A, 0x4BNoise Level Histogram Meter Register (noise_histogram_low,  
noise_histogram_high)  
A 2-byte read-only register containing all 16 bits of the unsigned noise-level histogram meter accumulator. This  
meter counts the number of high-noise-level conditions which occur during each Meter Timer countdown  
interval. A high-noise-level condition is defined as the absolute value of the slicer error signal exceeding  
(greater than) the threshold specified in the Noise-level Histogram Threshold Register [0x2A, 2B].  
Automatically loaded at the end of each countdown interval, this meter register must be read low byte first,  
followed by high byte, unseparated by any other meter access (addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[7]  
D[15]  
D[6]  
D[14]  
D[5]  
D[13]  
D[4]  
D[12]  
D[3]  
D[11]  
D[2]  
D[10]  
D[1]  
D[9]  
D[0]  
D[8]  
0x4C, 0x4DBit Error Rate Meter Register (ber_meter_low, ber_meter_high)  
A 2-byte read-only register containing all 16 bits of the unsigned BER meter accumulator. This meter counts the  
number of error-free bits recovered by the detector during each Meter Timer countdown interval. An error-free  
bit is defined as a match (equal comparison) of the detectors slicer/peak detector output and its  
scrambler/descrambler output, when operating as a scrambler. When the scrambler/descrambler is operated as a  
descrambler, the meter simply counts the number of logical 1s produced by the descrambler. The meter register  
is automatically loaded at the end of each countdown interval, and must be read low byte first, followed by high  
byte, unseparated by any other meter access (addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[7]  
D[15]  
D[6]  
D[14]  
D[5]  
D[13]  
D[4]  
D[12]  
D[3]  
D[11]  
D[2]  
D[10]  
D[1]  
D[9]  
D[0]  
D[8]  
0x4ESymbol Histogram Meter Register (symbol_histogram)  
A single-byte read-only register containing 8 MSBs of the 16-bit unsigned symbol histogram meter  
accumulator. This meter counts the number of + 1 or – 1 symbols detected during each Meter Timer countdown  
interval. No increment occurs when a + 3 or – 3 symbol is detected. The meter register is automatically loaded  
at the end of each countdown interval.  
7
6
5
4
3
2
1
0
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
3-28  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x50, 0x51—Noise Level Meter Register (nlm_low, nlm_high)  
A 2-byte read-only register containing 16 MSBs of the 32-bit unsigned noise-level meter accumulator. This  
meter sums the absolute value of the detectors slicer-error signal over each Meter Timer countdown interval.  
Automatically loaded at the end of each interval, the meter register must be read the low byte first, followed by  
high byte, unseparated by any other meter access (addresses 0x40 to 0x5F).  
7
6
5
4
3
2
1
0
D[23]  
D[31]  
D[22]  
D[30]  
D[21]  
D[29]  
D[20]  
D[28]  
D[19]  
D[27]  
D[18]  
D[26]  
D[17]  
D[25]  
D[16]  
D[24]  
0x5E, 0x5F— PLL Frequency Register (pll_frequency_low, pll_frequency_high)  
A 2-byte read/write register comprising 16 MSBs of the 31-bit, 2s-complement timing recovery loop  
compensation filter accumulator. Treated much like a meter register, the frequency register must be read low  
byte first, followed by high byte, unseparated by any other meter access (addresses 0x40 to 0x5F). Writes must  
occur in the same order, with the low byte written first, followed by the high byte. Write accesses can be  
separated by any number of other read or write accesses.  
7
6
5
4
3
2
1
0
D[22]  
D[30]  
D[21]  
D[29]  
D[20]  
D[28]  
D[19]  
D[27]  
D[18]  
D[26]  
D[17]  
D[25]  
D[16]  
D[24]  
D[15]  
D[23]  
0x70—LEC Read Tap Select Register (linear_ec_tap_select_read)  
A 7-bit read/write register representing an unsigned binary address defined over a range of 0 to 119 decimal.  
When written, it causes the selected 32-bit coefficient of the LEC to be subsequently loaded into the Access  
Data Register [access_data_byte[3:0]; 0x7C–0x7F] within 2 symbol periods. Does not affect the value of the  
coefficient. No other data access should occur between the time the Read Tap Select Register is written and the  
time the Access Data Register is read, or the data may be corrupted.  
7
6
5
4
3
2
1
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x71—LEC Write Tap Select Register (linear_ec_tap_select_write)  
A 7-bit read/write register representing an unsigned binary address defined over a range of 0 to 119 decimal.  
When written, it causes all 32 bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] to be  
subsequently written to the selected LEC coefficient within 2 symbol periods. Does not affect the value of the  
access data register.  
7
6
5
4
3
2
1
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
N8973DSD  
Conexant  
Preliminary Information  
3-29  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x72—NEC Read Tap Select Register (nonlinear_ec_tap_select_read)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes the selected 14-bit coefficient of the NEC to be subsequently loaded into the  
lowest-order bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] within 2 symbol periods.  
Does not affect the value of the coefficient. No other data access should occur between the time the Read Tap  
Select Register is written and the time the Access Data Register is read, or the data may be corrupted.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x73—NEC Write Tap Select Register (nonlinear_ec_tap_select_write)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes the lowest-order 14 bits of the Access Data Register [access_data_byte[3:0];  
0x7C–0x7F] to be subsequently written to the selected NEC coefficient within 2 symbol periods. Does not  
affect the value of the access data register.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x74—DFE Read Tap Select Register (dfe_tap_select_read)  
A 7-bit read/write register representing an unsigned binary address defined over a range of 0 to 115 decimal.  
When written, this register causes the selected 16-bit coefficient of the DFE to be subsequently loaded into the  
lowest-order bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] within 2 symbol periods.  
Does not affect the value of the coefficient. No other data access should occur between the time the Read Tap  
Select Register is written and the time the Access Data Register is read, or the data may be corrupted.  
7
6
5
4
3
2
1
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x75—DFE Write Tap Select Register (dfe_tap_select_write)  
A 7-bit read/write register representing an unsigned binary address defined over a range of 0 to 115 decimal.  
When written, this register causes the lowest-order 16 bits of the Access Data Register [access_data_byte[3:0];  
0x7C–0x7F] to be subsequently written to the selected DFE coefficient within 2 symbol periods. Does not  
affect the value of the access data register.  
7
6
5
4
3
2
1
0
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
3-30  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x76—Scratch Pad Read Tap Select (sp_tap_select_read)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes the selected 8-bit scratch pad memory location to be subsequently loaded into  
the lowest-order bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] within 2 symbol periods.  
Does not affect the value of the memory. No other data access should occur between the time the Read Tap  
Select Register is written and the time the Access Data Register is read, or the data may be corrupted.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x77—Scratch Pad Write Tap Select (sp_tap_select_write)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes the lowest-order 8 bits of the Access Data Register [access_data_byte[3:0];  
0x7C–0x7F] to be subsequently written to the selected scratch pad memory location within 2 symbol periods.  
Does not affect the value of the access data register.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
N8973DSD  
Conexant  
Preliminary Information  
3-31  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
0x78—Equalizer Read Select Register (eq_add_read)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 47 decimal.  
When written, this register causes the selected 16-bit location of the equalizer register file to be subsequently  
loaded into the lowest-order bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] within  
2 symbol periods. Does not affect the value of the register file location. An address map of the shared register  
file, as defined by the factory-delivered microcode, is displayed in Table 3-2. No other data access should occur  
between the time the Read Tap Select Register is written and the time the Access Data Register is read, or the  
data may be corrupted.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Table 3-2. Address Map of Shared Register Fill  
D[5:0]  
Stored Parameter  
Decimal  
Binary  
0–7  
8–15  
16–20  
21–25  
26  
00 0000–00 0111  
00 1000–00 1111  
01 0000–01 0100  
01 0101–01 1001  
01 1010  
FFE Coefficients 0–7  
FFE Data Taps 0–7  
EP Coefficients 0–4  
EP Data Taps 0–4  
DAGC Gain—Least-Significant Word  
DAGC Gain—Most-Significant Word  
DAGC Output  
27  
01 1011  
28  
01 1100  
29  
01 1101  
FFE Output  
30  
01 1110  
DAGC Input  
31  
01 1111  
FFE Output, Delayed 1 Symbol Period  
DAGC Error Signal  
32  
10 0000  
33  
10 0001  
Equalizer Error Signal  
Slicer Error Signal  
34  
10 0010  
35–47  
10 0011–10 1111  
Reserved  
3-32  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
3.0 Registers  
Single-Chip SDSL/HDSL Transceiver  
3.3 Register Description  
0x79—Equalizer Write Select Register (eq_add_write)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 47 decimal.  
When written, this register causes the lowest-order 16 bits of the Access Data Register [access_data_byte[3:0];  
0x7C–0x7F] to be subsequently written to the selected equalizer register file location within 2 symbol periods.  
Does not affect the value of the access data register. An address map of the shared register file, as defined by the  
factory-delivered microcode, is displayed in Table 3-2, Address Map of Shared Register Fill.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x7AEqualizer Microcode Read Select Register (eq_microcode_add_read)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes the selected 32-bit location of the equalizer microprogram store to be  
subsequently loaded into the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F] within 2 symbol  
periods. Does not affect the value of the microprogram store location. No other data access should occur  
between the time the Read Tap Select Register is written and the time the Access Data Register is read, or the  
data may be corrupted.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x7BEqualizer Microcode Write Select Register (eq_microcode_add_write)  
A 6-bit read/write register representing an unsigned binary address defined over a range of 0 to 63 decimal.  
When written, this register causes all 32 bits of the Access Data Register [access_data_byte[3:0]; 0x7C–0x7F]  
to be subsequently written to the selected equalizer microprogram store location within 2 symbol periods. Does  
not affect the value of the access data register. A factory-developed equalizer microcode is included with the  
no-fee licensed HDSL transceiver software available from Conexant.  
7
6
5
4
3
2
1
0
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0x7C0x7F—Access Data Register (access_data_byte3:0)  
A 4-byte read/write register that stores filter coefficient, equalizer register file, and equalizer microprogram  
store contents during indirect accesses to these RAM-based locations. Writes to addresses 0x70 through 0x7B,  
and uses the contents of this shared register as specified in each of the individual register descriptions.  
N8973DSD  
Conexant  
Preliminary Information  
3-33  
3.0 Registers  
RS8973  
3.3 Register Description  
Single-Chip SDSL/HDSL Transceiver  
3-34  
Conexant  
Preliminary Information  
N8973DSD  
4
4.0 Interconnection Information  
NOTE: This section replaces the RS8973 Application Note (N8973AN1A).  
The configuration described in this section supports data rates ranging from  
144 kbps and 2320 kbps, with the output signal conforming to ETS TS 101 135  
(formerly ETR 152) specifications for pulse-shape, power spectral density and  
output power at 784 kbps, 1168 kbps, and 2320 kbps.  
Four types of interconnections are discussed:  
1. Transmission line interface, including the compromise hybrid  
2. DC blocking capacitor  
3. Voltage reference and compensation circuitry  
4. Crystal/clock interface  
N8973DSD  
Conexant  
Preliminary Information  
4-1  
4.0 Interconnection Information  
4.1 Transmission Line Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
4.1 Transmission Line Interface  
The transmission line interface consists of the compromise hybrid, two  
impedance matching resistors and the line transformer. Figure 4-1, Line Interface  
Interconnection Diagram, illustrates the interconnections.  
Figure 4-1. Line Interface Interconnection Diagram  
Antialiasing Filter  
R7  
RXP (77)  
C5  
R8  
Line  
RXN (78)  
Transformer  
L
1:2  
15.4 Ω  
Surge  
TXP (71)  
Protection  
Line  
Surge  
Protection  
Matching  
Resistors  
C10  
15.4 Ω  
Surge  
Protection  
TXN (74)  
Secondary  
Primary  
Compromise Hybrid Circuit  
R1  
Antialiasing Filter  
C1  
R9  
R11  
RXBP (79)  
R2  
C2  
C6  
R10  
R5  
R6  
RXBN (80)  
C3  
R3  
C4  
R4  
R12  
8973_038  
4-2  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
4.0 Interconnection Information  
4.1 Transmission Line Interface  
Single-Chip SDSL/HDSL Transceiver  
4.1.1 Compromise Hybrid  
The purpose of the compromise hybrid is to model the impedance of the  
transmission line. This model generates an approximation of the transmitted  
signals echo. The echo replica is then subtracted from the signal on the line  
transformer to generate a first order approximation of the received signal. The  
RS8973 includes a dual differential analog input to accommodate a hybrid using  
only passive components.  
Hybrid component values have been determined by means of calculations and  
simulations that optimize the echo cancellation functions at the frequencies of  
interest for the loops as specified in the ETS TS 101 135 (formerly ETR 152)  
standards. In addition, maximum reach was taken into consideration for the  
hybrid design.  
To maximize digital echo cancellation within the RS8973, it is important that  
the compromise hybrid transfer function be highly linear. Therefore, we  
recommend that all capacitors used in the hybrid be NPO ceramic capacitors  
because of their highly linear characteristics.  
Although the RS8973 contains a digital echo canceller (EC), the hybrid is  
needed to reduce the signal level input to the ADC. This eliminates ADC  
overflow for short loops and increases the resolution of the digitized receive  
signal for better digital signal processing performance. In addition, because the  
digital EC cannot cancel out very low frequency signals, it is very important that  
the analog EC cancel out most of the low frequency echo.  
Table 4-1 lists compromise hybrid component values.  
Table 4-1. Compromise Hybrid Component Values  
Hybrid Components  
Value  
R1, R4  
C1, C4  
1.58 kΩ  
2.3 nF  
2.0 kΩ  
1 nF  
R2, R3  
C2, C3  
R5, R6  
R11, R12  
6.04 kΩ  
5.1 kΩ  
NOTE: All capacitors in the signal path should be film or NPO ceramic capacitors.  
N8973DSD  
Conexant  
Preliminary Information  
4-3  
4.0 Interconnection Information  
4.1 Transmission Line Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
4.1.2 Impedance-Matching Resistors  
Impedance-matching resistors are placed in the transmit path so that the  
output impedance of the line interface more closely matches the impedance of the  
transmission line and load. This maximizes the power transferred to the receiver  
on the other end of the line. The load is assumed to be 135 .  
Anti-aliasing filters are built on-chip to filter out high frequencies that would  
be aliased back into the passband as noise. These filters can be made of all  
passive components. The cutoff frequency (fc) should be as low as possible to  
achieve maximum attenuation of aliasing frequencies without filtering out the  
desired signal. Because the highest frequency in the desired signal is equal to  
one-half of the symbol rate, there should be no more than 1 dB of attenuation at  
this frequency. Table 4-2 lists the component values recommended for the  
antialiasing filters. Note that the other components in the hybrid affect the  
frequency response of the antialiasing filters.  
Table 4-2. Antialias Filter Component Values  
Antialias Filter Components  
Value  
R7, R8  
C5  
1 kΩ  
56pF  
1 kΩ  
56 pF  
R9, R10  
C6  
4.1.3 Line Transformer  
The line transformer provides DC isolation from the transmission line by  
creating a high-pass filter. The winding ratio of the transformer must be 2:1 (line  
side:circuit side) to generate the appropriate voltage level on the line. The primary  
inductance (L) of the transformer (line side) is a very critical parameter. If L is  
too high, the cutoff frequency of the filter will be too low and the RS8973 Echo  
Canceller and Equalizer will not be able to cancel out the low frequency  
components of the echo and inter-symbol interference. If L is too low, part of the  
information in the signal will be filtered out, thereby decreasing the SNR ratio. In  
addition, the line transformer must meet other requirements to maximize system  
performance. See Table 4-3 for line transformer requirements.  
Table 4-4 lists additional requirements that may be needed to specify the line  
transformer, depending upon the application in which it is to be used. These  
requirements have been submitted to several transformer vendors to expedite the  
development process. A list of these transformer vendors along with their  
associated transformer part numbers is listed in Table 4-5. These requirements  
may need to be modified to match the needs of a specific system. For example, if  
remote line powering is being used, the transformer must operate under a fairly  
high DC current condition. The exact current specification will depend on several  
factors including the voltage provided over the line, and the power consumption at  
the remote end. The application-specific requirements should be reviewed to  
ensure the transformer is not under- or over-specified. An over-specified  
transformer may unnecessarily increase cost, while an under-specified  
transformer may not perform adequately under all system conditions.  
4-4  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
4.0 Interconnection Information  
4.1 Transmission Line Interface  
Single-Chip SDSL/HDSL Transceiver  
Table 4-3. Line Transformer Specifications  
Parameter  
Value  
(1)  
2:1 (±2%)  
Turns Ratio  
(2)  
2 mH (±10%)  
Primary Inductance  
Return Loss (mid-band)  
Return Loss (low-band)  
Return Loss (high-band)  
Longitudinal Balance (low-band)  
Longitudinal Balance (high band)  
Insertion Loss  
16 dB (40 to 300 kHz)  
–20 dB/decade (below 40 kHz)  
–20 dB/decade (above 300 kHz)  
53 dB (0.5 to 300 kHz)  
–20 dB/decade (above 300 kHz)  
0.5 dB at 40 kHz  
Frequency Response  
±0.1 dB  
(36 to 580 kHz)  
(3)  
–70 dB at 36 kHz  
Total Harmonic Distortion  
NOTE(S):  
(1)  
Turns ratio is specified line side to circuit side (line side:circuit side). The line side windings are usually split to accommodate  
a DC blocking capacitor.  
The primary inductance is for the line side of the transformer.  
(2)  
(3)  
Test condition: 14 dBm on line side (135 load) with DC current present (if applicable).  
Table 4-4. Line Transformer Application-Specific Specifications  
Parameter  
Requirement  
Operating Temperature Range  
DC Current  
–40 °C to +85 °C  
60 mA  
Dielectric Strength  
1500 VDC / 3000 VAC  
Creepage and Clearance  
Table 4-5. Recommended Line Transformer Suppliers  
Supplier Phone  
Supplier Name and Address  
Number(s)  
Part Number  
Midcom, Inc.  
50050  
P.O. Box 1330  
Watertown, SD 57201  
(800) 643-2661  
(605) 886-4385  
Pulse Engineering  
Application Engineering  
1220 World Trade Dr.  
San Diego, CA 92128  
(619) 674-8100  
Schott Corporation  
1000 Parkers Lake Rd  
Minneapolis, MN 55391  
(612) 475-1173  
N8973DSD  
Conexant  
Preliminary Information  
4-5  
4.0 Interconnection Information  
4.2 DC Blocking Capacitor  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
4.2 DC Blocking Capacitor  
A DC blocking capacitor is placed in series with the center split primary winding  
(line side) of the line transformer to facilitate remote power feed or injection of  
sealing current. See Table 4-6.  
Table 4-6. DC Blocking Capacitor Value  
Component  
Value  
C10  
1 µF  
4.3 Voltage Reference and Compensation  
Circuitry  
Compensation capacitors must be connected between all of the RS8973 voltage  
reference pins and analog ground. The voltage reference signals, their associated  
pin numbers, and the recommended compensation capacitor values are listed in  
Table 4-7.  
Table 4-7. Compensation Capacitor Values  
Signal Name  
Pin Number  
Capacitor Value  
VCOMO  
VCOMI  
VCCAP  
VRXP  
58  
57  
59  
51  
52  
60  
61  
0.22 µF  
0.22 µF  
0.22 µF  
0.22 µF  
0.22 µF  
0.22 µF  
0.22 µF  
VRXN  
VTXP  
VTXN  
In addition to the compensation capacitors, an external resistor is needed to set  
the bias current used in the RS8973. This resistor must be connected between the  
RBIAS pin (pin 56) and analog ground. The recommended value of the resistor is  
given in Table 4-8.  
Table 4-8. Bias Current Resistor Value  
Signal Name  
Pin Number  
Resistor Value  
RBIAS  
56  
9.53 kΩ  
4-6  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
4.0 Interconnection Information  
4.4 Crystal/Clock Interface  
Single-Chip SDSL/HDSL Transceiver  
4.4 Crystal/Clock Interface  
A crystal or an external clock is needed to provide a reference clock for the  
RS8973. If a crystal is used, it must be connected to the XTALI/MCLK and  
XTALO pins along with two external capacitors as shown in Figure 4-2. The  
recommended specification for the crystal is given in Table 4-9. A list of crystal  
vendors and their associated part numbers is displayed in Table 4-10.  
If an external clock is used, it must be connected to the XTALI/MCLK pin  
(pin 40), and the XTALO pin (pin 39) must be left floating. The clock frequency  
must be 10.24 MHz.  
Figure 4-2. Crystal Oscillator Connection Diagram  
XTALI / MCLK (40)  
XTALO (39)  
Y1  
22 pF  
22 pF  
Table 4-9. Crystal Specification  
Parameter  
Nominal Frequency  
Value  
10.24 MHz  
±10 ppm  
±10 ppm  
Frequency Tolerance at 25 °C  
Temperature Frequency Stability  
Aging  
±10 ppm over 10 years  
15.5 pF  
Load Capacitance  
NOTE(S): Individual frequency tolerance, temperature frequency stability, and aging  
requirements can vary as long as the total tolerance is less than ±30 ppm.  
Table 4-10. Recommended Crystal Suppliers  
Supplier Phone  
Supplier Name and Address  
Part Number  
Number  
Ecliptek Corporation  
3545 Cadillac Avenue  
Costa Mesa, CA 92626  
ECX-5173-10.240M  
(714) 433-1200  
General Electronic Devices  
320 S. Pacific Street  
HC49-10.240- .0155- .001/01  
(760) 591-4170  
San Marcos, CA 92069  
N8973DSD  
Conexant  
Preliminary Information  
4-7  
4.0 Interconnection Information  
4.4 Crystal/Clock Interface  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
4-8  
Conexant  
Preliminary Information  
N8973DSD  
5
5.0 Electrical and Mechanical Specifications  
5.1 Absolute Maximum Ratings  
Stresses above those listed in Table 5-1 may cause permanent damage to the  
device. This is a stress rating only. Functional operation of the device at these or  
any other conditions beyond those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 5-1. Absolute Maximum Ratings  
Symbol  
Parameter  
Minimum  
–0.5  
Maximum  
Units  
V
Supply voltage(1)VDD2, VPLL, VAA  
Supply voltage(1)VDD1  
V
+7  
Supply  
V
–0.5  
4.6  
V
Supply  
Input voltage on any signal pin(2)  
Storage temperature  
V
–0.5  
V
+ 0.5  
V
I
DD2  
T
–65  
+125  
+220  
°C  
°C  
ST  
T
Vapor-phase soldering temperature (1 minute)  
VSOL  
NOTE(S):  
(1) V , V , relative to DGND. V relative to AGND.  
DD1 DD2  
AA  
(2) Relative to DGND.  
N8973DSD  
Conexant  
Preliminary Information  
5-1  
5.0 Electrical and Mechanical Specifications  
5.2 Recommended Operating Conditions  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
5.2 Recommended Operating Conditions  
The recommended operating conditions are described in Table 5-2.  
Table 5-2. Recommended Operating Conditions  
Symbol  
Parameter  
Digital core-logic supply voltage  
Digital I/O-buffer supply voltage  
Analog supply voltage  
Minimum  
3.0  
Typical  
3.3  
5.0  
5.0  
5.0  
Maximum Units  
V
3.6  
V
V
DD1  
V
4.75  
5.25  
5.25  
5.25  
DD2  
V
4.75  
V
AA  
V
PLL supply voltage  
4.75  
V
PLL  
IH  
High-level input voltage (1)  
Low-level input voltage  
DD2  
V
2.0  
V
+ 0.3  
V
V
–0.3  
+0.8  
+ 0.3  
V
IL  
V
High-level input voltage for XTALI / MCLK  
Low-level input voltage for XTALI / MCLK  
Output capacitive loading(2)  
0.9 × V  
V
V
IHX  
DD2  
DD2  
V
–0.3  
0.1 × V  
V
ILX  
DD2  
C
60  
pF  
°C  
L
Ambient operating temperature(3)  
T
–40  
+85  
A
(1) V (minimum) for the following inputs is 2.2 volts:  
IH  
WR/R/W  
RST  
RBCLK  
TBCLK  
(2) Capacitive loading over which all digital output switching characteristics are guaranteed.  
(3) Still-air temperature range over which all electrical characteristics and timing requirements/characteristics are guaranteed.  
5-2  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.3 Electrical Characteristics  
Single-Chip SDSL/HDSL Transceiver  
5.3 Electrical Characteristics  
Typical characteristics measured at nominal operating conditions:  
T = 25 °C  
A
V
V
= 3.3 V  
DD1  
DD2/AA/PLL  
= 5.0 V  
Minimum/maximum characteristics guaranteed over extreme operating  
conditions:  
Min T max  
A
Min V  
max  
DD/AA  
The parameters of the electrical characteristics are displayed in Table 5-3.  
N8973DSD  
Conexant  
Preliminary Information  
5-3  
5.0 Electrical and Mechanical Specifications  
5.3 Electrical Characteristics  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-3. Electrical Characteristics  
Symbol  
Parameter  
High-Level Output Voltage @ I = – 400 µA  
Minimum  
2.4  
Typical  
Maximum Units  
V
0.4  
V
OH  
OH  
V
Low-Level Output Voltage @ I = 6 mA (IRQ and READY)  
V
OLL  
OL  
V
Low-Level Output Voltage @ I = 3 mA (All Other Outputs)  
0.4  
V
OL  
OL  
I
Input Leakage Current @ V V V  
DD2  
±10  
±10  
–400  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
10  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
pF  
I
SS2  
I
I
High-Impedance Output Leakage Current @ V V V  
OZ  
SS2  
O
DD2  
I
Resistive Pull-Up Current @ V = V (TDI and TMS)  
–20  
PR  
I
SS2  
5 V Supply Current @ F  
= 72 kHz(1)  
I
100  
101  
102  
103  
105  
25  
5V  
QCLK  
5 V Supply Current @ F  
= 392 kHz(1)  
= 584 kHz(1)  
= 776 kHz(1)  
= 1160 kHz(1)  
= 72 kHz(2)  
I
5V  
QCLK  
I
5 V Supply Current @ F  
5V  
QCLK  
I
5 V Supply Current @ F  
5V  
QCLK  
I
5 V Supply Current @ F  
5V  
QCLK  
I
3.3 V Supply Current @ F  
3.3 V Supply Current @ F  
3V  
QCLK  
= 392 kHz(2)  
= 584 kHz(2)  
= 776 kHz(2)  
= 1160 kHz(2)  
= 72 kHz(3)  
I
54  
3V  
QCLK  
I
70  
3.3 V Supply Current @ F  
3V  
QCLK  
I
87  
3.3 V Supply Current @ F  
3V  
QCLK  
I
120  
15  
3.3 V Supply Current @ F  
3V  
QCLK  
I
Power-Down Current @ F  
PD5V  
QCLK  
= 1160 kHz(3)  
= 72 kHz(4)  
I
18  
Power-Down Current @ F  
PD5V  
QCLK  
I
1
Power-Down Current @ F  
PD3V  
QCLK  
= 1160 kHz(4)  
I
1
Power-Down Current @ F  
PD3V  
QCLK  
C
Input Capacitance  
High-Impedance Output Capacitance  
I
C
10  
pF  
OZ  
NOTE(S):  
(1) I = I + I  
+ I during normal operation.  
AA  
5V PLL DD2  
(2) I = I  
during normal operation.  
3V DD1  
(3) I  
= I + I  
+ I during power-down operation.  
PD5V PLL DD2 AA  
(4) I  
= I  
during power-down operation.  
PD3V DD1  
5-4  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.4 Clock Timing  
Single-Chip SDSL/HDSL Transceiver  
5.4 Clock Timing  
Tables 5-4 through 5-6 list the clock timing requirements and switching  
characteristics. Figures 5-1 and 5-2 illustrate MCLK timing requirements and  
clock control timing, respectively.  
Table 5-4. MCLK Timing Requirements  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
MCLK Period(1)  
1
97.653  
35  
97.656  
97.659  
ns  
ns  
ns  
2
3
MCLK Pulse-Width Low  
MCLK Pulse-Width High  
35  
NOTE(S):  
(1) If an external clock is applied to XTALI/MCLK, it is referred to as MCLK. Max tolerance = ± 32 ppm.  
Edge rates for MCLK are < 5 ns.  
Figure 5-1. MCLK Timing Requirements  
1
2
3
MCLK  
Table 5-5. HCLK Switching Characteristics  
Symbol  
Parameter  
Minimum  
Typical  
÷ 64  
Maximum  
Units  
(1)  
4
T
÷ 64  
÷ 16  
÷ 32  
T
T
QCLK  
÷ 64  
÷ 16  
÷ 32  
HCLK Period (T  
), hclk_freq[1:0] = 11’  
QCLK  
QCLK  
HCLK  
(1)  
5
T
T
÷16  
T
QCLK  
HCLK Period (T  
HCLK Period (T  
), hclk_freq[1:0] = 00’ or 01’  
QCLK  
QCLK  
HCLK  
(1)  
6
T
T
÷ 32  
T
QCLK  
), hclk_freq[1:0] = 10’  
QCLK  
QCLK  
HCLK  
7
8
HCLK Pulse-Width High  
HCLK Pulse-Width Low  
T
÷ 2 – 10  
÷ 2 – 10  
T
÷ 2  
÷ 2  
T
÷ 2 + 10  
T ÷ 2 + 10  
HCLK  
ns  
HCLK  
HCLK  
HCLK  
T
T
ns  
HCLK  
HCLK  
NOTE(S):  
(1) The hclk_freq[1:0] control bits are located in the Serial Monitor Source Select Register [addr. 0x01].  
N8973DSD  
Conexant  
Preliminary Information  
5-5  
5.0 Electrical and Mechanical Specifications  
5.4 Clock Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-6. QCLK Switching Characteristics  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
(1)  
9
QCLK period (T  
)
QCLK  
10  
11  
QCLK pulse-width high  
QCLK pulse-width low  
T
÷ 2 – 20  
T
÷ 2 + 20  
÷ 2 + 20  
ns  
ns  
QCLK  
QCLK  
T
÷ 2 – 20  
T
QCLK  
QCLK  
12  
13  
QCLK hold after HCLK rising edge  
QCLK delay after HCLK high  
–20  
ns  
ns  
20  
NOTE(S):  
(1) T  
is defined as the time period of the symbol rate. The symbol rate is data rate ÷ 2.  
QCLK  
Figure 5-2. Clock Control Timing  
4,5,6  
7
HCLK  
8
9
13  
10  
12  
QCLK  
11  
5-6  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.5 Channel Unit Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
5.5 Channel Unit Interface Timing  
Tables 5-7 through 5-12 list channel unit interface timing requirements and  
switching characteristics. Figures 5-3 through 5-5 illustrate channel unit interface  
timing in parallel master mode, parallel slave mode, and serial mode, respectively.  
Table 5-7. Channel Unit Interface Timing Requirements, Parallel Master Mode  
Symbol  
Parameter  
Minimum  
Maximum Units  
14  
15  
TQ[1,0] setup prior to QCLK falling edge  
TQ[1,0] hold after QCLK low  
100  
25  
ns  
ns  
Table 5-8. Channel Unit Interface Switching Characteristics, Parallel Master Mode  
Symbol  
Parameter  
Minimum  
Maximum Units  
16  
17  
RQ[1,0] hold after QCLK rising edge  
RQ[1,0] delay after QCLK high  
–50  
50  
ns  
ns  
Figure 5-3. Channel Unit Interface Timing, Parallel Master Mode  
RQ[1,0]  
16  
17  
QCLK  
14  
15  
TQ[1,0]  
N8973DSD  
Conexant  
Preliminary Information  
5-7  
5.0 Electrical and Mechanical Specifications  
5.5 Channel Unit Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-9. Channel Unit Interface Timing Requirements, Parallel Slave Mode  
Symbol  
Parameter  
Minimum  
Maximum Units  
TBCLK, RBCLK Period(1)  
18  
19  
T
T
ns  
ns  
QCLK  
QCLK  
TBCLK, RBCLK Pulse-Width High  
TBCLK, RBCLK Pulse-Width Low  
T
÷ 4  
÷ 4  
QCLK  
20  
T
QCLK  
TQ[1,0] Setup prior to TBCLK Active Edge(2)  
TQ[1,0] Hold after TBCLK High/Low(2)  
21  
25  
25  
22  
NOTE(S):  
(1) TBCLK and RBCLK must be frequency-locked to QCLK, though they may have independent phase relationships to QCLK and to  
one another.  
(2) TBCLK polarity (edge sensitivity) is programmable through the CU Interface Modes Register [cu_interface_modes 0x06].  
Table 5-10. Channel Unit Interface Switching Characteristics, Parallel Slave Mode  
Symbol  
Parameter  
RQ[1,0] hold after RBCLK active edge(1)  
RQ[1,0] delay after RBCLK high/low(1)  
Minimum  
Maximum Units  
23  
24  
0
ns  
ns  
100  
NOTE(S):  
(1) RBCLK polarity (edge sensitivity) is programmable through the CU Interface Modes Register [cu_interface_modes; 0x06].  
Figure 5-4. Channel Unit Interface Timing, Parallel Slave Mode  
18  
RBCLK  
19  
20  
24  
23  
RQ[1:0]  
TBCLK  
18  
19  
20  
22  
21  
TQ[1:0]  
5-8  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.5 Channel Unit Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-4. Channel Unit Interface Timing, Parallel Slave Mode  
NOTE(S): TBCLK and RBCLK polarities are programmable through the CU Interface Modes Register. The figure depicts both  
clocks programmed to falling-edge active.  
Table 5-11. Channel Unit Interface Timing Requirements, Serial Mode  
Symbol  
Parameter  
Minimum  
Maximum Units  
25  
26  
TDAT setup prior to BCLK falling edge  
TDAT hold after BCLK low  
100  
25  
ns  
ns  
Table 5-12. Channel Unit Interface Switching Characteristics, Serial Mode  
Symbol  
27  
Parameter  
Minimum  
÷ 2  
Maximum  
Units  
BCLK period  
T
T
÷ 2  
QCLK  
QCLK  
28  
BCLK pulse-width high  
BCLK pulse-width low  
T
÷ 4 – 20  
÷ 4 – 20  
T
÷ 4 + 20  
÷ 4 + 20  
QCLK  
ns  
QCLK  
QCLK  
29  
T
T
ns  
QCLK  
30  
31  
32  
33  
BCLK hold after HCLK rising edge  
BCLK delay after HCLK high  
0
50  
50  
ns  
ns  
ns  
ns  
RDAT, QCLK hold after BCLK rising edge  
RDAT, QCLK delay after BCLK high  
–50  
N8973DSD  
Conexant  
Preliminary Information  
5-9  
5.0 Electrical and Mechanical Specifications  
5.5 Channel Unit Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-5. Channel Unit Interface Timing, Serial Mode  
HCLK  
27  
31  
28  
30  
BCLK  
29  
33  
32  
QCLK  
RDAT  
26  
25  
TDAT  
5-10  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
5.6 Microcomputer Interface Timing  
Tables 5-13 and 5-14 list microcomputer interface (MCI) timing requirements  
and switching characteristics, respectively. Figures 5-6 through 5-9 illustrate MCI  
write and read timing. Figure 5-10 illustrates internal write timing.  
Table 5-13. Microcomputer Interface Timing Requirements  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
34  
35  
ALE pulse-width high  
30  
10  
ns  
ns  
Address setup prior to ALE falling edge(1)  
Address hold after ALE low(1)  
36  
37  
5
ns  
ns  
ns  
ALE low prior to Write Strobe falling edge(2)  
20  
20  
38a  
Read Strobe falling edge after ALE falling edge – muxed mode  
(3)  
(MUXED = 1)  
38b  
Read Strobe falling edge after ALE falling edge – non-muxed mode  
1
ns  
(3)  
(MUXED = 0)  
Write Strobe pulse-width low(2,4)  
39  
40  
41  
42  
T
÷ 32 + 25  
ns  
ns  
ns  
ns  
QCLK  
Read Strobe pulse-width low(3,4)  
T
÷ 32 + 25  
QCLK  
Data In setup prior to Write Strobe rising edge(2)  
30  
5
Data In hold after Write Strobe high(2)  
R/W setup prior to Read/Write Strobe falling edge  
R/W hold after Read/Write Strobe high  
ALE falling edge after Write Strobe high  
ALE falling edge after Read Strobe high  
RST pulse-width low  
43  
44  
10  
10  
20  
20  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
45  
46  
47  
48  
Write Strobe rising edge after READY low  
NOTE(S):  
(1) Address is defined as AD[7:0] when MUXED = 1, and ADDR[7:0] when MUXED = 0.  
(2) In Intel mode, Write Strobe is defined as WR and CS asserted. In Motorola mode, it is defined as DS and CS asserted when R/W  
is low.  
(3) In Intel mode, Read Strobe is defined as RD and CS asserted. In Motorola mode, it is defined as DS and CS asserted when R/W  
is high.  
(4) The timing listed is for the synchronous mode of the MCI, which is power-on default. It can also be set to asynchronous mode  
by setting bit 0 of the miscellaneous/test register (address 0x0F) to a 1. In this case, the minimum timing changes to 40 ns for  
symbol 39, and 50 ns for symbols 40 and 50. Synchronous mode is preferred because it reduces switching noise. To switch to  
asynchronous mode, the Write Strobe pulse-width (symbol 39) should meet the synchronous mode timing requirements for a  
symbol rate of 640 kbps (74 nx), which is the power-on default.  
N8973DSD  
Conexant  
Preliminary Information  
5-11  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-14. Microcomputer Interface Switching Characteristics  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
Data out enable (Low Z) after Read Strobe falling edge(1)  
Data out valid after Read Strobe low(1, 7)  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
T
÷ 32 + 25  
QCLK  
Data out hold after Read Strobe rising edge(1)  
Data out disable (High Z) after Read Strobe high(1)  
IRQ hold after Write Strobe rising edge(2,3)  
IRQ delay after Write Strobe high(2,3)  
5
25  
0
T
÷ 32 + 20  
÷ 32  
QCLK  
Internal register delay after Write Strobe high(3,4)  
Internal RAM delay after Write Strobe high(3,5)  
Access data register delay after Write Strobe high(3,6)  
T
QCLK  
2 × T  
QCLK  
2 × T  
QCLK  
(3)  
T
÷ 32  
QCLK  
READY low after Write Strobe low  
(3)  
59  
60  
61  
0
0
50  
÷ 32  
ns  
ns  
ns  
ns  
READY rising edge after Write Strobe high  
(1)  
T
QCLK  
READY low after Read Strobe low  
(1)  
0
50  
10  
READY rising edge after Read Strobe high  
62  
Data out valid after READY low  
NOTE(S):  
(1) Read Strobe is defined as RD and CS asserted in Intel mode, and DS and CS asserted when R/W is high in Motorola mode.  
(2) When writing an interrupt mask or status register.  
(3) Write Strobe is defined as WR and CS asserted in Intel mode, and DS and CS asserted when R/W is low in Motorola mode.  
(4) Writes to internal registers are synchronized to an internal 64-times symbol-rate clock. Data is available for reading after the  
specified time. This parameter may extend the overall read access time from internal register locations under high bus  
speed/low symbol rate conditions.  
(5) When performing an indirect write to RAM-based locations using a write select register [odd addresses: 0x71–0x7B] and the  
Access Data Register. Subsequent writes to any read/write select register or the Access Data Register, as initiated by a Write  
Strobe falling edge, is prohibited for the specified time. This parameter will extend the overall write access time to RAM-based  
locations under normal bus speed/symbol rate conditions.  
(6) When performing an indirect read from RAM-based locations using a read select register [even addresses: 0x70–0x7A] and the  
Access Data Register. Subsequent writes to any read/write select register, as initiated by a Write Strobe falling-edge, is  
prohibited for the specified time. Data is available for reading from the Access Data Register after the specified time. This  
parameter will extend the overall read access time from RAM-based locations under normal bus speed/symbol rate conditions.  
Direct writes to the Access Data Register are as specified for internal registers.  
(7) The timing listed is for the synchronous mode of the MCI, which is power-on default. It can also be set to asynchronous mode  
by setting bit 0 of the reserved9 register (address 0x0F) to a 1. In this case, the minimum timing changes to 40 ns for symbol  
39, and 50 ns for symbols 40 and 50. Synchronous mode is preferred because it reduces switching noise. To switch to  
asynchronous mode, the Write Strobe pulse-width (symbol 39) should meet the synchronous mode timing requirements for a  
symbol rate of 640 kbps (74 nx), which is the power-on default.  
5-12  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-6. MCI Write Timing, Intel Mode (MOTEL = 0)  
AD[7:0]  
Address  
35  
Data (Input)  
41  
or  
ADDR[7:0]  
42  
36  
Write  
Strobe  
37  
39  
45  
34  
48  
ALE  
59  
58  
READY  
N8973DSD  
Conexant  
Preliminary Information  
5-13  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-7. MCI Write Timing, Motorola Mode (MOTEL = 1)  
AD[7:0]  
or  
Address  
35  
Data (Input)  
41  
ADDR[7:0]  
42  
36  
Write  
Strobe  
37  
39  
48  
R/W  
43  
44  
45  
34  
58  
ALE  
59  
READY  
Figure 5-8. MCI Read Timing, Intel Mode (MOTEL = 0)  
AD[7:0]  
Address  
35  
Data (Output)  
or  
ADDR[7:0]  
51  
36  
49  
52  
38  
50  
Read  
Strobe  
62  
40  
46  
34  
ALE  
60  
61  
READY  
5-14  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-9. MCI Read Timing, Motorola Mode (MOTEL = 1)  
AD[7:0]  
Address  
35  
Data (Output)  
or  
ADDR[7:0]  
49  
51  
36  
52  
50  
38  
Read  
Strobe  
62  
40  
43  
44  
R/W  
46  
34  
ALE  
61  
60  
READY  
N8973DSD  
Conexant  
Preliminary Information  
5-15  
5.0 Electrical and Mechanical Specifications  
5.6 Microcomputer Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-10. Internal Write Timing  
Write  
Strobe  
54  
53  
IRQ  
55  
Internal  
Register  
56  
57  
Internal  
RAM  
Access  
Data  
Register  
5-16  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.7 Test and Diagnostic Interface Timing  
Single-Chip SDSL/HDSL Transceiver  
5.7 Test and Diagnostic Interface Timing  
Tables 5-15 and 5-16 list test and diagnostic interface timing requirements and  
switching characteristics. Figures 5-11 and 5-12 illustrate JTAG interface and  
SMON timing, respectively.  
Table 5-15. Test and Diagnostic Interface Timing Requirements  
Symbol  
Parameter  
Minimum  
Maximum Units  
63  
64  
TCK pulse-width high  
TCK pulse-width low  
80  
80  
20  
20  
ns  
ns  
ns  
ns  
TMS, TDI setup prior to TCK rising edge(1)  
TMS, TDI hold after TCK high(1)  
65  
66  
NOTE(S):  
(1) Also applies to functional inputs for SAMPLE/PRELOAD and EXTEST instructions.  
N8973DSD  
Conexant  
Preliminary Information  
5-17  
5.0 Electrical and Mechanical Specifications  
5.7 Test and Diagnostic Interface Timing  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-16. Test and Diagnostic Interface Switching Characteristics  
Symbol  
Parameter  
Minimum  
Maximum Units  
TDO hold after TCK falling edge(1)  
TDO delay after TCK low(1)  
67  
68  
0
2
50  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TDO enable (Low Z) after TCK falling edge(1)  
TDO disable (High Z) after TCK low(1)  
SMON hold after HCLK rising edge(2)  
SMON delay after HCLK high(2)  
69  
70  
0
71  
72  
NOTE(S):  
(1) Also applies to functional outputs for the EXTEST instruction.  
(2) HCLK must be programmed to operate at 16 times the symbol rate (16 × F  
).  
QCLK  
Figure 5-11. JTAG Interface Timing  
TDO  
69  
67  
70  
63  
68  
TCK  
64  
65  
66  
TDI  
TMS  
Figure 5-12. SMON Timing  
HCLK  
72  
71  
SMON  
5-18  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.8 Analog Specifications  
Single-Chip SDSL/HDSL Transceiver  
5.8 Analog Specifications  
Tables 5-17 and 5-18 list transmitter and receiver analog requirements and  
specifications. Figure 5-13 and Table 5-19 show the transmit pulse template for  
two- and three-pair systems. Figure 5-14 and Table 5-20 show the transmit pulse  
template for one-pair systems. Figures 5-15 through 5-17 illustrate the upper  
bound of the average PSD of 392, 584, and 1160 kbaud systems, respectively.  
Table 5-17. Receiver Requirements and Specifications  
Parameter  
Unit  
s
Comments  
Min  
Typ  
Max  
Input signals  
Input voltage range  
RXP, RXN, RXBP, and RXBN  
With respect to VAA/2  
@ Data Rate = 2320 kbps  
@ Data Rate = 144 kbps  
VCOMI  
–2.25  
+2.25  
V
Input resistance  
10  
kΩ  
kΩ  
V
Input resistance  
35  
Common mode voltage  
VAA × 0.4  
VGA  
Six gains from 0 dB to +15 dB  
dB  
Gain step  
ADC  
2.55  
3.0  
3.42  
Differential voltage range  
(full scale input, FS)(1)  
(V – V )—(V  
– V  
)
5.4  
6.0  
6.6  
V
P
RXP  
RXN  
RXBP  
RXBN  
Timing recovery PLL pull-in range (digital)  
PLL settling time  
±64  
10  
ppm  
ms  
NOTE(S):  
(1) Corresponds to the voltages that produce a full scale reading from the ADC when the VGA gain equals O dB. The input  
voltage range is reduced proportionally as VGA gain is increased.  
Table 5-18. Transmitter Analog Requirements and Specifications (1 of 2)  
Parameter  
Transmit symbol rate (f  
Pulse template(1, 2, 3)  
Comments  
QCLK frequency (data rate/2)  
See Figure 5-13 and Figure 5-14,  
Min  
72  
Typ  
Max  
1160  
Units  
)
kHz  
qclk  
R = 135 Ω  
L
N8973DSD  
Conexant  
Preliminary Information  
5-19  
5.0 Electrical and Mechanical Specifications  
5.8 Analog Specifications  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Table 5-18. Transmitter Analog Requirements and Specifications (2 of 2)  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Power spectral density(1, 2, 3,4)  
See Figures 5-15, 5-16 and 5-17,  
R = 135 Ω  
L
Average power(1, 2, 3,4)  
DC to 2 x F  
setting  
, R = 135 , calibrated gain  
13.4  
14  
dBm  
QCLK  
L
Gain adjustment step  
Common-mode voltage  
Output impedance(1)  
NOTE(S):  
Controlled by Transmit Gain Register [0x29]  
0.20  
VAA/2  
2
dB  
V
VCOMO  
DC to 1 MHz  
(1) Guaranteed by design and characterization.  
(2) See Figure 5-18 of Section 5.9, Test Conditions, for the test circuit.  
(3) Measured after the transmitter is calibrated by writing the value in the Transmitter Calibration Register [tx_calibrate; 0x28] to  
the Transmitter Gain Register [tx_gain; 0x29].  
(4) Measured with a pseudo-random code sequence of pulses.  
Figure 5-13. Transmit Pulse Template for Two- and Three-Pair Systems; Normalized Pulse Mask  
(Source ETSI TS 101 135 Formerly ETR 152)  
– 0,4T 0,4T  
B = 1,07  
C = 1,00  
D = 0,93  
T = 2,55 µs at 784 kbps  
T = 1,71 µs at 1168 kbps  
– 1,2T  
1,25T  
E = 0,03  
A = 0,01  
F = – 0,01  
A = 0,01  
F = – 0,01  
H = – 0,05  
0
T
G = – 0,16  
– 0,6T 0,5T  
14T  
50T  
5-20  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.8 Analog Specifications  
Single-Chip SDSL/HDSL Transceiver  
Table 5-19. Transmit Pulse Template for Two- and Three-Pair Systems (Source ETSI TS 101 135 Formerly ETR 152)  
Quaternary Symbols  
Normalized Level  
+ 3  
+ 1  
– 1  
– 3  
A
B
C
D
E
0.01  
1.07  
0.0264  
2.8248  
2.6400  
2.4552  
0.0792  
–0.0264  
–0.4224  
–0.1320  
0.0088  
0.9416  
0.8800  
0.8184  
0.0264  
–0.0088  
–0.1408  
–0.0440  
–0.0088  
–0.9416  
–0.8800  
–0.8184  
–0.0264  
0.0088  
–0.0264  
–2.8248  
–2.6400  
–2.4552  
–0.0792  
0.0264  
1.00  
0.93  
0.03  
F
–0.01  
–0.16  
–0.05  
G
H
0.1408  
0.4224  
0.0440  
0.1320  
N8973DSD  
Conexant  
Preliminary Information  
5-21  
5.0 Electrical and Mechanical Specifications  
5.8 Analog Specifications  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-14. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135 Formerly ETR 152)  
– 0,4T 0,4T  
B = 1,07  
C = 1,00  
D = 0,93  
T = 0,862 µs at 2320 kbps  
– 1,2T  
1,25T  
E = 0,04  
A = 0,01  
A = 0,01  
F = – 0,01  
F = – 0,01  
0
T
H = – 0,05  
G = – 0,20  
– 0,6T 0,5T  
14T  
50T  
Table 5-20. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135 Formerly ETR 152)  
Quaternary Symbols  
Normalized Level  
+ 3  
+ 1  
– 1  
– 3  
A
B
C
D
E
0.01  
1.07  
0.0250 V  
2.6750 V  
2.500 V  
0.0083 V  
0.8917 V  
0.8333 V  
0.7750 V  
0.0333 V  
–0.0083 V  
–0.1667 V  
–0.0417 V  
–0.0083 V  
–0.8917 V  
–0.8333 V  
–0.7750 V  
–0.0333 V  
0.0083 V  
0.1667 V  
0.0417 V  
–0.0250 V  
–2.6750 V  
–2.5000 V  
–2.3250 V  
–0.1000 V  
0.0250 V  
0.5000 V  
0.1250 V  
1.00  
0.93  
2.3250 V  
0.1000 V  
–0.0250 V  
–0.5000 V  
–0.1250 V  
0.04  
F
–0.01  
–0.20  
–0.05  
G
H
5-22  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.8 Analog Specifications  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-15. Upper Bound of the Average PSD of a 392 kbaud System (Source ETSI TS 101 135 Formerly ETR 152)  
dBm/Hz  
– 20  
– 37 dBm/Hz  
– 40  
– 60  
– 80  
– 100  
Floor at – 117 dBm/Hz  
– 120  
Hz  
1
e3  
1
e4  
1
e5  
1,96  
e5  
1
e6  
1,96  
e6  
4
e6  
Figure 5-16. Upper Bound of the Average PSD of a 584 kbaud System (Source ETSI TS 101 135 Formerly ETR 152)  
dBm/Hz  
– 20  
– 39 dBm/Hz  
– 40  
– 60  
– 80  
– 100  
Floor at – 119 dBm/Hz  
– 120  
Hz  
1
e3  
1
e4  
1
e5  
2,92  
e5  
1
e6  
2,92  
4
e6 e6  
N8973DSD  
Conexant  
Preliminary Information  
5-23  
5.0 Electrical and Mechanical Specifications  
5.9 Test Conditions  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-17. Upper Bound of the Average PSD of a 1160 kbaud System (Source ETSI TS 101 135 Formerly ETR 152)  
dBm/Hz  
– 20  
– 41,5 dBm/Hz  
– 40  
– 60  
– 80  
– 100  
Floor at – 121,5 dBm/Hz  
– 120  
– 130  
Hz  
1
e3  
1
e4  
1
e5  
4,85  
e5  
1
e6  
4,85  
1
e6 e7  
5.9 Test Conditions  
Figure 5-18 shows the transmitter test circuit. Figures 5-19 and 5-20 show the  
standard output and open-drain output loads, respectively.  
Figure 5-18. Transmitter Test Circuit  
RS8973  
15.4 Ω  
15.4 Ω  
1:2  
TXP (71)  
TXP (74)  
+
+
+
Line  
Transformer  
Line  
R
L
Driver  
Primary  
Inductance = 2mH  
5-24  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.9 Test Conditions  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-19. Standard Output Load (Totem Pole and Three-State Outputs)  
IOL  
From  
RS8973  
1.5 V  
CL  
IOH  
Figure 5-20. Open-Drain Output Load (IRQ)  
IOD  
From  
RS8973  
VDD2  
CL  
N8973DSD  
Conexant  
Preliminary Information  
5-25  
5.0 Electrical and Mechanical Specifications  
5.10 Timing Measurements  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
5.10 Timing Measurements  
Figure 5-21 shows the input waveforms. Figures 5-22 and 5-23 show the output  
waveforms.  
Figure 5-21. Input Waveforms for Timing Tests  
3 V  
2.0 V  
0.8 V  
0 V  
Input  
High  
Input  
Low  
Input  
Low  
Input  
High  
Figure 5-22. Output Waveforms for Timing Tests  
VDD  
2.4 V  
0.4 V  
0 V  
Output  
High  
Output  
Low  
Output  
Low  
Output  
High  
5-26  
Conexant  
Preliminary Information  
N8973DSD  
RS8973  
5.0 Electrical and Mechanical Specifications  
5.10 Timing Measurements  
Single-Chip SDSL/HDSL Transceiver  
Figure 5-23. Output Waveforms for Three-state Enable and Disable Tests  
VOH – 0.2 V  
1.7 V  
1.5 V  
1.3 V  
VOL + 0.2 V  
Output  
Output  
Output  
Disabled  
Disabled  
Enabled  
N8973DSD  
Conexant  
Preliminary Information  
5-27  
5.0 Electrical and Mechanical Specifications  
5.11 Mechanical Specifications  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
5.11 Mechanical Specifications  
Figure 5-24. 100-Pin PQFP  
TOP VIEW  
BOTTOM VIEW  
D
D1  
b
e
E
E1  
A
S
Y
M
B
O
L
ALL DIMENSIONS IN  
MILLIMETERS  
MIN. NOM. MAX.  
A
A
----  
3.04  
3.40  
----  
0.25 0.33  
2.57 2.71  
1
A
2.87  
2
D
D
E
E
23.20 BSC.  
A2  
20.00 BSC.  
17.20 BSC.  
14.00 BSC.  
1
1
L
e
b
0.65 0.70  
0.95  
0.38  
0.65 BSC.  
----  
0.22  
L
A1  
1.60  
(.063)  
REF.  
5-28  
Conexant  
Preliminary Information  
N8973DSD  
A
Appendix A: Acronym List  
The following list of acronyms and abbreviations does not include all signal,  
register, and bit names.  
A
ADC  
AGC  
analog-to-digital converter  
automatic gain control  
B
BDSL  
BER  
2B1Q  
Boundary Scan Description Language  
bit error rate  
Two binary, one quaternary encoding/decoding  
scheme  
C
COT  
CT  
central office terminal  
continuous time  
D
DAC  
DAGC  
DFE  
DSP  
digital-to-analog converter  
digital automatic gain control  
decision feedback equalizer  
digital signal processor  
E
EC  
EP  
echo canceller  
error predictor  
ETSI  
European Telecommunications Standard Institute  
F
FELM  
FFE  
FIR  
Far-end Level Meter  
feed forward equalizer  
finite impulse response  
H
HDSL  
High-bit-rate Digital Subscriber Line  
I
IC  
IS  
integrated circuit  
impulse shortening  
N8973DSD  
Conexant  
Preliminary Information  
A-1  
Appendix A : Acronym List  
RS8973  
Single-Chip SDSL/HDSL Transceiver  
J
JTAG  
L
Joint Test Action Group  
LEC  
LMS  
LSB  
Linear Echo Canceller  
least mean square  
least significant bit  
M
MCI  
MSB  
microcomputer interface  
most significant bit  
N
NEC  
nonlinear echo canceller  
P
PCB  
PKD  
PLL  
PQFP  
PSD  
printed circuit board  
Peak Detector  
phase lock loop  
plastic quad flat pack  
power spectral density  
Q
quat  
quaternary  
R
RT  
remote terminal  
S
SDSL  
SLM  
SMON  
SNR  
Symmetric Digital Subscriber Line over Single Pair  
Signal Level Meter  
serial monitor  
signal-to-noise ratio  
T
TAP  
TCK  
TMS  
test access port  
test clock  
test mode select  
V
VGA  
variable gain amplifier  
crystal oscillator  
X
XO  
A-2  
Conexant  
Preliminary Information  
N8973DSD  
0.0 Sales Offices  
Further Information  
Hong Kong  
literature@conexant.com  
1-800-854-8099 (North America)  
33-14-906-3980 (International)  
Phone: (852) 2827 0181  
Fax: (852) 2827 6488  
India  
Web Site  
Phone: (91 11) 692 4780  
www.conexant.com  
Fax: (91 11) 692 4712  
Korea  
Phone: (82 2) 565 2880  
Fax: (82 2) 565 1440  
World Headquarters  
Conexant Systems, Inc.  
4311 Jamboree Road  
P. O. Box C  
Phone: (82 53) 745 2880  
Fax: (82 53) 745 1440  
Newport Beach, CA  
92658-8902  
Phone: (949) 483-4600  
Fax: (949) 483-6375  
Europe Headquarters  
Conexant Systems France  
Les Taissounieres B1  
1681 Route des Dolines  
BP 283  
U.S. Florida/South America  
Phone: (727) 799-8406  
Fax: (727) 799-8306  
06905 Sophia Antipolis Cedex  
FRANCE  
Phone: (33 4) 93 00 33 35  
Fax: (33 4) 93 00 33 03  
U.S. Los Angeles  
Phone: (805) 376-0559  
Fax: (805) 376-8180  
Europe Central  
Phone: (49 89) 829 1320  
Fax: (49 89) 834 2734  
U.S. Mid-Atlantic  
Phone: (215) 244-6784  
Fax: (215) 244-9292  
Europe Mediterranean  
Phone: (39 02) 9317 9911  
Fax: (39 02) 9317 9913  
U.S. North Central  
Phone: (630) 773-3454  
Fax: (630) 773-3907  
Europe North  
Phone: (44 1344) 486 444  
Fax: (44 1344) 486 555  
U.S. Northeast  
Phone: (978) 692-7660  
Fax: (978) 692-8185  
Europe South  
Phone: (33 1) 41 44 36 50  
Fax: (33 1) 41 44 36 90  
U.S. Northwest/Pacific West  
Phone: (408) 249-9696  
Fax: (408) 249-7113  
Middle East Headquarters  
Conexant Systems  
Commercial (Israel) Ltd.  
P. O. Box 12660  
U.S. South Central  
Phone: (972) 733-0723  
Fax: (972) 407-0639  
Herzlia 46733, ISRAEL  
Phone: (972 9) 952 4064  
Fax: (972 9) 951 3924  
U.S. Southeast  
Phone: (919) 858-9110  
Fax: (919) 858-8669  
Japan Headquarters  
Conexant Systems Japan Co., Ltd.  
Shimomoto Building  
1-46-3 Hatsudai,  
U.S. Southwest  
Phone: (949) 483-9119  
Fax: (949) 483-9090  
Shibuya-ku, Tokyo  
151-0061 JAPAN  
Phone: (81 3) 5371-1567  
Fax: (81 3) 5371-1501  
APAC Headquarters  
Conexant Systems Singapore, Pte.  
Ltd.  
1 Kim Seng Promenade  
Great World City  
#09-01 East Tower  
SINGAPORE 237994  
Phone: (65) 737 7355  
Fax: (65) 737 9077  
Taiwan Headquarters  
Conexant Systems, Taiwan Co., Ltd.  
Room 2808  
International Trade Building  
333 Keelung Road, Section 1  
Taipei 110, TAIWAN, ROC  
Phone: (886 2) 2720 0282  
Fax: (886 2) 2757 6760  
Australia  
Phone: (61 2) 9869 4088  
Fax: (61 2) 9869 4077  
China  
Phone: (86 2) 6361 2515  
Fax: (86 2) 6361 2516  

相关型号:

28973-EVMD-001-A

SDSL/HDSL Transceiver/Framer
TE

28973-EVMD-001-A_15

SDSL/HDSL Transceiver/Framer RS8973 Evaluation Module
TE

28985-BRF-001-A

Octal G.shdsl Transceiver with Embedded Microprocessor
TE

28985-BRF-001-A_15

Octal G.shdsl Transceiver with Embedded Microprocessor
TE

289B007JF1ATNK1

Connector Accessory
GLENAIR

289B007JF1ATNK2

Connector Accessory
GLENAIR

289B007JF1ATNN2

Connector Accessory
GLENAIR

289B007JF2CTNN1

Connector Accessory
GLENAIR

289B007JF5BNSK1

Connector Accessory
GLENAIR

289B007ME4BTSK2

Connector Accessory
GLENAIR

289B007ME4BTSN1

Connector Accessory
GLENAIR

289B007ME4BTSN2

Connector Accessory
GLENAIR