5962-9089603Q2A [TI]

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS; EXCALIBUR低噪声高速精密运算放大器
5962-9089603Q2A
型号: 5962-9089603Q2A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
EXCALIBUR低噪声高速精密运算放大器

运算放大器 放大器电路
文件: 总46页 (文件大小:994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
D, JG, OR P PACKAGE  
D
Outstanding Combination of dc Precision  
and AC Performance:  
(TOP VIEW)  
Unity-Gain Bandwidth . . . 15 MHz Typ  
OFFSET N1  
IN  
OFFSET N2  
VCC +  
OUT  
1
2
3
4
8
7
6
5
V
. . . . . 3.3 nV/Hz at f = 10 Hz Typ,  
2.5 nV/Hz at f = 1 kHz Typ  
. . . . 25 μV Max  
n
IN +  
VCC  
V
IO  
NC  
A
VD  
. . . . 45 V/μV Typ With R = 2 kΩ,  
L
19 V/μV Typ With R = 600 Ω  
L
D
D
D
Available in Standard-Pinout Small-Outline  
Package  
FK PACKAGE  
(TOP VIEW)  
Output Features Saturation Recovery  
Circuitry  
Macromodels and Statistical information  
description  
3
2 1 20 19  
NC  
VCC+  
NC  
OUT  
NC  
NC  
18  
17  
16  
15  
14  
4
The TLE20x7 and TLE20x7A contain innovative  
IN−  
NC  
IN+  
NC  
5
6
7
8
circuit design expertise and high-quality process  
control techniques to produce a level of ac  
performance and dc precision previously unavail-  
able in single operational amplifiers. Manufac-  
tured using Texas Instruments state-of-the-art  
Excalibur process, these devices allow upgrades  
to systems that use lower-precision devices.  
9 10 11 12 13  
In the area of dc precision, the TLE20x7 and  
TLE20x7A offer maximum offset voltages of  
100 μV and 25 μV, respectively, common-mode  
rejection ratio of 131 dB (typ), supply voltage  
rejection ratio of 144 dB (typ), and dc gain of  
45 V/μV (typ).  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
IO  
max AT  
25°C  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
SMALL  
OUTLINE  
(D)  
T
A
(JG)  
(P)  
TLE2027ACD  
TLE2037ACD  
TLE2027ACP  
TLE2037ACP  
TLE2027Y  
TLE2037Y  
25 μV  
100 μV  
25 μV  
0°C to 70°C  
TLE2027CD  
TLE2037CD  
TLE2027CP  
TLE2037CP  
TLE2027Y  
TLE2037Y  
TLE2027AID  
TLE2037AID  
TLE2027AIP  
TLE2037AIP  
40°C to 105°C  
55°C to 125°C  
TLE2027ID  
TLE2037ID  
TLE2027IP  
TLE2037IP  
100 μV  
25 μV  
TLE2027AMD  
TLE2037AMD  
TLE2027AMFK  
TLE2037AMFK  
TLE2027AMJG  
TLE2037AMJG  
TLE2027AMP  
TLE2037AMP  
TLE2027MD  
TLE2037MD  
TLE2027MFK  
TLE2037MFK  
TLE2027MJG  
TLE2037MJG  
TLE2027MP  
TLE2037MP  
100 μV  
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).  
Chip forms are tested at 25°C only.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
Copyright © 20022006, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
1
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
description (continued)  
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification  
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hz and 2.5 nV/Hz at frequencies  
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate  
(7.5 V/μs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be  
operated with a closed-loop gain of 5 or greater.  
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard  
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for  
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from 40°C to 105°C. The  
M-suffix devices are characterized for operation over the full military temperature range of 55°C to 125°C.  
symbol  
OFFSET N1  
IN +  
+
OUT  
IN  
OFFSET N2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE202xY chip information  
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(1)  
(3)  
V
CC+  
(6)  
OFFSET N1  
IN+  
(4)  
(7)  
+
(6)  
OUT  
(2)  
(8)  
IN−  
(4)  
OFFSET N2  
V
CC  
90  
(3)  
(7)  
CHIP THICKNESS: 15 MILS TYPICAL  
(2)  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(8)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(1)  
73  
3
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢀꢁꢂꢃꢄꢈꢅꢆꢇꢀꢁꢂꢃꢄꢃꢅꢉꢆꢇꢀꢁꢂꢃꢄꢈꢅꢉꢆꢇꢀꢁꢂꢃꢄꢃꢅꢊꢆꢇꢀꢁꢂꢃꢄꢈꢅꢊ  
ꢂꢋꢌꢉꢁꢍꢎꢏꢐꢇꢁꢑꢒꢓꢔꢑꢍꢕꢂꢇꢖꢍꢗꢖꢓꢕꢘꢂꢂꢙ  
ꢘꢐꢂꢌꢍꢕꢍꢑꢔꢇꢑꢘꢂꢐꢉꢀꢍꢑꢔꢉꢁꢇꢉꢚꢘꢁꢍꢛꢍꢂꢐꢕ  
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010  
www.ti.com  
4
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V  
CC+  
CC−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 V  
ID  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
I
CC  
Input current, I (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I  
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
50 mA  
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
CC+  
CC−  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 105°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
C
stg  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
CC +  
CC −  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
1.2 V is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T 25°C  
DERATING FACTOR  
T = 70°C  
POWER RATING  
T
= 105°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
261 mW  
145 mW  
1375 mW  
880 mW  
495 mW  
275 mW  
1050 mW  
672 mW  
378 mW  
210 mW  
1000 mW  
640 mW  
360 mW  
200 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
4
MAX  
19  
MIN  
4
MAX  
19  
MIN  
4
MAX  
19  
Supply voltage, V  
V
CC  
T = 25°C  
11  
10.5  
0
11  
11  
10.4  
40  
11  
11  
10.2  
55  
11  
A
Common-mode input voltage, V  
V
IC  
T = Full range  
A
10.5  
70  
10.4  
105  
10.2  
125  
Operating free-air temperature, T  
°C  
A
Full range is 0°C to 70°C for C-suffix devices, 40°C to 105°C for I-suffix devices, and 55°C to 125°C for M-suffix devices.  
www.ti.com  
5
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7C electrical characteristics at specified free-air temperature, VCC  
otherwise noted)  
=
15 V (unless  
TLE20x7C  
TYP MAX  
TLE20x7AC  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
25°C  
20  
100  
145  
10  
25  
70  
V
IO  
Input offset voltage  
μV  
Full range  
Temperature coefficient of  
input offset voltage  
αVIO  
Full range  
0.4  
1
1
0.2  
1
1
μV/°C  
μV/mo  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
150  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
15  
15  
IB  
Full range  
150  
150  
11  
to  
13  
to  
11  
to  
13  
to  
25°C  
11  
13  
11  
13  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
10.5  
to  
10.5  
to  
Full range  
10.5  
10.5  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
10.5  
10  
12.9  
13.2  
13  
13.5  
45  
R = 600 Ω  
L
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
13.2  
R = 2 kΩ  
L
Full range  
25°C  
11  
11  
10.5  
10  
13  
10.5  
10  
12  
11  
10  
R = 600 Ω  
L
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM −  
12 13.5  
11  
R = 2 kΩ  
L
Full range  
25°C  
V
V
=
=
11 V, R = 2 kΩ  
5
2
45  
38  
19  
O
L
10 V, R = 2 kΩ  
Full range  
25°C  
4
O
L
3.5  
1
8
38  
Large-signal differential  
voltage amplification  
A
VD  
V
V
=
=
10 V, R = 1 kΩ  
V/μV  
O
L
Full range  
25°C  
2.5  
5
2
19  
10 V,  
O
R
= 600 Ω  
L
Full range  
25°C  
0.5  
2
C
Input capacitance  
8
50  
8
50  
pF  
i
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
Ω
o
25°C  
100  
98  
131  
117  
114  
131  
Common-mode rejection  
ratio  
V
= V min,  
IC ICR  
CMRR  
dB  
dB  
R = 50 Ω  
S
Full range  
V
CC  
=
4 V to 18 V,  
25°C  
94  
92  
144  
110  
106  
144  
3.8  
R
= 50 Ω  
S
Supply-voltage rejection  
k
SVR  
ratio (ΔV  
/ΔVIO  
CC  
V
CC  
= 4 V to 18 V,  
= 50 Ω  
)
Full range  
R
S
25°C  
3.8  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
www.ti.com  
6
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7C operating characteristics at specified free-air temperature, VCC = 15 V, TA = 25°C  
(unless otherwise specified)  
TLE20x7C  
TYP MAX  
TLE20x7AC  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MIN  
R = 2 kΩ,  
TLE2027  
TLE2037  
1.7  
2.8  
7.5  
1.7  
2.8  
7.5  
L
C = 100 pF,  
L
6
6
See Figure 1  
SR  
Slew rate at unity gain  
V/μs  
R = 2 kΩ,  
L
TLE2027  
TLE2037  
1.2  
1.2  
C = 100 pF,  
L
T = 0°C to 70°C,  
A
5
5
See Figure 1  
R
R
= 20 Ω,  
= 20 Ω,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8
3.3  
2.5  
4.5  
3.8  
S
S
Equivalent input noise volt-  
age (see Figure 2)  
nV/Hz  
V
V
n
4.5  
Peak-to-peak equivalent in-  
put noise voltage  
f = 0.1 Hz to 10 Hz  
50  
250  
50  
130  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
10  
25  
10  
25  
Equivalent input noise cur-  
rent  
pA/Hz  
I
n
0.8  
1.8  
0.8  
1.8  
V
O
= +10 V,  
A
= 1,  
TLE2027  
TLE2037  
<0.002%  
<0.002%  
<0.002%  
<0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
O
= +10 V,  
= 5,  
A
VD  
See Note 5  
Unity-gain bandwidth  
(see Figure 3)  
R = 2 kΩ,  
C = 100 pF  
L
L
B
TLE2027  
TLE2037  
9(6)  
35  
13  
50  
9(6)  
35  
13  
50  
1
MHz  
kHz  
R = 2 kΩ,  
L
GBW  
Gain bandwidth product  
C = 100 pF  
L
TLE2027  
TLE2037  
TLE2027  
TLE2037  
30  
80  
30  
80  
Maximum output-swing  
bandwidth  
B
OM  
R = 2 kΩ  
L
55°  
50°  
55°  
50°  
Phase margin at unity gain  
(see Figure 3)  
R = 2 kΩ,  
L
C = 100 pF  
L
φm  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
NOTE 6: This parameter is not production tested  
www.ti.com  
7
 
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7I electrical characteristics at specified free-air temperature, VCC  
otherwise noted)  
=
15 V (unless  
TLE20x7I  
TLE20x7AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
100  
MIN  
TYP  
MAX  
25  
25°C  
20  
10  
V
IO  
Input offset voltage  
μV  
Full range  
180  
105  
Temperature coefficient of  
input offset voltage  
αVIO  
Full range  
0.4  
1
1
0.2  
1
1
μV/°C  
μV/mo  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
150  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
15  
15  
IB  
Full range  
150  
150  
11  
to  
13  
to  
11  
to  
13  
to  
25°C  
11  
13  
11  
13  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
10.4  
to  
10.4  
to  
Full range  
10.4  
10.4  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
10.5  
10  
12.9  
13.2  
13  
R = 600 Ω  
L
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
13.2  
R = 2 kΩ  
L
Full range  
25°C  
11  
11  
10.5  
10  
13  
10.5  
10  
R = 600 Ω  
L
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM −  
12 13.5  
11  
12 13.5  
11  
R = 2 kΩ  
L
Full range  
25°C  
V
V
=
=
11 V, R = 2 kΩ  
5
2
45  
38  
19  
10  
3.5  
8
45  
38  
19  
O
L
10 V, R = 2 kΩ  
Full range  
25°C  
O
L
3.5  
1
Large-signal differential  
voltage amplification  
A
VD  
V
=
=
10 V, R = 1 kΩ  
V/μV  
O
O
L
Full range  
25°C  
2.2  
5
2
V
10 V, R = 600 Ω  
L
Full range  
25°C  
0.5  
1.1  
C
Input capacitance  
8
50  
8
50  
pF  
i
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
Ω
o
25°C  
100  
96  
131  
117  
113  
131  
Common-mode rejection  
ratio  
V
= V min,  
IC ICR  
CMRR  
dB  
dB  
R = 50 Ω  
S
Full range  
V
CC  
=
4 V to 18 V,  
25°C  
94  
90  
144  
3.8  
110  
105  
144  
3.8  
R
= 50 Ω  
S
Supply-voltage rejection  
k
SVR  
ratio (ΔV  
/ΔVIO)  
CC  
V
CC  
= 4 V to 18 V,  
= 50 Ω  
Full range  
R
S
25°C  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
Full range is 40°C to 105°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
www.ti.com  
8
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7I operating characteristics at specified free-air temperature, VCC = 15 V, TA = 25°C  
(unless otherwise specified)  
TLE20x7I  
TYP  
TLE20x7AI  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
R = 2 kΩ,  
TLE2027  
TLE2037  
1.7  
2.8  
7.5  
1.7  
2.8  
7.5  
L
C = 100 pF,  
L
6
6
See Figure 1  
SR  
Slew rate at unity gain  
V/μs  
R = 2 kΩ,  
L
TLE2027  
TLE2037  
1.1  
1.1  
C = 100 pF,  
L
T = 40°C to 85°C,  
A
4.7  
4.7  
See Figure 1  
R
R
= 20 Ω,  
= 20 Ω,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8
3.3  
2.5  
4.5  
3.8  
S
S
Equivalent input noise  
voltage (see Figure 2)  
nV/Hz  
V
V
n
4.5  
Peak-to-peak equivalent  
input noise voltage  
f = 0.1 Hz to 10 Hz  
50  
250  
50  
130  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
10  
25  
10  
25  
Equivalent input noise  
current  
pA/Hz  
I
n
0.8  
1,8  
0.8  
1.8  
V
O
= +10 V,  
A
= 1,  
TLE2027  
TLE2037  
< 0.002%  
< 0.002%  
< 0.002%  
< 0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
O
= +10 V,  
= 5,  
A
VD  
See Note 5  
Unity-gain bandwidth  
(see Figure 3)  
R = 2 kΩ,  
C = 100 pF  
L
L
B
TLE2027  
TLE2037  
9(6)  
35  
13  
50  
9(6)  
35  
13  
50  
1
MHz  
kHz  
R = 2 kΩ,  
L
GBW  
Gain bandwidth product  
C = 100 pF  
L
TLE2027  
TLE2037  
TLE2027  
TLE2037  
30  
80  
30  
80  
Maximum output-swing  
bandwidth  
B
OM  
R = 2 kΩ  
L
55°  
50°  
55°  
50°  
Phase margin at unity  
gain (see Figure 3)  
R = 2 kΩ,  
L
C = 100 pF  
L
φm  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
NOTE 6: This parameter is not production tested.  
www.ti.com  
9
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7M electrical characteristics at specified free-air temperature, VCC  
otherwise noted)  
=
15 V (unless  
TLE20x7M  
TYP  
TLE20x7AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
100  
MIN  
TYP  
MAX  
25  
25°C  
20  
10  
V
IO  
Input offset voltage  
μV  
Full range  
200  
105  
Temperature coefficient of  
input offset voltage  
αVIO  
Full range  
0.4  
1*  
1*  
0.2  
1* μV/°C  
1* μV/mo  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
nA  
I
I
Input offset current  
Input bias current  
IO  
150  
15  
15  
90  
nA  
IB  
Full range  
150  
150  
11  
to  
11  
13  
to  
13  
11  
to  
11  
13  
to  
13  
25°C  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
S
V
10.3  
to  
10.4  
to  
Full range  
10.3  
10.4  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
13.2  
13  
10.5  
10  
12.9  
13.2  
13  
R = 600 Ω  
L
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
R = 2 kΩ  
L
Full range  
25°C  
11  
11  
10.5  
10  
10.5  
10  
R = 600 Ω  
L
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM −  
12 13.5  
11  
12 13.5  
11  
R = 2 kΩ  
L
Full range  
25°C  
V
V
=
=
11 V, R = 2 kΩ  
5
2.5  
3.5  
1.8  
2
45  
10  
3.5  
8
45  
O
L
10 V, R = 2 kΩ  
Full range  
25°C  
O
L
Large-signal differential  
voltage amplification  
38  
38  
A
VD  
V/μV  
V
O
V
O
=
=
10 V, R = 1 kΩ  
L
Full range  
2.2  
5
10 V, R = 600 Ω  
25°C  
25°C  
19  
8
19  
8
L
Input capacitance  
pF  
Ci  
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
50  
50  
Ω
o
25°C  
100  
96  
131  
117  
113  
131  
Common-mode rejection  
ratio  
V
= V min,  
IC ICR  
CMRR  
dB  
dB  
R = 50 Ω  
S
Full range  
V
CC  
=
4 V to 18 V,  
25°C  
94  
90  
144  
3.8  
110  
105  
144  
3.8  
R
= 50 Ω  
S
Supply-voltage rejection  
k
SVR  
ratio (ΔV  
/ΔVIO  
CC  
V
CC  
= 4 V to 18 V,  
= 50 Ω  
)
Full range  
R
S
25°C  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
* On products compliant to MIL-PRF-38535, this parameter is not production tested.  
Full range is 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
www.ti.com  
10  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7M operating characteristics at specified free-air temperature, VCC = 15 V, TA = 25°C  
(unless otherwise specified)  
TLE20x7M  
TYP  
TLE20x7AM  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
R = 2 kΩ,  
TLE2027  
TLE2037  
1.7  
2.8  
7.5  
1.7  
2.8  
7.5  
L
C = 100 pF,  
L
6*  
1
6*  
1
See Figure 1  
SR  
Slew rate at unity gain  
V/μs  
R = 2 kΩ,  
L
TLE2027  
TLE2037  
C = 100 pF,  
L
T = 55°C to 125°C,  
A
4.4*  
4.4*  
See Figure 1  
R
R
= 20 Ω,  
= 20 Ω,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8*  
3.3  
2.5  
8*  
4*  
S
S
Equivalent input noise  
voltage (see Figure 2)  
nV/Hz  
V
V
n
4*  
Peak-to-peak equivalent  
input noise voltage  
f = 0.1 Hz to 10 Hz  
225  
375*  
225  
375*  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
25  
25  
Equivalent input noise  
current  
pA/Hz  
I
n
2.5  
2.5  
V
O
= +10 V,  
A
= 1,  
TLE2027  
TLE2037  
< 0.002%  
< 0.002%  
< 0.002%  
< 0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
O
= +10 V,  
= 5,  
A
VD  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
7*  
13  
50  
9*  
13  
50  
Unity-gain bandwidth  
(see Figure 3)  
R = 2 kΩ,  
C = 100 pF  
L
L
B
B
MHz  
kHz  
1
35  
35  
30  
30  
Maximum output-swing  
bandwidth  
R = 2 kΩ  
L
OM  
80  
80  
55°  
50°  
55°  
50°  
Phase margin at unity  
gain (see Figure 3)  
R = 2 kΩ,  
L
C = 100 pF  
L
φm  
* On products compliant to MIL-PRF-38535, this parameter is not production tested.  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
www.ti.com  
11  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7Y electrical characteristics, VCC = 15 V, TA = 25°C (unless otherwise noted)  
TLE20x7Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
V
IO  
Input offset voltage  
Input offset voltage  
long-term drift (see Note 4)  
20  
μV  
0.006  
μV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
Input offset current  
6
nA  
nA  
IO  
Input bias current  
15  
IB  
13  
to  
13  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
S
V
R = 600 Ω  
12.9  
L
V
V
Maximum positive peak output voltage swing  
Maximum negative peak output voltage swing  
V
V
OM +  
R = 2 kΩ  
L
13.2  
R = 600 Ω  
L
13  
OM −  
R = 2 kΩ  
L
13.5  
45  
V
O
V
O
V
O
=
=
=
11 V, R = 2 kΩ  
L
10 V, R = 1 kΩ  
38  
L
A
VD  
Large-signal differential voltage amplification  
V/μV  
10 V,  
19  
R
= 600 Ω  
L
C
Input capacitance  
8
pF  
i
z
Open-loop output impedance  
I
O
= 0  
50  
Ω
o
V
= V min,  
ICR  
IC  
CMRR Common-mode rejection ratio  
131  
dB  
R = 50 Ω  
S
V
R
= 4 V to 18 V,  
= 50 Ω  
CC  
k
Supply-voltage rejection ratio (ΔV  
/ΔVIO  
144  
3.8  
dB  
SVR  
CC  
)
S
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
www.ti.com  
12  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TLE20x7Y operating characteristics at specified free-air temperature, VCC = 15 V  
TLE20x7Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
TLE2027  
TLE2037  
2.8  
7.5  
3.3  
2.5  
50  
R = 2 kΩ, C = 100 pF,  
See Figure 1  
L
L
SR  
Slew rate at unity gain  
V/μs  
R
R
= 20 Ω, f = 10 Hz  
= 20 Ω, f = 1 kHz  
S
S
nV/Hz  
V
V
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
n
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
nV  
N(PP)  
10  
pA/Hz  
I
n
Equivalent input noise current  
f = 1 kHz  
0.8  
V
= +10 V, A = 1,  
VD  
O
TLE2027  
TLE2037  
<0.002%  
See Note 5  
THD  
Total harmonic distortion  
V
O
= +10 V, A = 5,  
VD  
<0.002%  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
13  
50  
B
B
Unity-gain bandwidth (see Figure 3)  
Maximum output-swing bandwidth  
Phase margin at unity gain (see Figure 3)  
R = 2 kΩ, C = 100 pF  
MHz  
kHz  
1
L
L
30  
R = 2 kΩ  
L
OM  
80  
55°  
50°  
φm  
R = 2 kΩ, C = 100 pF  
L L  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
www.ti.com  
13  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
PARAMETER MEASUREMENT INFORMATION  
2 kΩ  
R
f
15 V  
15 V  
V
O
V
O
R
I
+
+
V
I
R = 2 kΩ  
L
15 V  
C =  
100 pF  
15 V  
L
20 Ω  
20 Ω  
(see Note A)  
NOTE A: C includes fixture capacitance.  
L
Figure 1. Slew-Rate Test Circuit  
Figure 2. Noise-Voltage Test Circuit  
R
f
10 kΩ  
15 V  
15 V  
100 Ω  
V
I
V
O
R
I
V
O
+
V
I
+
C =  
100 pF  
2 kΩ  
L
15 V  
15 V  
2 kΩ  
C =  
L
100 pF  
(see Note A)  
(see Note A)  
NOTE A: C includes fixture capacitance.  
NOTES: A. C includes fixture capacitance.  
L
L
B. For the TLE2037 and TLE2037A,  
A
VD  
must be 5.  
Figure 3. Unity-Gain Bandwidth and  
Phase-Margin Test Circuit (TLE2027 Only)  
Figure 4. Small-Signal Pulse-  
Response Test Circuit  
www.ti.com  
14  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
initial estimates of parameter distributions  
In the ongoing program of improving data sheets and supplying more information to our customers, Texas  
Instruments has added an estimate of not only the typical values but also the spread around these values. These  
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the  
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown  
at the points where data was actually collected. The 95% and 5% points are used instead of 3 sigma since  
some of the distributions are not true Gaussian distributions.  
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution  
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is  
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always  
the case on newly released products since there can only be data available from a few wafer lots.  
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each  
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested  
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices  
fell outside every distribution bar.  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
5
95% point on the distribution bar  
(5% of the devices fell above this point.)  
V
V
= 15 V  
= 0  
CC  
O
No Load  
Sample Size = 835 Units  
From 2 Water Lots  
4.5  
4
90% of the devices were within the upper  
and lower points on the distribution bar.  
5% point on the distribution bar  
(5% of the devices fell below this point.)  
3.5  
3
2.5  
75 50 25  
0
25 50 75 100 125 150  
T
A
Free-Air Temperature °C  
Figure 5. Sample Graph With Distribution Bars  
www.ti.com  
15  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
Input offset voltage change  
Input offset current  
vs Time after power on  
vs Free-air temperature  
8, 9  
ΔV  
IO  
I
IO  
10  
vs Free-air temperature  
vs Common-mode input voltage  
11  
12  
I
I
Input bias current  
IB  
Input current  
vs Differential input voltage  
vs Frequency  
13  
I
V
Maximum peak-to-peak output voltage  
14, 15  
O(PP)  
OM  
Maximum (positive/negative) peak output  
voltage  
vs Load resistance  
vs Free-air temperature  
16, 17  
18, 19  
V
vs Supply voltage  
vs Load resistance  
vs Frequency  
20  
21  
22 25  
26  
A
VD  
Large-signal differential voltage amplification  
vs Free-air temperature  
z
Output impedance  
vs Frequency  
vs Frequency  
vs Frequency  
27  
28  
29  
o
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
k
SVR  
vs Supply voltage  
vs Elapsed time  
vs Free-air temperature  
30, 31  
32, 33  
34, 35  
I
Short-circut output current  
OS  
vs Supply voltage  
vs Free-air temperature  
36  
37  
I
Supply current  
CC  
Small signal  
Large signal  
38, 40  
39, 41  
Voltage-follower pulse response  
V
B
Equivalent input noise voltage  
Noise voltage (referred to input)  
vs Frequency  
42  
43  
n
Over 10-second interval  
vs Supply voltage  
vs Load capacitance  
44  
45  
Unity-gain bandwidth  
1
vs Supply voltage  
vs Load capacitance  
46  
47  
Gain bandwidth product  
Slew rate  
SR  
vs Free-air temperature  
48, 49  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
50, 51  
52, 53  
54, 55  
Phase margin  
Phase shift  
φm  
vs Frequency  
22 25  
www.ti.com  
16  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
DISTRIBUTION  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE CHANGE  
16  
14  
12  
10  
8
vs  
1568 Amplifiers Tested From 2 Wafer Lots  
TIME AFTER POWER ON  
V
T
= +15 V  
CC  
12  
10  
8
= 25°C  
A
D Package  
6
6
4
4
50 Amplifiers Tested From 2 Wafer Lots  
2
V
CC  
=
15 V  
2
T
A
= 25°C  
D Package  
0
120 90 60 30  
0
30  
60  
90  
120  
0
0
10 20  
t Time After Power On s  
30  
40  
50  
60  
V
IO  
Input Offset Voltage μV  
Figure 6  
Figure 7  
INPUT OFFSET CURRENT†  
vs  
FREE-AIR TEMPERATURE  
INPUT OFFSET VOLTAGE CHANGE  
vs  
TIME AFTER POWER ON  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
V
V
= 15 V  
= 0  
CC  
IC  
Sample Size = 833 Units  
From 2 Wafer Lots  
50 Amplifiers Tested From 2 Wafer Lots  
V
CC  
=
15 V  
T
A
= 25°C  
P Package  
0
0
20 40 60 80 100 120 140 160 180  
t Time After Power On s  
Figure 8  
75 50 25  
0
25 50 75 100 125 150  
T
A
Free-Air Temperature °C  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
17  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT †  
INPUT BIAS CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
60  
50  
40  
35  
30  
25  
20  
15  
10  
5
V
T
=
15 V  
V
V
=
= 0  
15 V  
CC  
CC  
= 25°C  
A
IC  
Sample Size = 836 Units  
From 2 Wafer Lots  
40  
30  
20  
10  
0
10  
20  
0
75 50 25  
0
25 50 75 100 125 150  
12  
8  
4  
0
4
8
12  
T
A
Free-Air Temperature °C  
V
IC  
Common-Mode Input Voltage V  
Figure 10  
Figure 11  
TLE2027  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE†  
vs  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREQUENCY  
30  
25  
20  
15  
10  
5
1
0.8  
V
=
15 V  
CC  
L
R = 2 kΩ  
V
V
T
=
= 0  
= 25°C  
15 V  
CC  
IC  
0.6  
A
0.4  
0.2  
0
T
= 125°C  
A
0.2  
0.4  
0.6  
0.8  
1  
T
A
= 55°C  
0
1.8  
1.2  
0.6  
0
0.6  
1.2 1.8  
10 k  
100 k  
1 M  
10 M  
V
ID  
Differential Input Voltage V  
f Frequency Hz  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
18  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2037  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE†  
vs  
MAXIMUM POSITIVE PEAK  
OUTPUT VOLTAGE  
vs  
FREQUENCY  
LOAD RESISTANCE  
30  
25  
20  
15  
10  
5
14  
12  
10  
8
V
=
15 V  
CC  
R = 2 kΩ  
L
T
A
= 125°C  
6
4
T
A
= 55°C  
V
=
15 V  
CC  
2
0
T
A
= 25°C  
0
10 k  
100 k  
1 M  
10 M  
100 M  
100  
1 k  
10 k  
f Frequency Hz  
R
Load Resistance Ω  
L
Figure 14  
Figure 15  
MAXIMUM POSITIVE PEAK  
OUTPUT VOLTAGE†  
vs  
MAXIMUM NEGATIVE PEAK  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
LOAD RESISTANCE  
13.5  
13.4  
13.3  
13.2  
13.1  
14  
12  
10  
8  
V
=
15 V  
CC  
R = 2 kΩ  
Sample Size = 832 Units  
From 2 Wafer Lots  
L
6  
4  
13  
V
CC  
=
15 V  
2  
T
A
= 25°C  
12.9  
0
100  
75 50 25  
0
25 50 75 100 125 150  
1 k  
10 k  
R
Load Resistance Ω  
T
A
Free-Air Temperature °C  
L
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
19  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
MAXIMUM NEGATIVE PEAK  
OUTPUT VOLTAGE†  
vs  
VOLTAGE AMPLIFICATION  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
50  
40  
30  
20  
10  
0
T
A
= 25°C  
13  
13.2  
13.4  
13.6  
V
CC  
=
15 V  
R = 2 kΩ  
L
R = 2 kΩ  
L
Sample Size = 831 Units  
From 2 Wafer Lots  
R = 1 kΩ  
L
R = 600 Ω  
L
13.8  
14  
0
4
8
12  
16  
20  
75 50 25  
0
25 50 75 100 125 150  
V  
Supply Voltage V  
CC  
T
A
Free-Air Temperature °C  
Figure 18  
Figure 19  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LOAD RESISTANCE  
50  
40  
30  
20  
10  
0
V
=
15 V  
CC  
T
A
= 25°C  
100  
200  
400  
1 k  
2 k  
4 k  
10 k  
R
Load Resistance Ω  
L
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
20  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
75°  
160  
140  
120  
100  
80  
Phase Shift  
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
A
VD  
60  
40  
V
=
15 V  
R = 2 kΩ  
C = 100 pF  
CC  
L
20  
L
T
A
= 25°C  
0
0.1  
100  
100 k  
100 M  
f Frequency Hz  
Figure 21  
TLE2037  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
75°  
160  
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
140  
120  
100  
80  
Phase Shift  
A
VD  
60  
V
=
15 V  
40  
CC  
R = 2 kΩ  
C = 100 pF  
L
20  
L
T
A
= 25°C  
0
0.1  
100  
100 k  
100 M  
f Frequency MHz  
Figure 22  
www.ti.com  
21  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
6
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
300°  
3
0
3  
A
VD  
6  
9  
Phase Shift  
12  
15  
18  
V
=
15 V  
CC  
R = 2 kΩ  
C = 100 pF  
L
L
T
A
= 25°C  
10  
20  
40  
70  
100  
f Frequency MHz  
Figure 23  
TLE2037  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
30  
100  
125  
150  
175  
200  
225  
250  
275  
300  
°
°
°
°
°
°
°
°
°
25  
20  
15  
10  
5
A
Phase Shift  
VD  
V
=
15 V  
R = 2 kΩ  
C = 100 pF  
0
CC  
L
L
5  
10  
T
A
= 25°C  
1
2
4
10  
20  
40  
100  
f Frequency MHz  
Figure 24  
www.ti.com  
22  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION†  
vs  
FREE-AIR TEMPERATURE  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
60  
50  
40  
30  
100  
10  
V
=
15 V  
CC  
V
T
A
=
15 V  
CC  
= 25°C  
R = 2 kΩ  
L
A
VD  
= 100  
See Note A  
1
R = 1 kΩ  
L
A
VD  
= 10  
10  
100  
75 50 25  
0
25 50 75 100 125 150  
10  
100  
1 k  
10 k 100 k 1 M 10 M 100 M  
T
Free-Air Temperature °C  
A
f Frequency Hz  
NOTE A: For this curve, the TLE2027 is A  
= 1 and the  
VD  
TLE2037 is A = 5.  
VD  
Figure 25  
Figure 26  
COMMON-MODE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
V
T
A
=
15 V  
CC  
V
T
=
15 V  
CC  
= 25°C  
= 25°C  
A
k
SVR−  
60  
60  
k
SVR+  
40  
40  
20  
20  
0
0
10  
100  
1 k  
10 k 100 k 1 M 10 M 100 M  
10  
100  
1 k  
10 k 100 k 1 M 10 M 100 M  
f Frequency Hz  
f Frequency Hz  
Figure 27  
Figure 28  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
23  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
44  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
V
V
T
= 100 mV  
= 0  
= 25°C  
V
V
T
= 100 mV  
= 0  
ID  
O
A
ID  
O
= 25°C  
A
P Package  
P Package  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
V Supply Voltage V  
V  
Supply Voltage V  
CC  
CC  
Figure 29  
Figure 30  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
ELAPSED TIME  
ELAPSED TIME  
45  
44  
42  
40  
38  
36  
34  
V
=
15 V  
V
=
15 V  
CC  
CC  
V
V
T
= 100 mV  
= 0  
= 25°C  
V
V
T
= 100 mV  
= 0  
= 25°C  
ID  
ID  
O
O
43  
41  
39  
37  
35  
A
A
P Package  
P Package  
0
30  
60  
90  
120  
150  
180  
0
30  
60  
90  
120  
150  
180  
t Elasped Time s  
t Elasped Time s  
Figure 31  
Figure 32  
www.ti.com  
24  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT †  
SHORT-CIRCUIT OUTPUT CURRENT †  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
48  
44  
40  
36  
32  
28  
24  
46  
42  
38  
34  
30  
26  
V
V
V
=
15 V  
V
=
15 V  
CC  
CC  
= 100 mV  
= 0  
V
ID  
V
O
= 100 mV  
= 0  
ID  
O
P Package  
P Package  
75 50 25  
0
25 50 75 100 125 150  
75 50 25  
0
25 50 75 100 125 150  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 33  
Figure 34  
SUPPLY CURRENT †  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT †  
vs  
SUPPLY VOLTAGE  
6
5
4
3
2
1
0
5
4.5  
4
V
V
= 15 V  
= 0  
CC  
V
= 0  
O
O
No Load  
No Load  
Sample Size = 836 Units  
From 2 Wafer Lots  
T
= 125°C  
A
T
A
= 25°C  
T
A
= 55°C  
3.5  
3
2.5  
0
2
4
6
8
10 12 14 16 18 20  
75 50 25  
0
25 50 75 100 125 150  
T
A
Free-Air Temperature °C  
V  
Supply Voltage V  
CC  
Figure 35  
Figure 36  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
25  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
TLE2027  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
100  
50  
15  
10  
V
=
15 V  
V
=
15 V  
CC  
CC  
R = 2 kΩ  
C = 100 pF  
R = 2 kΩ  
C = 100 pF  
L
L
L
L
T
= 25°C  
T
= 25°C  
A
A
See Figure 4  
See Figure 1  
5
0
0
5  
10  
15  
50  
100  
0
200  
400  
600 800  
1000  
0
5
10  
15  
20  
25  
t Time ns  
t Time μs  
Figure 37  
Figure 38  
TLE2037  
TLE2037  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
100  
15  
10  
5
V
=
= 5  
15 V  
CC  
A
VD  
R = 2 kΩ  
C = 100 pF  
L
L
50  
0
T
= 25°C  
A
See Figure 1  
0
V
CC  
=
15 V  
5  
A
= 5  
VD  
L
R = 2 kΩ  
50  
100  
C = 100 pF  
L
10  
15  
T
= 25°C  
A
See Figure 4  
0
100  
200  
300  
400  
0
2
4
6
8
10  
t Time μs  
t Time ns  
Figure 39  
Figure 40  
www.ti.com  
26  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
NOISE VOLTAGE  
(REFERRED TO INPUT)  
OVER A 10-SECOND INTERVAL  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
10  
8
50  
40  
V
R
=
15 V  
CC  
V
=
15 V  
CC  
= 20 Ω  
= 25°C  
S
f = 0.1 to 10 Hz  
T
A
T
A
= 25°C  
See Figure 2  
Sample Size = 100 Units  
From 2 Wafer Lots  
30  
20  
6
10  
0
4
10  
20  
30  
40  
50  
2
0
1
10  
100  
1 k  
10 k  
100 k  
0
2
4
6
8
10  
f Frequency Hz  
t Time s  
Figure 41  
Figure 42  
TLE2027  
UNITY-GAIN BANDWIDTH  
vs  
TLE2037  
GAIN-BANDWIDTH PRODUCT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
20  
18  
16  
14  
12  
10  
52  
51  
50  
R = 2 kΩ  
L
f = 100 kHz  
C = 100 pF  
L
R = 2 kΩ  
L
T
= 25°C  
A
C = 100 pF  
See Figure 3  
L
T
A
= 25°C  
49  
48  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20 22  
| V  
CC  
| Supply Voltage V  
V  
Supply Voltage V  
CC  
Figure 43  
Figure 44  
www.ti.com  
27  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
UNITY-GAIN BANDWIDTH  
TLE2037  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
16  
12  
8
52  
51  
50  
49  
48  
V
=
15 V  
CC  
V
=
15 V  
R = 2 kΩ  
CC  
L
T
= 25°C  
R = 2 kΩ  
T
A
A
L
See Figure 3  
= 25°C  
4
0
100  
1000  
10000  
100  
1000  
10000  
C
Load Capacitance pF  
L
C
Load Capacitance pF  
L
Figure 45  
Figure 46  
TLE2027  
SLEW RATE†  
vs  
TLE2037  
SLEW RATE†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3
2.8  
2.6  
2.4  
2.2  
2
10  
9
V
=
= 5  
15 V  
CC  
A
VD  
R = 2 kΩ  
C = 100 pF  
See Figure 1  
L
L
8
7
V
=
= 1  
15 V  
CC  
A
VD  
6
R = 2 kΩ  
C = 100 pF  
See Figure 1  
L
L
5
75 50 25  
0
25  
50  
75 100 125 150  
75 50 25  
0
25 50 75 100 125 150  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 47  
Figure 48  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
28  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
PHASE MARGIN  
vs  
TLE2037  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
58°  
52°  
R = 2 kΩ  
L
A
= 5  
VD  
C = 100 pF  
L
56°  
54°  
52°  
50°  
48°  
46°  
44°  
42°  
R = 2 kΩ  
C = 100 pF  
T
A
L
T
= 25°C  
A
50°  
48°  
L
See Figure 3  
= 25°C  
46°  
44°  
42°  
40°  
38°  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20 22  
| V  
CC  
| Supply Voltage V  
V  
Supply Voltage V  
CC  
Figure 49  
Figure 50  
TLE2027  
PHASE MARGIN  
vs  
TLE2037  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
60°  
50°  
60°  
50°  
40°  
30°  
20°  
V
=
15 V  
CC  
V
=
15 V  
CC  
R = 2 kΩ  
L
R = 2 kΩ  
T
A
L
T
= 25°C  
A
= 25°C  
See Figure 3  
40°  
30°  
20°  
10°  
10°  
0°  
0°  
100  
1000  
10000  
100  
1000  
C
Load Capacitance pF  
C
Load Capacitance pF  
L
L
Figure 51  
Figure 52  
www.ti.com  
29  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TLE2027  
PHASE MARGIN†  
TLE2037  
PHASE MARGIN†  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
65°  
60°  
55°  
50°  
45°  
40°  
35°  
55°  
V
=
15 V  
V
CC  
=
15 V  
CC  
R = 2 kΩ  
A
= 5  
L
VD  
T
= 25°C  
R = 2 kΩ  
C = 100 pF  
A
L
53°  
51°  
See Figure 3  
L
49°  
47°  
45°  
75 50 25  
0
25 50 75 100 125 150  
75 50 25  
0
25  
50  
75 100 125 150  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 53  
Figure 54  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
www.ti.com  
30  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
APPLICATION INFORMATION  
input offset voltage nulling  
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset  
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not  
needed, the null pins may be left disconnected.  
1 kΩ  
V
CC +  
10 kΩ  
4.7 kΩ  
V
CC +  
4.7 kΩ  
IN −  
IN −  
OUT  
OUT  
IN +  
+
IN +  
+
V
CC −  
V
CC −  
(a) STANDARD ADJUSTMENT  
(b) ADJUSTMENT WITH IMPROVED SENSITIVITY  
Figure 55. Input Offset Voltage Nulling Circuits  
voltage-follower applications  
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.  
For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem  
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).  
C = 20 to 50 pF  
F
I 1 mA  
F
R
F
V
CC  
V
O
V
I
+
V
CC−  
Figure 56. Voltage Follower  
www.ti.com  
31  
 
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and  
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this  
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Gain-bandwidth product  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Open-loop voltage amplification  
Short-circuit output current limit  
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
+
3
dln  
91  
V
egnd  
CC +  
9
92  
fb  
rc1  
11  
rc2  
12  
c1  
+
ro2 90  
hlim  
rp  
+
+ dip  
vb  
1
vip  
IN +  
vin  
+
+
vc  
53  
Q1  
Q2  
r2  
IN −  
C2  
6
7
2
dp  
13  
+
14  
ree  
re2  
cee  
vlim  
ga  
gcm  
dc  
re1  
8
10  
ro1  
lee  
de  
54  
V
CC −  
5
+
4
ve  
OUT  
Figure 57. Boyle Macromodel  
PSpice and Parts are trademarks of MicroSim Corporation.  
www.ti.com  
32  
 
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
APPLICATION INFORMATION  
macromodel information (continued)  
q2  
12  
6
1
9
14 qx  
100.0E3  
530.5  
530.5  
393.2  
393.2  
3.571E6  
25  
.subckt TLE2027 1 2 3 4 5  
*
r2  
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
11  
12  
10  
10  
99  
5
c1  
11  
6
12  
7
4.003E-12  
3
c2  
20.00E-12  
13  
14  
10  
8
dc  
5
53  
5
dz  
de  
54  
90  
92  
4
dz  
dlp  
dln  
dp  
91  
90  
3
dz  
dx  
7
99  
4
25  
dz  
3
8.013E3  
egnd  
99  
0
poly(2) (3,0)  
vb  
9
0
dc  
0
(4,0) 0 5 .5  
vc  
3
53  
4
dc 2.400  
dc 2.100  
fb  
7
99  
poly(5) vb vc  
ve  
54  
7
ve vlp vln 0 954.8E6 1E9 1E9 1E9  
1E9  
vlim  
vlp  
vln  
8
0
92  
dc  
0
91  
0
dc 40  
dc 40  
ga  
6
0
11 12  
2.062E-3  
gcm  
.modeldx D(Is=800.0E-18)  
.modelqx NPN(Is=800.0E-18  
Bf=7.000E3)  
0
6
10 99  
531.3E-12  
iee  
10  
90  
11  
4
0
2
dc 56.01E-6  
vlim 1K  
13 qx  
.ends  
hlim  
q1  
Figure 58. TLE2027 Macromodel Subcircuit  
.subckt TLE2037 1 2 3 4 5  
*
q2  
r2  
12  
6
1
9
14 qz  
100.0E3  
471.5  
471.5  
A448  
c1  
11  
6
12  
7
4.003E12  
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
11  
12  
10  
10  
99  
5
c2  
7.500E12  
3
dc  
5
53  
5
dz  
13  
14  
10  
8
de  
54  
90  
92  
4
dz  
A448  
dlp  
dln  
dp  
91  
90  
3
dz  
3.555E6  
25  
25  
8.013E3  
dc 0  
dx  
dz  
7
99  
4
egnd  
99  
0
7
0
poly(2) (3,0)  
3
(4,0)  
.5 .5  
vb  
9
0
fb  
99  
poly(5) vb vc  
vc  
3
53  
4
dc 2.400  
dc 2.100  
ve vip vln 0 923.4E6 A800E6  
800E6 800E6 A800E6  
ve  
54  
7
vlim  
vlp  
vln  
.model  
.model  
8
0
92  
dc  
0
ga  
6
0
0
6
4
0
2
11 12 2.121E3  
10 99 597.7E12  
dc 56.26E6  
vlim 1K  
91  
0
dc 40  
dc 40  
gcm  
iee  
hlim  
q1  
10  
90  
11  
dxD(Is=800.0E18)  
qxNPN(Is=800.0E18  
13 qx  
Bf=7.031E3)  
.ends  
Figure 59. TLE2037 Macromodel Subcircuit  
www.ti.com  
33  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192C FEBRUARY 1997 REVISED APRIL 2010  
REVISION HISTORY  
Changes from Revision B (October 2006) to Revision C  
Changed values of V , V  
, and I  
n
N(PP) n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11  
www.ti.com  
34  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
5962-9089601M2A  
ACTIVE  
LCCC  
CDIP  
FK  
20  
8
1
TBD  
POST-PLATE  
A42  
N / A for Pkg Type  
-55 to 125  
5962-  
9089601M2A  
TLE2027MFKB  
5962-9089601MPA  
ACTIVE  
JG  
1
TBD  
N / A for Pkg Type  
-55 to 125  
9089601MPA  
TLE2027M  
5962-9089602MPA  
5962-9089603Q2A  
OBSOLETE  
ACTIVE  
CDIP  
JG  
FK  
8
TBD  
TBD  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
LCCC  
20  
1
1
POST-PLATE  
N / A for Pkg Type  
5962-  
9089603Q2A  
TLE2027AMFKB  
5962-9089603QPA  
ACTIVE  
CDIP  
JG  
8
TBD  
A42  
N / A for Pkg Type  
-55 to 125  
9089603QPA  
TLE2027AM  
TLE2027ACD  
TLE2027ACP  
TLE2027AID  
TLE2027AIP  
TLE2027AMD  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
D
P
D
P
D
8
8
8
8
8
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
75  
75  
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
2027AM  
2027AM  
TLE2027AMDG4  
TLE2027AMFKB  
ACTIVE  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
N / A for Pkg Type  
LCCC  
FK  
20  
TBD  
POST-PLATE  
5962-  
9089603Q2A  
TLE2027AMFKB  
TLE2027AMJG  
TLE2027AMJGB  
TLE2027CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
SOIC  
SOIC  
SOIC  
SOIC  
JG  
JG  
D
8
8
8
8
8
8
1
1
TBD  
TBD  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
TLE2027  
AMJG  
A42  
9089603QPA  
TLE2027AM  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2027C  
2027C  
2027C  
2027C  
TLE2027CDG4  
TLE2027CDR  
TLE2027CDRG4  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLE2027CP  
TLE2027ID  
OBSOLETE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
TBD  
Call TI  
Call TI  
0 to 70  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2027I  
2027I  
2027I  
2027I  
TLE2027IDG4  
TLE2027IDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2027IDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2027IP  
OBSOLETE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
TBD  
Call TI  
Call TI  
TLE2027MD  
75  
75  
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
2027M  
2027M  
TLE2027MDG4  
TLE2027MFKB  
ACTIVE  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
N / A for Pkg Type  
LCCC  
FK  
20  
TBD  
POST-PLATE  
5962-  
9089601M2A  
TLE2027MFKB  
TLE2027MJG  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
JG  
JG  
8
8
1
1
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
TLE2027MJG  
TLE2027MJGB  
9089601MPA  
TLE2027M  
TLE2037ACD  
TLE2037ACP  
TLE2037AID  
TLE2037AIP  
TLE2037AMD  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
D
P
D
P
D
8
8
8
8
8
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
2037AM  
2037AM  
TLE2037AMDG4  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TLE2037AMJGB  
TLE2037CD  
OBSOLETE  
ACTIVE  
CDIP  
SOIC  
JG  
D
8
8
TBD  
Call TI  
Call TI  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2037C  
2037C  
2037C  
TLE2037CDG4  
TLE2037CDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2500  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLE2037CDRG4  
ACTIVE  
SOIC  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2037C  
TLE2037CP  
TLE2037ID  
OBSOLETE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
TBD  
Call TI  
Call TI  
0 to 70  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2037I  
2037I  
2037I  
2037I  
TLE2037IDG4  
TLE2037IDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLE2037IDRG4  
Green (RoHS  
& no Sb/Br)  
TLE2037IP  
OBSOLETE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
TBD  
Call TI  
Call TI  
TLE2037MD  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
2037M  
2037M  
TLE2037MDG4  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TLE2037MFKB  
TLE2037MJGB  
OBSOLETE  
OBSOLETE  
LCCC  
CDIP  
FK  
JG  
20  
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLE2027, TLE2027A, TLE2027AM, TLE2027M, TLE2037, TLE2037A :  
Catalog: TLE2027A, TLE2027  
Automotive: TLE2037-Q1, TLE2037A-Q1  
Enhanced Product: TLE2027-EP, TLE2027-EP  
Military: TLE2027M, TLE2027AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Military - QML certified for Military and Defense Applications  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Sep-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLE2027CDR  
TLE2027IDR  
TLE2037CDR  
TLE2037IDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Sep-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLE2027CDR  
TLE2027IDR  
TLE2037CDR  
TLE2037IDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
2500  
2500  
2500  
340.5  
340.5  
340.5  
340.5  
338.1  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

5962-9089603QPA

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

5962-9089604QPA

Voltage-Feedback Operational Amplifier
ETC

5962-9089604QPX

Operational Amplifier, 1 Func, 105uV Offset-Max, CDIP8, CERAMIC, DIP-8
WEDC

5962-90899

MICROCIRCUIT, MEMORY, DIGITAA, CMOS, 128K X 8 BIT FLASH EEPROM, MONOLITHIC SILICON
ETC

5962-9089901MTA

x8 Flash EEPROM
ETC

5962-9089901MTX

MICROCIRCUIT, MEMORY, DIGITAA, CMOS, 128K X 8 BIT FLASH EEPROM, MONOLITHIC SILICON
ETC

5962-9089901MUA

Flash, 128KX8, 250ns, CDFP32, CERAMIC, DFP-32
ROCHESTER

5962-9089901MUX

MICROCIRCUIT, MEMORY, DIGITAA, CMOS, 128K X 8 BIT FLASH EEPROM, MONOLITHIC SILICON
ETC

5962-9089901MXA

Flash, 128KX8, 250ns, CDIP32, WINDOWED, HERMETIC SEALED, CERDIP-32
ROCHESTER

5962-9089901MXX

MICROCIRCUIT, MEMORY, DIGITAA, CMOS, 128K X 8 BIT FLASH EEPROM, MONOLITHIC SILICON
ETC

5962-9089901MYA

128KX8 FLASH 12V PROM, 250ns, CQCC32, WINDOWED, CERAMIC, LCC-32
ROCHESTER

5962-9089901MYX

MICROCIRCUIT, MEMORY, DIGITAA, CMOS, 128K X 8 BIT FLASH EEPROM, MONOLITHIC SILICON
ETC