MRF134 [TE]

N.CHANNEL MOS BROADBAND RF POWER FET; N.CHANNEL MOS宽带射频功率场效应管
MRF134
型号: MRF134
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N.CHANNEL MOS BROADBAND RF POWER FET
N.CHANNEL MOS宽带射频功率场效应管

晶体 晶体管 射频 放大器 局域网
文件: 总10页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF134/D  
The RF MOSFET Line  
R
F
P
o
w
e
r
F
i
e
l
d
-
E
ff  
e
c
t
T
r
a
n
s
i
s
t
o
r
M
R
F
1
3
4
N–Channel Enhancement–Mode  
. . . designed for wideband large–signal amplifier and oscillator applications up  
to 400 MHz range.  
Guaranteed 28 Volt, 150 MHz Performance  
Output Power = 5.0 Watts  
Minimum Gain = 11 dB  
Efficiency — 55% (Typical)  
5.0 W, to 400 MHz  
N–CHANNEL MOS  
BROADBAND RF POWER  
FET  
Small–Signal and Large–Signal Characterization  
Typical Performance at 400 MHz, 28 Vdc, 5.0 W  
Output = 10.6 dB Gain  
100% Tested For Load Mismatch At All Phase Angles  
With 30:1 VSWR  
Low Noise Figure — 2.0 dB (Typ) at 200 mA, 150 MHz  
Excellent Thermal Stability, Ideally Suited For Class A  
Operation  
D
G
S
CASE 211–07, STYLE 2  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
DGR  
V
65  
(R = 1.0 M)  
GS  
Gate–Source Voltage  
V
±40  
Vdc  
Adc  
GS  
Drain Current — Continuous  
I
0.9  
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
17.5  
0.1  
Watts  
W/°C  
C
Storage Temperature Range  
THERMAL CHARACTERISTICS  
T
stg  
–65 to +150  
°C  
Rating  
Thermal Resistance, Junction to Case  
Symbol  
Value  
Unit  
R
10  
°C/W  
θ
JC  
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 6  
1
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V = 0, I = 5.0 mA)  
V
65  
Vdc  
mAdc  
µAdc  
GS  
D
(BR)DSS  
Zero Gate Voltage Drain Current (V = 28 V, V = 0)  
I
1.0  
1.0  
DS  
GS  
DSS  
GSS  
Gate–Source Leakage Current (V = 20 V, V = 0)  
I
GS  
DS  
ON CHARACTERISTICS  
Gate Threshold Voltage (I = 10 mA, V = 10 V)  
V
GS(th)  
1.0  
80  
3.5  
6.0  
Vdc  
D
DS  
Forward Transconductance (V = 10 V, I = 100 mA)  
g
fs  
110  
mmhos  
DS  
DYNAMIC CHARACTERISTICS  
Input Capacitance  
D
C
7.0  
9.7  
2.3  
pF  
pF  
pF  
iss  
(V = 28 V, V = 0, f = 1.0 MHz)  
DS  
GS  
Output Capacitance  
(V = 28 V, V = 0, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance  
(V = 28 V, V = 0, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL CHARACTERISTICS  
Noise Figure  
(V = 28 Vdc, I = 200 mA, f = 150 MHz)  
DS  
NF  
2.0  
dB  
dB  
D
Common Source Power Gain  
(V = 28 Vdc, P = 5.0 W, I = 50 mA)  
G
ps  
DD  
out  
DQ  
f = 150 MHz (Fig. 1)  
f = 400 MHz (Fig. 14)  
11  
14  
10.6  
Drain Efficiency (Fig. 1)  
(V = 28 Vdc, P = 5.0 W, f = 150 MHz, I = 50 mA)  
η
50  
55  
%
DD  
out  
DQ  
Electrical Ruggedness (Fig. 1)  
(V = 28 Vdc, P = 5.0 W, f = 150 MHz, I = 50 mA,  
ψ
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 30:1 at all Phase Angles)  
L 4  
R 3 *  
R 4  
+
ą
V
=
2 8  
V
D D  
C
1
0
C11  
C4  
D
1
C7  
+
-
C
8
C9  
C
1
2
L
3
R
5
R
2
C
5
C
6
R
F
O
U
T
P
U
T
R
1
L
2
L
1
R
F
I
N
P
U
T
C
3
D
U
T
C
1
C 2  
*Bias Adjust  
C1, C4 — Arco 406, 15–115 pF  
C2 — Arco 403, 3.0–35 pF  
C3 — Arco 402, 1.5–20 pF  
L3 — 20 Turns, #20 AWG Enamel Wound on R5  
L4 — Ferroxcube VK–200 — 19/4B  
R1 — 68 , 1.0 W Thin Film  
C5, C6, C7, C8, C12 — 0.1 µF Erie Redcap  
C9 — 10 µF, 50 V  
C10, C11 — 680 pF Feedthru  
D1 — 1N5925A Motorola Zener  
L1 — 3 Turns, 0.310ID, #18 AWG Enamel, 0.2Long  
L2 — 3–1/2 Turns, 0.310ID, #18 AWG Enamel, 0.25Long  
R2 — 10 k, 1/4 W  
R3 — 10 Turns, 10 kBeckman Instruments 8108  
R4 — 1.8 k, 1/2 W  
R5 — 1.0 M, 2.0 W Carbon  
Board — G10, 62 mils  
Figure 1. 150 MHz Test Circuit  
REV 6  
2
1
0
5
f
=
1 00 MH z  
1
5
0
8
6
4
4
3
2
f
=
1 0 0 MH z  
2 25  
4 00  
1 5 0  
2 2 5  
4 0 0  
2
0
1
0
V
=
=
2 8  
5 0 mA  
V
V
=
=
1 3 .5  
5 0 mA  
V
D
D
D D  
I
I
D
Q
D Q  
0
2
0
0
4
0
0
60 0  
8 00  
1 00 0  
0
2 00  
4 00  
6
0
0
8 00  
1 0 00  
P , I NP UT P OWE R ( M IL LWATT S )  
in  
P , I NP UT P O WE R (M I LLWATTS )  
i n  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Input Power  
8
6
4
2
0
8
6
4
2
0
P
=
60 0 mW  
3 00 mW  
P
=
8 0 0 mW  
in  
i n  
4
0
0
m
W
1 50 mW  
2 0 0 mW  
I
f
=
5 0 mA  
1 00 MH z  
I
f
=
5 0 mA  
1 5 0 MH z  
D Q  
D
Q
=
=
1
2
1
4
16  
18  
20  
22  
24  
2
6
2 8  
1 2  
1
4
1
6
1 8  
V , S UP PLY V O LTA G E (V O LTS)  
D D  
2
0
2
2
2
4
2
6
2
8
V
D D  
,
S
U
P
P
L
Y
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Supply Voltage  
8
8
P
=
8 00 mW  
4 00 mW  
2 00 mW  
i
n
P
=
8
0
0
m
W
i
n
I
f
=
5 0 mA  
4 00 MH z  
D
Q
6
4
2
0
6
4
2
0
=
4 0 0 mW  
2 0 0 mW  
I
f
=
5
0
m
A
D
Q
=
2
2
5
M
H
z
1 2  
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
1
2
1
4
1
6
1 8  
V , S UP PLY V O LTA G E (V O LTS)  
D D  
2
0
2
2
2
4
2
6
2 8  
V
D D  
,
S UP PLY V OLTA GE ( VO LTS )  
Figure 6. Output Power versus Supply Voltage  
Figure 7. Output Power versus Supply Voltage  
REV 6  
3
6
5
4
5 00  
4 00  
V
I
=
=
=
2 8  
5 0 m A  
C ON STA NT  
V
D D  
V
D S  
=
1 0  
V
D Q  
P
in  
f
=
40 0 M Hz  
3 00  
2 00  
1
5
0
M
H
z
3
2
TY P I CA L DE V I CE S HO WN ,  
1 00  
0
1
0
V
G S (t h)  
=
3 .5  
V
TY PI C AL D EVI C E S HO WN ,  
3. 5  
V
=
V
G S( th )  
- 2  
- 1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
V
GS  
,
G ATE - SO UR C E V OLTA GE ( VO LTS )  
V
G S  
,
G ATE - S OU RCE V O LTA G E (V O LTS )  
Figure 8. Output Power versus Gate Voltage  
Figure 9. Drain Current versus Gate Voltage  
(Transfer Characteristics)  
1. 0 2  
1
5
0
V
=
28  
V
D D  
I
=
2
0
0
m
A
D
Q
4 0  
3 0  
0
.
9
8
10 0 mA  
50 mA  
2
| S |  
21  
G
M A X  
=
2
2
(1  
-
|| S) (1 - | ) | S  
1 1 22  
0. 96  
0. 94  
2 0  
1 0  
0
V
D S  
=
2
8
V
0. 92  
0. 9  
I
D
=
1 00 mA d c  
-
2
5
0
25  
50  
75  
1
0
0
125  
1 50  
1
1 0  
1 00  
1
0
0
0
T , C ASE TE M PER ATU R°CE)  
C
(
f , FRE Q UE NC Y (M Hz)  
Figure 10. Gate–Source Voltage versus  
Case Temperature  
Figure 11. Maximum Available Gain  
versus Frequency  
28  
24  
20  
16  
12  
8
1
V
f
=
1
0
MH z  
V
G S  
=
0 .7  
0 .5  
0 .3  
0 .2  
T
=
°
C
2
5
C
0
.
1
0 . 07  
0 . 05  
C
o
s
s
C
i
s
s
0 . 03  
0 . 02  
4
C
r
s
s
0
.
0
1
0
0
4
8
1
2
1
6
2
0
2
4
2
8
1
2
5
1
0
2
0
5
0
7
0
1
0
0
V
D S  
,
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
V
D S  
,
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 12. Capacitance versus Voltage  
Figure 13. Maximum Rated Forward Biased  
Safe Operating Area  
REV 6  
4
L
2
R3 *  
R4  
C9  
C11  
V
D D  
=
2 8  
V
+
C1 2  
Z4  
C1 3  
C1 4  
D 1  
-
C
1
0
L 1  
R 2  
Z5  
C6  
C7  
C8  
RF O U TPU T  
R1  
Z
1
Z
2
Z3  
C1  
R F IN PU T  
C
4
C5  
DUT  
C 2  
C
3
*Bias Adjust  
C1, C6 — 270 pF, ATC 100 mils  
R2 — 10 k, 1/4 W  
C2, C3, C4, C5 — 0–20 pF Johanson  
C7, C9, C10, C14 — 0.1 µF Erie Redcap, 50 V  
C8 — 0.001 µF  
R3 — 10 Turns, 10 kBeckman Instruments 8108  
R4 — 1.8 k, 1/2 W  
Z1 — 1.4x 0.166Microstrip  
Z2 — 1.1x 0.166Microstrip  
Z3 — 0.95x 0.166Microstrip  
Z4 — 2.2x 0.166Microstrip  
Z5 — 0.85x 0.166Microstrip  
Board — Glass Teflon, 62 mils  
C11 — 10 µF, 50 V  
C12, C13 — 680 pF Feedthru  
D1 — 1N5925A Motorola Zener  
L1 — 6 Turns, 1/4ID, #20 AWG Enamel  
L2 — Ferroxcube VK–200 — 19/4B  
R1 — 68 , 1.0 W Thin Film  
Figure 14. 400 MHz Test Circuit  
4 00  
V
D D  
=
2 8 V, = I 5 0 mA , = P 5 . 0  
W
D
Q
o
u
t
f
Z {  
O h ms  
Z *  
O L  
O h ms  
i
n
Z
=
5
0
o
22 5  
15 0  
f
M
H
z
Z
{
i
n
1 00  
1 50  
2 25  
4 00  
2
1
.
2
-
-
-
-
j
2
5
.
4
2
0
.
1
-
-
-
-
j4 6 . 7  
j3 8 . 2  
j3 3 . 5  
j2 6 . 9  
1 4. 6  
ă 9. 1  
ă 6. 4  
j2 2 . 11 9. 2  
j1 8 . 81 7. 5  
j1 0 . 81 6. 9  
40 0  
Z
=
1
0
0
M
H
z
22 5  
15 0  
{6 8 S hu n t Re sist o r G a te - t o- G r ou n d  
Z
Z
Z
*
O L  
*
O L  
*
O L  
=
Co n ju ga t e o f t he o pt i mu m lo a d imp e d a n ce  
i=n t o wh ich t he d evi ce o ut p ut o pe ra t e s a t  
g=ive n o ut p u t p ow er, vo lt a ge a nd f re q ue n cy.  
*
O L  
a
f
=
1
0
0
M
H
z
Figure 15. Large–Signal Series Equivalent  
Input/Output Impedances, Zin, ZOL  
*
REV 6  
5
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
–1.0  
–2.0  
–5.0  
–10  
|S  
|
φ
179  
179  
176  
173  
166  
159  
153  
147  
142  
138  
135  
131  
128  
125  
122  
119  
116  
114  
112  
110  
108  
106  
104  
100  
97  
|S  
|
φ
|S |  
22  
φ
–1.0  
–2.0  
–4.0  
–9.0  
–18  
(MHz)  
11  
21  
12  
1.0  
2.0  
5.0  
10  
0.989  
0.989  
0.988  
0.985  
0.977  
0.965  
0.950  
0.931  
0.912  
0.892  
0.874  
0.855  
0.833  
0.827  
0.821  
0.814  
0.808  
0.802  
0.788  
0.774  
0.763  
0.751  
0.740  
0.719  
0.704  
0.687  
0.673  
0.668  
0.669  
0.662  
0.654  
0.650  
0.638  
0.614  
0.641  
0.638  
0.633  
0.628  
0.625  
11.27  
11.27  
11.26  
11.20  
10.99  
10.66  
10.25  
9.777  
9.359  
8.960  
8.583  
8.190  
7.808  
7.661  
7.515  
7.368  
7.222  
7.075  
6.810  
6.540  
6.220  
5.903  
5.784  
5.334  
4.904  
4.551  
4.219  
3.978  
3.737  
3.519  
3.325  
3.170  
3.048  
2.898  
2.833  
2.709  
2.574  
2.481  
2.408  
0.0014  
0.0028  
0.0069  
0.014  
0.027  
0.039  
0.051  
0.060  
0.069  
0.077  
0.085  
0.091  
0.096  
0.101  
0.107  
0.113  
0.119  
0.125  
0.127  
0.128  
0.130  
0.132  
0.134  
0.136  
0.139  
0.141  
0.141  
0.142  
0.142  
0.143  
0.142  
0.140  
0.141  
0.136  
0.136  
0.135  
0.133  
0.131  
0.129  
89  
0.954  
0.954  
0.954  
0.951  
0.938  
0.918  
0.895  
0.867  
0.846  
0.828  
0.815  
0.801  
0.785  
0.784  
0.784  
0.784  
0.783  
0.783  
0.780  
0.774  
0.762  
0.760  
0.758  
0.757  
0.758  
0.757  
0.750  
0.757  
0.766  
0.768  
0.772  
0.772  
0.783  
0.786  
0.795  
0.801  
0.802  
0.805  
0.814  
89  
86  
83  
76  
69  
63  
57  
53  
49  
46  
43  
40  
38  
36  
34  
32  
31  
30  
28  
26  
24  
23  
20  
19  
16  
14  
12  
10  
9.0  
8.0  
7.0  
6.0  
6.0  
5.0  
5.0  
4.0  
5.0  
5.0  
20  
–20  
30  
–30  
–26  
40  
–39  
–34  
50  
–47  
–42  
60  
–53  
–49  
70  
–58  
–56  
80  
–62  
–62  
90  
–66  
–68  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
225  
250  
275  
300  
325  
350  
375  
400  
425  
450  
475  
500  
525  
550  
575  
600  
–70  
–74  
–73  
–77  
–76  
–82  
–79  
–85  
–82  
–88  
–86  
–90  
–89  
–92  
–92  
–94  
–94  
–98  
–97  
–100  
–103  
–107  
110  
114  
117  
–120  
–121  
–123  
–124  
–125  
–125  
–126  
–127  
–127  
–128  
–128  
–100  
–104  
–108  
113  
117  
–120  
–123  
–125  
–127  
–129  
–131  
–132  
–133  
–135  
–137  
–138  
–140  
92  
89  
86  
83  
80  
77  
75  
72  
71  
68  
66  
64  
62  
60  
–128  
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port.  
The scattering parameters were measured on the MRF134 device alone with no external components.  
(continued)  
Table 1. Common Source Scattering Parameters  
V
DS = 28 V, ID = 100 mA  
REV 6  
6
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
|S  
|
φ
|S  
|
φ
5.0  
6.0  
7.0  
8.0  
9.0  
11  
|S |  
22  
φ
(MHz)  
11  
21  
12  
625  
650  
675  
700  
725  
750  
775  
800  
825  
850  
875  
900  
925  
950  
975  
1000  
0.619  
0.617  
0.618  
0.619  
0.618  
0.614  
0.609  
0.562  
0.587  
0.593  
0.597  
0.598  
0.592  
0.588  
0.586  
0.590  
–142  
–144  
–146  
–147  
–150  
–152  
–154  
–155  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–171  
2.334  
2.259  
2.192  
2.124  
2.061  
1.983  
1.908  
1.877  
1.869  
1.794  
1.749  
1.700  
1.641  
1.590  
1.572  
1.551  
58  
0.128  
0.125  
0.123  
0.122  
0.120  
0.118  
0.119  
0.118  
0.119  
0.118  
0.119  
0.118  
0.115  
0.112  
0.108  
0.107  
0.818  
0.824  
0.834  
0.851  
0.859  
0.857  
0.865  
0.872  
0.869  
0.875  
0.881  
0.889  
0.888  
0.877  
0.864  
0.863  
–129  
–130  
–130  
–131  
–132  
–133  
–133  
–133  
–134  
–135  
–135  
–136  
–138  
–138  
–137  
–137  
56  
55  
53  
51  
49  
48  
49  
46  
44  
43  
41  
40  
39  
39  
37  
13  
15  
16  
18  
18  
18  
18  
20  
23  
28  
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were  
measurd on the MRF134 device alone with no external components.  
Table 1. Common Source Scattering Parameters (continued)  
VDS = 28 V, ID = 100 mA  
REV 6  
7
+ āj 50  
+ ā9 0 °  
+
ā
0
°
+ 1 20°  
+ āj 25  
+ āj 10 0  
+ āj 15 0  
+ āj 25 0  
+ āj 5 00  
S
12  
+
1
5
0
°
+ ā3 0 °  
+ āj 1 0  
1 50  
1 00  
2 00  
3 00  
5 0  
f
=
MH z  
1 00 0  
. 20  
5 00  
. 18 . 16 . 14 . 12 . 10 . 08 . 06 . 04 . 02  
1 0  
2
5
50  
10 0 15 0 25 0 50 0  
0
1
8
0
°
0°  
f
=
10 00 M Hz  
- āj 50 0  
- āj 25 0  
- āj 15 0  
- āj 10  
5 00  
4 00  
30 0  
- ā3 0 °  
- 1 50°  
2
0
0
50  
15 0  
10 0  
- āj 10 0  
- āj 25  
-
ā
0
°
-
1
2
0
°
-
ā
0
°
-
ā
5
0
Figure 16. S11, Input Reflection Coefficient  
versus Frequency  
Figure 17. S12, Reverse Transmission Coefficient  
versus Frequency  
VDS = 28 V ID = 100 mA  
VDS = 28 V ID = 100 mA  
+
ā
5
0
+
ā
0
°
+
ā
0
°
+ 1 20°  
1 00  
+
ā
2
5
+
ā
1
0
0
1
5
0
+ āj1 50  
+ā j2 50  
+ā j5 00  
2
0
0
+
1
5
0
°
+
ā
0
°
f
=
5
0
M
H
z
30 0  
40 0  
+
ā
1
0
S
2 1  
5
0
0
.
1
0
1
0
0
0
9
.
0
8
.
0
7
.
0
6
.
0
5
.
0
4
.
0
3
.
0
2
.
0
1
.
0
10  
2
5
5
0
1
0
0
1
5
0
2
5
0
5
0
0
1
8
0
°
0
°
0
-ā j5 00  
-ā j2 50  
- āj1 50  
-
ā
1
0
-
ā
0
°
f
=
1
0
0
0
M
H
z
-
1
5
0
°
S
2
2
5 0  
- āj1 0 0  
5
0
0
3
0
0
2
0
0
8
0
1 50 1 00  
- āj5 0  
- ā60 °  
- āj2 5  
- 12 0°  
-
ā
0
°
Figure 18. S21, Forward Transmission Coefficient  
versus Frequency  
Figure 19. S22, Output Reflection Coefficient  
versus Frequency  
V
DS = 28 V ID = 100 mA  
VDS = 28 V ID = 100 mA  
REV 6  
8
DESIGN CONSIDERATIONS  
GAIN CONTROL  
The MRF134 is a RF power N–Channel enhancement  
mode field–effect transistor (FET) designed especially for  
VHF power amplifier and oscillator applications. M/A-COM RF  
MOS FETs feature a vertical structure with a planar design,  
thus avoiding the processing difficulties associated with  
V–groove vertical power FETs.  
Power output of the MRF134 may be controlled from its  
rated value down to zero (negative gain) by varying the dc gate  
voltage. This feature facilitates the design of manual gain  
control, AGC/ALC and modulation systems. (See Figure 8.)  
M/A-COM Application Note AN–211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power FETs include high gain,  
low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely  
mismatched loads without suffering damage. Power output  
can be varied over a wide range with a low power dc control  
signal, thus facilitating manual gain control, ALC and modula-  
tion.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar VHF transistors are suitable for MRF134. See  
M/A-COM Application Note AN721, Impedance Matching  
Networks Applied to RF Power Transistors. The higher input  
impedance of RF MOS FETs helps ease the task of broadband  
network design. Both small signal scattering parameters and  
large signal impedances are provided. While the s–parame-  
ters will not produce an exact design solution for high power  
operation, they do yield a good first approximation. This is an  
additional advantage of RF MOS power FETs.  
DC BIAS  
The MRF134 is an enhancement mode FET and, therefore,  
does not conduct when drain voltage is applied. Drain current  
flows when a positive voltage is applied to the gate. See Figure  
9 for a typical plot of drain current versus gate voltage. RF  
power FETs require forward bias for optimum performance.  
The value of quiescent drain current (IDQ) is not critical for  
RF power FETs are triode devices and, therefore, not  
unilateral. This, coupled with the very high gain of the  
MRF134, yields a device capable of self oscillation. Stability  
may be achieved by techniques such as drain loading, input  
shunt resistive loading, or output to input feedback. The  
MRF134 was characterized with a 68–ohm input shunt  
loading resistor. Two port parameter stability analysis with the  
MRF134 s–parameters provides a useful–tool for selection of  
loading or feedback circuitry to assure stable operation. See  
MA-COM Application Note AN215A for a discussion of two port  
network theory and stability.  
many applications. The MRF134 was characterized at IDQ  
=
50 mA, which is the suggested minimum value of IDQ. For  
special applications such as linear amplification, IDQ may  
have to be selected to optimize the critical parameters.  
The gate is a dc open circuit and draws no current.  
Therefore, the gate bias circuit may generally be just a simple  
resistive divider network. Some special applications may  
require a more elaborate bias system.  
Input resistive loading is not feasible in low noise applica-  
tions. The MRF134 noise figure data was generated in a circuit  
with drain loading and a low loss input network.  
REV 6  
9
PACKAGE DIMENSIONS  
A
U
N O TE S :  
1. D I MEN S I ON I N G A ND TO LE R AN C I N G P ER A NS I  
M
Y 14. 5M, 198 2.  
2. C O N TR O LL IN G D I MEN S I ON : I N CH .  
M
1
Q
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
24. 39  
9. 40  
5. 82  
5. 47  
2. 16  
3. 81  
0. 11  
MAX  
25. 14  
9. 90  
7. 13  
5. 96  
2. 66  
4. 57  
0. 15  
10. 28  
50ꢀ ꢀ  
4
A
B
C
D
E
H
J
0. 960  
0. 370  
0. 229  
0. 215  
0. 085  
0. 150  
0. 004  
0. 395  
40ꢀ ꢀ  
0. 990  
0. 390  
0. 281  
0. 235  
0. 105  
0. 108  
0. 006  
0. 405  
50ꢀ ꢀ  
B
R
2
3
D
K
M
Q
R
S
U
10. 04  
40ꢀ ꢀ  
S
K
_
_
_
_
0. 113  
0. 245  
0. 790  
0. 720  
0. 130  
0. 255  
0. 810  
0. 730  
2. 88  
6. 23  
3. 30  
6. 47  
20. 07  
18. 29  
20. 57  
18. 54  
S TY LE 2:  
P IN 1. S OU R C E  
J
2 . G AT E  
3. S OU R C E  
4. D R AI N  
C
H
E
SEATING  
PLANE  
CASE 211–07  
ISSUE N  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 6  
10  

相关型号:

MRF134-39

VHF POWER MOSFET
ASI

MRF136

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF136

N-CHANNEL MOS BROADBAND RF POWER FET
TE

MRF136

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF136Y

N-CHANNEL MOS BROADBAND RF POWER FET
TE

MRF137

N-CHANNEL MOS BROADBAND RF POWER FET
MOTOROLA

MRF137

N-CHANNEL MOS BROADBAND RF POWER FET
TE

MRF137

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF1375

RF Power Bipolar Transistor, 1-Element, L Band, Silicon, NPN
MOTOROLA

MRF13750HSR5

RF Power Bipolar Transistor
NXP

MRF138

N-Channel Enhancement Mode VHF POWER MOSFET
ASI

MRF14

MRF14 Series Non-magnetic, High Durability Connector
HRS