MRF275G [TE]

N-CHANNEL MOS BROADBAND 100 . 500 MHz RF POWER FET; N沟道MOS宽带100 。 500 MHz射频功率场效应管
MRF275G
型号: MRF275G
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL MOS BROADBAND 100 . 500 MHz RF POWER FET
N沟道MOS宽带100 。 500 MHz射频功率场效应管

晶体 晶体管 射频 CD 放大器 局域网
文件: 总16页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF275G/D  
The RF MOSFET Line  
N–Channel Enhancement–Mode  
Designed primarily for wideband large–signal output and driver stages from  
100 – 500 MHz.  
150 W, 28 V, 500 MHz  
N–CHANNEL MOS  
BROADBAND  
Guaranteed Performance @ 500 MHz, 28 Vdc  
Output Power — 150 Watts  
Power Gain — 10 dB (Min)  
Efficiency — 50% (Min)  
100% Tested for Load Mismatch at all Phase Angles with VSWR 30:1  
100 – 500 MHz  
RF POWER FET  
Overall Lower Capacitance @ 28 V  
C
C
C
— 135 pF  
— 140 pF  
— 17 pF  
iss  
oss  
rss  
D
Simplified AVC, ALC and Modulation  
Typical data for power amplifiers in industrial and  
commercial applications:  
G
G
S
Typical Performance @ 400 MHz, 28 Vdc  
Output Power — 150 Watts  
Power Gain — 12.5 dB  
(FLANGE)  
CASE 375–04, STYLE 2  
Efficiency — 60%  
D
Typical Performance @ 225 MHz, 28 Vdc  
Output Power — 200 Watts  
Power Gain — 15 dB  
Efficiency — 65%  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
V
DGR  
65  
(R  
= 1.0 M)  
GS  
Gate–Source Voltage  
V
±40  
Adc  
Adc  
GS  
Drain Current — Continuous  
I
26  
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
400  
2.27  
Watts  
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.44  
°C/W  
θJC  
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 1  
1
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Drain–Source Breakdown Voltage  
(V = 0, I = 50 mA)  
V
65  
1
Vdc  
mA  
µA  
(BR)DSS  
GS  
Zero Gate Voltage Drain Current  
(V = 28 V, V = 0)  
D
I
DSS  
GSS  
DS GS  
Gate–Source Leakage Current  
(V = 20 V, V = 0)  
I
1
GS DS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage (V  
DS  
= 10 V, I = 100 mA)  
V
1.5  
0.5  
3
2.5  
0.9  
4.5  
1.5  
Vdc  
Vdc  
D
GS(th)  
V
DS(on)  
Drain–Source On–Voltage (V  
GS  
Forward Transconductance (V  
= 10 V, I = 5 A)  
D
= 10 V, I = 2.5 A)  
g
fs  
3.75  
mhos  
DS  
D
DYNAMIC CHARACTERISTICS (1)  
Input Capacitance (V  
DS  
= 28 V, V  
GS  
= 0, f = 1 MHz)  
= 0, f = 1 MHz)  
= 0, f = 1 MHz)  
C
135  
140  
17  
pF  
pF  
pF  
iss  
Output Capacitance (V  
DS  
Reverse Transfer Capacitance (V  
= 28 V, V  
C
oss  
GS  
= 28 V, V  
GS  
C
rss  
DS  
FUNCTIONAL CHARACTERISTICS (2) (Figure 1)  
Common Source Power Gain  
G
10  
50  
11.2  
55  
dB  
%
ps  
(V  
DD  
= 28 V, P  
= 150 W, f = 500 MHz, I  
= 2 x 100 mA)  
= 2 x 100 mA)  
= 2 x 100 mA,  
out  
DQ  
DQ  
DQ  
Drain Efficiency  
(V = 28 V, P  
η
= 150 W, f = 500 MHz, I  
DD  
out  
Electrical Ruggedness  
(V = 28 V, P = 150 W, f = 500 MHz, I  
ψ
No Degradation in Output Power  
DD out  
VSWR 30:1 at all Phase Angles)  
1. Each side of device measured separately.  
2. Measured in push–pull configuration.  
REV 1  
2
B
A
L6  
C17  
C18  
+V  
GG  
+28 V  
L5  
+
C19  
R1  
C14  
C15  
C16  
C22  
L3  
L1  
D.U.T.  
C1  
C10  
Z1  
Z2  
Z3  
Z5  
Z6  
Z7  
C11  
C2  
C3  
B1  
C5  
C6  
C7  
L4  
C8  
C9  
B2  
C12  
Z4  
Z8  
C4  
C13  
L2  
A
B
C20  
C21  
B1  
B2  
Balun, 50 , 0.086O.D. 2Long, Semi Rigid Coax  
Balun, 50 , Coax 0.141O.D. 2Long, Semi Rigid  
L5  
L6  
Ferroxcube VK200 20/4B  
4 Turns #16, 0.340I.D.,  
Enameled Wire  
C1, C2, C3, C4,  
C10, C11, C12, C13 270 pF, ATC Chip Capacitor  
R1  
1.0 k,1/4 W Resistor  
C5, C8  
C6  
C7  
1.020 pF, Trimmer Capacitor, Johanson  
22 pF, Mini–Unelco Capacitor  
15 pF, Unelco Capacitor  
W1 – W4  
20 x 200 x 250 mils, Wear Pads,  
Beryllium–Copper, (See  
Component Location Diagram)  
1.10x 0.245, Microstrip Line  
0.300x 0.245, Microstrip Line  
1.00x 0.245, Microstrip Line  
C9  
2.1 pF, ATC Chip Capacitor  
Z1, Z2  
Z3, Z4, Z5, Z6  
Z7, Z8  
C14, C15, C16,  
C20, C21, C22  
C17, C18  
C19  
0.1 µF, Ceramic Capacitor  
680 pF, Feedthru Capacitor  
10 µF, 50 V, Electrolytic Capacitor, Tantalum  
10 Turns AWG #24,  
0.145O.D., 106 nH  
Taylor–Spring Inductor  
Board material  
0.060Teflon–fiberglass,  
ε = 2.55, copper clad both sides, 2 oz. copper.  
r
L1, L2  
Points A are connected together on PCB.  
Points B are connected together on PCB.  
L3, L4  
10 Turns AWG #18,  
0.340I.D., Enameled Wire  
Figure 1. 500 MHz Test Circuit  
REV 1  
3
TYPICAL CHARACTERISTICS  
300  
250  
200  
150  
100  
50  
160  
140  
225 MHz  
120  
100  
80  
60  
40  
20  
0
400 MHz  
500 MHz  
V
= 28 V  
= 2 x 100 mA  
= Constant  
DS  
I
I
V
= 2 x 100 mA  
= 28 V  
DQ  
DQ  
DD  
P
in  
f = 500 MHz  
0
0
5
10  
15  
20  
25  
–10  
–8  
–6  
, GATE–SOURCE VOLTAGE (V)  
GS  
–4  
–2  
0
2
4
P , INPUT POWER (Watts)  
in  
V
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Gate Voltage  
10  
9
8
7
6
5
4
3
2
1
0
180  
V
= 10 V  
P
in  
= 14 W  
10 W  
DS  
160  
140  
120  
100  
80  
V
GS(th)  
= 2.5 V  
6 W  
60  
40  
I
= 2 x 100 mA  
DQ  
f = 500 MHz  
20  
0
12  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
14  
16  
18  
V , SUPPLY VOLTAGE (V)  
DD  
20  
22  
24 26  
28  
V , GATE–SOURCE VOLTAGE (V)  
GS  
Figure 4. Drain Current versus Gate Voltage  
(Transfer Characteristics)  
Figure 5. Output Power versus Supply Voltage  
200  
180  
160  
140  
120  
100  
80  
250  
200  
150  
100  
50  
12 W  
10 W  
P
= 14 W  
in  
10 W  
6 W  
P
in  
= 4 W  
60  
I
= 2 x 100 mA  
DQ  
f = 225 MHz  
40  
I
= 2 x 100 mA  
DQ  
f = 400 MHz  
20  
0
12  
0
12  
14  
16  
18  
20  
22  
24  
26  
28  
14  
16  
18  
V , SUPPLY VOLTAGE (V)  
DD  
20  
22  
24  
26  
28  
V
DD  
, SUPPLY VOLTAGE (V)  
Figure 6. Output Power versus Supply Voltage  
Figure 7. Output Power versus Supply Voltage  
REV 1  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
1.3  
V
= 28 V  
DD  
1.2  
1.1  
1
C
oss  
C
iss  
I
= 4 A  
2 A  
D
C
rss  
0.9  
0.8  
0.7  
3 A  
V
= 0 V  
GS  
0.1 A  
f = 1.0 MHz  
1
0
5
10  
15  
20  
25  
–25  
0
25  
50  
75  
100 125 150 175 200  
30  
V , DRAIN–SOURCE VOLTAGE (V)  
DS  
T , CASE TEMPERATURE (°C)  
C
Figure 8. Capacitance versus Drain–Source Voltage*  
*Data shown applies only to one half of  
device, MRF275G  
Figure 9. Gate–Source Voltage versus  
Case Temperature  
100  
T
C
= 25°C  
10  
1
1
10  
, DRAIN–SOURCE VOLTAGE (V)  
100  
V
DS  
Figure 10. DC Safe Operating Area  
REV 1  
5
V
DD  
= 28 V, I = 2 x 100 mA, P = 150 W  
DQ out  
f
Z
Ohms  
Z *  
OL  
Ohms  
in  
(MHz)  
225  
400  
500  
1.6 – j2.30  
3.2 – j1.50  
1.9 + j0.48  
1.9 + j2.60  
2.3 – j0.19  
2.0 + j1.30  
f = 500 MHz  
Z
* = Conjugate of the optimum load impedance  
* = into which the device operates at a given  
* = output power, voltage and frequency.  
OL  
f = 500 MHz  
Z
OL  
Z
OL  
400  
Z = 10 Ω  
o
400  
Note: Input and output impedance values given are  
measured from gate to gate and drain to  
drain respectively.  
Z
*
OL  
Z
in  
225  
225  
Figure 11. Series Equivalent Input/Output Impedance  
REV 1  
6
B
A
L5  
L6  
C14  
C15  
BIAS  
28 V  
C18  
R1  
C10  
C11  
C1  
C12  
C13  
D.U.T.  
R2  
L3  
C8  
L1  
Z1  
Z2  
Z3  
Z4  
Z5  
B1  
C3  
C4  
C6  
C5  
C7  
B2  
Z6  
L2  
C2  
C9  
L4  
R3  
A
B
0.180″  
C16  
C17  
0.200″  
B1  
B2  
Balun, 50 , 0.086O.D. 2Long,  
Semi Rigid Coax  
Balun, 50 , 0.141O.D. 2Long,  
Semi Rigid Coax  
270 pF, ATC Chip Capacitor  
1.020 pF, Trimmer Capacitor  
15 pF, ATC Chip Capacitor  
33 pF, ATC Chip Capacitor  
L1, L2  
L3, L4  
#18 Wire, Hairpin Inductor  
12 Turns #18, 0.340I.D.,  
Enameled Wire  
Ferroxcube VK200 20/4B  
3 Turns #16, 0.340I.D.,  
Enameled Wire  
1.0 kΩ, 1/4 W Resistor  
10 kΩ, 1/4 W Resistor  
0.400x 0.250, Microstrip Line  
0.870x 0.250, Microstrip Line  
0.500x 0.250, Microstrip Line  
L5  
L6  
C1, C2, C8, C9  
C3, C5, C7  
C4  
R1  
C6  
R2, R3  
Z1, Z2  
Z3, Z4  
Z5, Z6  
C10, C12, C13,  
C16, C17  
C11  
0.01 µF, Ceramic Capacitor  
1.0 µF, 50 V, Tantalum  
C14, C15  
C18  
680 pF, Feedthru Capacitor  
20 µF, 50 V, Tantalum  
Board material  
ε = 2.55, copper clad both sides, 2 oz. copper.  
r
0.060Teflon–fiberglass,  
Figure 12. 400 MHz Test Circuit  
REV 1  
7
L2  
R1  
+
C10  
28 V  
BIAS 0–6 V  
C8  
C9  
C3  
C4  
R2  
L1  
D.U.T.  
T2  
T1  
C6  
C5  
C1  
C2  
C7  
C1  
8.060 pF, Arco 404  
1000 pF, Chip Capacitor  
0.1 µF, Chip Capacitor  
180 pF, Chip Capacitor  
100 pF and 130 pF,  
Chips in Parallel  
0.47 µF, Chip Capacitor, 1215 or  
Equivalent, Kemet  
10 Turns AWG #16, 1/4I.D.,  
Enamel Wire, Close Wound  
Ferrite Beads of Suitable Material  
for 1.52.0 µH Total Inductance  
R1  
R2  
T1  
100 , 1/2 W  
1.0 k , 1/2 W  
4:1 Impedance Ratio, RF Transformer  
Can Be Made of 25 , Semi Rigid Coax,  
4752 Mils O.D.  
1:9 Impedance Ratio, RF Transformer.  
Can Be Made of 1518 , Semi Rigid  
Coax, 6290 Mils O.D.  
C2, C3, C7, C8  
C4, C9  
C5  
C6  
T2  
C10  
L1  
NOTE: For stability, the input transformer T1 should be loaded  
NOTE: with ferrite toroids or beads to increase the common  
NOTE: mode inductance. For operation below 100 MHz. The  
NOTE: same is required for the output transformer.  
L2  
Board material  
062fiberglass (G10),  
ε
5, Two sided, 1 oz. Copper.  
r
Unless otherwise noted, all chip capacitors  
are ATC Type 100 or Equivalent.  
Figure 13. 225 MHz Test Circuit  
REV 1  
8
L5  
+
B1  
C19  
L6  
C17  
C16  
C18  
C22  
R1  
C15  
L1  
BEADS 1–3  
C14  
L3  
C1  
C2  
C10  
C11  
C5  
C8  
C6  
C7  
C9  
C3  
C4  
C12  
C13  
L2  
B2  
L4  
C20  
BEADS 4–6  
C21  
MRF275G  
JL  
(Not to Scale)  
Figure 14. MRF275G Component Location (500 MHz)  
MRF275G  
JL  
(Scale 1:1)  
Figure 15. MRF275G Circuit Board Photo Master (500 MHz)  
REV 1  
9
NOTE: S–Parameter data represents measurements taken from one chip only.  
Table 1. Common Source S–Parameters (V  
= 12 V, I = 4.5 A)  
D
DS  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
–172  
–173  
–174  
–175  
–175  
–176  
–176  
–176  
–176  
–176  
–176  
–176  
–176  
–176  
–177  
–177  
–177  
–177  
–177  
–177  
–177  
–178  
–178  
–178  
–178  
–179  
–179  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S  
|
φ
–173  
–172  
–175  
–177  
–178  
–178  
–176  
–176  
–177  
–175  
–176  
–177  
–178  
–178  
–177  
–178  
–179  
–177  
–176  
–175  
–178  
–180  
–179  
–180  
179  
11  
21  
12  
22  
30  
0.822  
0.846  
0.842  
0.838  
0.836  
0.841  
0.849  
0.857  
0.864  
0.868  
0.871  
0.874  
0.876  
0.880  
0.885  
0.891  
0.896  
0.900  
0.904  
0.907  
0.909  
0.912  
0.915  
0.918  
0.922  
0.925  
0.927  
0.930  
0.932  
0.934  
0.936  
0.938  
0.941  
0.943  
0.944  
0.945  
0.947  
0.948  
0.949  
0.951  
6.34  
4.32  
3.62  
3.03  
2.76  
2.43  
2.19  
1.89  
1.66  
1.43  
1.25  
1.15  
1.11  
1.06  
1.01  
0.96  
0.87  
0.77  
0.69  
0.63  
0.60  
0.58  
0.58  
0.56  
0.54  
0.49  
0.43  
0.41  
0.40  
0.39  
0.35  
0.38  
0.35  
0.33  
0.30  
0.29  
0.28  
0.26  
0.26  
0.25  
91  
0.027  
0.027  
0.027  
0.027  
0.028  
0.029  
0.029  
0.028  
0.026  
0.024  
0.023  
0.023  
0.023  
0.023  
0.023  
0.023  
0.022  
0.020  
0.018  
0.017  
0.018  
0.017  
0.017  
0.016  
0.015  
0.014  
0.013  
0.013  
0.013  
0.012  
0.011  
0.011  
0.011  
0.011  
0.011  
0.009  
0.008  
0.008  
0.010  
0.010  
3
0.946  
0.859  
0.863  
0.923  
1.010  
1.080  
1.150  
1.110  
1.050  
0.958  
0.905  
0.914  
0.969  
1.060  
1.130  
1.190  
1.140  
1.050  
0.958  
0.924  
0.981  
0.981  
1.040  
1.150  
1.170  
1.130  
1.010  
0.964  
0.936  
0.948  
1.000  
1.070  
1.100  
1.120  
1.080  
1.020  
0.966  
0.936  
1.010  
1.040  
40  
81  
79  
79  
80  
78  
74  
68  
63  
60  
59  
59  
59  
59  
55  
51  
45  
43  
42  
43  
43  
44  
42  
40  
34  
32  
28  
30  
32  
31  
32  
31  
28  
23  
21  
21  
22  
25  
24  
25  
–6  
–8  
50  
60  
–5  
70  
–3  
80  
–4  
90  
–7  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
–13  
–19  
–19  
–19  
–17  
–16  
–17  
–18  
–23  
–26  
–26  
–25  
–23  
–23  
–22  
–20  
–20  
–24  
–27  
–27  
–23  
–14  
–9  
–180  
–178  
–178  
–178  
180  
–9  
180  
–12  
–12  
–10  
–4  
178  
180  
180  
179  
–180  
180  
179  
179  
1
180  
179  
3
–180  
–179  
179  
179  
4
178  
5
178  
11  
178  
REV 1  
10  
Table 1. Common Source S–Parameters (V  
= 12 V, I = 4.5 A) continued  
D
DS  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
178  
177  
177  
177  
177  
176  
176  
176  
175  
172  
170  
168  
165  
|S  
|
φ
|S  
|
φ
|S  
|
φ
177  
178  
179  
177  
178  
179  
178  
177  
175  
173  
172  
170  
168  
11  
21  
12  
22  
430  
440  
450  
460  
470  
480  
490  
500  
600  
700  
800  
900  
1000  
0.952  
0.953  
0.955  
0.956  
0.956  
0.957  
0.958  
0.960  
0.956  
0.958  
0.962  
0.965  
0.964  
0.25  
0.24  
0.24  
0.21  
0.20  
0.19  
0.19  
0.19  
0.18  
0.11  
0.10  
0.08  
0.07  
22  
0.010  
0.009  
0.008  
0.008  
0.009  
0.010  
0.010  
0.010  
0.007  
0.018  
0.029  
0.021  
0.021  
19  
1.080  
1.100  
1.100  
1.080  
0.992  
0.975  
0.974  
1.010  
0.940  
0.989  
0.967  
0.973  
1.010  
19  
16  
15  
16  
18  
18  
19  
12  
14  
12  
16  
12  
22  
21  
11  
16  
27  
40  
46  
49  
61  
51  
72  
57  
Table 2. Common Source S–Parameters (V  
= 24 V, I = 0.35 mA)  
D
DS  
|S  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|
12  
φ
|S  
22  
|
φ
30  
40  
0.829  
0.858  
0.852  
0.846  
0.843  
0.847  
0.855  
0.865  
0.872  
0.874  
0.876  
0.878  
0.880  
0.883  
0.888  
0.894  
0.899  
0.902  
0.905  
0.907  
0.909  
0.912  
0.915  
0.918  
0.922  
–170  
–172  
–173  
–174  
–175  
–175  
–175  
–176  
–176  
–176  
–176  
–176  
–176  
–176  
–177  
–177  
–177  
–177  
–177  
–177  
–178  
–178  
–178  
–178  
–178  
9.20  
6.30  
5.28  
4.42  
4.01  
3.53  
3.18  
2.75  
2.43  
2.10  
1.84  
1.70  
1.63  
1.56  
1.49  
1.42  
1.29  
1.14  
1.02  
0.94  
0.89  
0.87  
0.86  
0.83  
0.80  
92  
0.023  
0.022  
0.023  
0.023  
0.024  
0.024  
0.024  
0.023  
0.022  
0.020  
0.019  
0.019  
0.019  
0.019  
0.019  
0.019  
0.018  
0.017  
0.015  
0.015  
0.015  
0.014  
0.014  
0.014  
0.013  
4
0.915  
0.834  
0.836  
0.892  
0.978  
1.050  
1.110  
1.080  
1.020  
0.932  
0.882  
0.889  
0.943  
1.030  
1.100  
1.160  
1.120  
1.030  
0.941  
0.903  
0.957  
0.961  
1.020  
1.120  
1.140  
–171  
–170  
–174  
–175  
–177  
–177  
–176  
–175  
–176  
–174  
–175  
–176  
–177  
–177  
–176  
–176  
–177  
–176  
–175  
–174  
–177  
–179  
–178  
–178  
–180  
83  
80  
80  
81  
80  
76  
70  
65  
62  
61  
61  
61  
61  
58  
53  
47  
45  
44  
46  
45  
46  
44  
42  
36  
–4  
50  
–6  
60  
–3  
70  
–1  
80  
–2  
90  
–5  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
–10  
–16  
–16  
–15  
–14  
–13  
–13  
–14  
–18  
–22  
–24  
–23  
–19  
–16  
–15  
–15  
–17  
–19  
REV 1  
11  
Table 2. Common Source S–Parameters (V  
= 24 V, I = 0.35 mA) continued  
D
DS  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
–179  
–179  
–179  
–179  
–180  
–180  
180  
180  
179  
179  
179  
179  
178  
178  
178  
178  
177  
177  
177  
177  
176  
176  
176  
175  
172  
170  
168  
165  
|S  
|
φ
|S  
|
φ
–20  
–18  
–15  
–9  
–6  
–4  
–2  
0
|S  
|
φ
–179  
–177  
–177  
–177  
–180  
–180  
179  
11  
21  
12  
22  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
600  
700  
800  
900  
1000  
0.925  
0.927  
0.929  
0.931  
0.932  
0.934  
0.937  
0.939  
0.941  
0.943  
0.944  
0.945  
0.946  
0.947  
0.949  
0.950  
0.952  
0.953  
0.954  
0.955  
0.956  
0.957  
0.958  
0.956  
0.959  
0.963  
0.968  
0.969  
0.73  
0.65  
0.62  
0.60  
0.57  
0.53  
0.56  
0.53  
0.50  
0.46  
0.44  
0.41  
0.40  
0.38  
0.38  
0.37  
0.36  
0.36  
0.31  
0.30  
0.29  
0.29  
0.28  
0.24  
0.16  
0.14  
0.12  
0.09  
34  
0.013  
0.011  
0.011  
0.010  
0.010  
0.010  
0.010  
0.010  
0.010  
0.009  
0.009  
0.008  
0.008  
0.009  
0.009  
0.009  
0.009  
0.009  
0.009  
0.009  
0.009  
0.010  
0.010  
0.006  
0.019  
0.023  
0.026  
0.025  
1.110  
0.994  
0.948  
0.916  
0.934  
0.985  
1.050  
1.090  
1.110  
1.080  
1.010  
0.956  
0.926  
1.000  
1.040  
1.070  
1.090  
1.090  
1.070  
0.990  
0.963  
0.959  
0.996  
0.924  
0.986  
0.963  
0.967  
1.000  
32  
32  
34  
33  
34  
33  
30  
25  
23  
22  
24  
27  
26  
26  
23  
21  
18  
17  
17  
19  
20  
20  
12  
13  
10  
11  
7
–179  
–178  
–179  
–179  
–179  
–178  
–180  
179  
0
0
2
8
16  
20  
22  
25  
26  
28  
24  
29  
36  
45  
50  
90  
63  
63  
84  
70  
179  
180  
–180  
178  
179  
–179  
180  
178  
176  
174  
173  
171  
169  
Table 3. Common Source S–Parameters (V  
= 28 V, I = 0.39 mA)  
D
DS  
|S  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|
12  
φ
|S  
22  
|
φ
30  
40  
0.834  
0.863  
0.857  
0.851  
0.848  
0.852  
0.860  
0.869  
0.876  
0.878  
0.879  
–169  
–172  
–173  
–174  
–175  
–175  
–175  
–176  
–176  
–176  
–176  
10.08  
6.91  
5.79  
4.86  
4.41  
3.87  
3.49  
3.03  
2.68  
2.31  
2.03  
93  
0.021  
0.021  
0.021  
0.022  
0.022  
0.022  
0.023  
0.022  
0.021  
0.019  
0.018  
4
0.807  
0.828  
0.830  
0.883  
0.970  
1.040  
1.100  
1.070  
1.010  
0.923  
0.876  
–171  
–170  
–173  
–175  
–177  
–177  
–176  
–175  
–176  
–174  
–175  
83  
81  
81  
82  
80  
77  
71  
66  
63  
62  
–4  
–5  
50  
60  
–3  
70  
–1  
80  
–1  
90  
–5  
100  
110  
120  
130  
REV 1  
–9  
–14  
–14  
–15  
12  
Table 3. Common Source S–Parameters (V  
= 28 V, I = 0.39 mA) continued  
D
DS  
S
11  
S
21  
S
12  
S
22  
f
MHz  
|S  
|
φ
–176  
–176  
–177  
–177  
–177  
–177  
–177  
–177  
–177  
–178  
–178  
–178  
–178  
–179  
–179  
–179  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
–13  
–11  
–11  
–12  
–16  
–21  
–19  
–14  
–13  
–15  
–13  
–10  
–12  
–15  
–16  
–16  
–10  
5
|S  
|
φ
–176  
–177  
–177  
–176  
–176  
–177  
–176  
–175  
–174  
–176  
–179  
–178  
–178  
–179  
–178  
–176  
–177  
–177  
–180  
–180  
180  
11  
21  
12  
22  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
600  
700  
800  
900  
1000  
0.881  
0.883  
0.886  
0.890  
0.896  
0.901  
0.904  
0.907  
0.908  
0.910  
0.912  
0.916  
0.919  
0.922  
0.925  
0.927  
0.929  
0.931  
0.933  
0.934  
0.937  
0.939  
0.941  
0.943  
0.944  
0.945  
0.946  
0.947  
0.949  
0.950  
0.951  
0.953  
0.953  
0.954  
0.955  
0.956  
0.957  
0.955  
0.958  
0.963  
0.966  
0.968  
1.87  
1.79  
1.72  
1.64  
1.56  
1.42  
1.26  
1.13  
1.03  
0.99  
0.96  
0.95  
0.93  
0.89  
0.81  
0.72  
0.69  
0.66  
0.63  
0.59  
0.62  
0.59  
0.55  
0.51  
0.49  
0.46  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.35  
0.33  
0.32  
0.32  
0.31  
0.26  
0.18  
0.15  
0.13  
0.10  
62  
0.018  
0.018  
0.018  
0.018  
0.018  
0.018  
0.017  
0.015  
0.013  
0.014  
0.014  
0.014  
0.013  
0.012  
0.012  
0.011  
0.011  
0.012  
0.011  
0.009  
0.009  
0.010  
0.010  
0.009  
0.008  
0.008  
0.007  
0.010  
0.012  
0.010  
0.008  
0.008  
0.009  
0.010  
0.012  
0.012  
0.010  
0.012  
0.018  
0.020  
0.028  
0.033  
0.884  
0.934  
1.020  
1.090  
1.150  
1.110  
1.030  
0.938  
0.897  
0.948  
0.956  
1.020  
1.120  
1.140  
1.110  
0.988  
0.944  
0.920  
0.936  
0.989  
1.050  
1.080  
1.110  
1.070  
1.010  
0.949  
0.922  
0.995  
1.030  
1.060  
1.090  
1.090  
1.070  
0.983  
0.964  
0.956  
0.993  
0.926  
0.984  
0.961  
0.967  
0.997  
62  
62  
58  
54  
48  
46  
45  
47  
46  
47  
45  
42  
37  
35  
33  
33  
35  
34  
35  
34  
31  
26  
24  
23  
25  
27  
26  
27  
24  
21  
19  
17  
18  
19  
20  
21  
13  
12  
9
16  
14  
3
180  
4
–179  
–178  
–179  
–178  
–178  
–178  
–180  
179  
179  
8
179  
11  
179  
17  
179  
24  
178  
20  
178  
19  
178  
29  
178  
41  
179  
177  
40  
180  
177  
34  
–180  
178  
177  
26  
177  
30  
179  
176  
43  
–180  
179  
176  
60  
176  
65  
178  
174  
67  
176  
172  
64  
174  
170  
89  
173  
168  
9
81  
171  
165  
6
73  
169  
REV 1  
13  
Figure 16. MRF275G Test Fixture  
RF POWER MOSFET CONSIDERATIONS  
MOSFET CAPACITANCES  
DRAIN CHARACTERISTICS  
The physical structure of a MOSFET results in capacitors  
between the terminals. The metal oxide gate structure deter-  
One figure of merit for a FET is its static resistance in the  
full–on condition. This on–resistance, V  
, occurs in the  
DS(on)  
mines the capacitors from gate–to–drain (C ), and gate–to–  
linear region of the output characteristic and is specified un-  
der specific test conditions for gate–source voltage and drain  
gd  
source (C ). The PN junction formed during the fabrication  
gs  
of the MOSFET results in a junction capacitance from drain–  
current. For MOSFETs, V has a positive temperature  
DS(on)  
to–source (C ).  
coefficient and constitutes an important design consideration  
at high temperatures, because it contributes to the power  
dissipation within the device.  
ds  
These capacitances are characterized as input (C ), out-  
iss  
put (C  
) and reverse transfer (C ) capacitances on data  
oss  
rss  
sheets. The relationships between the inter–terminal capaci-  
tances and those given on data sheets are shown below. The  
GATE CHARACTERISTICS  
The gate of the MOSFET is a polysilicon material, and is  
electrically isolated from the source by a layer of oxide. The  
C
can be specified in two ways:  
iss  
1. Drain shorted to source and positive voltage at the gate.  
9
input resistance is very high — on the order of 10 ohms —  
resulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage  
slightly in excess of the gate–to–source threshold voltage,  
2. Positivevoltageofthedraininrespecttosourceandzero  
volts at the gate. In the latter case the numbers are lower.  
However, neither method represents the actual operat-  
ing conditions in RF applications.  
V
.
GS(th)  
Gate Voltage Rating — Never exceed the gate voltage  
rating (or any of the maximum ratings on the front page). Ex-  
ceeding the rated V can result in permanent damage to  
GS  
DRAIN  
the oxide layer in the gate region.  
C
gd  
Gate Termination — The gates of this device are essen-  
tially capacitors. Circuits that leave the gate open–circuited  
or floating should be avoided. These conditions can result in  
turn–on of the devices due to voltage build–up on the input  
capacitor due to leakage currents or pickup.  
Gate Protection — These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended.  
Using a resistor to keep the gate–to–source impedance  
low also helps damp transients and serves another important  
function. Voltage transients on the drain can be coupled to  
the gate through the parasitic gate–drain capacitance. If the  
gate–to–source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
GA TE  
C
C
= C + C  
gd gs  
gd ds  
= C  
gd  
iss  
C
ds  
= C + C  
oss  
C
rss  
C
gs  
SOURCE  
The C  
iss  
given in the electrical characteristics table was  
measured using method 2 above. It should be noted that  
, C , C are measured at zero drain current and are  
C
iss oss rss  
provided for general information about the device. They are  
not RF design parameters and no attempt should be made to  
use them as such.  
REV 1  
14  
may be large enough to exceed the gate–threshold voltage  
and turn the device on.  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal.  
HANDLING CONSIDERATIONS  
When shipping, the devices should be transported only in  
antistatic bags or conductive foam. Upon removal from the  
packaging, careful handling procedures should be adhered  
to. Those handling the devices should wear grounding straps  
and devices not in the antistatic packaging should be kept in  
metal tote bins. MOSFETs should be handled by the case  
and not by the leads, and when testing the device, all leads  
should make good electrical contact before voltage is ap-  
plied. As a final note, when placing the FET into the system it  
is designed for, soldering should be done with grounded  
equipment.  
DC BIAS  
The MRF275G is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
RF power FETs require forward bias for optimum perfor-  
mance. The value of quiescent drain current (I  
) is not criti-  
DQ  
cal for many applications. The MRF275G was characterized  
at I = 100 mA, each side, which is the suggested minimum  
DQ  
value of I  
cation, I  
DQ  
parameters.  
. For special applications such as linear amplifi-  
DQ  
may have to be selected to optimize the critical  
DESIGN CONSIDERATIONS  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may be just a simple resistive divid-  
er network. Some applications may require a more elaborate  
bias system.  
The MRF275G is a RF power N–channel enhancement  
mode field–effect transistor (FETs) designed for HF, VHF and  
UHF power amplifier applications. M/A-COM RF MOSFETs  
feature a vertical structure with a planar design.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
GAIN CONTROL  
Power output of the MRF275G may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems.  
REV 1  
15  
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
U
G
Q RADIUS 2 PL  
M
M
M
0.25 (0.010)  
T A  
B
1
2
4
INCHES  
DIM MIN MAX  
1.330 1.350 33.79 34.29  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
–B–  
R
0.370 0.410  
0.190 0.230  
0.215 0.235  
0.050 0.070  
9.40 10.41  
4.83  
5.47  
1.27  
5.84  
5.96  
1.77  
11.18  
2.84  
0.15  
5.33  
5
3
K
G
H
J
0.430 0.440 10.92  
0.102  
0.112  
2.59  
0.11  
4.83  
D
0.004 0.006  
0.185 0.215  
K
N
Q
R
U
0.845 0.875 21.46 22.23  
J
0.060 0.070  
0.390 0.410  
1.100 BSC  
1.52  
9.91 10.41  
27.94 BSC  
1.78  
N
E
STYLE 2:  
PIN 1. DRAIN  
H
2. DRAIN  
3. GATE  
4. GATE  
SEATING  
PLANE  
–T–  
–A–  
C
5. SOURCE  
CASE 375–04  
ISSUE D  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 1  
16  

相关型号:

MRF275L

N-CHANNEL BROADBAND RF POWER FET
TE

MRF281

RF POWER FIELD EFFECT TRANSISTORS
MOTOROLA

MRF281

RF Power Field Effect Transistors
FREESCALE

MRF281SR1

RF POWER FIELD EFFECT TRANSISTORS
MOTOROLA

MRF281SR1

RF Power Field Effect Transistors
FREESCALE

MRF281SR1_06

RF Power Field Effect Transistors
FREESCALE

MRF281ZR1

RF POWER FIELD EFFECT TRANSISTORS
MOTOROLA

MRF281ZR1

RF Power Field Effect Transistors
FREESCALE

MRF282

LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs
MOTOROLA

MRF282

RF Power Field Effect Transistors
FREESCALE

MRF282S

LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs
MOTOROLA

MRF282SR1

RF Power Field Effect Transistors
FREESCALE