MRF392 [TE]

Tthe RF Line NPN Silicon Push-Pull RF Power Transistor; 里边反射频线NPN硅推挽式RF功率晶体管
MRF392
型号: MRF392
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

Tthe RF Line NPN Silicon Push-Pull RF Power Transistor
里边反射频线NPN硅推挽式RF功率晶体管

晶体 晶体管 射频
文件: 总4页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF392/D  
The RF Line  
Designed primarily for wideband large–signal output and driver amplifier  
stages in the 30 to 500 MHz frequency range.  
Specified 28 Volt, 400 MHz Characteristics —  
Output Power = 125 W  
125 W, 30 to 500 MHz  
Typical Gain = 10 dB  
Efficiency = 55% (Typ)  
CONTROLLED “Q”  
BROADBAND PUSH–PULL  
RF POWER TRANSISTOR  
NPN SILICON  
Built–In Input Impedance Matching Networks for Broadband Operation  
Push–Pull Configuration Reduces Even Numbered Harmonics  
Gold Metallization System for High Reliability  
100% Tested for Load Mismatch  
2
6
5, 8  
1, 4  
3
7
CASE 744A–01, STYLE 1  
The MRF392 is two transistors in a single package with separate base and collector leads  
and emitters common. This arrangement provides the designer with a space saving  
device capable of operation in a push–pull configuration.  
PUSH–PULL TRANSISTORS  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
30  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Voltage  
Collector–Base Voltage  
Emitter–Base Voltage  
Collector Current — Continuous  
V
CEO  
V
CBO  
V
EBO  
60  
4.0  
16  
I
C
Total Device Dissipation @ T = 25°C (1)  
Derate above 25°C  
P
D
270  
1.54  
Watts  
W/°C  
C
Storage Temperature Range  
Junction Temperature  
T
65 to +150  
200  
°C  
°C  
stg  
T
J
THERMAL CHARACTERISTICS  
Characteristic  
Thermal Resistance, Junction to Case  
NOTE:  
Symbol  
Max  
Unit  
R
0.65  
°C/W  
θJC  
1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push–pull  
amplifier.  
REV 8  
1
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Collector–Emitter Breakdown Voltage (I = 50 mAdc, I = 0)  
V
(BR)CEO  
30  
60  
4.0  
Vdc  
Vdc  
C
B
Collector–Emitter Breakdown Voltage (I = 50 mAdc, V  
= 0)  
V
C
BE  
(BR)CES  
(BR)EBO  
Emitter–Base Breakdown Voltage (I = 5.0 mAdc, I = 0)  
V
Vdc  
E
C
Collector Cutoff Current (V  
CB  
= 30 Vdc, I = 0)  
I
5.0  
mAdc  
E
CBO  
ON CHARACTERISTICS (1)  
DC Current Gain (I = 1.0 Adc, V  
CE  
= 5.0 Vdc)  
h
40  
60  
75  
100  
95  
C
FE  
DYNAMIC CHARACTERISTICS (1)  
Output Capacitance (V  
CB  
= 28 Vdc, I = 0, f = 1.0 MHz)  
C
pF  
E
ob  
pe  
FUNCTIONAL TESTS (2) — See Figure 1  
Common–Emitter Amplifier Power Gain  
G
8.0  
50  
10  
55  
dB  
%
(V  
CC  
= 28 Vdc, P  
= 125 W, f = 400 MHz)  
= 125 W, f = 400 MHz)  
= 125 W, f = 400 MHz,  
out  
out  
out  
Collector Efficiency  
(V = 28 Vdc, P  
η
CC  
Load Mismatch  
(V = 28 Vdc, P  
ψ
No Degradation in Output Power  
CC  
VSWR = 30:1, all phase angles)  
NOTES:  
1. Each transistor chip measured separately.  
2. Both transistor chips operating in push–pull amplifier.  
L5  
+ 28 V  
+
C13  
C11  
C12  
C14  
C15  
B2  
L3  
B1  
L1  
C9  
C1  
C2  
Z4  
Z5  
Z6  
Z1  
Z1  
Z2  
Z3  
C3  
C4  
Z2  
C5  
Z3  
C6  
C7  
C8  
Z4  
Z5  
Z6  
C10  
D.U.T.  
L2  
L4  
L6  
C18  
C16  
C17  
C19  
C1, C2 — 240 pF, 100 Mil Chip Cap (ATC) or Equivalent  
C3 — 3.6 pF, 100 Mil Chip Cap (ATC) or Equivalent  
C4, C8 — 8.2 pF, 100 Mil Chip Cap (ATC) or Equivalent  
C5, C6 — 20 pF, 100 Mil Chip Cap (ATC) or Equivalent  
C7 — 18 pF, Mini Unelco or Equivalent  
C9, C10 — 270 pF, 100 Mil Chip Cap (ATC) or Equivalent  
C11, C12, C16, C17 — 470 pF 100 Mil Chip Cap (ATC) or Equivalent  
C13, C18 — 680 pF Feedthru  
B1 — Balun, 50 Semi–Rigid Coaxial Cable 86 Mil OD, 2L  
B2 — Balun, 50 Semi–Rigid Coaxial Cable 86 Mil OD, 2L  
Z1 — Microstrip Line 270 Mil L x 125 Mil W  
Z2 — Microstrip Line 375 Mil L x 125 Mil W  
Z3 — Microstrip Line 280 Mil L x 125 Mil W  
Z4 — Microstrip Line 300 Mil L x 125 Mil W  
Z5 — Microstrip Line 350 Mil L x 125 Mil W  
Z6 — Microstrip Line 365 Mil L x 125 Mil W  
C14, C19 — 0.1 µF Erie Redcap or Equivalent  
C15 — 20 µF, 50 V  
Board Material — 0.0625Teflon Fiberglass ε = 2.5 ± 0.05 1 oz. Cu.  
r
Board Material — CLAD, Double Sided  
L1, L2 — 0.15 µH Molded Choke With Ferrite Bead  
L3, L4 — 2–1/2 Turns #20 AWG, 0.200 ID  
L5, L6 — 3–1/2 Turns #18 AWG, 0.200 ID  
Figure 1. 400 MHz Test Fixture  
REV 8  
2
160  
140  
120  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
f = 100 MHz  
225 MHz  
f = 100 MHz  
400 MHz  
225 MHz  
400 MHz  
500 MHz  
60  
40  
V
= 28 V  
V
= 13.5 V  
CC  
CC  
20  
0
0
25  
18  
20  
0
5
10  
15  
20  
0
2
4
6
8
10  
12  
14  
16  
P
, INPUT POWER (WATTS)  
P
, INPUT POWER (WATTS)  
in  
in  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Input Power  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
P
= 10 W  
P
= 14 W  
in  
in  
7 W  
5 W  
10 W  
7 W  
60  
60  
40  
40  
20  
20  
f = 225 MHz  
f = 400 MHz  
0
0
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
V
, SUPPLY VOLTAGE (VOLTS)  
V , SUPPLY VOLTAGE (VOLTS)  
CC  
CC  
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Supply Voltage  
Z
& Z * are given  
OL  
in  
from base–to–base and  
collector–to–collector respectively.  
f = 100 MHz  
225  
500  
500  
Z
in  
CAPACITIVE  
REACTANCE  
COMPONENT (–jX)  
INDUCTIVE  
REACTANCE  
COMPONENT (+jX)  
400  
450  
450  
Z
*
OL  
400  
= 28 V, P  
225  
V
= 125 W  
out  
CC  
f
Z
Z
*
OL  
in  
OHMS  
f = 100 MHz  
MHz  
OHMS  
100  
225  
400  
450  
500  
0.72 + j0.44  
0.72 + j2.62  
3.88 + j5.72  
3.84 + j2.8  
1.26 + j3.01  
9.0 – j6.0  
5.2 – j1.8  
3.6 + j0.53  
3.2 + j1.2  
3.0 + j2.0  
Z
= 20 Ω  
o
Z
Z
Z
* = Conjugate of the optimum load impedance  
* = into which the device output operates at a  
* = given output power, voltage and frequency.  
OL  
OL  
OL  
Figure 6. Series Equivalent Input/Output Impedance  
REV 8  
3
PACKAGE DIMENSIONS  
U 4 PL  
M
Q
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
M
M
0.76 (0.030)  
A
B
K
–B–  
K
1
2
3
4
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
E
MIN  
22.60  
9.52  
6.65  
1.60  
2.94  
2.87  
MAX  
23.11  
10.03  
7.16  
1.95  
3.40  
MIN  
MAX  
0.910  
0.395  
0.282  
0.077  
0.134  
0.127  
0.890  
0.375  
0.262  
0.063  
0.116  
0.113  
R
F
3.22  
5
6
7
8
G
H
J
K
L
16.51 BSC  
0.650 BSC  
4.01  
0.07  
4.36  
0.15  
0.158  
0.003  
0.171  
0.490  
0.172  
0.006  
0.193  
0.510  
D 4 PL  
4.34  
4.90  
12.45  
12.95  
F
4 PL  
2 PL  
M
N
Q
R
U
V
45 NOM  
45 NOM  
1.051  
3.04  
9.90  
1.02  
0.64  
11.02  
3.35  
10.41  
1.27  
0.414  
0.120  
0.390  
0.040  
0.025  
0.434  
0.132  
0.410  
0.050  
0.035  
V
L
0.89  
G
–A–  
STYLE 1:  
PIN 1. EMITTER (COMMON)  
2. COLLECTOR  
3. COLLECTOR  
J
N
4. EMITTER (COMMON)  
5. EMITTER (COMMON)  
6. BASE  
7. BASE  
8. EMITTER (COMMON)  
C
H
E
SEATING  
PLANE  
–T–  
CASE 744A–01  
ISSUE C  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 8  
4

相关型号:

MRF393

BROADBAND PUSH-PULL RF POWER TRANSISTOR NPN SILICON
MOTOROLA

MRF393

The RF Line NPN Silicon Push-Pull RF Power Transistor
TE

MRF39RA

Low-Power, Integrated UHF Receiver
MICROCHIP

MRF39RAT-I/LY

Low-Power, Integrated UHF Receiver
MICROCHIP

MRF4

Fast Acting Radial Lead Micro Fuse Series
BEL

MRF400

Fast Acting Radial Lead Micro Fuse Series
BEL

MRF401

NPN SILICON RF POWER TRANSISTORS
MOTOROLA

MRF403-A

Half-Inch Diameter Process Sealed Rotaries
NKK

MRF403-AA

Half-Inch Diameter Process Sealed Rotaries
NKK

MRF403-AB

Half-Inch Diameter Process Sealed Rotaries
NKK

MRF403-AC

Half-Inch Diameter Process Sealed Rotaries
NKK

MRF403-AE

Half-Inch Diameter Process Sealed Rotaries
NKK