JW075A [TE]

Power Modules: dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W; 电源模块: DC-DC转换器; 36至75伏直流输入, 5伏直流输出; 50瓦到150瓦
JW075A
型号: JW075A
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

Power Modules: dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W
电源模块: DC-DC转换器; 36至75伏直流输入, 5伏直流输出; 50瓦到150瓦

转换器 电源电路 DC-DC转换器
文件: 总20页 (文件大小:1029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
July 1999  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Features  
Small size: 61.0 mm x 57.9 mm x 12.7 mm  
(2.40 in. x 2.28 in. x 0.50 in.)  
High power density  
High efficiency: 84% typical  
Low output noise  
Constant frequency  
Industry-standard pinout  
Metal baseplate  
2:1 input voltage range  
The JW050A, JW075A, JW100A, and JW150A Power Modules  
use advanced, surface-mount technology and deliver high-  
quality, efficient, and compact dc-dc conversion.  
Overtemperature protection (100 W and 150 W only)  
Overcurrent and overvoltage protection  
Remote sense  
Remote on/off  
Applications  
Adjustable output voltage: 60% to 110% of VO, nom  
Case ground pin  
Distributed power architectures  
Workstations  
ISO9001 Certified manufacturing facilities  
UL* 1950 Recognized, CSAC22.2 No. 950-95  
Certified, and VDE 0805 (EN60950, IEC950)  
Licensed  
Computer equipment  
Communications equipment  
CE mark meets 73/23/EEC and 93/68/EEC  
directives‡  
Options  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Assn.  
This product is intended for integration into end-use equipment.  
All the required procedures for CE marking of end-use equip-  
ment should be followed. (The CE mark is placed on selected  
products.)  
Heat sinks available for extended operation  
Choice of remote on/off logic configuration  
Description  
The JW050A, JW075A, JW100A, and JW150A Power Modules are dc-dc converters that operate over an input  
voltage range of 36 Vdc to 75 Vdc and provide a precisely regulated dc output. The outputs are fully isolated  
from the inputs, allowing versatile polarity configurations and grounding connections. The modules have maxi-  
mum power ratings from 50 W to 150 W at a typical full-load efficiency of 84%.  
The sealed modules offer a metal baseplate for excellent thermal performance. Threaded-through holes are pro-  
vided to allow easy mounting or addition of a heat sink for high-temperature applications.The standard feature set  
includes remote sensing, output trim, and remote on/off for convenient flexibility in distributed power applications.  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Symbol  
Min  
Max  
Unit  
Input Voltage:  
Continuous:  
JW050A, JW075A  
JW100A, JW150A  
Transient (100 ms; JW100A, JW150A only)  
VI  
VI  
VI, trans  
75  
80  
100  
Vdc  
Vdc  
V
I/O Isolation Voltage (for 1 minute)  
1500  
100  
Vdc  
°C  
Operating Case Temperature  
TC  
–40  
(See Thermal Considerations section.)  
Storage Temperature  
Tstg  
–55  
125  
°C  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
VI  
36  
48  
75  
Vdc  
Maximum Input Current  
(VI = 0 V to 75 V; IO = IO, max):  
JW050A (See Figure 1.)  
JW075A (See Figure 2.)  
JW100A (See Figure 3.)  
JW150A (See Figure 4.)  
II, max  
II, max  
II, max  
II, max  
1.7  
2.6  
3.5  
5.2  
A
A
A
A
Inrush Transient  
i2t  
5
1.0  
A2s  
Input Reflected-ripple Current, Peak-to-peak  
(5 Hz to 20 MHz, 12 µH source impedance;  
see Figure 17.)  
II  
mAp-p  
Input Ripple Rejection (120 Hz)  
60  
dB  
Fusing Considerations  
CAUTION:This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fus-  
ing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The  
safety agencies require a normal-blow fuse with a maximum rating of 20 A (see Safety Considerations section).  
Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same  
type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
All  
VO, set  
4.92  
5.0  
5.08  
Vdc  
(VI = 48 V; IO = IO, max; TC = 25 °C)  
Output Voltage  
All  
VO  
4.85  
5.15  
Vdc  
(Over all operating input voltage, resistive load,  
and temperature conditions until end of life.  
See Figure 19.)  
Output Regulation:  
Line (VI = 36 V to 75 V)  
Load (IO = IO, min to IO, max)  
Temperature (TC = –40 °C to +100 °C)  
All  
All  
All  
0.01  
0.05  
15  
0.1  
0.2  
50  
%VO  
%VO  
mV  
Output Ripple and Noise Voltage  
(See Figure 18.):  
RMS  
All  
All  
40  
150  
mVrms  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
External Load Capacitance  
All  
0
*
µF  
Output Current  
(At IO < IO, min, the modules may exceed output  
ripple specifications.)  
JW050A  
JW075A  
JW100A  
JW150A  
IO  
IO  
IO  
IO  
0.5  
0.5  
0.5  
0.5  
10  
15  
20  
30  
A
A
A
A
Output Current-limit Inception  
(VO = 90% of VO, nom)  
JW050A  
JW075A  
JW100A  
JW150A  
IO, cli  
IO, cli  
IO, cli  
IO, cli  
12.0  
18.0  
23.0  
34.5  
14†  
21†  
26†  
39†  
A
A
A
A
Output Short-circuit Current (VO = 250 mV)  
Efficiency (VI = 48 V; IO = IO, max; TC = 70 °C)  
All  
170  
%IO, max  
JW050A  
JW075A  
JW100A  
JW150A  
η
η
η
η
84  
84  
84  
84  
%
%
%
%
Switching Frequency  
All  
500  
kHz  
Dynamic Response  
(IO/t = 1 A/10 µs, VI = 48 V, TC = 25 °C;  
tested with a 10 µF aluminum and a 1.0 µF  
ceramic capacitor across the load):  
Load Change from IO = 50% to 75% of IO, max:  
Peak Deviation  
Settling Time (VO < 10% of peak deviation)  
Load Change from IO = 50% to 25% of IO, max:  
Peak Deviation  
All  
All  
2
300  
%VO, set  
µs  
All  
All  
2
300  
%VO, set  
µs  
Settling Time (VO < 10% of peak deviation)  
* Consult your sales representative or the factory.  
† These are manufacturing test limits. In some situations, results may differ.  
Tyco Electronics Corp  
3
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Electrical Specifications (continued)  
Table 3. Isolation Specifications  
Parameter  
Min  
Typ  
2500  
Max  
Unit  
pF  
Isolation Capacitance  
Isolation Resistance  
10  
MΩ  
General Specifications  
Parameter  
Min  
Typ  
2,600,000  
Max  
Unit  
hr.  
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C)  
Weight  
100 (3.5)  
g (oz.)  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions for additional information.  
Parameter  
Remote On/Off Signal Interface  
Symbol  
Min  
Typ  
Max  
Unit  
(VI = 0 V to 75 V; open collector or equivalent compatible;  
signal referenced to VI(–) terminal; see Figure 20 and  
Feature Descriptions.):  
JWxxxA1 Preferred Logic:  
Logic Low—Module On  
Logic High—Module Off  
JWxxxA Optional Logic:  
Logic Low—Module Off  
Logic High—Module On Logic Low:  
At Ion/off = 1.0 mA  
Von/off  
Ion/off  
0
1.2  
1.0  
V
mA  
At Von/off = 0.0 V  
Logic High:  
At Ion/off = 0.0 µA  
Leakage Current  
Turn-on Time (See Figure 16.)  
(IO = 80% of IO, max; VO within ±1% of steady state)  
Von/off  
Ion/off  
20  
15  
50  
35  
V
µA  
ms  
Output Voltage Adjustment (See Feature Descriptions.):  
Output Voltage Remote-sense Range  
60  
0.5  
110  
V
Output Voltage Set-point Adjustment Range (trim)  
%VO, nom  
Output Overvoltage Protection  
VO, clamp  
5.9*  
7.0*  
V
Overtemperature Protection (shutdown)  
TC  
105  
°C  
(100 W and 150 W only; see Feature Descriptions.)  
* These are manufacturing test limits. In some situations, results may differ.  
4
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Characteristic Curves  
The following figures provide typical characteristics for the power modules. The figures are identical for both on/off  
configurations.  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 6872  
INPUT VOLTAGE, V (V)  
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72  
INPUT VOLTAGE, V (V)  
I
I
8-1159 (C)  
8-1160 (C)  
Figure 1. Typical JW050A Input Characteristics at  
Room Temperature  
Figure 3. Typical JW100A Input Characteristics at  
Room Temperature  
3.0  
2.5  
6
5
2.0  
1.5  
1.0  
0.5  
0.0  
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT VOLTAGE, V  
I
(V)  
INPUT VOLTAGE, V  
I
(V)  
8-1131 (C)  
8-1137 (C)  
Figure 2. Typical JW075A Input Characteristics at  
Room Temperature  
Figure 4. Typical JW150A Input Characteristics at  
Room Temperature  
Tyco Electronics Corp  
5
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Characteristic Curves (continued)  
6
5
6
5
4
3
2
4
3
2
1
0
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
1
2
3
4
5
6
7
8
9
10 11 12  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
8-1167 (C)  
8-1165 (C)  
Figure 7. Typical JW100A Output Characteristics  
at Room Temperature  
Figure 5. Typical JW050A Output Characteristics  
at Room Temperature  
6
5
6
5
4
3
2
1
0
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 1718  
0
5
10  
15  
20  
25  
30  
35  
40  
OUTPUT CURRENT, I (A)  
O
OUTPUT CURRENT, IO (A)  
8-1140 (C)  
8-1134 (C)  
Figure 8. Typical JW150A Output Characteristics  
at Room Temperature  
Figure 6. Typical JW075A Output Characteristics  
at Room Temperature  
6
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Characteristic Curves (continued)  
85  
84  
86  
85  
V
I
I
= 36 V  
= 54 V  
= 72 V  
84  
83  
82  
81  
80  
79  
78  
V
83  
V
V
I
I
= 36 V  
= 54 V  
= 72 V  
V
I
82  
81  
80  
79  
78  
VI  
77  
76  
77  
76  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
12  
14  
16  
18 20  
OUTPUT CURRENT, I  
O
(A)  
OUTPUT CURRENT, I  
O
(A)  
8-1161 (C)  
8-1163 (C)  
Figure 9. Typical JW050A Converter Efficiency vs.  
Output Current at Room Temperature  
Figure 11. Typical JW100A Converter Efficiency vs.  
Output Current at Room Temperature  
88  
86  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
84  
82  
80  
VI  
VI  
VI  
= 36 V  
= 54 V  
= 72 V  
V
V
V
I
I
I
= 36 V  
= 54 V  
= 72 V  
78  
76  
74  
72  
70  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
O (A)  
0
5
10  
15  
20  
(A)  
25  
30  
OUTPUT CURRENT, I  
OUTPUT CURRENT, I  
O
8-1132 (C)  
8-1138 (C)  
Figure 10. Typical JW075A Converter Efficiency vs.  
Output Current at Room Temperature  
Figure 12. Typical JW150A Converter Efficiency vs.  
Output Current at Room Temperature  
Tyco Electronics Corp  
7
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Characteristic Curves (continued)  
TIME, t (100 µs/div)  
8-2058 (C)  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
TIME, t (1 µs/div)  
8-2014 (C)  
Figure 15. Typical JW150A Transient Response to  
Step Increase in Load from 50% to 75%  
of Full Load at Room Temperature and  
48 V Input (Waveform Averaged to  
Figure 13. Typical JW150A Output RippleVoltage at  
Room Temperature, 48 V Input, IO = Full  
Load  
Eliminate Ripple Component.)  
0
TIME, t (100 µs/div)  
0
8-2057 (C)  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
TIME, t (2 ms/div)  
8-1143 (C).b  
Note: Tested with a 10 µF aluminum and a 1.0 µF ceramic capacitor  
across the load.  
Figure 14. Typical JW150A Transient Response to  
Step Decrease in Load from 50% to 25%  
of Full Load at Room Temperature and  
48 V Input (Waveform Averaged to  
Figure 16. Typical Start-Up from Remote On/Off  
JW150A1; IO = IO, max  
Eliminate Ripple Component.)  
8
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Test Configurations  
SENSE(+)  
CONTACT AND  
DISTRIBUTION LOSSES  
TO OSCILLOSCOPE  
V
I
(+)  
(–)  
VO(+)  
CURRENT  
PROBE  
I
O
I
I
L
TEST  
LOAD  
SUPPLY  
VI(+)  
12 µH  
V
I
VO(–)  
CS 220 µF  
CONTACT  
RESISTANCE  
ESR < 0.1  
@ 20 °C, 100 kHz  
33 µF  
ESR < 0.7 Ω  
@ 100 kHz  
BATTERY  
SENSE(–)  
8-749 (C)  
VI(–)  
Note: All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
8-203 (C).l  
Note: Measure input reflected-ripple current with a simulated source  
inductance (LTEST) of 12 µH. Capacitor CS offsets possible bat-  
tery impedance. Measure current as shown above.  
[VO(+) – VO(–)]IO  
[VI(+) – VI(–)]II  
η =  
x 100  
%
------------------------------------------------  
Figure 17. Input Reflected-Ripple Test Setup  
Figure 19. Output Voltage and Efficiency  
Measurement Test Setup  
COPPER STRIP  
Design Considerations  
Input Source Impedance  
V
V
O
O
(+)  
(–)  
RESISTIVE  
LOAD  
1.0 µF  
10 µF  
SCOPE  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. For the test configuration in Figure 17, a 33 µF  
electrolytic capacitor (ESR < 0.7 at 100 kHz)  
mounted close to the power module helps ensure sta-  
bility of the unit. For other highly inductive source  
impedances, consult the factory for further application  
guidelines.  
8-513 (C).d  
Note: Use a 1.0 µF ceramic capacitor and a 10 µF aluminum or tan-  
talum capacitor. Scope measurement should be made using a  
BNC socket. Position the load between 51 mm and 76 mm  
(2 in. and 3 in.) from the module.  
Figure 18. Peak-to-Peak Output Noise  
Measurement Test Setup  
Tyco Electronics Corp  
9
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Remote On/Off  
Safety Considerations  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the ON/OFF pin, and off during a logic low.  
Negative logic remote on/off turns the module off dur-  
ing a logic high and on during a logic low. Negative  
logic (code suffix “1”) is the factory-preferred configura-  
tion.  
If the input source is non-SELV (ELV or a hazardous  
voltage greater than 60 Vdc and less than or equal to  
75 Vdc), for the module’s output to be considered meet-  
ing the requirements of safety extra-low voltage  
(SELV), all of the following must be true:  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch can be an open collector or equivalent (see  
Figure 20). A logic low is Von/off = 0 V to 1.2 V. The  
maximum Ion/off during a logic low is 1 mA. The switch  
should maintain a logic-low voltage while sinking 1 mA.  
The input source is to be provided with reinforced  
insulation from any hazardous voltages, including the  
ac mains.  
During a logic high, the maximum Von/off generated by  
the power module is 15 V. The maximum allowable  
leakage current of the switch at Von/off = 15 V is 50 µA.  
One VI pin and one VO pin are to be grounded or both  
the input and output pins are to be kept floating.  
The input pins of the module are not operator acces-  
sible.  
If not using the remote on/off feature, do one of the  
following:  
Another SELV reliability test is conducted on the  
whole system, as required by the safety agencies, on  
the combination of supply source and the subject  
module to verify that under a single fault, hazardous  
voltages do not appear at the module’s output.  
For negative logic, short ON/OFF pin to VI(–).  
For positive logic, leave ON/OFF pin open.  
Ion/off  
ON/OFF  
+
Note: Do not ground either of the input pins of the  
module without grounding one of the output pins.  
This may allow a non-SELV voltage to appear  
between the output pin and ground.  
Von/off  
SENSE(+)  
VO(+)  
LOAD  
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
VO(–)  
VI(+)  
SENSE(–)  
VI(–)  
The input to these units is to be provided with a maxi-  
mum 20 A normal-blow fuse in the ungrounded lead.  
8-720 (C).c  
Feature Descriptions  
Overcurrent Protection  
Figure 20. Remote On/Off Implementation  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or tai-  
lout characteristics (output current decrease or  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
10  
Tyco Electronics Corp  
 
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Output Voltage Set-Point Adjustment (Trim)  
Feature Descriptions (continued)  
Output voltage trim allows the user to increase or  
decrease the output voltage set point of a module.This  
is accomplished by connecting an external resistor  
between the TRIM pin and either the SENSE(+) or  
SENSE(–) pins. The trim resistor should be positioned  
close to the module.  
Remote Sense  
Remote sense minimizes the effects of distribution  
losses by regulating the voltage at the remote-sense  
connections. The voltage between the remote-sense  
pins and the output terminals must not exceed the out-  
put voltage sense range given in the Feature Specifica-  
tions table, i.e.:  
If not using the trim feature, leave the TRIM pin open.  
With an external resistor between the TRIM and  
SENSE(–) pins (Radj-down), the output voltage set point  
(VO, adj) decreases (see Figure 22). The following equa-  
tion determines the required external-resistor value to  
obtain a percentage output voltage change of %.  
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] 0.5 V  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum value of the output over-  
voltage protection. This limit includes any increase in  
voltage due to remote-sense compensation and output  
voltage set-point adjustment (trim). See Figure 21.  
100  
Radj-down =  
2 kΩ  
---------  
%  
If not using the remote-sense feature to regulate the  
output at the point of load, then connect SENSE(+) to  
VO(+) and SENSE(–) to VO(–) at the module.  
The test results for this configuration are displayed in  
Figure 23. This figure applies to all output voltages.  
With an external resistor connected between the TRIM  
and SENSE(+) pins (Radj-up), the output voltage set  
point (VO, adj) increases (see Figure 24).  
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult the factory if you  
need to increase the output voltage more than the  
above limitation.  
The following equation determines the required exter-  
nal-resistor value to obtain a percentage output voltage  
change of %.  
(100 + %)  
(100 + 2%)  
VO  
Radj-up =  
kΩ  
--------------------------------------  
The amount of power delivered by the module is  
defined as the voltage at the output terminals multiplied  
by the output current. When using remote sense and  
trim, the output voltage of the module can be  
increased, which at the same output current would  
increase the power output of the module. Care should  
be taken to ensure that the maximum output power of  
the module remains at or below the maximum rated  
power.  
---------------------------------  
1.225%  
%  
The test results for this configuration are displayed in  
Figure 25.  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum value of the output over-  
voltage protection. This limit includes any increase in  
voltage due to remote-sense compensation and output  
voltage set-point adjustment (trim). See Figure 21.  
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult the factory if you  
need to increase the output voltage more than the  
above limitation.  
SENSE(+)  
SENSE(–)  
V
I
I
(+)  
(–)  
V
O
(+)  
(–)  
I
O
SUPPLY  
LOAD  
I
I
V
O
V
The amount of power delivered by the module is  
defined as the voltage at the output terminals multiplied  
by the output current. When using remote sense and  
trim, the output voltage of the module can be  
increased, which at the same output current would  
increase the power output of the module. Care should  
be taken to ensure that the maximum output power of  
the module remains at or below the maximum rated  
power.  
CONTACT  
RESISTANCE  
CONTACT AND  
DISTRIBUTION LOSSES  
8-651 (C).m  
Figure 21. Effective Circuit Configuration for  
Single-Module Remote-Sense Operation  
Tyco Electronics Corp  
11  
 
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Feature Descriptions (continued)  
10M  
Output Voltage Set-Point Adjustment  
(Trim) (continued)  
1M  
V
I
(+)  
VO(+)  
ON/OFF SENSE(+)  
CASE  
(–)  
TRIM  
RLOAD  
100k  
10k  
Radj-down  
V
I
SENSE(–)  
VO(–)  
8-748 (C).b  
0
2
4
6
8
10  
Figure 22. Circuit Configuration to Decrease  
Output Voltage  
% CHANGE IN OUTPUT VOLTAGE (%)  
8-880 (C).a  
Figure 25. Resistor Selection for Increased Output  
Voltage  
1M  
Output Overvoltage Protection  
100k  
The output overvoltage clamp consists of control cir-  
cuitry, independent of the primary regulation loop, that  
monitors the voltage on the output terminals. The con-  
trol loop of the clamp has a higher voltage set point  
than the primary loop (see Feature Specifications  
table). This provides a redundant voltage control that  
reduces the risk of output overvoltage.  
10k  
1k  
Overtemperature Protection  
100  
0
10  
20  
30  
40  
The 100 W and 150 W modules feature an overtemper-  
ature protection circuit to safeguard against thermal  
damage.  
% CHANGE IN OUTPUT VOLTAGE (%)  
8-879 (C)  
Figure 23. Resistor Selection for Decreased  
Output Voltage  
The circuit shuts down the module when the maximum  
case temperature is exceeded. The module restarts  
automatically after cooling.  
VI(+)  
VO(+)  
ON/OFF SENSE(+)  
Radj-up  
RLOAD  
CASE  
VI(–)  
TRIM  
SENSE(–)  
VO(–)  
8-715 (C).b  
Figure 24. Circuit Configuration to Increase  
Output Voltage  
12  
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Heat Transfer Without Heat Sinks  
Thermal Considerations  
Introduction  
Increasing airflow over the module enhances the heat  
transfer via convection. Figure 27 shows the maximum  
power that can be dissipated by the module without  
exceeding the maximum case temperature versus local  
ambient temperature (TA) for natural convection  
through 4 m/s (800 ft./min.).  
The power modules operate in a variety of thermal  
environments; however, sufficient cooling should be  
provided to help ensure reliable operation of the unit.  
Heat-dissipating components inside the unit are ther-  
mally coupled to the case. Heat is removed by conduc-  
tion, convection, and radiation to the surrounding  
environment. Proper cooling can be verified by mea-  
suring the case temperature. Peak temperature (TC)  
occurs at the position indicated in Figure 26.  
Note that the natural convection condition was mea-  
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20 ft./min.);  
however, systems in which these power modules may  
be used typically generate natural convection airflow  
rates of 0.3 m/s (60 ft./min.) due to other heat dissipat-  
ing components in the system. The use of Figure 27 is  
shown in the following example.  
MEASURE CASE  
TEMPERATURE HERE  
38.0 (1.50)  
Example  
7.6 (0.3)  
What is the minimum airflow necessary for a JW100A  
operating at VI = 54 V, an output current of 20 A, and a  
maximum ambient temperature of 40 °C?  
VI (+)  
VO (+)  
+ SEN  
ON/OFF  
Solution  
TRIM  
CASE  
VI (–)  
– SEN  
Given: VI = 54 V  
IO = 20 A  
VO (–)  
TA = 40 °C  
Determine PD (Use Figure 30.):  
PD = 17 W  
8-716 (C).f  
Note: Top view, pin locations are for reference only.  
Measurements shown in millimeters and (inches).  
Determine airflow (v) (Use Figure 27.):  
v = 2.0 m/s (400 ft./min.)  
Figure 26. Case Temperature Measurement  
Location  
35  
30  
4.0 m/s (800 ft./min.)  
3.5 m/s (700 ft./min.)  
3.0 m/s (600 ft./min.)  
2.5 m/s (500 ft./min.)  
2.0 m/s (400 ft./min.)  
1.5 m/s (300 ft./min.)  
1.0 m/s (200 ft./min.)  
0.5 m/s (100 ft./min.)  
The temperature at this location should not exceed  
100 °C. The output power of the module should not  
exceed the rated power for the module as listed in the  
Ordering Information table.  
25  
20  
15  
10  
Although the maximum case temperature of the power  
modules is 100 °C, you can limit this temperature to a  
lower value for extremely high reliability.  
For additional information on these modules, refer to  
the Thermal Management JC-, JFC-, JW-, and JFW-  
Series 50 W to 150 W Board-Mounted Power Modules  
Technical Note  
5
0
0.1 m/s (NAT. CONV.)  
(20 ft./min.)  
0
10  
20  
30  
40  
50  
60  
70  
80  
(°C)  
90 100  
(TN97-008EPS).  
LOCAL AMBIENT TEMPERATURE, T  
A
8-1150 (C).a  
Figure 27. Forced Convection Power Derating with  
No Heat Sink; Either Orientation  
Tyco Electronics Corp  
13  
 
 
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Thermal Considerations (continued)  
20  
18  
Heat Transfer Without Heat Sinks (continued)  
16  
14  
12  
VI  
VI  
VI  
= 72 V  
= 54 V  
= 36 V  
11  
10  
9
12  
10  
8
V
I
= 72 V  
= 54 V  
= 36 V  
8
V
I
6
V
I
7
4
6
5
2
4
0
0
2
4
6
8
14  
16  
18 20  
3
12  
10  
2
OUTPUT CURRENT, I  
O
(A)  
1
8-1184 (C)  
0
Figure 30. JW100A Power Dissipation vs.  
Output Current  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT, I  
O
(A)  
8-1182 (C)  
Figure 28. JW050A Power Dissipation vs.  
Output Current  
45  
40  
35  
30  
20  
18  
V
V
V
I
I
I
= 72 V  
= 36 V  
= 54 V  
16  
25  
20  
15  
14  
VI = 72 V  
VI = 54 V  
VI = 36 V  
12  
10  
10  
5
8
6
4
2
0
0
0
5
10  
15  
20  
30  
25  
OUTPUT CURRENT, IO (A)  
8-1185 (C)  
4
5
1
2
3
6
7
8
9
10 11 12 13 14 15  
0
Figure 31. JW150A Power Dissipation vs.  
Output Current  
OUTPUT CURRENT, IO (A)  
8-1183 (C)  
Figure 29. JW075A Power Dissipation vs.  
Output Current  
14  
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
These measured resistances are from heat transfer  
Thermal Considerations (continued)  
from the sides and bottom of the module as well as the  
top side with the attached heat sink; therefore, the  
case-to-ambient thermal resistances shown are gener-  
ally lower than the resistance of the heat sink by itself.  
The module used to collect the data in Figure 32 had a  
thermal-conductive dry pad between the case and the  
heat sink to minimize contact resistance. The use of  
Figure 32 is shown in the following example.  
Heat Transfer with Heat Sinks  
The power modules have through-threaded, M3 x 0.5  
mounting holes, which enable heat sinks or cold plates  
to attach to the module. The mounting torque must not  
exceed 0.56 N-m (5 in.-lb.). For a screw attachment  
from the pin side, the recommended hole size on the  
customer’s PWB around the mounting holes is  
0.130 ± 0.005 inches. If a larger hole is used, the  
mounting torque from the pin side must not exceed  
0.25 N-m (2.2 in.-lb.).  
Example  
If an 85 °C case temperature is desired, what is the  
minimum airflow necessary? Assume the JW100A  
module is operating at VI = 54 V and an output current  
of 20 A, maximum ambient air temperature of 40 °C,  
and the heat sink is 1/2 inch.  
Thermal derating with heat sinks is expressed by using  
the overall thermal resistance of the module.Total mod-  
ule thermal resistance (θca) is defined as the maximum  
case temperature rise (TC, max) divided by the module  
power dissipation (PD):  
Solution  
Given: VI = 54 V  
IO = 20 A  
(TC TA)  
TC, max  
TA = 40 °C  
TC = 85 °C  
θca =  
=
------------------------  
--------------------  
PD  
PD  
Heat sink = 1/2 in.  
The location to measure case temperature (TC) is  
shown in Figure 26. Case-to-ambient thermal resis-  
tance vs. airflow is shown, for various heat sink config-  
urations and heights, in Figure 32. These curves were  
obtained by experimental testing of heat sinks, which  
are offered in the product catalog.  
Determine PD by using Figure 30:  
PD = 17 W  
Then solve the following equation:  
(TC TA)  
θca =  
θca =  
------------------------  
8
PD  
1 1/2 IN. HEAT SINK  
1 IN. HEAT SINK  
1/2 IN. HEAT SINK  
1/4 IN. HEAT SINK  
7
6
5
4
3
2
1
0
(85 40)  
-----------------------  
17  
NO HEAT SINK  
θca = 2.6 °C/W  
Use Figure 32 to determine air velocity for the 1/2 inch  
heat sink.  
The minimum airflow necessary for the JW100A mod-  
ule is 1.3 m/s (260 ft./min.).  
0
0.5  
(100)  
1.0  
(200)  
1.5  
(300)  
2.0  
(400)  
2.5  
3.0  
(500) (600)  
AIR VELOCITY, m/s (ft./min.)  
8-1153 (C)  
Figure 32. Case-to-Ambient Thermal Resistance  
Curves; Either Orientation  
Tyco Electronics Corp  
15  
 
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Thermal Considerations (continued)  
Solder, Cleaning, and Drying  
Considerations  
Custom Heat Sinks  
Post solder cleaning is usually the final circuit-board  
assembly process prior to electrical testing. The result  
of inadequate circuit-board cleaning and drying can  
affect both the reliability of a power module and the  
testability of the finished circuit-board assembly. For  
guidance on appropriate soldering, cleaning, and dry-  
ing procedures, refer to the Board-Mounted Power  
Modules Soldering and Cleaning Application Note  
(AP97-021EPS).  
A more detailed model can be used to determine the  
required thermal resistance of a heat sink to provide  
necessary cooling. The total module resistance can be  
separated into a resistance from case-to-sink (θcs) and  
sink-to-ambient (θsa) shown below (Figure 33).  
TC  
TS  
TA  
PD  
cs  
sa  
EMC Considerations  
8-1304 (C)  
Figure 33. Resistance from Case-to-Sink and  
Sink-to-Ambient  
For assistance with designing for EMC compliance,  
please refer to the FLTR100V10 data sheet  
(DS98-152EPS).  
For a managed interface using thermal grease or foils,  
a value of θcs = 0.1 °C/W to 0.3 °C/W is typical. The  
solution for heat sink resistance is:  
Layout Considerations  
(TC TA)  
θsa =  
θcs  
------------------------  
Copper paths must not be routed beneath the power  
module mounting inserts. For additional layout guide-  
lines, refer to the FLTR100V10 data sheet  
(DS98-152EPS).  
PD  
This equation assumes that all dissipated power must  
be shed by the heat sink. Depending on the user-  
defined application environment, a more accurate  
model, including heat transfer from the sides and bot-  
tom of the module, can be used.This equation provides  
a conservative estimate for such instances.  
16  
Tyco Electronics Corp  
 
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Outline Diagram  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.)  
x.xx mm ± 0.25 mm (x.xxx in. ± 0.010 in.)  
Top View  
57.9 (2.28) MAX  
61.0  
(2.40)  
MAX  
Side View  
SIDE LABEL*  
12.70 ± 0.5  
(0.500 ± 0.020)  
2.06 (0.081) DIA  
1.02 (0.040) DIA  
SOLDER-PLATED  
BRASS, 7 PLACES  
5.1 (0.20) MIN  
SOLDER-PLATED BRASS,  
2 PLACES (–OUTPUT  
AND +OUTPUT)  
Bottom View  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
4 PLACES  
12.7 (0.50)  
5.1 (0.20)  
VO (–)  
VI (–)  
10.16  
(0.400)  
10.16  
(0.400)  
17.78  
CASE  
(0.700)  
–SEN  
TRIM  
+SEN  
25.40  
(1.000)  
50.8  
(2.00)  
25.40  
(1.000)  
35.56  
(1.400)  
35.56  
(1.400)  
ON/OFF  
VI (+)  
VO (+)  
48.26  
(1.900)  
4.8  
(0.19)  
48.3 (1.90)  
8-1945 (C).a  
* Side label includes Tyco name, product designation, safety agency markings, input/output voltage and current ratings, and bar code.  
Tyco Electronics Corp  
17  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
57.9 (2.28) MAX  
4.8  
(0.19)  
48.3 (1.90)  
48.26  
(1.900)  
VO (+)  
VI (+)  
35.56  
35.56  
+SEN  
TRIM  
–SEN  
ON/OFF  
(1.400)  
(1.400)  
25.40  
(1.000)  
50.8  
25.40  
(2.00)  
(1.000)  
61.0  
(2.40)  
MAX  
17.78  
(0.700)  
CASE  
VI (–)  
10.16  
(0.400)  
10.16  
(0.400)  
VO (–)  
5.1 (0.20)  
12.7 (0.50)  
MOUNTING INSERTS  
MODULE OUTLINE  
8-1945 (C).a  
Ordering Information  
Table 4. Device Codes  
Input  
Voltage  
Output  
Voltage  
Output  
Power  
Remote On/Off  
Logic  
Device  
Code  
Comcode  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
48 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
50 W  
75 W  
Negative  
Negative  
Negative  
Negative  
Positive  
Positive  
Positive  
Positive  
JW050A1  
JW075A1  
JW100A1  
JW150A1  
JW050A  
JW075A  
JW100A  
JW150A  
107361370  
107071581  
107361404  
107361453  
107304792  
107361388  
107002750  
107361446  
100 W  
150 W  
50 W  
75 W  
100 W  
150 W  
18  
Tyco Electronics Corp  
JW050A, JW075A, JW100A, JW150A Power Modules:  
dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W  
Data Sheet  
July 1999  
Ordering Information (continued)  
Table 5. Device Accessories  
Accessory  
Comcode  
1/4 in. transverse kit (heat sink, thermal pad, and screws)  
1/4 in. longitudinal kit (heat sink, thermal pad, and screws)  
1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 in. transverse kit (heat sink, thermal pad, and screws)  
1 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1 1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
407243989  
407243997  
407244706  
407244714  
407244722  
407244730  
407244748  
407244755  
Dimensions are in millimeters and (inches).  
1/4 IN.  
1/2 IN.  
1/4 IN.  
1/2 IN.  
1 IN.  
1 IN.  
61  
(2.4)  
57.9  
(2.28)  
1 1/2 IN.  
1 1/2 IN.  
57.9 (2.28)  
61 (2.4)  
D000-c.cvs  
D000-d.cvs  
Figure 34. Longitudinal Heat Sink  
Figure 35.Transverse Heat Sink  
Tyco Electronics Corp  
19  
Tyco Electronics Power Systems, Inc.  
3000 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819 FAX: +1-888-315-5182  
(Outside U.S.A.: +1-972-284-2626, FAX: +1-972-284-2900  
http://power.tycoeleectronics.com  
Tyco Electronics Corportation reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
No rights under any patent accompany the sale of any such product(s) or information.  
© 2001 Tyco Electronics Corporation, Harrisburg, PA. All International Rights Reserved.  
Printed in U.S.A.  
Printed on  
Recycled Paper  
July 1999  
DS99-284EPS (Replaces DS98-088EPS)  

相关型号:

JW075A-E

DC-to-DC Voltage Converter
ETC

JW075A1

Power Modules: dc-dc Converters; 36 to 75 Vdc Input, 5 Vdc Output; 50 W to 150 W
TE

JW075A1-E

DC-to-DC Voltage Converter
ETC

JW075A5

DC-to-DC Voltage Converter
ETC

JW075B

DC-to-DC Voltage Converter
ETC

JW075B1

DC-to-DC Voltage Converter
ETC

JW075B5

DC-to-DC Voltage Converter
ETC

JW075C

DC-to-DC Voltage Converter
ETC

JW075C1

DC-to-DC Voltage Converter
ETC

JW075C5

DC-to-DC Voltage Converter
ETC

JW075D

DC-to-DC Voltage Converter
ETC

JW075D1

DC-to-DC Voltage Converter
ETC