MRF151G [TE]

N-CHANNEL BROADBAND RF POWER MOSFET; N沟道宽带射频功率MOSFET
MRF151G
型号: MRF151G
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL BROADBAND RF POWER MOSFET
N沟道宽带射频功率MOSFET

晶体 晶体管 射频 CD 放大器 局域网
文件: 总9页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRF151G/D  
SEMICONDUCTOR TECHNICAL DATA  
The RF MOSFET Line  
N–Channel Enhancement–Mode MOSFET  
Designed for broadband commercial and military applications at frequencies  
to 175 MHz. The high power, high gain and broadband performance of this  
device makes possible solid state transmitters for FM broadcast or TV channel  
frequency bands.  
Guaranteed Performance at 175 MHz, 50 V:  
Output Power — 300 W  
Gain — 14 dB (16 dB Typ)  
Efficiency — 50%  
300 W, 50 V, 175 MHz  
N–CHANNEL  
BROADBAND  
RF POWER MOSFET  
Low Thermal Resistance — 0.35°C/W  
Ruggedness Tested at Rated Output Power  
Nitride Passivated Die for Enhanced Reliability  
D
G
G
S
(FLANGE)  
CASE 375–04, STYLE 2  
D
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
125  
125  
±40  
40  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
V
DGO  
Gate–Source Voltage  
Drain Current — Continuous  
V
GS  
I
D
Total Device Dissipation @ T = 25°C  
P
D
500  
Watts  
C
Derate above 25°C  
2.85  
W/°C  
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.35  
°C/W  
θ
JC  
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 9  
1
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (Each Side)  
Drain–Source Breakdown Voltage (V = 0, I = 100 mA)  
V
(BR)DSS  
125  
Vdc  
mAdc  
µAdc  
GS  
D
Zero Gate Voltage Drain Current (V = 50 V, V = 0)  
I
5.0  
1.0  
DS  
GS  
DSS  
GSS  
Gate–Body Leakage Current (V = 20 V, V = 0)  
I
GS  
DS  
ON CHARACTERISTICS (Each Side)  
Gate Threshold Voltage (V = 10 V, I = 100 mA)  
V
1.0  
1.0  
5.0  
3.0  
3.0  
7.0  
5.0  
5.0  
Vdc  
Vdc  
DS  
D
GS(th)  
Drain–Source On–Voltage (V = 10 V, I = 10 A)  
V
DS(on)  
GS  
D
Forward Transconductance (V = 10 V, I = 5.0 A)  
g
fs  
mhos  
DS  
D
DYNAMIC CHARACTERISTICS (Each Side)  
Input Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
350  
220  
15  
pF  
pF  
pF  
DS  
GS  
iss  
Output Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL TESTS  
Common Source Amplifier Power Gain  
G
14  
50  
16  
55  
dB  
%
ps  
(V = 50 V, P = 300 W, I = 500 mA, f = 175 MHz)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 50 V, P = 300 W, f = 175 MHz, I (Max) = 11 A)  
DD  
out  
D
Load Mismatch  
ψ
(V = 50 V, P = 300 W, I = 500 mA,  
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 5:1 at all Phase Angles)  
R1  
L2  
+
+
C4  
C5  
C9 C10  
50 V  
BIAS 0–6 V  
C11  
C12  
L1  
D.U.T.  
T2  
R2  
C1  
OUTPUT  
T1  
INPUT  
C6  
C2  
C3  
C7  
C8  
R1 — 100 Ohms, 1/2 W  
R2 — 1.0 kOhm, 1/2 W  
C1 — Arco 424  
C2 — Arco 404  
C3, C4, C7, C8, C9 — 1000 pF Chip  
C5, C10 — 0.1 µF Chip  
C6 — 330 pF Chip  
C11 — 0.47 µF Ceramic Chip, Kemet 1215 or  
C11 — Equivalent (100 V)  
T1 — 9:1 RF Transformer. Can be made of 1518 Ohms  
T1 — Semirigid Co–Ax, 6290 Mils O.D.  
T2 — 1:4 RF Transformer. Can be made of 1618 Ohms  
T2 — Semirigid Co–Ax, 70–90 Mils O.D.  
Board Material — 0.062Fiberglass (G10),  
1 oz. Copper Clad, 2 Sides, ε = 5.0  
r
C12 — Arco 422  
L1 — 10 Turns AWG #18 Enameled Wire,  
L1 — Close Wound, 1/4I.D.  
L2 — Ferrite Beads of Suitable Material for  
L2 — 1.52.0 µH Total Inductance  
NOTE: For stability, the input transformer T1 must be loaded  
NOTE: with ferrite toroids or beads to increase the common  
NOTE: mode inductance. For operation below 100 MHz. The  
NOTE: same is required for the output transformer.  
Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or  
Equivalent.  
See Figure 6 for construction details of T1 and T2.  
Figure 1. 175 MHz Test Circuit  
REV 9  
2
TYPICAL CHARACTERISTICS  
1000  
500  
2000  
V
DS  
= 30 V  
C
iss  
200  
100  
C
oss  
1000  
15 V  
50  
C
rss  
20  
0
0
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
V , DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
I , DRAIN CURRENT (AMPS)  
D
Figure 2. Capacitance versus  
Drain–Source Voltage*  
Figure 3. Common Source Unity Gain Frequency  
versus Drain Current*  
*Data shown applies to each half of MRF151G.  
1.04  
1.03  
1.02  
1.01  
1
100  
I = 5 A  
D
4 A  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
0.91  
0.9  
T = 25°C  
C
2 A  
1 A  
10  
250 mA  
50  
100 mA  
75  
1
25  
0
25  
100  
2
20  
200  
T , CASE TEMPERATURE (°C)  
C
V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
Figure 4. Gate–Source Voltage versus  
Case Temperature*  
Figure 5. DC Safe Operating Area  
9:1  
CENTER  
IMPEDANCE  
RATIO  
HIGH IMPEDANCE  
TAP  
WINDINGS  
CENTER  
TAP  
CONNECTIONS  
TO LOW IMPEDANCE  
WINDINGS  
4:1  
IMPEDANCE  
RATIO  
Figure 6. RF Transformer  
REV 9  
3
TYPICAL CHARACTERISTICS  
30  
350  
300  
250  
200  
150  
175 MHz  
f = 150 MHz  
200 MHz  
25  
20  
15  
10  
5
V
DD  
= 50 V  
I
DQ  
= 2 x 250 mA  
V
I
DQ  
= 50 V  
= 2 x 250 mA  
100  
50  
0
DD  
P
out  
= 150 W  
2
5
10  
30  
100  
200  
0
5
10  
f, FREQUENCY (MHz)  
P , INPUT POWER (WATTS)  
in  
Figure 7. Output Power versus Input Power  
Figure 8. Power Gain versus Frequency  
f = 175 MHz  
150  
125  
INPUT, Z  
(GATE TO GATE)  
in  
100  
Z = 10 Ω  
o
30  
150  
125  
100  
f = 175 MHz  
OUTPUT, Z  
(DRAIN TO DRAIN)  
*
OL  
30  
Z * = Conjugate of the optimum load impedance  
OL  
Z * = into which the device output operates at a  
OL  
Z * = given output power, voltage and frequency.  
OL  
Figure 9. Input and Output Impedance  
REV 9  
4
NOTE: S–Parameter data represents measurements taken from one chip only.  
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A)  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
–174  
–175  
–175  
–176  
–176  
–177  
–177  
–177  
–178  
–178  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
–169  
–172  
–171  
–171  
–172  
–171  
–171  
–173  
–175  
–173  
–172  
–174  
–175  
–176  
–177  
–176  
–178  
–179  
–180  
180  
11  
21  
12  
30  
0.877  
0.886  
0.895  
0.902  
0.912  
0.918  
0.925  
0.932  
0.936  
0.942  
0.946  
0.950  
0.954  
0.957  
0.960  
0.962  
0.964  
0.967  
0.967  
0.969  
0.971  
0.970  
0.972  
0.973  
0.972  
0.974  
0.974  
0.975  
0.976  
0.974  
0.975  
0.976  
0.975  
0.977  
0.976  
0.976  
0.977  
0.976  
0.976  
0.977  
10.10  
7.47  
5.76  
4.73  
3.86  
3.19  
2.69  
2.34  
2.06  
1.77  
1.55  
1.39  
1.23  
1.13  
1.01  
0.90  
0.84  
0.75  
0.71  
0.67  
0.60  
0.57  
0.51  
0.47  
0.45  
0.41  
0.40  
0.39  
0.36  
0.33  
0.31  
0.30  
0.29  
0.28  
0.26  
0.26  
0.24  
0.23  
0.22  
0.21  
77  
0.008  
0.009  
0.008  
0.009  
0.009  
0.010  
0.011  
0.013  
0.014  
0.015  
0.017  
0.019  
0.021  
0.023  
0.024  
0.026  
0.028  
0.030  
0.032  
0.035  
0.038  
0.037  
0.039  
0.041  
0.044  
0.046  
0.046  
0.048  
0.049  
0.053  
0.056  
0.056  
0.058  
0.059  
0.061  
0.065  
0.066  
0.068  
0.071  
0.071  
19  
0.707  
0.715  
0.756  
0.764  
0.784  
0.802  
0.808  
0.850  
0.865  
0.875  
0.874  
0.884  
0.909  
0.911  
0.904  
0.931  
0.929  
0.922  
0.937  
0.949  
0.950  
0.950  
0.935  
0.954  
0.953  
0.965  
0.944  
0.929  
0.943  
0.954  
0.935  
0.948  
0.950  
0.978  
0.981  
0.944  
0.960  
0.955  
0.999  
0.962  
40  
69  
63  
58  
52  
48  
45  
40  
37  
35  
32  
30  
27  
24  
22  
20  
19  
18  
16  
14  
12  
12  
12  
11  
9
24  
33  
39  
46  
54  
62  
67  
72  
76  
77  
77  
78  
79  
82  
82  
80  
79  
80  
82  
81  
80  
80  
79  
80  
80  
79  
82  
82  
78  
78  
77  
80  
79  
76  
75  
76  
80  
77  
76  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
179  
179  
179  
178  
178  
178  
179  
177  
179  
177  
179  
177  
178  
176  
176  
176  
9
175  
176  
6
175  
176  
10  
9
176  
175  
176  
175  
7
173  
174  
4
172  
174  
10  
7
172  
174  
174  
174  
8
172  
173  
8
170  
173  
7
171  
173  
10  
7
171  
172  
173  
172  
9
170  
172  
9
168  
REV 9  
5
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) continued  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
171  
171  
171  
170  
170  
170  
169  
169  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
168  
168  
168  
165  
168  
167  
165  
165  
11  
21  
12  
430  
440  
450  
460  
470  
480  
490  
500  
0.976  
0.976  
0.978  
0.978  
0.978  
0.974  
0.973  
0.972  
0.19  
0.20  
0.19  
0.18  
0.18  
0.18  
0.17  
0.17  
10  
0.073  
0.075  
0.080  
0.082  
0.081  
0.085  
0.086  
0.089  
76  
0.950  
0.953  
0.982  
0.990  
0.953  
0.944  
0.966  
0.980  
12  
10  
13  
10  
13  
13  
14  
75  
77  
74  
77  
78  
75  
73  
Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A)  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
–168  
–169  
–170  
–171  
–172  
–173  
–173  
–174  
–174  
–175  
–175  
–176  
–177  
–177  
–178  
–178  
–178  
–179  
–179  
–179  
–180  
180  
|S  
|
φ
|S  
|
φ
–10  
–19  
–24  
–24  
–20  
–16  
–14  
–15  
–17  
–10  
4
|S |  
22  
φ
11  
21  
12  
30  
0.834  
0.869  
0.883  
0.892  
0.901  
0.911  
0.924  
0.935  
0.945  
0.953  
0.958  
0.962  
0.964  
0.966  
0.969  
0.972  
0.975  
0.977  
0.979  
0.980  
0.980  
0.981  
0.982  
0.983  
0.984  
0.984  
0.984  
0.984  
0.984  
0.985  
0.985  
9.70  
6.47  
5.13  
4.03  
3.39  
2.80  
2.39  
1.99  
1.67  
1.36  
1.14  
1.01  
0.93  
0.85  
0.79  
0.74  
0.65  
0.56  
0.50  
0.44  
0.41  
0.38  
0.38  
0.34  
0.34  
0.30  
0.27  
0.25  
0.24  
0.23  
0.20  
74  
0.014  
0.013  
0.012  
0.011  
0.010  
0.009  
0.008  
0.006  
0.005  
0.004  
0.004  
0.004  
0.004  
0.004  
0.005  
0.006  
0.007  
0.008  
0.008  
0.008  
0.009  
0.009  
0.011  
0.014  
0.014  
0.013  
0.012  
0.014  
0.017  
0.019  
0.019  
0.747  
0.731  
0.754  
0.823  
0.912  
0.996  
1.100  
1.100  
1.070  
0.988  
0.934  
0.935  
0.983  
1.080  
1.170  
1.250  
1.210  
1.110  
1.010  
0.958  
1.020  
1.020  
1.060  
1.180  
1.220  
1.180  
1.040  
0.996  
0.951  
0.964  
1.060  
–162  
–159  
–161  
–164  
–167  
–168  
–167  
–167  
–169  
–167  
–169  
–170  
–172  
–173  
–173  
–173  
–174  
–174  
–174  
–172  
–175  
–178  
–176  
–179  
–180  
–179  
–177  
–178  
–178  
179  
40  
62  
55  
51  
50  
47  
42  
35  
29  
25  
23  
23  
24  
24  
21  
17  
10  
8
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
26  
45  
58  
61  
57  
56  
63  
7
72  
9
81  
9
79  
12  
11  
8
74  
180  
74  
179  
76  
179  
4
80  
179  
3
79  
178  
–4  
0
73  
178  
69  
178  
4
74  
177  
7
83  
177  
3
90  
180  
REV 9  
6
Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A) continued  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
177  
177  
176  
176  
176  
176  
175  
175  
175  
174  
174  
174  
174  
174  
173  
173  
173  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
179  
–180  
180  
180  
–180  
–180  
–180  
179  
177  
177  
177  
178  
176  
177  
179  
178  
177  
11  
21  
12  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
0.986  
0.986  
0.986  
0.985  
0.985  
0.985  
0.985  
0.985  
0.986  
0.986  
0.986  
0.985  
0.984  
0.984  
0.985  
0.986  
0.986  
0.22  
0.20  
0.19  
0.17  
0.16  
0.15  
0.14  
0.14  
0.13  
0.13  
0.13  
0.13  
0.11  
7
5
0.017  
0.017  
0.021  
0.024  
0.024  
0.021  
0.018  
0.021  
0.027  
0.031  
0.030  
0.025  
0.022  
0.025  
0.034  
0.038  
0.035  
87  
1.100  
1.140  
1.160  
1.100  
1.070  
0.993  
0.962  
1.040  
1.060  
1.100  
1.140  
1.110  
1.090  
1.020  
0.993  
1.020  
1.010  
76  
67  
69  
77  
85  
85  
72  
68  
73  
81  
87  
68  
59  
66  
79  
93  
–2  
–3  
–3  
0
3
2
5
4
0
–1  
–2  
–1  
3
0.10  
0.10  
0.10  
0.10  
1
6
REV 9  
7
RF POWER MOSFET CONSIDERATIONS  
MOSFET CAPACITANCES  
cuited or floating should be avoided. These conditions can  
result in turn–on of the devices due to voltage build–up on  
the input capacitor due to leakage currents or pickup.  
Gate Protection — These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended.  
Using a resistor to keep the gate–to–source impedance  
low also helps damp transients and serves another important  
function. Voltage transients on the drain can be coupled to  
the gate through the parasitic gate–drain capacitance. If the  
gate–to–source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
may be large enough to exceed the gate–threshold voltage  
and turn the device on.  
The physical structure of a MOSFET results in capacitors  
between the terminals. The metal anode gate structure de-  
termines the capacitors from gate–to–drain (Cgd), and gate–  
to–source (Cgs). The PN junction formed during the  
fabrication of the RF MOSFET results in a junction capaci-  
tance from drain–to–source (Cds).  
These capacitances are characterized as input (Ciss), out-  
put (Coss) and reverse transfer (Crss) capacitances on data  
sheets. The relationships between the inter–terminal capaci-  
tances and those given on data sheets are shown below. The  
C
iss can be specified in two ways:  
1. Drain shorted to source and positive voltage at the gate.  
2. Positivevoltageofthedraininrespecttosourceandzero  
volts at the gate. In the latter case the numbers are lower.  
However, neither method represents the actual operat-  
ing conditions in RF applications.  
HANDLING CONSIDERATIONS  
When shipping, the devices should be transported only in  
antistatic bags or conductive foam. Upon removal from the  
packaging, careful handling procedures should be adhered  
to. Those handling the devices should wear grounding straps  
and devices not in the antistatic packaging should be kept in  
metal tote bins. MOSFETs should be handled by the case  
and not by the leads, and when testing the device, all leads  
should make good electrical contact before voltage is ap-  
plied. As a final note, when placing the FET into the system it  
is designed for, soldering should be done with a grounded  
iron.  
DRAIN  
C
gd  
GATE  
C
= C = C  
iss  
gd  
gs  
C
ds  
C
= C = C  
ds  
oss  
gd  
C
rss  
= C  
gd  
C
gs  
SOURCE  
DESIGN CONSIDERATIONS  
LINEARITY AND GAIN CHARACTERISTICS  
The MRF151G is an RF Power, MOS, N–channel en-  
hancement mode field–effect transistor (FET) designed for  
HF and VHF power amplifier applications.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power MOSFETs include  
high gain, low noise, simple bias systems, relative immunity  
from thermal runaway, and the ability to withstand severely  
mismatched loads without suffering damage. Power output  
can be varied over a wide range with a low power dc control  
signal.  
In addition to the typical IMD and power gain data pres-  
ented, Figure 3 may give the designer additional information  
on the capabilities of this device. The graph represents the  
small signal unity current gain frequency at a given drain cur-  
rent level. This is equivalent to fT for bipolar transistors.  
Since this test is performed at a fast sweep speed, heating of  
the device does not occur. Thus, in normal use, the higher  
temperatures may degrade these characteristics to some ex-  
tent.  
DRAIN CHARACTERISTICS  
One figure of merit for a FET is its static resistance in the  
full–on condition. This on–resistance, VDS(on), occurs in the  
linear region of the output characteristic and is specified un-  
der specific test conditions for gate–source voltage and drain  
current. For MOSFETs, VDS(on) has a positive temperature  
coefficient and constitutes an important design consideration  
at high temperatures, because it contributes to the power  
dissipation within the device.  
DC BIAS  
The MRF151G is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
RF power FETs require forward bias for optimum perfor-  
mance. The value of quiescent drain current (IDQ) is not criti-  
cal for many applications. The MRF151G was characterized  
at IDQ = 250 mA, each side, which is the suggested minimum  
value of IDQ. For special applications such as linear amplifi-  
cation, IDQ may have to be selected to optimize the critical  
parameters.  
GATE CHARACTERISTICS  
The gate of the MOSFET is a polysilicon material, and is  
electrically isolated from the source by a layer of oxide. The  
input resistance is very high — on the order of 109 ohms —  
resulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage  
slightly in excess of the gate–to–source threshold voltage,  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may be just a simple resistive divid-  
er network. Some applications may require a more elaborate  
bias system.  
VGS(th)  
.
Gate Voltage Rating — Never exceed the gate voltage  
rating. Exceeding the rated VGS can result in permanent  
damage to the oxide layer in the gate region.  
Gate Termination — The gates of these devices are es-  
sentially capacitors. Circuits that leave the gate open–cir-  
GAIN CONTROL  
Power output of the MRF151G may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems.  
REV 9  
8
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
U
G
Q RADIUS 2 PL  
M
M
M
0.25 (0.010)  
T A  
B
1
2
4
INCHES  
DIM MIN MAX  
1.350 33.79  
MILLIMETERS  
MIN  
MAX  
34.29  
10.41  
5.84  
A
B
C
D
E
1.330  
0.370  
0.190  
0.215  
0.050  
0.430  
0.102  
0.004  
0.185  
0.845  
0.060  
0.390  
–B–  
R
0.410  
0.230  
0.235  
0.070  
9.40  
4.83  
5.47  
1.27  
5
5.96  
1.77  
11.18  
2.84  
0.15  
5.33  
22.23  
1.78  
3
K
G
H
J
K
N
Q
R
U
0.440 10.92  
0.112  
0.006  
0.215  
2.59  
0.11  
4.83  
D
0.875 21.46  
0.070  
0.410  
1.52  
9.91  
J
N
10.41  
E
1.100 BSC  
27.94 BSC  
H
STYLE 2:  
PIN 1. DRAIN  
SEATING  
PLANE  
–T–  
2. DRAIN  
3. GATE  
4. GATE  
–A–  
C
5. SOURCE  
CASE 375–04  
ISSUE D  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 9  
9

相关型号:

MRF151MP

暂无描述
ASI

MRF151MQ

RF Power Field-Effect Transistor
ASI

MRF153

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
MOTOROLA

MRF1535FNT1

RF Power Field Effect Transistors
MOTOROLA

MRF1535FNT1

RF Power Field Effect Transistors
FREESCALE

MRF1535FT1

RF Power Field Effect Transistors
MOTOROLA

MRF1535N

RF Power Field Effect Transistors
FREESCALE

MRF1535NT1

RF Power Field Effect Transistors
MOTOROLA

MRF1535NT1

RF Power Field Effect Transistors
FREESCALE

MRF1535NT1_06

RF Power Field Effect Transistors
FREESCALE

MRF1535NT1_08

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF1535NT1_0806

RF Power Field Effect Transistors
FREESCALE