5962-9086303MXA [TI]

Wide-Band Analog Interface Circuit;
5962-9086303MXA
型号: 5962-9086303MXA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Wide-Band Analog Interface Circuit

文件: 总56页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC32046C, TLC32046I, TLC32046M  
Data Manual  
Wide-Band Analog Interface Circuit  
SLAS028  
May 1995  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any  
semiconductor product or service without notice, and advises its customers to obtain the latest  
version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
TIwarrantsperformanceofitssemiconductorproductsandrelatedsoftwaretothespecifications  
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality  
control techniques are utilized to the extent TI deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed, except those  
mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death,  
personal injury, or severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES  
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.  
Use of TI products in such applications requires the written approval of an appropriate TI officer.  
Questions concerning potential risk applications should be directed to TI through a local SC  
sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards should be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance, customer product design, software  
performance, or infringement of patents or services described herein. Nor does TI warrant or  
represent that any license, either express or implied, is granted under any patent right, copyright,  
mask work right, or other intellectual property right of TI covering or relating to any combination,  
machine, or process in which such semiconductor products or services might be or are used.  
Copyright 1995, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.2 Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.5 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1 Internal Timing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.3 A/D Band-Pass Filter, Clocking, and Conversion Timing . . . . . . . . . . . . . . . . . . . . 24  
2.4 A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.5 Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.6 D/A Low-Pass Filter, Clocking, and Conversion Timing . . . . . . . . . . . . . . . . . . . . . 24  
2.7 D/A Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.8 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.9 Synchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.9.1 One 16-Bit Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.9.2 Two 8-Bit Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.9.3 Synchronous Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.10 Asynchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.10.1 One 16-Bit Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.10.2 Two 8-Bit Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.10.3 Asynchronous Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.11 Operation of TLC32046C and TLC32046I With Internal Voltage Reference . . . 27  
2.12 Operation of TLC32046C AND TLC32046I With External Voltage Reference . 27  
2.13 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.14 Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.15 Communications Word Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.15.1 Primary DR Word Bit Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.15.2 Primary DX Word Bit Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.15.3 Secondary DX Word Bit Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
2.16 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
2.17 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
2.18 AIC Register Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
2.19 AIC Responses to Improper Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
2.20 Operation With Conversion Times Too Close Together . . . . . . . . . . . . . . . . . . . . . 212  
2.21 More Than One Receive Frame Sync Occurring Between Two Transmit  
Frame Syncs Asynchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
2.22 More Than One Transmit Frame Sync Occurring Between Two Receive  
Frame Syncs Asynchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
iii  
Section  
Title  
Page  
2.23 More than One Set of Primary and Secondary DX Serial Communications  
Occurring Between Two Receive Frame Syncs Asynchronous Operation . . . 213  
2.24 System Frequency Response Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
2.25 (Sin x)/x Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
2.26 (Sin x)/x Roll-Off for a Zero-Order Hold Function . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
2.27 Correction Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
2.28 Correction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
2.29 TMS320 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . 31  
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range, V  
= 5 V, V  
= 5 V, V  
= 5 V . . . . . . . . . . . . . . . . . 32  
CC+  
CC–  
DD  
3.3.1 Total Device, MSTR CLK Frequency = 5.184 MHz . . . . . . . . . . . . . . . . . 32  
3.3.2 Power Supply Rejection and Crosstalk Attenuation . . . . . . . . . . . . . . . . . 32  
3.3.3 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.3.4 Receive Amplifier Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3.5 Transmit Filter Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3.6 Receive and Transmit Channel System Distortion, SCF Clock  
Frequency = 288kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3.7 Receive Channel Signal-to-Distortion Ratio . . . . . . . . . . . . . . . . . . . . . . . 34  
3.3.8 Transmit Channel Signal-to-Distortion Ratio . . . . . . . . . . . . . . . . . . . . . . . 34  
3.3.9 Receive and Transmit Gain and Dynamic Range . . . . . . . . . . . . . . . . . . . 34  
3.3.10 Receive Channel Band-Pass Filter Transfer Function,  
SCF f  
= 288 kHz, Input (IN+ IN) Is A +3-V Sine Wave . . . . . . . 35  
clock  
3.3.11 Receive and Transmit Channel Low-Pass Filter Transfer Function,  
SCF f = 288 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
clock  
3.4 Operating Characteristics Over Recommended Operating Free-Air  
Temperature Range, V = 5 V, V = 5 V, V = 5 V . . . . . . . . . . . . . . . . . 36  
CC+  
CC–  
DD  
3.4.1 Receive and Transmit Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.5 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.5.1 Serial Port Recommended Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.5.2 Serial Port AIC Output Signals, C = 30 pF for SHIFT CLK Output,  
L
C = 15 pF For All Other Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
L
4
5
6
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
iv  
List of Illustrations  
Figure  
Title  
Page  
11 Dual-Word (Telephone Interface) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
12 Word Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
13 Byte Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
21 Asynchronous Internal Timing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
22 Primary and Secondary Communications Word Sequence . . . . . . . . . . . . . . . . . . . 28  
23 DR Word Bit Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
24 Primary DX Word BIt Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
25 Secondary DX Word BIt Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
26 Reset on Power-Up Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
27 Conversion Times Too Close Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
28 More Than One Receive Frame Sync Between Two Transmit Frame Syncs . . . 213  
29 More Than One Transmit Frame Sync Between Two Receive Frame Syncs . . . 213  
210 More Than One Set of Primary and Secondary DX Serial Communications  
Between Two Receive Frame Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
211 First-Order Correction Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
41 IN+ and IN Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
42 Dual-Word (Telephone Interface) Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
43 Word Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
44 Byte Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
45 Shift-Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
46 TMS32010/TMS320C15TLC32046 Interface Timing . . . . . . . . . . . . . . . . . . . . . . 44  
47 TMS32010/TMS320C15TLC32046 Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . 45  
v
List of Tables  
Table  
Title  
Page  
21 Mode-Selection Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
22 Primary DX Serial Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
23 Secondary DX Serial Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
24 AIC Responses to Improper Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
25 (sin x)/x Roll-Off Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
26 (sin x)/x Correction Table for f = 8000 Hz and f = 9600 Hz . . . . . . . . . . . . . . . . . 21  
s
s
41 Gain Control Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
vi  
1 Introduction  
The TLC32046C, TLC32046I, and TLC32046M wide-band analog interface circuits (AIC) are a complete  
analog-to-digital and digital-to-analog interface system for advanced digital signal processors (DSPs)  
similar to the TMS32020, TMS320C25, and TMS320C30. The TLC32046C and TLC32046I offer a powerful  
combination of options under DSP control: three operating modes (dual-word [telephone interface], word,  
and byte) combined with two word formats (8 bits and 16 bits) and synchronous or asynchronous operation.  
It provides a high level of flexibility in that conversion and sampling rates, filter bandwidths, input circuitry,  
receive and transmit gains, and multiplexed analog inputs are under processor control.  
This AIC features a  
band-pass switched-capacitor antialiasing input filter  
14-bit-resolution A/D converter  
14-bit-resolution D/A converter  
low-pass switched-capacitor output-reconstruction filter.  
The antialiasing input filter comprises eighth-order and fourth-order CC-type (Chebyshev/elliptic  
transitional) low-pass and high-pass filters, respectively. The input filter is implemented in switched-  
capacitor technology and is preceded by a continuous time filter to eliminate any possibility of aliasing  
caused by sampled data filtering. When low-pass filtering is desired, the high-pass filter can be switched  
out of the signal path. A selectable auxiliary differential analog input is provided for applications where more  
than one analog input is required.  
The output-reconstruction filter is an eighth-order CC-type (Chebyshev/elliptic transitional low-pass filter)  
followed by a second-order (sin x)/x correction filter and is implemented in switched-capacitor technology.  
This filter is followed by a continuous-time filter to eliminate images of the sample data signal. The on-board  
(sin x)/x correction filter can be switched out of the signal path using digital signal processor control.  
The A/D and D/A architectures ensure no missing codes and monotonic operation. An internal voltage  
reference is provided to ease the design task and to provide complete control over the performance of the  
IC. The internal voltage reference is brought out to REF. Separate analog and digital voltage supplies and  
ground are provided to minimize noise and ensure a wide dynamic range. The analog circuit path contains  
only differential circuitry to keep noise to a minimum. The exception is the DAC sample-and-hold, which  
utilizes pseudo-differential circuitry.  
The TLC32046C is characterized for operation from 0°C to 70°C, the TLC32046I is characterized for  
operation from 40°C to 85°C, and the TLC32046M is characterized for operation from 55°C to 125°C.  
11  
1.1 Features  
14-Bit Dynamic Range ADC and DAC  
16-Bit Dynamic Range Input With Programmable Gain  
Synchronous or Asynchronous ADC and DAC Sampling Rates Up to 25,000 Samples Per  
Second  
Programmable Incremental ADC and DAC Conversion Timing Adjustments  
Typical Applications  
Speech Encryption for Digital Transmission  
Speech Recognition and Storage Systems  
Speech Synthesis  
Modems at 8-kHz, 9.6-kHz, and 16-kHz Sampling Rates  
Industrial Process Control  
Biomedical Instrumentation  
Acoustical Signal Processing  
Spectral Analysis  
Instrumentation Recorders  
Data Acquisition  
Switched-Capacitor Antialiasing Input Filter and Output-Reconstruction Filter  
Three Fundamental Modes of Operation: Dual-Word (Telephone Interface), Word, and Byte  
600-mil Wide N Package  
Digital Output in Twos Complement Format  
CMOS Technology  
FUNCTION TABLE  
SYNCHRONOUS ASYNCHRONOUS  
DATA  
COMMUNICATIONS  
FORMAT  
DIRECT  
INTERFACE  
(CONTROL  
REGISTER  
BIT D5 = 1)  
(CONTROL  
REGISTER  
BIT D5 = 0)  
FORCING CONDITION  
16-bit format  
Dual-word  
(telephone  
interface) mode  
Dual-word  
Terminal 13 = 0 to 5 V  
TMS32020,  
TMS320C25,  
TMS320C30  
(telephone interface) Terminal 1 = 0 to 5 V  
mode  
16-bit format  
Word mode  
Word mode  
Terminal 13 = V  
CC–  
(5 V nom) TMS32020,  
Terminal 1 = V + (5 V nom)  
CC  
TMS320C25,  
TMS320C30,  
indirect  
interface to  
TMS320C10.  
(see Figure 7).  
8-bit format  
(2 bytes required)  
Byte mode  
Byte mode  
Terminal 13 = V (5 V nom) TMS320C17  
CC–  
Terminal 1 = V (5 V nom)  
CC–  
12  
1.2 Functional Block Diagrams  
WORD OR BYTE MODE  
26  
IN +  
25  
24  
M
U
X
M
U
X
Serial  
Port  
5
IN –  
AUX IN +  
Low-Pass  
Filter  
DR  
A/D  
4
3
23  
FSR  
AUX IN –  
EODR  
6
High-Pass  
Filter  
MSTR CLK  
SHIFT CLK  
Receive Section  
Transmit Section  
10  
1
Internal  
Voltage  
Reference  
WORD-  
BYTE  
13  
12  
14  
11  
CONTROL  
DX  
FSX  
22  
21  
OUT +  
Low-Pass  
Filter  
(sin x)/x  
Correction  
M
U
X
D/A  
EODX  
OUT –  
17,18  
20  
19  
9
7
8
2
V
V
ANLG  
GND  
DGTL  
GND (DIGITAL)  
V
DD  
REF  
RESET  
CC +  
CC –  
DUAL-WORD (TELEPHONE INTERFACE) MODE  
26  
IN +  
25  
24  
M
U
X
M
U
X
5
Serial  
Port  
IN –  
AUX IN +  
Low-Pass  
Filter  
DR  
A/D  
4
3
23  
FSR  
AUX IN –  
D11 OUT  
MSTR CLK  
6
High-Pass  
Filter  
Receive Section  
Transmit Section  
10  
1
SHIFT CLK  
FSD  
Internal  
Voltage  
Reference  
13  
12  
14  
11  
DATA DR  
DX  
FSX  
22  
21  
Low-Pass  
Filter  
(sin x)/x  
Correction  
OUT +  
M
U
X
D/A  
D10 OUT  
OUT –  
20  
19  
17,18  
9
7
8
2
V
V
ANLG  
GND  
DGTL  
GND (DIGITAL)  
V
DD  
REF  
RESET  
CC +  
CC–  
13  
FRAME SYNCHRONIZATION FUNCTIONS  
Function  
Frame Sync Output  
FSX low  
Receiving serial data on DX from processor to internal DAC  
Transmitting serial data on DR from internal ADC to processor, primary communications  
FSR low  
Transmitting serial data on DR from Data-DR to processor, secondary communications in  
dual-word (telephone interface) mode only  
FSD low  
5 V  
20  
5 V  
19  
Serial Data Out  
5
V
+
V
CC  
CC  
26  
25  
DR  
FSR  
IN+  
Analog In  
4
3
IN–  
TLC32046  
D11OUT  
TMS32020,  
TMS320C25,  
TMS320C30, or  
Equivalent 16-Bit DSP  
22  
21  
OUT+  
12 Serial Data In  
Analog Out  
DX  
FSX  
OUT–  
14  
11  
TTL or CMOS  
Logic Levels  
D10OUT  
Secondary Communication (see Table above)  
1
13  
Serial Data Input  
FSD  
DATA-DR  
16-Bit Format TTL  
or CMOS Logic Levels  
Figure 11. Dual-Word (Telephone Interface) Mode  
When the DATA-DR/CONTROL input is tied to a logic signal source varying between 0 and 5 V, the  
TLC32046 is in the dual-word (telephone interface) mode. This logic signal is routed to the DR line for input  
to the DSP only when data frame synchronization (FSD) outputs a low level. The FSD pulse duration is 16  
shift clock pulses. Also, in this mode, the control register data bits D10 and D11 appear on D10OUT and  
D11OUT, respectively, as outputs.  
14  
5 V  
20  
5 V  
19  
V
V
CC +  
CC –  
Serial Data Out  
26  
25  
5
4
DR  
IN+  
Analog In  
IN–  
TLC32046  
FSR  
TMS32020,  
TMS320C25,  
3
EODR  
TMS320C30,  
or Equivalent  
16-Bit DSP  
22  
21  
Serial Data In  
OUT+  
12  
14  
11  
Analog Out  
DX  
FSX  
OUT–  
TTL or CMOS  
Logic Levels  
EODX  
V
V
CC+  
(5 V nom)  
CC–  
(5 V nom)  
1
13  
WORD-BYTE  
CONTROL  
Figure 12. Word Mode  
5 V  
20  
5 V  
19  
V
V
CC +  
CC –  
Serial Data Out  
26  
5
4
DR  
IN+  
Analog In  
25  
IN–  
TLC32046  
FSR  
3
TMS320C17 or  
Equivalent  
EODR  
22  
21  
8-Bit Serial Interface  
(2 bytes required)  
Serial Data In  
OUT+  
12  
14  
11  
Analog Out  
DX  
OUT–  
TTL or CMOS  
Logic Levels  
FSX  
EODX  
V
CC–  
(5 V nom)  
V
CC–  
(5 V nom)  
1
13  
WORD-BYTE  
CONTROL  
Figure 13. Byte Mode  
The word or byte mode is selected by first connecting the DATA-DR/CONTROL input to V  
CC.  
FSD/WORD-BYTE becomes an input and can then be used to select either word or byte transmission  
formats. The end-of-data transmit (EODX) and the end-of-data receive (EODR) signals respectively, are  
used to signal the end of word or byte communication (see the Terminal Functions section).  
15  
1.3 Terminal Assignments  
FK OR FN PACKAGE  
(TOP VIEW)  
J
OR N PACKAGE  
(TOP VIEW)  
§
FSD/WORD-BYTE  
NU  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RESET  
NU  
2
§
D11OUT/EODR  
IN+  
3
FSR  
DR  
IN–  
4
AUX IN+  
AUX IN–  
OUT+  
OUT–  
5
MSTR CLK  
6
V
7
DD  
4
3 2 1  
28 27 26  
25  
5
6
7
8
9
REF  
DGTL GND  
SHIFT CLK  
DR  
IN–  
8
V
CC+  
MSTR CLK  
24  
23  
22  
21  
20  
19  
AUX IN+  
AUX IN–  
OUT+  
9
V
CC–  
V
DD  
10  
11  
12  
13  
14  
§
D10OUT/EODX  
ANLG GND  
ANLG GND  
NU  
REF  
DGTL GND  
SHIFT CLK  
DX  
§
OUT–  
DATA-DR/CONTROL  
FSX  
V
CC+  
10  
11  
§
NU  
D10OUT/EODX  
V
CC–  
12 13 14 15 16 1718  
NU - Nonusable; no external connection should be made to these terminals.  
§
Refer to the mechanical data for the JT package.  
600-mil wide  
The portion of the terminal name to the left of the slash is used for the dual-word (telephone interface) mode.  
The portion of the terminal name to the right of the slash is used for word-byte mode.  
1.4 Ordering Information  
AVAILABLE OPTIONS  
PACKAGE  
PLASTIC CHIP  
CARRIER  
(FN)  
T
A
PLASTIC DIP  
(N)  
CERAMIC DIP  
(J)  
CHIP CARRIER  
(FK)  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
TLC32046CFN  
TLC32046IFN  
TLC32046CN  
TLC32046IN  
TLC32046MJ  
TLC32046MFK  
16  
1.5 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
ANLG GND  
17,18  
Analog ground return for all internal analog circuits. Not internally connected to DGTL  
GND.  
AUX IN+  
24  
I
Noninverting auxiliary analog input stage. AUX IN+ can be switched into the band-pass  
filter and ADC path via software control. If the appropriate bit in the control register is  
a 1, the auxiliary inputs replace the IN+ and INinputs. If the bit is a 0, the IN+ and IN–  
inputs are used (see the DX Serial Data Word Format).  
AUX IN–  
23  
13  
I
I
Inverting auxiliary analog input (see the above AUX IN+ description).  
DATA-DR  
The dual-word (telephone interface) mode, selected by applying an input logic level  
between0and5VtoDATA-DR, allowsthisterminaltofunctionasadatainput. Thedata  
is then framed by the FSD signal and transmitted as an output to the DR line during  
secondary communication. The functions FSD, D11OUT, and D10OUT are valid with  
this mode selection (see Table 21).  
CONTROL  
DR  
When CONTROL is tied to V , the device is in the word or byte mode. The functions  
CC–  
WORD-BYTE, EODR, and EODX are valid in this mode. CONTROL is then used to  
select either the word or byte mode (see Function Table).  
5
O
I
DR is used to transmit the ADC output bits from the AIC to the TMS320 serial port. This  
transmission of bits from the AIC to the TMS320 serial port is synchronized with  
SHIFT CLK.  
DX  
12  
11  
DX is used to receive the DAC input bits and timing and control information from the  
TMS320. This serial transmission from the TMS320 serial port is synchronized with  
SHIFT CLK.  
D10OUT  
EODX  
O
In the dual-word (telephone interface) mode, bit D10 of the control register is output to  
D10OUT. When the device is reset, bit D10 is initialized to 0 (see DX Serial Data Word  
Format). The output update is immediate upon changing bit D10.  
End-of-datatransmit. During the word-mode timing, a low-going pulse occurs on EODX  
immediatelyafterthe16bitsofDACandcontrolorregisterinformationhavetransmitted  
from the TMS320 serial port to the AIC.This signal can be used to interrupt a  
microprocessor upon completion of serial communications. Also, this signal can be  
used to strobe and enable external serial-to-parallel shift registers, latches, or external  
FIFO RAM and to facilitate parallel data bus communications between the DSP and the  
serial-to-parallel shift registers. During the byte-mode timing, this signal goes low after  
the first byte has been transmitted from the TMS320 serial port to the AIC and is kept  
lowuntilthesecondbytehasbeentransmitted. TheTMS320C17canusethislow-going  
signal to differentiate first and second bytes.  
D11OUT  
EODR  
3
O
In the dual-word (telephone interface) mode, bit D11 of the control register is output to  
D11OUT. When the device is reset, bit D11 is initialized to 0 (see DX Serial Data Word  
Format). The output update is immediate upon changing bit D11.  
End-of-data receive. During the word-mode timing, a low-going pulse occurs on EODR  
immediately after the 16 bits of A/D information have been transmitted from the AIC to  
the TMS320 serial port. This signal can be used to interrupt a microprocessor upon  
completionof serial communications. Also, this signal can be used to strobe and enable  
external serial-to-parallel shift registers, latches, or external FIFO RAM, and to facilitate  
parallel data bus communications between the DSP and the serial-to-parallel shift  
registers. During the byte-mode timing, this signal goes low after the first byte has been  
transmitted from the AIC to the TMS320 serial port and is kept low until the second byte  
has been transmitted. The TMS320C17 can use this low-going signal to differentiate  
between first and second bytes.  
17  
1.5 Terminal Functions (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
DGTL  
9
Digital ground for all internal logic circuits. Not internally connected to ANLG GND.  
FSD  
1
O
Frame sync data. The FSD output remains high during primary communication. In the  
dual-word (telephone interface) mode, FSD is identical to FSX during secondary  
communication.  
WORD-BYTE  
FSR  
I
WORD-BYTE allows differentiation between the word and byte data format (see  
DATA-DR/CONTROL and Table 2-1 for details).  
4
O
Frame sync receive. FSR is held low during bit transmission. When FSR goes low, the  
TMS320 serial port begins receiving bits from the AIC via DR of the AIC. The most  
significant DR bit is present on DR before FSR goes low (see Serial Port Sections and  
Internal Timing Configuration Diagrams).  
FSX  
14  
O
Frame sync transmit. When FSX goes low, the TMS320 serial port begins transmitting  
bits to the AIC via DX of the AIC. FSX is held low during bit transmission (see Serial Port  
Sections and Internal Timing Configuration Diagrams).  
IN+  
26  
25  
6
I
I
I
Noninverting input to analog input amplifier stage  
Inverting input to analog input amplifier stage  
IN–  
MSTR CLK  
The master clock signal is used to derive all the key logic signals of the AIC, such as  
the shift clock, the switched-capacitor filter clocks, and the A/D and D/A timing signals.  
The Internal Timing Configuration diagram shows how these key signals are derived.  
The frequencies of these signals are synchronous submultiples of the master clock  
frequency to eliminate unwanted aliasing when the sampled analog signals are  
transferred between the switched-capacitor filters and the ADC and DAC converters  
(see the Internal Timing Configuration).  
OUT+  
OUT–  
REF  
22  
21  
8
O
O
Noninverting output of analog output power amplifier. OUT+ drives transformer hybrids  
or high-impedance loads directly in a differential or a single-ended configuration.  
Invertingoutputofanalogoutputpoweramplifier. OUTisfunctionallyidenticalwithand  
complementary to OUT+.  
I/O The internal voltage reference is brought out on REF. An external voltage reference can  
be applied to REF to override the internal voltage reference.  
RESET  
2
I
A reset function is provided to initialize TA, TA, TB, RA, RA, RB (see Figure 2-1), and  
the control registers. This reset function initiates serial communications between the  
AIC and DSP. The reset function initializes all AIC registers, including the control  
register. After a negative-going pulse on RESET, the AIC registers are initialized to  
provide a 16-kHz data conversion rate for a 10.368-MHz master clock input signal. The  
conversionrateadjustregisters, TAand RA, are reset to 1. The CONTROL register bits  
are reset as follows (see AIC DX Data Word Format section):  
D11 = 0, D10 = 0, D9 = 1, D7 = 1, D6 = 1, D5 = 1, D4 = 0, D3 = 0, D2 = 1  
The shift clock (SCLK) is held high during RESET.  
This initialization allows normal serial-port communication to occur between the AIC  
and the DSP.  
SHIFT CLK  
10  
O
The shift clock signal is obtained by dividing the master clock signal frequency by four.  
SHIFT CLK is used to clock the serial data transfers of the AIC.  
V
V
V
7
Digital supply voltage, 5 V ±5%  
DD  
20  
19  
Positive analog supply voltage, 5 V ±5%  
Negative analog supply voltage, 5 V ±5%  
CC+  
CC–  
18  
2
Detailed Description  
Table 21. Mode-Selection Function Table  
DATA-DR/  
CONTROL  
(Terminal 13)  
FSD/  
CONTROL  
OPERATING  
MODE  
SERIAL  
CONFIGURATION  
WORD-BYTE REGISTER  
(Terminal 1)  
DESCRIPTION  
BIT (D5)  
Terminal functions DATA-DR ,  
FSD , D11OUT, and D10OUT  
are applicable in this  
Dual Word  
(Telephone  
Interface)  
configuration. FSD is asserted  
during secondary  
communication, but FSR is not  
asserted. However, FSD  
remains high during primary  
communication.  
Data in  
(0 V to 5 V)  
FSD out  
(0 V to 5 V)  
Synchronous,  
One 16-Bit Word  
1
Terminal functions DATA-DR  
,
FSD , D11OUT, and D10OUT  
are applicable in this  
configuration. FSD is asserted  
during secondary  
communication, but FSR is not  
asserted. However, FSD  
Dual Word  
(Telephone  
Interface)  
Data in  
(0 V to 5 V)  
FSD out  
(0 V to 5 V)  
Synchronous,  
One 16-Bit Word  
0
remains high during primary  
communication. If secondary  
communications occur while  
the A/D conversion is being  
transmitted from DR, FSD  
cannot go low, and data from  
DATA-DR cannot go onto DR.  
Terminal functions  
† †  
Synchronous,  
CONTROL , WORD-BYTE ,  
1
0
1
0
One 16-Bit Word EODR, and EODX are  
applicable in this configuration.  
Terminal functions  
V
CC+  
WORD  
Asynchronous,  
One 16-bit Word  
CONTROL , WORD-BYTE ,  
EODR, and EODX are  
applicable in this configuration.  
V
CC–  
Terminal functions  
CONTROL , WORD-BYTE ,  
EODR, and EODX are  
Synchronous,  
Two 8-Bit Bytes  
applicable in this configuration.  
V
CC–  
BYTE  
Terminal functions  
CONTROL , WORD-BYTE ,  
EODR, and EODX are  
Asynchronous,  
Two 8-Bit Bytes  
applicable in this configuration.  
DATA-DR/CONTROL has an internal pulldown resistor to 5 V, and FSD/WORD-BYTE has an internal pullup resistor  
to 5 V.  
21  
2.1 Internal Timing Configuration (see Figure 21)  
All the internal timing of the AIC is derived from the high-frequency clock signal that drives the master clock  
input. The shift clock signal, which strobes the serial port data between the AIC and DSP, is derived by  
dividing the master clock input signal frequency by four.  
The TX(A) counter and the TX(B) counter, which are driven by the master clock signal, determine the D/A  
conversion timing. Similarly, the RX(A) counter and the RX(B) counter determine the A/D conversion timing.  
In order for the low-pass switched-capacitor filter in the D/A path (see Functional Block Diagram) to meet  
its transfer function specifications, the frequency of its clock input must be 288 kHz. If the clock frequency  
is not 288 kHz, the filter transfer function frequencies are frequency-scaled by the ratios of the clock  
frequency to 288 kHz:  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
Absolute Frequency (kHz)  
(1)  
For Low-Pass SCF f  
clock  
To obtain the specified filter response, the combination of master clock frequency and the TX(A) counter  
and the RX(A) counter values must yield a 288-kHz switched-capacitor clock signal. This 288-kHz clock  
signal can then be divided by the TX(B) counter to establish the D/A conversion timing.  
The transfer function of the band-pass switched-capacitor filter in the A/D path (see Functional Block  
Diagram) is a composite of its high-pass and low-pass transfer functions. When the shift-clock frequency  
(SCF) is 288 kHz, the high-frequency roll-off of the low-pass section will meet the band-pass filter transfer  
function specification. Otherwise, the high-frequency roll-off is frequency-scaled by the ratio of the  
high-passsectionSCFclockto288kHz(seeFigure55). Thelow-frequencyroll-offofthehigh-passsection  
meets the band-pass filter transfer function specification when the A/D conversion rate is 16 kHz. If not, the  
low-frequency roll-off of the high-pass section is frequency-scaled by the ratio of the A/D conversion rate  
to 16 kHz.  
TheTX(A)counterandtheTX(B)counterarereloadedeachD/Aconversionperiod, whiletheRX(A)counter  
and the RX(B) counter are reloaded every A/D conversion period. The TX(B) counter and the RX(B) counter  
are loaded with the values in the TB and RB registers, respectively. Via software control, the TX(A) counter  
canbeloadedwiththeTAregister, theTAregisterlesstheTAregister, ortheTAregisterplustheTAregister.  
By selecting the TA register less the TAregister option, the upcoming conversion timing occurs earlier by  
an amount of time that equals TAtimes the signal period of the master clock. If the TA register plus the TA′  
register option is executed, the upcoming conversion timing occurs later by an amount of time that equals  
TAtimes the signal period of the master clock. Thus, the D/A conversion timing can be advanced or  
retarded. An identical ability to alter the A/D conversion timing is provided. However, the RX(A) counter can  
be programmed via software control with the RA register, the RA register less the RAregister, or the RA  
register plus the RAregister.  
The ability to advance or retard conversion timing is particularly useful for modem applications. This feature  
allows controlled changes in the A/D and D/A conversion timing and can be used to enhance signal-to-noise  
performance, to perform frequency-tracking functions, and to generate nonstandard modem frequencies.  
If the transmit and receive sections are configured to be synchronous, then the low-pass and band-pass  
switched-capacitor filter clocks are derived from the TX(A) counter. Also, both the D/A and A/D conversion  
timings are derived from the TX(A) counter and the TX(B) counter. When the transmit and receive sections  
are configured to be synchronous, the RX(A) counter, RX(B) counter, RA register, RAregister, and RB  
registers are not used.  
22  
20.736 MHZ  
41.472 MHZ  
XTAL  
OSC  
TMS320 DSP  
5.184 MHz  
10.368 MHz  
MASTER CLOCK  
SHIFT CLOCK  
1.296 MHz  
Divide By 4  
2.592 MHz  
TAREGISTER  
(6 Bits)  
2s-Complement TA  
TA Register  
(5 Bits)  
SCF CLOCK  
See Table 2-3  
See Table 2-3  
Low-Pass Filter,  
(sin x)/x Filter  
Adder/Subtractor  
Transmit Section  
D/A Conversion  
Timing  
D1 D0 SELECT  
0
0
1
1
0
1
0
1
TA  
TB Register  
(6 Bits)  
TA + TA′  
TA TA′  
TA  
7.20 kHz for TB = 40  
8.00 kHz for TB = 36  
9.60 kHz for TB = 30  
14.4 kHz for TB = 20  
16.0 kHz for TB = 18  
19.2 kHz for TB = 15  
See Table 2-3  
See Table 2-2  
9
18  
TX (A) Counter  
(6 Bits)  
Divide By 2  
TX (B) Counter  
D/A Conversion  
Frequency  
288 kHz  
576 kHz  
RARegister  
(6 Bits)  
2s-Complement RA  
RA Register  
(5 Bits)  
SCF CLOCK  
See Table 2-3  
See Table 2-3  
Low-Pass Filter  
Receive Section  
A/D Conversion  
Timing  
Adder/Subtractor  
D1 D0 SELECT  
RB Register  
(6 Bits)  
0
0
1
1
0
1
0
1
RA  
RA + RA′  
RA RA′  
RA  
7.20 kHz for RB = 40  
8.00 kHz for RB = 36  
9.60 kHz for RB = 30  
14.4 kHz for RB = 20  
16.0 kHz for RB = 18  
19.2 kHz for RB = 15  
See Table 2-3  
9
18  
See Table 2-2  
RX (A) Counter  
(6 Bits)  
RX (B) Counter  
Divide By 2  
576 kHz  
High-Pass Filter,  
A/D Conversion  
Frequency  
288 kHz  
These control bits are described in the DX Serial Data Word Format section.  
NOTES: A. Tables 22 and 23 are primary and secondary communication protocols, respectively.  
B. In synchronous operation, RA, RA, RB, RX(A), and RX(B) are not used. TA, TA, TB, TX(A), and TX(B) are  
used instead.  
C. Itemsin italics refer only to frequencies and register contents, which are variable. A crystal oscillator driving  
20.736MHz into the TMS320-series DSP provides a master clock frequency of 5.184 MHz. The TLC32046  
produces a shift clock frequency of 1.296 MHz. If the TX(A) register contents equal 9, the SCF clock  
frequency is 288 kHz, and the D/A conversion frequency is 288 kHz ÷ T(B).  
Figure 21. Asynchronous Internal Timing Configuration  
23  
2.2 Analog Input  
Two pairs of analog inputs are provided. Normally, the IN+ and INinput pair is used; however, the auxiliary  
input pair, AUX IN+ and AUX IN, can be used if a second input is required. Since sufficient common-mode  
range and rejection are provided, each input set can be operated in differential or single-ended modes. The  
gain for the IN+, IN, AUX IN+, and AUX INinputs can be programmed to 1, 2, or 4 (see Table 41). Either  
input circuit can be selected via software control. Multiplexing is controlled with the D4 bit (enable/disable  
AUX IN+ and AUX IN) of the secondary DX word (see Table 23). The multiplexing requires a 2-ms wait  
at SCF = 288 kHz (see Figure 53) for a valid output signal. A wide dynamic range is ensured by the  
differential internal analog architecture and the separate analog and digital voltage supplies and grounds.  
2.3 A/D Band-Pass Filter, Clocking, and Conversion Timing  
The receive-channel A/D high-pass filter can be selected or bypassed via software control (see Functional  
Block Diagram). The frequency response of this filter is found in the electrical characteristic section. This  
response results when the switched-capacitor filter clock frequency is 288 kHz and the A/D sample rate is  
16 kHz. Several possible options can be used to attain a 288-kHz switched-capacitor filter clock. When the  
filter clock frequency is not 288 kHz, the low-pass filter transfer function is frequency-scaled by the ratio of  
the actual clock frequency to 288 kHz (see Typical Characteristics section). The ripple bandwidth and 3-dB  
low-frequency roll-off points of the high-pass section are 300 Hz and 200 Hz, respectively. However, the  
high-pass section low-frequency roll-off is frequency-scaled by the ratio of the A/D sample rate to 16 kHz.  
Figure 21 and the DX serial data word format sections of this data manual indicate the many options for  
attaining a 288-kHz band-pass switched-capacitor filter clock. These sections indicate that the RX(A)  
counter can be programmed to give a 288-kHz band-pass switched-capacitor filter clock for several master  
clock input frequencies.  
The A/D conversion rate is attained by frequency-dividing the band-pass switched-capacitor filter clock with  
the RX(B) counter. Unwanted aliasing is prevented because the A/D conversion rate is an integer  
submultiple of the band-pass switched-capacitor filter sampling rate, and the two rates are synchronously  
locked.  
2.4 A/D Converter  
Fundamental performance specifications for the receive channel ADC circuitry are in the electrical  
characteristic section of this data manual. The ADC circuitry, using switched-capacitor techniques, provides  
an inherent sample-and-hold function.  
2.5 Analog Output  
The analog output circuitry is an analog output power amplifier. Both noninverting and inverting amplifier  
outputs are brought out of the IC. This amplifier can drive transformer hybrids or low-impedance loads  
directly in either a differential or single-ended configuration.  
2.6 D/A Low-Pass Filter, Clocking, and Conversion Timing  
Thefrequencyresponseresultswhenthelow-passswitched-capacitorfilterclockfrequencyis288kHz(see  
equation1). LiketheA/Dfilter, thetransferfunctionofthisfilterisfrequency-scaledwhentheclockfrequency  
is not 288 kHz (see Typical Characteristics section). A continuous-time filter is provided on the output of the  
low-pass filter to eliminate the periodic sample data signal information, which occurs at multiples of the  
288-kHz switched-capacitor clock feedthrough.  
The D/A conversion rate is attained by frequency-dividing the 288-kHz switched-capacitor filter clock with  
the T(B) counter. Unwanted aliasing is prevented because the D/A conversion rate is an integer submultiple  
of the switched-capacitor low-pass filter sampling rate, and the two rates are synchronously locked.  
2.7 D/A Converter  
Fundamental performance specifications for the transmit channel DAC circuitry are in the electrical  
characteristic section. The DAC has a sample-and-hold function that is realized with a switched-capacitor  
ladder.  
24  
2.8 Serial Port  
The serial port has four possible configurations summarized in the function table on page 12. These  
configurations are briefly described below.  
The transmit and receive sections are operated asynchronously, and the serial port interfaces  
directly with the TMS320C17. The communications protocol is two 8-bit bytes.  
The transmit and receive sections are operated asynchronously, and the serial port interfaces  
directly with the TMS32020, TMS320C25, and TMS320C30. The communications protocol is  
one 16-bit word.  
The transmit and receive sections are operated synchronously, and the serial port interfaces  
directly with the TMS320C17. The communications protocol is two 8-bit bytes.  
The transmit and receive sections are operated synchronously, and the serial port interfaces  
directly with the TMS32020, TMS320C25, TMS320C30, or two SN74299 serial-to-parallel shift  
registers, which can interface in parallel to the TMS32010, TMS320C15, to any other digital  
signal processor, or to external FIFO circuitry. The communications protocol is one 16-bit word.  
2.9 Synchronous Operation  
When the transmit and receive sections are operated synchronously, the low-pass filter clock drives both  
low-pass and band-pass filters (see Functional Block Diagram). The A/D conversion timing is derived from  
and equal to the D/A conversion timing. When data bit D5 in the control register is a logic 1, transmit and  
receive sections are synchronous. The band-pass switched-capacitor filter and the A/D converter timing are  
derived from the TX(A) counter, the TX(B) counter, and the TA and TAregisters. In synchronous operation,  
both the A/D and the D/A channels operate from the same frequencies. The FSX and the FSR timing is  
identicalduring primary communication, but FSR is not asserted during secondary communication because  
there is no new A/D conversion result.  
2.9.1  
One 16-Bit Word (Dual-Word [Telephone Interface] or Word Mode)  
The serial port interfaces directly with the serial ports of the TMS32020, TMS320C25, and the TMS320C30,  
and communicates in one 16-bit word. The operation sequence is as follows:  
1. The FSX and FSR pins are brought low by the TLC32046 AIC.  
2. One 16-bit word is transmitted and one 16-bit word is received.  
3. FSX and FSR are brought high.  
4. EODX and EODR emit low-going pulses one shift clock wide. EODX and EODR are valid in the  
word or byte mode only.  
If the device is in the dual-word (telephone interface) mode, FSD goes low during the secondary  
communication period and enables the data word received at the DATA-DR/CONTROL input to be routed  
to the DR line. The secondary communication period occurs four shift clocks after completion of primary  
communications.  
2.9.2  
Two 8-Bit Bytes (Byte Mode)  
The serial port interfaces directly with the serial port of the TMS320C17 and communicates in two 8-bit  
bytes. The operation sequence is as follows:  
1. FSX and FSR are brought low.  
2. One 8-bit word is transmitted and one 8-bit word is received.  
3. EODX and EODR are brought low.  
4. FSX and FSR emit positive frame-sync pulses that are four shift clock cycles wide.  
5. One 8-bit byte is transmitted and one 8-bit byte is received.  
6. FSX and FSR are brought high.  
7. EODX and EODR are brought high.  
25  
2.9.3  
Synchronous Operating Frequencies  
The synchronous operating frequencies are determined by the following equations.  
Switched capacitor filter (SCF) frequencies (see Figure 21):  
master clock frequency  
Low-pass SCF clock frequency  
(D A and A D channels)  
T(A)  
2
High-pass SCF clock frequency (A D channel)  
Conversion frequency (A D and D A channels)  
A D conversion frequency  
low-pass SCF clock frequency  
T(B)  
master clock frequency  
T(A)  
2
T(B)  
NOTE: T(A), T(B), R(A), and R(B) are the contents of the TA, TB, RA, and RB registers, respectively.  
2.10 Asynchronous Operation  
When the transmit and the receive sections are operated asynchronously, the low-pass and band-pass filter  
clocks are independently generated from the master clock. The D/A and the A/D conversion timing is also  
determined independently.  
D/A timing is set by the counters and registers described in synchronous operation, but the RA and RB  
registers are substituted for the TA and TB registers to determine the A/D channel sample rate and the A/D  
path switched-capacitor filter frequencies. Asynchronous operation is selected by control register bit D5  
being zero.  
2.10.1 One 16-Bit Word (Word Mode)  
The serial port interfaces directly with the serial ports of the TMS32020, TMS320C25, and TMS320C30 and  
communicates with 16-bit word formats. The operation sequence is as follows:  
1. FSX or FSR are brought low by the TLC32046 AIC.  
2. One 16-bit word is transmitted or one 16-bit word is received.  
3. FSX or FSR are brought high.  
4. EODX or EODR emit low-going pulses one shift clock wide. EODX and EODR are valid in either  
the word or byte mode only.  
2.10.2 Two 8-Bit Bytes (Byte Mode)  
The serial port interfaces directly with the serial port of the TMS320C17 and communicates in two 8-bit  
bytes. The operating sequence is as follows:  
1. FSX or FSR are brought low by the TLC32046 AIC.  
2. One byte is transmitted or received.  
3. EODX or EODR are brought low.  
4. FSX or FSR are brought high for four shift clock periods and then brought low.  
5. The second byte is transmitted or received.  
6. FSX or FSR are brought high.  
7. EODX or EODR are brought high.  
2.10.3 Asynchronous Operating Frequencies  
The asynchronous operating frequencies are determined by the following equations.  
Switched-capacitor filter frequencies (see Figure 21):  
master clock frequency  
Low-pass D A SCF clock frequency  
T(A)  
2
26  
master clock frequency  
R(A)  
Low-pass A D SCF clock frequency  
2
High-pass SCF clock frequency (A D channel)  
A D conversion frequency  
(2)  
Conversion frequency:  
D A conversion frequency  
low-pass D A SCF clock frequency  
T(B)  
-
low-pass A D SCF clock frequency (for low pass receive filter)  
R(B)  
A D conversion frequency  
(3)  
NOTE: T(A), T(B), R(A), and R(B) are the contents of the TA, TB, RA, and RB registers, respectively.  
2.11 Operation of TLC32046 With Internal Voltage Reference  
The internal reference of the TLC32046 eliminates the need for an external voltage reference and provides  
overall circuit cost reduction. The internal reference eases the design task and provides complete control  
of the IC performance. The internal reference is brought out to REF. To keep the amount of noise on the  
reference signal to a minimum, an external capacitor can be connected between REF and ANLG GND.  
2.12 Operation of TLC32046 With External Voltage Reference  
REF can be driven from an external reference circuit. This external circuit must be capable of supplying  
250 µA and must be protected adequately from noise and crosstalk from the analog input.  
2.13 Reset  
A reset function is provided to initiate serial communications between the AIC and DSP and to allow fast,  
cost-effective testing during manufacturing. The reset function initializes all AIC registers, including the  
control register. After a negative-going pulse on RESET, the AIC is initialized. This initialization allows  
normal serial port communications activity to occur between AIC and DSP (see AIC DX Data Word Format  
section). After RESET, TA=TB=RA=RB=18 (or 12 hexadecimal), TA=RA=01 (hexadecimal), the A/D  
high-pass filter is inserted, the loop-back function is deleted, AUX IN+ and AUX INare disabled, transmit  
and receive sections are in synchronous operation, programmable gain is set to 1, the on-board (sin x)/x  
correction filter is not selected, D10OUT is set to 0, and D11OUT is set to 0.  
2.14 Loopback  
This feature allows the circuit to be tested remotely. In loopback, OUT+ and OUTare internally connected  
to IN+ and IN. The DAC bits (D15 to D2), which are transmitted to DX, can be compared with the ADC bits  
(D15 to D2), received from DR. The bits on DR equal the bits on DX. However, there is some difference in  
these bits due to the ADC and DAC output offsets.  
The loopback feature is implemented with digital signal processor control by transmitting a logic 1 for data  
bit D3 in the DX secondary communication to the control register (see Table 23).  
27  
2.15 Communications Word Sequence  
In the dual-word (telephone interface) mode, there are two data words that are presented to the DSP or µP  
from the DR terminal. The first data word is the ADC conversion result occurring during the FSR time, and  
the second is the serial data applied to DATA-DR during the FSD time. FSR is not asserted during secondary  
communications and FSD is not asserted during primary communications.  
Primary  
Communications  
Secondary  
Communications  
4 Shift  
Clocks  
TLC32046  
DX-14 Bits Digital 11  
From DSP to DAC  
DX-14 Bits Digital XX  
From DSP  
FSX  
DX  
Input for D/A  
Conversion  
Input for Register  
Program  
TLC32046  
TLC32046  
Dual-Word  
(telephone interface)  
Mode Only  
2s Complement Output  
From ADC to the DSP  
FSR  
FSD  
TLC32046  
Dual-Word  
(telephone interface)  
Mode Only  
16 bits Digital From  
DATA-DR to DR  
2s Complement Output  
From ADC to the DSP  
Data From DATA-DR  
to the DSP  
DR  
TLC32046  
Dual-Word  
(telephone interface)  
Mode Only  
16 bits  
16 bits  
Figure 22. Primary and Secondary Communications Word Sequence  
2.15.1 DR Word Bit Pattern  
The data word is the 14-bit conversion result of the receive channel to the processor in 2s complement  
format. With 16-bit processors, the data is 16 bits long with the two LSBs at zero.  
A/D MSB  
1st bit sent  
A/D LSB  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
28  
2.15.2 Primary DX Word Bit Pattern  
Using 8-bit processors, the data word is transmitted in the same order as one 16-bit word, but as two bytes  
with the two LSBs of the second byte set to zero.  
A/D OR D/A MSB  
1st bit sent  
1st bit sent of 2nd byte  
A/D or D/A LSB  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 22. Primary DX Serial Communication Protocol  
FUNCTIONS  
D1  
D0  
D15 (MSB)-D2 DAC Register.  
TA TX(A), RA RX(A) (see Figure 21).  
TB TX(B), RB RX(B) (see Figure 21).  
0
0
D15 (MSB)-D2 DAC Register.  
TA+TA′ → TX(A), RA+RA′ → RX(A) (see Figure 21).  
TB TX(B), RB RX(B) (see Figure 21).  
The next D/A and A/D conversion period is changed by the addition of TAand RAmaster clock cycles,  
in which TAand RAcan be positive, negative, or zero (refer to Table 24).  
0
1
1
0
D15 (MSB)-D2 DAC Register.  
TATA′ → TX(A), RARA′ → RX(A) (see Figure 21).  
TB TX(B), RB RX(B) (see Figure 21).  
ThenextD/AandA/DconversionperiodischangedbythesubtractionofTAandRAmasterclockcycles,  
in which TAand RAcan be positive, negative, or zero (refer to Table 24).  
D15 (MSB)-D2 DAC Register.  
TA TX(A), RA RX(A) (see Figure 21).  
TB TX(B), RB RX(B) (see Figure 21).  
1
1
After a delay of four shift cycles, a secondary transmission follows to program the AIC to operate in the  
desired configuration. In the telephone interface mode, data on DATA DR is routed to DR during  
secondary transmission.  
NOTE: Settingthe two least significant bits to 1inthenormaltransmissionofDACinformation(primarycommunications)  
to the AIC initiates secondary communications upon completion of the primary communications. When the  
primary communication is complete, FSX remains high for four SHIFT CLOCK cycles and then goes low and  
initiatesthesecondarycommunication. Thetimingspecificationsfortheprimaryandsecondarycommunications  
are identical. In this manner, the secondary communication, if initiated, is interleaved between successive  
primary communications. This interleaving prevents the secondary communication from interfering with the  
primarycommunicationsandDACtiming. ThispreventstheAICfromskippingaDACoutput. FSRisnotasserted  
during secondary communications activity. However, in the dual-word (telephone interface) mode, FSD is  
asserted during secondary communications but not during primary communications.  
29  
2.15.3 Secondary DX Word Bit Pattern  
D/A MSB  
1st bit sent  
1st bit sent of 2nd byte  
D/A LSB  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 23. Secondary DX Serial Communication Protocol  
FUNCTIONS  
D1  
D0  
D13 (MSB)-D9 TA , 5 bits unsigned binary (see Figure 21).  
D6 (MSB)-D2 RA, 5 bits unsigned binary (see Figure 21).  
0
0
D15, D14, D8, and D7 are unassigned.  
D14 (sign bit)-D9 TA, 6 bits 2s complement (see Figure 21).  
D7 (sign bit)-D2 RA, 6 bits 2s complement (see Figure 21).  
D15 and D8 are unassigned.  
0
1
1
0
D14 (MSB)-D9 TB, 6 bits unsigned binary (see Figure 21).  
D7 (MSB)-D2 RB, 6 bits unsigned binary (see Figure 21).  
D15 and D8 are unassigned.  
D2 = 0/1 deletes/inserts the A/D high-pass filter.  
D3 = 0/1 deletes/inserts the loopback function.  
D4 = 0/1 disables/enables AUX IN+ and AUX IN.  
D5 = 0/1 asynchronous/synchronous transmit and receive sections.  
D6 = 0/1 gain control bits (see Table 41).  
1
1
D7 = 0/1 gain control bits (see Table 41).  
D9 = 0/1 delete/insert on-board second-order (sinx)/x correction filter  
D10 = 0/1 output to D10OUT (dual-word (telephone interface) mode)  
D11 = 0/1 output to D11OUT (dual-word (telephone interface) mode)  
D8, D12D15 are unassigned.  
2.16 Reset Function  
A reset function is provided to initiate serial communications between the AIC and DSP. The reset function  
initializes all AIC registers, including the control register. After power has been applied to the AIC, a  
negative-going pulse on RESET initializes the AIC registers to provide a 16-kHz A/D and D/A conversion  
rate for a 10.368-MHz master clock input signal. Also, the pass-bands of the A/D and D/A filters are 300  
Hz to 7200 Hz and 0 Hz to 7200 Hz, respectively; therefore, the filter bandwidths are half those shown in  
the filter transfer function specification section. The AIC, except the CONTROL register, is initialized as  
follows (see AIC DX Data Word Format section):  
REGISTER  
INITIALIZED VALUE (HEX) 12  
TA  
TA′  
01  
TB  
12  
RA  
12  
RARB  
01 12  
The CONTROL register bits are reset as follows (see Table 23):  
D11 = 0, D10 = 0, D9 = 1, D7 = 1, D6 = 1, D5 = 1, D4 = 0, D3 = 0, D2 = 1  
This initialization allows normal serial port communications to occur between the AIC and the DSP. If the  
transmit and receive sections are configured to operate synchronously and the user wishes to program  
different conversion rates, only the TA, TA, and TB register need to be programmed. Both transmit and  
receive timing are synchronously derived from these registers (see the Terminal Functions and DX Serial  
Data Word Format sections).  
Figure 23 shows a circuit that provides a reset on power-up when power is applied in the sequence given  
in the power-up sequence section. The circuit depends on the power supplies reaching their recommended  
values a minimum of 800 ns before the capacitor charges to 0.8 V above DGTL GND.  
210  
TLC32046  
V
CC  
+
5 V  
200 kΩ  
RESET  
0.5 µF  
5 V  
V
CC  
Figure 23. Reset on Power-Up Circuit  
2.17 Power-Up Sequence  
To ensure proper operation of the AIC and as a safeguard against latch-up, it is recommended that Schottky  
diodes with forward voltages less than or equal to 0.4 V be connected from V to ANLG GND and from  
CC–  
V
toDGTLGND.Intheabsenceofsuchdiodes,powerisappliedinthefollowingsequence: ANLGGND  
CC–  
and DGTL GND, V  
, then V  
and V . Also, no input signal is applied until after power-up.  
CC–  
CC+ DD  
2.18 AIC Register Constraints  
The following constraints are placed on the contents of the AIC registers:  
1. TA register must be 4 in word mode (WORD/BYTE= high).  
2. TA register must be 5 in byte mode (WORD/BYTE= low).  
3. TAregister can be either positive, negative, or zero.  
4. RA register must be 4 in word mode (WORD/BYTE = high).  
5. RA register must be 5 in byte mode (WORD/BYTE = low).  
6. RAregister can be either positive, negative, or zero.  
7. (TA register ± TAregister) must be > 1.  
8. (RA register ± RAregister) must be > 1.  
9. TB register must be 15.  
10. RB register must be 15.  
2.19 AIC Responses to Improper Conditions  
The AIC has provisions for responding to improper conditions. These improper conditions and the response  
of the AIC to these conditions are presented in Table 24.  
211  
Table 24. AIC Responses to Improper Conditions  
IMPROPER CONDITION  
AIC RESPONSE  
TA register + TAregister = 0 or 1  
TA register TAregister = 0 or 1  
Reprogram TX(A) counter with TA register value  
TA register + TAregister < 0  
MODULO 64 arithmetic is used to ensure that a positive value is loaded into  
TX(A) counter, i.e., TA register + TAregister + 40 HEX is loaded into TX(A)  
counter.  
RA register + RAregister = 0 or 1  
RA register RAregister = 0 or 1  
Reprogram RX(A) counter with RA register value  
RA register + RAregister = 0 or 1  
MODULO 64 arithmetic is used to ensure that a positive value is loaded into  
RX(A) counter, i.e., RA register + RAregister + 40 HEX is loaded into RX(A)  
counter.  
TA register = 0 or 1  
RA register = 0 or 1  
AIC is shut down. Reprogram TA or RA registers after a reset.  
TA register < 4 in word mode  
TA register < 5 in byte mode  
RA register < 4 in word mode  
RA register < 5 in byte mode  
The AIC serial port no longer operates. Reprogram TA or RA registers after  
a reset.  
TB register < 15  
Reprogram TB register with 12 HEX  
Reprogram RB register with 12 HEX  
Hold last DAC output  
RB register < 15  
AIC and DSP cannot communicate  
2.20 Operation With Conversion Times Too Close Together  
If the difference between two successive D/A conversion frame syncs is less than 1/25 kHz, the AIC  
operates improperly. In this situation, the second D/A conversion frame sync occurs too quickly, and there  
is not enough time for the ongoing conversion to be completed. This situation can occur if the A and B  
registers are improperly programmed or if the A + Aregister result is too small. When incrementally  
adjusting the conversion period via the A + Aregister options, the designer should not violate this  
requirement (see Figure24).  
t
t
1
2
Frame Sync  
(FSX or FSR)  
Ongoing Conversion  
t
t 1/25 kHz  
1
2
Figure 24. Conversion Times Too Close Together  
2.21 More Than One Receive Frame Sync Occurring Between Two Transmit  
Frame Syncs Asynchronous Operation  
When incrementally adjusting the conversion period via the A + Aor A Aregister options, a specific  
protocol is followed. The command to use the incremental conversion period adjust option is sent to the AIC  
during an FSX frame sync. The ongoing conversion period is then adjusted; however, either receive  
conversion period A or conversion period B can be adjusted. For both transmit and receive conversion  
periods, the incremental conversion period adjustment is performed near the end of the conversion period.  
If there is sufficient time between t and t , the receive conversion period adjustment is performed during  
1
2
receive conversion period A. Otherwise, the adjustment is performed during receive conversion period B.  
The adjustment command only adjusts one transmit conversion period and one receive conversion period.  
To adjust another pair of transmit and receive conversion periods, another command must be issued during  
a subsequent FSX frame (see Figure 25).  
212  
t
1
FSX  
FSR  
Transmit Conversion Period  
Receive Conversion  
Period A  
Receive Conversion  
Period B  
Figure 25. More Than One Receive Frame Sync Between Two Transmit Frame Syncs  
2.22 More Than One Transmit Frame Sync Occurring Between Two Receive  
Frame Syncs Asynchronous Operation  
When incrementally adjusting the conversion period via the A + Aor A Aregister options, a specific  
protocol must be followed. For both transmit and receive conversion periods, the incremental conversion  
period adjustment is performed near the end of the conversion period. The command to use the incremental  
conversion period adjust options is sent to the AIC during an FSX frame sync. The ongoing transmit  
conversion period is then adjusted. However, three possibilities exist for the receive conversion period  
adjustment as shown in Figure 26. When the adjustment command is issued during transmit conversion  
period A, receive conversion period A is adjusted if there is sufficient time between t and t . If there is not  
1
2
sufficient time between t and t , receive conversion period B is adjusted. The third option is that the receive  
1
2
portion of an adjustment command can be ignored if the adjustment command is sent during a receive  
conversion period, which is adjusted due to a prior adjustment command. For example, if adjustment  
commands are issued during transmit conversion periods A, B, and C, the first two commands may cause  
receive conversion periods A and B to be adjusted, while the third receive adjustment command is ignored.  
The third adjustment command is ignored since it was issued during receive conversion period B, which  
already is adjusted via the transmit conversion period B adjustment command.  
t
1
FSX  
Transmit  
Conversion  
Period A  
Transmit  
Conversion  
Period B  
Transmit  
Conversion  
Period C  
t
2
FSR  
Receive Conversion Period A  
Receive Conversion Period B  
Figure 26. More Than One Transmit Frame Sync Between Two Receive Frame Syncs  
2.23 More than One Set of Primary and Secondary DX Serial Communications  
Occurring Between Two Receive Frame Syncs (See DX Serial Data Word  
Format section) Asynchronous Operation  
The TA, TA, TB, and control register information that is transmitted in the secondary communication is  
accepted and applied during the ongoing transmit conversion period. If there is sufficient time between t  
1
and t , the TA, RA, and RB register information, sent during transmit conversion period A, is applied to  
2
receive conversion period A; otherwise, this information is applied during receive conversion period B. If RA,  
RA, and RB register information has been received and is being applied during an ongoing conversion  
period, any subsequent RA, RA, or RB information received during this receive conversion period is  
disregarded (see Figure 27).  
213  
t
1
Primary Secondary  
Transmit  
Primary Secondary  
Primary Secondary  
FSX  
FSR  
Transmit  
Conversion  
Preload B  
Transmit  
Conversion  
Preload C  
Conversion  
Preload A  
t
2
Receive  
Conversion  
Period A  
Receive  
Conversion  
Period B  
Figure 27. More Than One Set of Primary and Secondary DX  
Serial Communications Between Two Receive Frame Syncs  
2.24 System Frequency Response Correction  
The (sin x)/x correction for the DAC zero-order sample-and-hold output can be provided by an on-board  
second-order (sin x)/x correction filter (see Functional Block Diagram). This (sin x)/x correction filter can be  
inserted into or omitted from the signal path by digital-signal-processor control (data bit D9 in the DX  
secondary communications). When inserted, the (sin x)/x correction filter precedes the switched-capacitor  
low-pass filter. When the TB register (see Figure 21) equals 15, the correction results of Figures 55, 56,  
and 57 can be obtained.  
The (sin x)/x correction [see section (sin x)/x] can also be accomplished by disabling the on-board  
second-ordercorrectionfilterandperformingthe(sinx)/xcorrectionindigitalsignalprocessorsoftware. The  
system frequency response can be corrected via DSP software to ± 0.1 dB accuracy to a band edge of  
3000 Hz for all sampling rates. This correction is accomplished with a first-order digital correction filter, that  
requires seven TMS320 instruction cycles. With a 200-ns instruction cycle, seven instructions represent an  
overhead factor of 1.1% and 1.3% for sampling rates of 8 and 9.6 kHz, respectively (see the (Sin x)/x  
Correction Section for more details).  
2.25 (Sin x)/x Correction  
If the designer does not wish to use the on-board second-order (sin x)/x correction filter, correction can be  
accomplished in digital signal processor (DSP) software. (Sin x)/x correction can be accomplished easily  
and efficiently in digital signal processor software. Excellent correction accuracy can be achieved to a band  
edge of 3000 Hz by using a first-order digital correction filter. The results shown are typical of the numerical  
correction accuracy that can be achieved for sample rates of interest. The filter requires seven instruction  
cycles per sample on the TMS320 DS. With a 200-ns instruction cycle, nine instructions per sample  
represents an overhead factor of 1.4% and 1.7% for sampling rates of 8000 Hz and 9600 Hz, respectively.  
This correction adds a slight amount of group delay at the upper edge of the 300-Hz to 3000-Hz band.  
2.26 (Sin x)/x Roll-Off for a Zero-Order Hold Function  
The (sin x)/x roll-off error for the AIC DAC zero-order hold function at a band-edge frequency of 3000 Hz  
for the various sampling rates is shown in Table 25 (see Figure 57).  
214  
Table 25. (sin x)/x Roll-Off Error  
sin π f/f  
s
Error = 20 log  
π f/f  
s
f
(Hz)  
s
f = 3000 Hz  
(dB)  
7200  
8000  
9600  
2.64  
2.11  
1.44  
0.63  
0.50  
0.35  
0.21  
14400  
16000  
19200  
25000  
The actual AIC (sin x)/x roll-off is slightly less than the figures in Table 25 because the AIC has less than  
100% duty cycle hold interval.  
2.27 Correction Filter  
To externally compensate for the (sin x)/x roll-off of the AIC, a first-order correction filter can be implemented  
as shown in Figure 28.  
+
Σ
u
X
y
(i + 1)  
(i + 1)  
+
(1 p1) p2  
X
1  
Z
p1  
Figure 28. First-Order Correction Filter  
The difference equation for this correction filter is:  
= p2 (1 p1) u + p1 y  
(4)  
(5)  
y
(i + 1)  
(i + 1)  
(i)  
where the constant p1 determines the pole locations.  
The resulting squared magnitude transfer function is:  
2
2
(p2) V (1p1)  
12 V p1 V cos (2p f/f ) + (p1)  
| H (f) | 2  
=
2
s
2.28 Correction Results  
Table 2-6 shows the optimum p values and the corresponding correction results for 8000-Hz and 9600-Hz  
sampling rates (see Figures 58, 59, and 510).  
215  
Table 26. (Sin x)/x Correction Table for f = 8000 Hz and f = 9600 Hz  
s
s
ROLL-OFF ERROR (dB)  
ROLL-OFF ERROR (dB)  
f
= 8000 Hz  
f = 9600 Hz  
p1 = 0.1307  
s
s
f (Hz)  
p1 = 0.14813  
p2 = 0.9888  
p2 = 0.9951  
300  
600  
0.099  
0.089  
0.054  
0.002  
0.041  
0.043  
0.043  
0
900  
1200  
1500  
1800  
2100  
2400  
2700  
3000  
0
0
0.079  
0.043  
0.043  
0.043  
0
0.100  
0.091  
0.043  
0.102  
0.043  
2.29 TMS320 Software Requirements  
The digital correction filter equation can be written in state variable form as follows:  
= y k1 + u  
y
k2  
(i+1)  
(i+1)  
(i)  
Where  
k1 = p1  
k2 = (1 p1) p2  
y(i) = filter state  
u(i+1) = next I/O sample  
The coefficients k1 and k2 must be represented as 16-bit integers. The SACH instruction (with the proper  
shift) yields the correct result. With the assumption that the TMS320 processor page pointer and memory  
configuration are properly initialized, the equation can be executed in seven instructions or seven cycles  
with the following program:  
ZAC  
LT K2  
MPY U  
LTA K1  
MPY Y  
APAC  
SACH (dma), (shift)  
216  
3
Specifications  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range, V  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
CC+  
DD  
Output voltage range, V  
O
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
I
Digital ground voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
Operating free-air temperature range: TLC32046C . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
TLC32046I . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLC32046M . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range: TLC32046C, TLC32046I . . . . . . . . . . . . . 40°C to 125°C  
TLC32046M . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 10 seconds: FN or FK package . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds:  
N or J package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
NOTE 1: Voltage values for maximum ratings are with respect to V  
.
CC–  
3.2 Recommended Operating Conditions  
MIN NOM  
MAX  
5.25  
UNIT  
V
Supply voltage, V  
Supply voltage, V  
(see Note 2)  
(see Note 2)  
4.75  
4.75  
4.75  
5
5  
5
CC+  
5.25  
5.25  
V
CC–  
Digital supply voltage, V  
(see Note 2)  
Digital ground voltage with respect to ANLG GND, DGTL GND  
V
DD  
0
V
Reference input voltage, V  
(see Note 2)  
2
2
4
V
ref(ext)  
High-level input voltage, V  
V
+0.3  
DD  
0.8  
V
IH  
Low-level input voltage, V (see Note 3)  
IL  
0.3  
300  
V
Load resistance at OUT+ and/or OUT, R  
L
Load capacitance at OUT+ and/or OUT, C  
100  
pF  
MHz  
V
L
MSTR CLK frequency (see Note 4)  
5
10.368  
±1.5  
25  
Analog input amplifier common mode input voltage (see Note 5)  
A/D or D/A conversion rate  
kHz  
TLC32046C  
TLC32046I  
TLC32046M  
0
40  
55  
70  
85  
Operating free-air temperature range, T  
°C  
A
125  
NOTES: 2. Voltages at analog inputs and outputs, REF, V  
, and V  
are with respect to ANLG GND. Voltages at  
CC+  
CC–  
are with respect to DGTL GND.  
digital inputs and outputs and V  
DD  
3. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used  
in this data manual for logic voltage levels only.  
4. The band-pass switched-capacitor filter (SCF) specifications apply only when the low-pass section SCF  
clock is 288 kHz and the high-pass section SCF clock is 16 kHz. If the low-pass SCF clock is shifted from  
288 kHz, the low-pass roll-off frequency shifts by the ratio of the low-pass SCF clock to 288 kHz. If the  
high-pass SCF clock is shifted from 16 kHz, the high-pass roll-off frequency shifts by the ratio of the  
high-pass SCF clock to 16 kHz. Similarly, the low-pass switched-capacitor filter (SCF) specifications apply  
onlywhen the SCF clock is 288 kHz. If the SCF clock is shifted from 288 kHz, the low-pass roll-offfrequency  
shifts by the ratio of the SCF clock to 288 kHz.  
5. This range applies when (IN+ IN) or (AUX IN+ AUX IN) equals ± 6 V.  
31  
3.3 Electrical Characteristics Over Recommended Operating Free-Air  
Temperature Range, V  
Otherwise Noted)  
= 5 V, V  
= 5 V, V  
= 5 V (Unless  
CC+  
CC–  
DD  
3.3.1  
Total Device, MSTR CLK Frequency = 5.184 MHz, Outputs Not Loaded  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
V
V
= 4.75 V,  
= 4.75 V,  
I
I
= 300 µA  
2.4  
OH  
DD  
OH  
= 2 mA  
0.4  
35  
V
OL  
DD  
OL  
TLC32046C  
Supply current from  
I
TLC32046I  
TLC32046M  
TLC32046C  
TLC32046I  
TLC32046M  
40  
mA  
mA  
CC+  
V
CC+  
45  
35  
40  
45  
7
Supply current from  
I
I
CC–  
V
CC –  
Supply current from V  
mA  
V
DD  
DD  
TLC32046M  
Internal reference  
output voltage  
V
2.9  
3.3  
ref  
Temperature coefficient of internal  
reference voltage  
α
250  
100  
ppm/°C  
kΩ  
Vref  
r
Output resistance at REF  
o
3.3.2  
Power Supply Rejection and Crosstalk Attenuation  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Idle channel, supply  
signal at 200 mV p-p  
measured at DR  
(ADC output)  
f = 0 kHz to 30 kHz  
f = 30 kHz to 50 kHz  
30  
45  
V
or V  
supply voltage  
CC –  
CC+  
dB  
rejection ratio, receive channel  
V
or V  
supply voltage  
CC –  
Idle channel, supply  
signal at 200 mV p-p  
measured at OUT+  
f = 0 kHz to 30 kHz  
f = 30 kHz to 50 kHz  
30  
45  
CC+  
rejection ratio, transmit channel  
(single-ended)  
dB  
TLC32046C, I  
TLC32046M  
80  
80  
Crosstalk attenuation, transmit-  
to-receive (single-ended)  
dB  
dB  
60  
70  
Crosstalk attenuation, receive-  
to-transmit (single-ended)  
TLC32046M  
80  
3.3.3  
Serial Port  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
Input current  
I
= 300 µA  
2.4  
OH  
OH  
OL  
I
= 2 mA  
0.4  
±10  
V
OL  
I
I
µA  
µA  
pF  
pF  
I
Input current, DATA-DR/CONTROL  
Input capacitance  
±100  
I
C
C
15  
15  
i
Output capacitance  
o
All typical values are at T = 25°C.  
A
32  
3.3.4  
Receive Amplifier Input  
PARAMETER  
TEST  
CONDITIONS  
MIN TYP  
MAX  
UNIT  
mV  
A/D converter offset error (filters in)  
10  
55  
70  
Common-mode rejection ratio at IN+, IN, or AUX  
IN+, AUX IN–  
CMRR  
See Note 6  
dB  
Input resistance at IN+, INor  
AUX IN+, AUX IN+, AUX IN, REF  
r
100  
kΩ  
i
NOTE 6: The test condition is a 0-dBm, 1-kHz input signal with a 16-kHz conversion rate.  
3.3.5  
Transmit Filter Output  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
MAX  
UNIT  
Output offset voltage at OUT+ or  
OUT(single-ended relative to  
ANLG GND)  
TLC32046C, I  
TLC32046M  
15  
15  
80  
85  
mV  
mV  
V
OO  
Maximum peak output voltage  
R 300 ,  
L
Offset voltage  
= 0  
TLC32046C, I  
±3  
±6  
V
V
swing across R at OUT+ or OUT–  
L
(single-ended)  
V
OM  
Maximum peak output voltage  
swing between OUT+ and OUT–  
(differential output)  
R
600 Ω  
L
All typical values are at T = 25°C.  
A
3.3.6  
Receive and Transmit Channel System Distortion, SCF Clock  
Frequency = 288kHz (see Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Single-ended  
Differential  
70  
70  
65  
65  
70  
70  
65  
65  
Attenuation of second harmonic of  
A/D input signal  
dB  
62  
57  
62  
57  
V = 0.1 dB to 24 dB  
I
Single-ended  
Differential  
Attenuation of third and higher  
harmonics of A/D input signal  
dB  
dB  
dB  
Single-ended  
Differential  
Attenuation of second harmonic of  
D/A input signal  
V = 0 dB to 24 dB  
I
Single-ended  
Differential  
Attenuation of third and higher  
harmonics of D/A input signal  
All typical values are at T = 25°C.  
A
33  
3.3.7  
Receive Channel Signal-to-Distortion Ratio (see Note 7)  
= 4  
A
= 1  
A
= 2  
A
v
v
v
PARAMETER  
TEST CONDITIONS  
V = 6 dB to 0.1 dB  
UNIT  
MIN  
58  
58  
56  
50  
44  
38  
32  
26  
20  
MAX  
MIN  
MAX  
MIN  
MAX  
§
§
I
§
V = 12 dB to 6 dB  
I
58  
58  
56  
50  
44  
38  
32  
26  
V = 18 dB to 12 dB  
I
58  
58  
56  
50  
44  
38  
32  
V = 24 dB to 18 dB  
I
A/D channel signal-to-  
distortion ratio  
V = 30 dB to 24 dB  
I
dB  
V = 36 dB to 30 dB  
I
V = 42 dB to 36 dB  
I
V = 48 dB to 42 dB  
I
V = 54 dB to 48 dB  
I
A is the programmable gain of the input amplifier.  
v
§
Measurements under these conditions are unreliable due to overrange and signal clipping.  
NOTE 7: The test condition is a 1-kHz input signal with a 16-kHz conversion rate. The load impedance for the DAC is  
600 . Input and output voltages are referred to V  
.
ref  
3.3.8  
Transmit Channel Signal-to-Distortion Ratio (see Note 7)  
PARAMETER  
TEST CONDITIONS  
MIN  
58  
58  
56  
50  
44  
38  
32  
26  
20  
MAX  
UNIT  
V = 6 dB to 0.1 dB  
I
V = 12 dB to 6 dB  
I
V = 18 dB to 12 dB  
I
V = 24 dB to 18 dB  
I
D/A channel signal-to-distortion ratio  
V = 30 dB to 24 dB  
I
dB  
V = 36 dB to 30 dB  
I
V = 42 dB to 36 dB  
I
V = 48 dB to 42 dB  
I
V = 54 dB to 48 dB  
I
NOTE 7: The test condition is a 1-kHz input signal with a 16-kHz conversion rate. The load impedance for the DAC is  
600 . Input and output voltages are referred to V  
.
ref  
3.3.9  
Receive and Transmit Gain and Dynamic Range (see Note 8)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
dB  
TYP  
Transmit gain tracking error  
Receive gain tracking error  
C, I  
V
= 48 dB to 0 dB signal range  
±0.05 ±0.15  
±0.05 ±0.15  
O
C, I V = 48 dB to 0 dB signal range  
dB  
I
V
T
A
= 48 dB to 0 dB signal range,  
= 25°C  
O
Transmit gain tracking error  
Receive gain tracking error  
M
M
±0.05 ±0.25  
±0.05 ±0.25  
dB  
dB  
V = 48 dB to 0 dB signal range,  
I
A
T
= 25°C  
Transmit gain tracking error  
Receive gain tracking error  
M
M
±0.4  
±0.4  
dB  
dB  
V
T
A
= 48 dB to 0 dB signal range,  
= 55°C TO 125°C  
O
NOTE 8: Gain tracking is relative to the absolute gain at 1 kHz and 0 dB (0 dB relative to V ).  
ref  
34  
3.3.10 Receive Channel Band-Pass Filter Transfer Function, SCF f  
= 288 kHz,  
clock  
Input (IN+ IN) Is A ±3-V Sine Wave (see Note 9)  
TEST  
CONDITION  
TYP  
PARMETER  
FREQUENCY  
ADJUSTMENT  
MIN  
MAX  
UNIT  
f 100 Hz  
K1 × 0 dB  
33  
4  
29  
25  
1  
f = 200 Hz  
K1 × 0.26 dB  
K1 × 0 dB  
2  
0
f = 300 Hz to 6200 Hz  
f = 6200 Hz to 6600 Hz  
f = 6600 Hz to 7300 Hz  
f = 7600 Hz  
0.25  
0.3  
0.25  
0.3  
K1 × 0 dB  
0
Input signal  
reference is 0 dB  
Filter gain  
K1 × 0 dB  
0
0.5  
dB  
K1 × 2.3 dB  
K1 × 2.7 dB  
K1 × 3.2 dB  
K1 × 0 dB  
2  
16  
0.5  
14  
40  
65  
f = 8000 Hz  
f 8800 Hz  
f 10000 Hz  
3.3.11 Receive and Transmit Channel Low-Pass Filter Transfer Function,  
SCF f = 288 kHz (see Note 9)  
clock  
TEST  
CONDITION  
FREQUENCY  
RANGE  
ADJUSTMENT  
MIN  
MAX  
UNIT  
TYP  
ADDEND  
K1 × 0 dB  
K1 × 0 dB  
K1 × 0 dB  
f = 0 Hz to 6200 Hz  
f = 6200 Hz to 6600 Hz  
f = 6600 Hz to 7300 Hz  
f = 7600 Hz  
0.25  
0.3  
0.5  
0
0
0
0.25  
0.3  
0.5  
Input signal  
reference is 0 dB  
Filter gain  
K1 × 2.3 dB  
K1 × 2.7 dB  
K1 × 3.2 dB  
K1 × 0 dB  
2  
0.5  
14  
40  
65  
dB  
f = 8000 Hz  
16  
f 8800 Hz  
f 10000 Hz  
All typical values are at T = 25°C.  
A
The MIN, TYP, and MAX specifications are given for a 288-kHz SCF clock frequency. A slight error in the 288-kHz SCF  
may result from inaccuracies in the MSTR CLK frequency, resulting from crystal frequency tolerances. If this frequency  
error is less than 0.25%, the ADJUSTMENT ADDEND should be added to the MIN, TYP, and MAX specifications,  
where K1 = 100 [(SCF frequency 288 kHz)/288 kHz]. For errors greater than 0.25%, see Note 9.  
NOTE 9: The filter gain outside of the pass band is measured with respect to the gain at 1 kHz (2 kHz for M version).  
The filter gain within the pass band is measured with respect to the average gain within the pass band. The  
pass bands are 300 Hz to 7200 Hz and 0 to 7200 Hz for the band-pass and low-pass filters, respectively. For  
switched-capacitor filter clocks at frequencies other than 288 kHz, the filter response is shifted by the ratio of  
switched-capacitor filter clock frequency to 288 kHz.  
35  
3.4 Operating Characteristics Over Recommended Operating Free-Air  
Temperature Range, V = 5 V, V = 5 V, V = 5 V  
CC+  
CC–  
DD  
3.4.1  
Receive and Transmit Noise (measurement includes low-pass and band-pass  
switched-capacitor filters)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
500  
450  
400  
400  
300  
300  
UNIT  
Broadband with (sin x)/x  
Broadband without (sin x)/x  
0 to 30 kHz with (sin x)/x  
0 to 30 kHz without (sin x)/x  
0 to 3.4 kHz with (sin x)/x  
0 to 3.4 kHz without (sin x)/x  
250  
200  
200  
200  
180  
160  
Transmit  
noise  
DX input = 00000000000000,  
Constant input code  
µVrms  
0 to 6.8 kHz with (sin x)/x  
(wide-band operation with 7.2 kHz  
roll-off)  
180  
160  
350  
350  
0 to 6.8 kHz without (sin x)/x  
(wide-band operation with 7.2 kHz  
roll-off)  
300  
18  
500 µVrms  
Receive noise (see Note 10)  
Inputs grounded,  
Gain = 1  
dBrnc0  
All typical values are at T = 25°C.  
A
NOTE 10: The noise is computed by statistically evaluating the digital output of the A/D converter.  
3.5 Timing Requirements  
3.5.1  
Serial Port Recommended Input Signals, TLC32046C and TLC32046I  
PARAMETER  
Master clock cycle time  
MIN  
MAX  
UNIT  
ns  
t
t
t
95  
c(MCLK)  
r(MCLK)  
f(MCLK)  
Master clock rise time  
10  
10  
ns  
Master clock fall time  
ns  
Master clock duty cycle  
25%  
800  
20  
75%  
RESET pulse duration (see Note 11)  
DX setup time before SCLK↓  
DX hold time after SCLK↓  
ns  
ns  
ns  
t
t
su(DX)  
t
h(DX)  
c(SCLK)/4  
NOTE 11: RESET pulse duration is the amount of time that the RESET is held below 0.8 V after the power supplies have  
reached their recommended values.  
3.5.2  
Serial Port Recommended Input Signals, TLC32046M  
PARAMETER  
TYP  
MIN  
MAX  
UNIT  
ns  
t
t
t
Master clock cycle time  
95  
c(MCLK)  
r(MCLK)  
f(MCLK)  
Master clock rise time  
10  
10  
ns  
Master clock fall time  
ns  
Master clock duty cycle  
50%  
RESET pulse duration (see Note 11)  
DX setup time before SCLK↓  
800  
28  
ns  
ns  
ns  
t
t
su(DX)  
DX hold time after SCLK↓  
t
c(SCLK)/4  
h(DX)  
NOTE 11: RESET pulse duration is the amount of time that the RESET is held below 0.8 V after the power supplies have  
reached their recommended values.  
36  
3.5.3  
Serial Port AIC Output Signals, C = 30 pF for SHIFT CLK Output, C = 15 pF  
For All Other Outputs, TLC32046C and TLC32046I  
L
L
PARAMETER  
Shift clock (SCLK) cycle time  
Shift clock (SCLK) fall time  
MIN TYP  
MAX  
UNIT  
ns  
t
t
t
380  
c(SCLK)  
f(SCLK)  
r(SCLK)  
3
3
8
8
ns  
Shift clock (SCLK) rise time  
ns  
Shift clock (SCLK) duty cycle  
Delay from SCLKto FSR/FSX/FSD↓  
45%  
55%  
t
t
t
t
t
t
t
t
t
t
t
30  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CH-FL)  
d(CH-FH)  
d(CH-DR)  
d(CH-EL)  
d(CH-EH)  
f(EODX)  
Delay from SCLKto FSR/FSX/FSD↑  
DR valid after SCLK↑  
90  
90  
90  
90  
8
Delay from SCLKto EODX/EODRin word mode  
Delay from SCLKto EODX/EODRin word mode  
EODX fall time  
2
2
EODR fall time  
8
f(EODR)  
Delay from SCLKto EODX/EODRin byte mode  
Delay from SCLKto EODX/EODRin byte mode  
Delay from MSTR CLKto SCLK↓  
Delay from MSTR CLKto SCLK↑  
90  
90  
170  
170  
d(CH-EL)  
d(CH-EH)  
d(MH-SL)  
d(MH-SH)  
65  
65  
Typical values are at T = 25°C.  
A
3.5.4  
Serial Port AIC Output Signals, C = 30 pF for SHIFT CLK Output, C = 15 pF  
For All Other Outputs, TLC32046M  
L
L
PARAMETER  
Shift clock (SCLK) cycle time  
Shift clock (SCLK) fall time  
MIN TYP  
MAX  
UNIT  
ns  
t
t
t
400  
c(SCLK)  
f(SCLK)  
r(SCLK)  
3
3
ns  
Shift clock (SCLK) rise time  
ns  
Shift clock (SCLK) duty cycle  
Delay from SCLKto FSR/FSX/FSD↓  
45%  
55%  
250  
250  
250  
250  
250  
t
t
t
t
t
t
t
t
t
t
t
30  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CH-FL)  
d(CH-FH)  
d(CH-DR)  
d(CH-EL)  
d(CH-EH)  
f(EODX)  
Delay from SCLKto FSR/FSX/FSD↑  
DR valid after SCLK↑  
Delay from SCLKto EODX/EODRin word mode  
Delay from SCLKto EODX/EODRin word mode  
EODX fall time  
2
2
EODR fall time  
f(EODR)  
Delay from SCLKto EODX/EODRin byte mode  
Delay from SCLKto EODX/EODRin byte mode  
Delay from MSTR CLKto SCLK↓  
Delay from MSTR CLKto SCLK↑  
250  
250  
170  
170  
d(CH-EL)  
d(CH-EH)  
d(MH-SL)  
d(MH-SH)  
65  
65  
Typical values are at T = 25°C.  
A
37  
38  
4 Parameter Measurement Information  
R
fb  
R
R
IN +  
or  
AUX IN+  
+
To Multiplexer  
IN –  
or  
AUX IN–  
+
R
fb  
R
= R for D6 = 1 and D7 = 1  
D6 = 0 and D7 = 0  
fb  
R
R
= 2R for D6 = 1 and D7 = 0  
= 4R for D6 = 0, and D7 = 1  
fb  
fb  
Figure 41. IN+ and IN Gain Control Circuitry  
Table 41. Gain Control Table (Analog Input Signal Required for  
Full-Scale Bipolar A/D Conversion Twos Complement)  
CONTROL REGISTER BITS  
INPUT  
CONFIGURATIONS  
A/D CONVERSION  
RESULT  
ANALOG  
INPUT  
‡§  
D6  
D7  
1
0
1
0
V
= ±6 V  
±full scale  
ID  
Differential configuration  
Analog input = IN+ IN–  
= AUX IN+ AUX IN–  
1
0
0
1
V
V
= ±3 V  
±full scale  
±full scale  
ID  
= ±1.5 V  
ID  
1
0
1
0
V = ±3 V  
±half scale  
I
Single-ended configuration  
Analog input = IN+ ANLG GND  
= AUX IN+ ANLG GND  
1
0
0
1
V = ±3 V  
I
±full scale  
±full scale  
V = ±1.5 V  
I
§
V
V
= 5 V, V  
= 5 V, V = 5 V  
DD  
CC+  
ID  
CC–  
= Differential Input Voltage, V = Input voltage referenced to ground with INor AUX INconnected to GND.  
I
In this example, V is assumed to be 3 V. In order to minimize distortion, it is recommended that the analog input not  
exceed 0.1 dB below full scale.  
ref  
41  
t
c (SCLK)  
SHIFT  
CLK  
2 V  
2 V  
2 V  
2 V  
8 V  
8 V  
t
d (CH-FL)  
t
d (CH-FH)  
2 V  
FSX, FSR, FSD  
DR  
8 V  
t
d (CH-DR)  
D15  
D14  
D13  
D12  
D11  
D2  
D1  
D0  
t
su (DX)  
Dont Care  
DX  
D15  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D2  
D2  
D1  
D1  
D0  
D0  
DATA-DR  
D15  
D14  
Figure 42. Dual-Word (Telephone Interface) Mode Timing  
t
c (SCLK)  
2 V 2 V  
SHIFT  
CLK  
2 V  
2 V  
8 V  
8 V  
t
t
(CH-FH)  
d (CH-FL)  
d
2 V  
FSX, FSR  
8 V  
t
d (CHDR)  
DR  
D15  
D14  
D13  
D12  
D11  
D2  
D1  
D0  
t
su (DX)  
Dont Care  
DX  
D15  
D14  
D13  
D12  
D11  
D2  
D1  
D0  
d (CH-EL)  
8 V  
t
h (DX)  
t
t
d (CH-EH)  
2 V  
EODX, EODR  
Figure 43. Word Timing  
The time between falling edges of FSR is the A/D conversion period and the time between falling edges of FSX is the  
D/A conversion period.  
In the word format, EODX and EODR go low to signal the end of a 16-bit data word to the processor. The word-cycle  
is 20 shift-clocks wide, giving a four-clock period setup time between data words.  
42  
t
t
c (SCLK)  
t
f (SCLK)  
2 V  
r (SCLK)  
SHIFT  
CLK  
2 V  
d (CH-FL)  
2 V  
2 V  
2 V  
2 V  
t
d (CH-FH)  
t
t
t
d (CH-FH)  
2 V  
d (CH-FL)  
FSR,  
FSX  
2 V  
8 V  
8 V  
t
d (CH-DR)  
D14  
D14  
D13  
D9  
D8  
D7  
D1  
D0  
DR  
D15  
D6  
D2  
t
su (DX)  
D15  
Dont Care  
DX  
D13  
t
D9  
D8  
D12  
D11  
D2  
D1  
D0  
t
h (DX)  
t
d (CH-EH)  
d (CH-EL)  
EODR,  
EODX  
2 V  
8 V  
Figure 44. Byte-Mode Timing  
The time between falling edges of FSR is the A/D conversion period, and the time between fallling edges of FSX is the D/A conversion period.  
In the byte mode, when EODX or EODR is high, the first byte is transmitted or received, and when these signals are low, the second byte is  
transmitted or received. Each byte-cycle is 12 shift-clocks long, allowing for a four-shift-clock setup time between byte transmissions.  
MSTR CLK  
SHIFT CLK  
t
t
d (MH-SL)  
d (MH-SH)  
Figure 45. Shift-Clock Timing  
4.1 TMS32010/TMS320C15 TLC32046 Interface Circuit  
CLK OUT  
DEN  
S0,G1  
Valid  
D0D15  
IN INSTRUCTION TIMING  
CLK OUT  
WE  
SN74LS138 Y1  
SN74LS299 CLK  
D0D15  
Valid  
OUT INSTRUCTION TIMING  
Figure 46. TMS32010/TMS320C15TLC32046 Interface Timing  
44  
SN74LS74  
2D  
C2  
Q
FSX  
DX  
SN74LS299  
Q
S1  
G2  
H
DEN  
S0 CLK  
G1  
G1  
A
D8D15  
Y1  
Y0  
A0/PA0  
SHIFT  
CLK  
AH  
SR  
A1/PA1  
A2/PA2  
B
C
SN74LS138  
SN74LS299  
TLC32046  
Q
S1  
G2  
TMS32010  
H
S0 CLK  
G1  
SN74LS74  
C1  
DOD15  
DOD15  
AH  
SR  
Q
1D  
DR  
DOD7  
WE  
CLK  
OUT  
MSTR  
CLK  
INT  
EODX  
Figure 47. TMS32010/TMS320C15 TLC32046 Interface Circuit  
45  
46  
5 Typical Characteristics  
D/A AND A/D LOW-PASS FILTER  
RESPONSE SIMULATION  
0.4  
T
= 25°C  
A
Input = ± 3 V Sine Wave  
0.2  
0
0.2  
0.4  
0.6  
0
1
2
3
4
5
6
7
8
9
10  
Normalized Frequency  
Figure 51  
D/A AND A/D LOW-PASS FILTER RESPONSE  
0
See Figure 2-1  
for Pass Band  
Detail  
T = 25°C  
A
10  
Input = ± 3 V Sine Wave  
20  
30  
40  
50  
60  
70  
80  
90  
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Figure 52  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
NOTE : Absolute Frequency (kHz)  
For Low-Pass SCF f  
clock  
51  
D/A AND A/D LOW-PASS GROUP DELAY  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
Input = ± 3 V Sine Wave  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
Normalized Frequency  
Figure 53  
A/D BAND-PASS RESPONSE  
0.4  
0.2  
High-Pass SCF f  
= 16 kHz  
clock  
T
A
= 25°C  
Input = ±3 V Sine Wave  
0
0.2  
0.4  
0.6  
0
1
2
3
4
5
6
7
8
9
10  
Normalized Frequency  
Figure 54  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
NOTE : Absolute Frequency (kHz)  
For Low-Pass SCF f  
clock  
52  
A/D BAND-PASS FILTER RESPONSE SIMULATION  
0
High-Pass SCF  
10  
f
T
A
= 16 kHz  
= 25°C  
clock  
Input = ± 3 V Sine Wave  
20  
30  
40  
50  
60  
70  
80  
100  
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Figure 55  
A/D BAND-PASS FILTER GROUP DELAY  
2
High-Pass SCF f  
= 16 kHz  
clock  
1.8  
1.6  
1.4  
1.2  
1.1  
0.8  
0.6  
T
A
= 25°C  
Input = ±3 V Sine WWave  
0.4  
0.2  
0
0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
Normalized Frequency  
Figure 56  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
NOTE : Absolute Frequency (kHz)  
For Low-Pass SCF f  
clock  
53  
A/D CHANNEL HIGH-PASS FILTER  
20  
10  
T
= 25°C  
A
Input = ± 3 V Sine Wave  
0
10  
20  
30  
40  
50  
60  
0
100 200 300 400 500 600 700 800 900 1000  
Normalized Frequency  
Figure 57  
D/A (sin x)/x CORRECTION FILTER RESPONSE  
4
2
0
2  
T
= 25°C  
4  
6  
A
Input = ± 3 V Sine Wave  
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Figure 58  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
NOTE : Absolute Frequency (kHz)  
For Low-Pass SCF f  
clock  
54  
D/A (sin x)/x CORRECTION FILTER RESPONSE  
500  
T
A
= 25°C  
Input = ± 3 V Sine Wave  
400  
300  
200  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
Normalized Frequency  
Figure 59  
D/A (sin x)/x CORRECTION ERROR  
2
1.6  
T
= 25°C  
A
Input = ± 3 V Sine Wave  
1.2  
(sin x) /x Correction  
Error  
0.8  
0.4  
0
0.4  
0.8  
19.2 kHz (sin x) /x  
Distortion  
1.2  
1.6  
2  
0
1
2
3
4
5
6
7
8
9
10  
Normalized Frequency  
Figure 510  
Normalized Frequency  
288  
288 kHz, please call the factory.  
SCF f  
(kHz)  
clock  
NOTE : Absolute Frequency (kHz)  
For Low-Pass SCF f  
clock  
55  
A/D BAND-PASS GROUP DELAY  
760  
720  
680  
640  
600  
Low-pass SCF f  
= 144 kHz  
= 8 kHz  
clock  
High-pass SCF f  
clock  
T
A
= 25°C  
Input = ± 3 V Sine Wave  
560  
520  
480  
440  
400  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6  
f Frequency Hz  
Figure 511  
D/A LOW-PASS GROUP DELAY  
560  
Low-pass SCF f  
= 144 kHz  
clock  
520  
480  
440  
400  
360  
T
A
= 25°C  
Input = ± 3 V Sine Wave  
320  
280  
240  
200  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6  
f Frequency Hz  
Figure 512  
56  
A/D SIGNAL-TO-DISTORTION RATIO  
vs  
INPUT SIGNAL  
100  
90  
80  
70  
60  
50  
1-kHz Input Signal  
16-kHz Conversion Rate  
T
A
= 25°C  
Gain = 1  
Gain = 4  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 513  
A/D GAIN TRACKING  
(GAIN RELATIVE TO GAIN AT 0-dB INPUT SIGNAL)  
0.5  
1-kHz Input Signal  
16-kHz Conversion Rate  
= 25°C  
0.4  
0.3  
0.2  
0.1  
T
A
0.1  
0.2  
0.3  
0.4  
0.5  
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 514  
57  
D/A CONVERTER SIGNAL-TO-DISTORTION RATIO  
vs  
INPUT SIGNAL  
100  
1-kHz Input Signal Into 600 Ω  
90  
80  
70  
60  
50  
16-kHz Conversion Rate  
= 25°C  
T
A
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 515  
D/A GAIN TRACKING (GAIN RELATIVE TO GAIN  
AT 0-dB INPUT SIGNAL)  
0.5  
1-kHz Input Signal Into 600 Ω  
16-kHz Conversion Rate  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
A
0.1  
0.2  
0.3  
0.4  
0.5  
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 516  
58  
A/D SECOND HARMONIC DISTORTION  
vs  
INPUT SIGNAL  
100  
90  
80  
70  
60  
50  
1-kHz Input Signal  
16-kHz Conversion Rate  
T
A
= 25°C  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 517  
D/A SECOND HARMONIC DISTORTION  
vs  
INPUT SIGNAL  
100  
1-kHz Input Signal Into 600 Ω  
90 16-kHz Conversion Rate  
= 25°C  
T
A
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 518  
59  
A/D THIRD HARMONIC DISTORTION  
vs  
INPUT SIGNAL  
100  
90  
80  
70  
60  
50  
1-Hz Input Signal  
16-kHz Conversion Rate  
T
A
= 25°C  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 519  
D/A THIRD HARMONIC DISTORTION  
vs  
INPUT SIGNAL  
100  
90  
80  
70  
60  
50  
1-kHz Input Signal Into 600 Ω  
16-kHz Conversion Rate  
T
A
= 25°C  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10  
Input Signal Relative to V dB  
ref  
Figure 520  
510  
6 Application Information  
TMS32020/C25  
TLC32046  
MSTR CLK  
CLKOUT  
FSX  
V
+
+ 5 V  
CC  
REF  
ANLG GND  
FSX  
C
C
DX  
DX  
FSR  
FSR  
BAT 42  
C
DR  
DR  
V
CC  
5 V  
CLKR  
CLKX  
SHIFT CLK  
V
DD  
+ 5 V  
0.1 µF  
DGTL GND  
D
A
C = 0.2 µF, Ceramic  
Figure 61. AIC Interface to the TMS32020/C25 Showing Decoupling Capacitors  
and Schottky Diode  
Thomson Semiconductors  
V
CC  
R
3 V Output  
500 Ω  
0.01 µF  
TL431  
2500 Ω  
D
FOR: V  
= 12 V, R = 7200 Ω  
= 10 V, R = 5600 Ω  
= 5 V, R = 1600 Ω  
CC  
CC  
CC  
V
V
Figure 62. External Reference Circuit for TLC32046  
61  
62  

相关型号:

5962-9086303MXX

CODEC, Single
ETC

5962-9086401MUA

IC MULTIFUNCTION PERIPHERAL, CQFP52, LCC-52, Multifunction Peripheral
WEDC

5962-9086401MUX

Peripheral (Multifunction) Controller
ETC

5962-9086401MXX

Peripheral (Multifunction) Controller
ETC

5962-9086401MYX

Peripheral (Multifunction) Controller
ETC

5962-9086401MZA

IC MULTIFUNCTION PERIPHERAL, CPGA68, CERAMIC, PGA-68, Multifunction Peripheral
WEDC

5962-9086401MZX

Peripheral (Multifunction) Controller
ETC

5962-9086402MUA

IC MULTIFUNCTION PERIPHERAL, CQFP52, LCC-52, Multifunction Peripheral
WEDC

5962-9086402MUX

Peripheral (Multifunction) Controller
ETC

5962-9086402MXX

Peripheral (Multifunction) Controller
ETC

5962-9086402MYA

Multifunction Peripheral, HCMOS, CQCC52, CERAMIC, LCC-52
WEDC

5962-9086402MYX

Peripheral (Multifunction) Controller
ETC