5962L1821001VXC [TI]

具有直列式滤波器选项的耐辐射、-15V 至 65V、分离级电流感应放大器 | HKX | 8 | -55 to 125;
5962L1821001VXC
型号: 5962L1821001VXC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有直列式滤波器选项的耐辐射、-15V 至 65V、分离级电流感应放大器 | HKX | 8 | -55 to 125

放大器
文件: 总26页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
共模范围为 –15V 80V INA901-SP 耐辐射  
单向电流分流监控器  
1 特性  
3 说明  
1
5962-1821001  
INA901-SP 是一款电压输出、电流检测放大器,可在  
独立于电源电压的 –15V +80V 共模电压中感应分流  
电阻上的压降。INA901-SP 2.7V 16V 单电源供  
电,消耗的电源电流为 700μA(典型值)。  
在低剂量率下的耐辐射 (RHA) 剂量为  
100krad (Si)  
单粒子闩锁 (SEL) 125°C 下的  
抗扰度可达 93MeV-cm2/mg  
INA901-SP 的增益为 20 V/V130kHz 带宽简化了在  
电流控制环路中的使用。其引脚排列可充分支持滤波。  
请参阅辐射报告  
符合军用级  
温度范围要求(-55°C 125°C)  
该器件具有 –55°C +125°C 的扩展额定工作温度范  
围,并且采用 8 引脚 CFP 封装。  
高性能 8 引脚  
陶瓷扁平封装 (HKX)  
器件信息(1)  
宽共模范围:–15V 80V  
CMRR120dB  
精度:  
器件型号  
等级  
封装  
QMLV RHA  
[100 krad(Si)]  
8 引线 CFP  
[HKX]  
5962R1821001VXC  
±0.5mV 的失调电压  
±0.2% 增益误差  
5962-1821001VXC QMLV  
6.48 × 6.48mm  
重量:0.39g(3)  
INA901HKX/EM  
工程样片(2)  
2.5μV/°C 的温漂  
INA901EVM-CVAL 陶瓷评估板  
50ppm/°C 的增益漂移  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
带宽:高达 130kHz  
增益:20V/V  
(2) 这些部件仅适用于工程评估。部件按照不合规的流程进行加工  
处理。这些部件不适用于质检、生产、辐射测试或飞行。这些  
零部件无法在 –55°C 125°C 的完整 MIL 额定温度范围内或  
运行寿命中保证其性能。  
静态电流:700μA  
电源电压:2.7V 16V  
可用于滤波  
(3) 重量误差在 ±10% 以内。  
简化原理图  
2 应用  
RS  
16 V to +80 V  
Supply  
Load  
电源监控  
Single-Pole Filter  
Capacitor  
过流和欠流检测  
卫星遥测  
+2.7 V to +18 V  
PRE OUT  
BUF IN  
IN+  
IN-  
V+  
空间信号调节  
电机控制环路  
5 kW  
5 kW  
OUT  
A1  
96 kW  
A2  
RL  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS938  
 
 
 
 
 
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Quality Conformance Inspection............................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 文档支持................................................................ 20  
11.2 接收文档更新通知 ................................................. 20  
11.3 社区资源................................................................ 20  
11.4 ....................................................................... 20  
11.5 静电放电警告......................................................... 20  
11.6 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2018) to Revision B  
Page  
已更改 将器件状态从预告信息 更改为生产数据...................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
HKX Package  
8-Pin CFP  
Top View  
IN+  
IN-  
1
2
3
4
8
7
6
5
NC(1)  
V+  
GND  
PRE OUT  
BUF IN  
INA901  
OUT  
NOTE (1): NC denotes no internal connection.  
Pin Functions  
PIN  
I/O  
TYPE(1) DESCRIPTION  
NAME  
BUF IN  
NO.  
4
I
A
GND  
A
Connect to output of filter from PRE OUT.  
Ground.  
GND  
IN–  
2
I
1
Connect to load side of shunt resistor.  
Connect to supply side of shunt resistor.  
Recommend connect to ground.  
Output voltage.  
IN+  
8
I
A
NC  
7
O
O
A
OUT  
PRE OUT  
V+  
5
3
A
Connect to input of filter to BUF IN.  
Power supply, 2.7 V to 18 V.  
6
P
(1) A = analog, P = power, GND = ground  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
MAX  
18  
UNIT  
Supply voltage (VS)  
V
Differential, (VIN+) – (VIN–  
)
–18  
–16  
18  
Analog inputs, VIN+, VIN–  
V
Common-mode  
80  
Analog output: OUT and PRE OUT pins  
Input current into any pin  
Operating temperature  
GND – 0.3  
(V+) + 0.3  
5
V
mA  
°C  
°C  
°C  
–55  
150  
Junction temperature  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018, Texas Instruments Incorporated  
3
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–15  
2.7  
MAX  
80  
UNIT  
V
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
16  
V
TA  
Operating free-air temperature  
–55  
125  
°C  
6.4 Thermal Information  
INA901-SP  
HKX (CFP)  
8 PINS  
116.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
39.1  
98.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
32.5  
ψJB  
93.1  
RθJC(bot)  
26.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
6.5 Electrical Characteristics  
VS = 2.7 V and 16 V, VCM = –15 V, 12 V and 80 V, VSENSE = 100 mV, and PRE OUT connected to BUF IN, unless otherwise  
noted. TA is as shown in SUBGROUP column.  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
INPUT  
VSENSE  
VCM  
Full-scale input voltage  
VSENSE = (VIN+) – (VIN–  
)
[1, 2, 3]  
[1, 2, 3]  
[1]  
0.15 (VS – 0.2) / Gain  
V
V
Common-mode input range  
–16  
80  
80  
120  
120  
CMRR  
VOS  
Common-mode rejection ratio  
Offset voltage, RTI  
VIN+ = –15 V to 80 V  
dB  
[2, 3]  
[1]  
70  
±0.5  
±2.5  
±3.5  
mV  
[2, 3]  
dVOS/dT  
PSR  
2.5  
5
μV/°C  
μV/V  
VOS vs power-supply  
[1, 2, 3]  
[1]  
250  
±16  
±19  
±8  
IB  
Input bias current, VIN– pin  
μA  
[2, 3]  
PRE OUT output impedance  
Buffer input bias current  
96  
k  
–50  
nA  
Buffer input bias current  
temperature coefficient  
±0.03  
nA/°C  
OUTPUT (VSENSE 20 mV)(2)  
G
Gain  
20  
2
V/V  
V/V  
GBUF  
Output buffer gain  
Total gain error  
VSENSE = 20 mV to 100 mV  
TA = –55°C to 125°C  
[4, 5, 6]  
±0.2%  
50  
±1.5%  
Total gain error vs temperature  
ppm/°C  
[4]  
±0.75%  
±2%  
±3%  
Total output error(3)  
[5, 6]  
Nonlinearity error  
VSENSE = 20 mV to 100 mV  
No sustained oscillation  
±0.002%  
1.5  
RO  
Output impedance, pin 5  
Maximum capacitive load  
10  
nF  
VOLTAGE OUTPUT (RL = 10 kto GND)  
Swing to V+ power-supply rail  
Swing to GND  
[1, 2, 3]  
[1, 2, 3]  
(V+) – 0.05  
(V+) – 0.2  
V
V
VGND + 0.003  
VGND + 0.05  
FREQUENCY RESPONSE  
BW  
Bandwidth  
Phase margin  
Slew rate  
CLOAD = 5 pF  
CLOAD < 10 nF  
130  
40  
1
kHz  
°
SR  
tS  
V/μs  
VSENSE = 10 mV to 100 mVPP  
CLOAD = 5 pF  
,
Settling time (1%)  
2
μs  
(1) For subgroup definitions, please see Quality Conformance Inspection table.  
(2) For output behavior when VSENSE < 20 mV, see the Accuracy Variations as a Result of VSENSE and Common-Mode Voltage section.  
(3) Total output error includes effects of gain error and VOS  
.
Copyright © 2018, Texas Instruments Incorporated  
5
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VS = 2.7 V and 16 V, VCM = –15 V, 12 V and 80 V, VSENSE = 100 mV, and PRE OUT connected to BUF IN, unless otherwise  
noted. TA is as shown in SUBGROUP column.  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
nV/Hz  
V
NOISE, RTI(4)  
en Voltage noise density  
POWER SUPPLY  
VS Operating range  
40  
[1, 2, 3]  
[1]  
2.7  
16  
900  
700  
700  
350  
350  
VOUT = 2 V  
[2, 3]  
[1]  
1200  
500  
IQ  
Quiescent current  
μA  
VSENSE = 0 mV  
[2, 3]  
650  
(4) RTI means Referred-to-Input.  
6.6 Quality Conformance Inspection  
MIL-STD-883, Method 5005 - Group A  
SUBGROUP  
DESCRIPTION  
TEMP (°C)  
1
2
Static tests at  
Static tests at  
25  
125  
–55  
25  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
Setting time at  
5
125  
–55  
25  
6
7
8A  
8B  
9
125  
–55  
25  
10  
11  
12  
13  
14  
125  
–55  
25  
Setting time at  
125  
–55  
Setting time at  
6
Copyright © 2018, Texas Instruments Incorporated  
 
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
6.7 Typical Characteristics  
At TA = 25°C, VS = 12 V, VCM = 12 V, and VSENSE = 100 mV, unless otherwise noted.  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
10k  
100k  
1M  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
CLOAD = 1000 pF  
CLOAD = 1000 pF  
CLOAD = 0 pF  
Figure 1. Gain vs Frequency  
Figure 2. Gain vs Frequency  
20  
18  
16  
14  
12  
10  
8
140  
130  
120  
110  
100  
90  
CMRR  
PSR  
80  
70  
6
60  
4
50  
2
40  
10  
0
100  
1k  
10k  
100k  
Frequency (Hz)  
VSENSE (mV)  
VS = 18 V  
Figure 3. Gain Plot  
Figure 4. Common-Mode and Power-Supply Rejection vs  
Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
50  
100 150 200  
VSENSE (mV)  
250 300  
350 400 450  
500  
-8 -4  
0
16 20  
...  
76  
80  
-16 -12  
4
8
12  
Common-Mode Voltage (V)  
Figure 5. Total Output Error vs VSENSE  
Figure 6. Output Error vs Common-Mode Voltage  
Copyright © 2018, Texas Instruments Incorporated  
7
 
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = 12 V, VCM = 12 V, and VSENSE = 100 mV, unless otherwise noted.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
12  
11  
10  
9
VS = 12V  
Sourcing Current  
+25°C  
8
-40°C  
+125°C  
7
6
VS = 3V  
5
Sourcing Current  
4
-40°C  
+25°C  
Output stage is designed  
to source current. Current  
sinking capability is  
3
2
approximately 400mA.  
1
+125°C  
0
5
10  
20  
25  
0
15  
30  
1
2
0
3
4
5
6
7
8
9
10  
Output Current (mA)  
Output Voltage (V)  
Figure 7. Positive Output Voltage Swing vs Output Current  
Figure 8. Quiescent Current vs Output Voltage  
875  
34  
30  
26  
22  
18  
14  
10  
6
-40°C  
+25°C  
VSENSE = 100mV:  
VS = 12V  
VS = 2.7V  
775  
675  
575  
475  
375  
275  
175  
+125°C  
VS = 12V  
VSENSE = 0mV:  
VS = 2.7V  
-8 -4  
0
4
20  
76  
80  
-16 -12  
8
12 16  
...  
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 17  
Supply Voltage (V)  
18  
VCM (V)  
Figure 10. Output Short-Circuit Current vs Supply Voltage  
Figure 9. Quiescent Current vs Common-Mode Voltage  
200  
150  
Phase  
100  
50  
Gain  
0
-50  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
RPREOUT (kW)  
Figure 12. Buffer Gain vs Frequency  
Figure 11. PRE OUT Output Resistance Production  
Distribution  
8
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
Typical Characteristics (continued)  
At TA = 25°C, VS = 12 V, VCM = 12 V, and VSENSE = 100 mV, unless otherwise noted.  
10ms/div  
10ms/div  
Figure 13. Small-Signal Step Response  
(10-mV to 20-mV Input)  
Figure 14. Large-Signal Step Response  
(10-mV to 100-mV Input)  
Copyright © 2018, Texas Instruments Incorporated  
9
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA901-SP current-shunt monitor with voltage output can sense drops across current shunts at common-  
mode voltages from –16 V to 80 V, independent of the supply voltage. The INA901-SP pinouts readily enable  
filtering.  
The INA901-SP is available with a 20-V/V output voltage scale. The 130-kHz bandwidth simplifies use in current-  
control loops.  
The INA901-SP operates from a single 2.7-V to 18-V supply, drawing a maximum of 900 μA of supply current.  
The devices are specified over the extended operating temperature range of –55°C to 125°C and are offered in  
an 8-pin CFP package.  
7.2 Functional Block Diagram  
PRE OUT  
IN+  
IN-  
BUF IN  
V+  
A1  
A2  
OUT  
GND  
10  
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
7.3 Feature Description  
7.3.1 Basic Connection  
Figure 15 shows the basic connection of the INA901-SP. Connect the input pins (IN+ and IN–) as closely as  
possible to the shunt resistor to minimize any resistance in series with the shunt resistance.  
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power  
supplies may require additional decoupling capacitors to reject power-supply noise. Place minimum bypass  
capacitors of 0.01 μF and 0.1 μF in value close to the supply pins. Although not mandatory, an additional 10-mF  
electrolytic capacitor placed in parallel with the other bypass capacitors may be useful in applications with  
particularly noisy supplies.  
RS  
16 V to +80 V  
Supply  
Load  
Single-Pole Filter  
Capacitor  
+2.7 V to +18 V  
PRE OUT  
BUF IN  
0.01 mF  
0.1 mF  
IN+  
IN-  
V+  
5 kW  
5 kW  
OUT  
A1  
96 kW  
A2  
R
L
GND  
Figure 15. INA901-SP Basic Connections  
7.3.2 Selecting RS  
The value chosen for the shunt resistor, RS, depends on the application and is a compromise between small-  
signal accuracy and maximum permissible voltage loss in the measurement line. High values of RS provide better  
accuracy at lower currents by minimizing the effects of offset, while low values of RS minimize voltage loss in the  
supply line. For most applications, best performance is attained with an RS value that provides a full-scale shunt  
voltage range of 50 mV to 100 mV. Maximum input voltage for accurate measurements is (VS – 0.2) / Gain.  
7.3.3 Transient Protection  
The –16-V to 80-V common-mode range of INA901-SP is ideal for withstanding fault conditions ranging from 12-  
V battery reversal up to 80-V transients because no additional protective components are needed up to those  
levels. In the event that INA901-SP exposed to transients on the inputs in excess of their ratings, external  
transient absorption with semiconductor transient absorbers (Zeners or Transzorbs) are necessary.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
Use of MOVs or VDRs is not recommended except when they are used in addition to a semiconductor transient  
absorber. Select the transient absorber such that it never allows the INA901-SP to be exposed to transients  
greater than 80 V (that is, allow for transient absorber tolerance, as well as additional voltage because of  
transient absorber dynamic impedance). Despite the use of internal Zener-type ESD protection, the INA901-SP is  
not suited to using external resistors in series with the inputs because the internal gain resistors can vary up to  
±30%, but are tightly matched (if gain accuracy is not important, then resistors can be added in series with the  
INA901-SP inputs with two equal resistors on each input).  
12  
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
7.4 Device Functional Modes  
7.4.1 First- or Second-Order Filtering  
The output of the INA901-SP is accurate within the output voltage swing range set by the power-supply pin, V+.  
The INA901-SP readily enables the inclusion of filtering between the preamp output and buffer input. Single-pole  
filtering can be accomplished with a single capacitor because of the 96-koutput impedance at PRE OUT on pin  
3, as shown in Figure 16a.  
The INA901-SP readily lends to second-order Sallen-Key configurations, as shown in Figure 16b. When  
designing these configurations consider that the PRE OUT 96-koutput impedance exhibits an initial variation of  
±30% with the addition of a –2200-ppm/°C temperature coefficient.  
RS  
Supply  
Load  
RS  
Supply  
Load  
Second-Order, Sallen-Key Filter Connection  
CFILT  
CFILT  
RS  
Single-Pole Filter  
Capacitor  
+2.7 V to +18 V  
V+  
+2.7 V to +18 V  
BUF IN  
V+  
PRE OUT  
BUF IN  
PRE OUT  
IN+  
IN-  
IN+  
IN-  
5 kW  
5 kW  
5 kW  
5 kW  
Output  
A1  
A2  
A1  
A2  
Output  
96 kW  
96 kW  
RL  
RL  
GND  
GND  
a) Single-Pole Filter  
b) Second-Order, Sallen-Key Filter  
NOTE: Remember to use the appropriate buffer gain = 2 when designing Sallen-Key configurations.  
Figure 16. The INA901-SP Can Be Easily Connected for First- or Second-Order Filtering  
7.4.2 Accuracy Variations as a Result of VSENSE and Common-Mode Voltage  
The accuracy of the INA901-SP current shunt monitors is a function of two main variables: VSENSE (VIN+ – VIN–  
)
and common-mode voltage (VCM) relative to the supply voltage, VS. VCM is expressed as (VIN+ + VIN–) / 2;  
however, in practice, VCM is used as the voltage at VIN+ because the voltage drop across VSENSE is usually small.  
This section addresses the accuracy of these specific operating regions:  
Normal Case 1: VSENSE 20 mV, VCM VS  
Normal Case 2: VSENSE 20 mV, VCM < VS  
Low VSENSE Case 1:  
VSENSE < 20 mV, –16 V VCM < 0  
Low VSENSE Case 2:  
VSENSE < 20 mV, 0 V VCM VS  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
Low VSENSE Case 3:  
VSENSE < 20 mV, VS < VCM 80 V  
7.4.2.1 Normal Case 1: VSENSE 20 mV, VCM VS  
This region of operation provides the highest accuracy. Here, the input offset voltage is characterized and  
measured using a two-step method. First, the gain is determined by Equation 1.  
VOUT1 - VOUT2  
G =  
100mV - 20mV  
where  
VOUT1 = Output voltage with VSENSE = 100 mV and  
VOUT2 = Output voltage with VSENSE = 20 mV.  
(1)  
Then the offset voltage is measured at VSENSE = 100 mV and referred to the input (RTI) of the current shunt  
monitor, as shown in Equation 2.  
VOUT1  
VOSRTI (Referred-To-Input) =  
- 100mV  
G
(2)  
In the Typical Characteristics section, the Output Error vs Common-Mode Voltage curve (Figure 6) shows the  
highest accuracy for the this region of operation. In this plot, VS = 12 V; for VCM 12 V, the output error is at its  
minimum. This case is also used to create the VSENSE 20-mV output specifications in the Electrical  
Characteristics table.  
7.4.2.2 Normal Case 2: VSENSE 20 mV, VCM < VS  
This region of operation has slightly less accuracy than Normal Case 1 as a result of the common-mode  
operating area in which the device functions, as illustrated in the Output Error vs Common-Mode Voltage curve  
(Figure 6). As noted, for this graph VS = 12 V; for VCM < 12 V, the output error increases when VCM becomes less  
than 12 V, with a typical maximum error of 0.005% at the most negative VCM = –16 V.  
7.4.2.3 Low VSENSE Case 1: VSENSE < 20 mV, –16 V VCM < 0; and Low VSENSE Case 3: VSENSE < 20 mV,  
VS < VCM 80 V  
Although the INA901-SP is not designed for accurate operation in either of these regions, some applications are  
exposed to these conditions. For example, when monitoring power supplies that are switched on and off while VS  
is still applied to the INA901-SP, knowing what the behavior of the devices is in these regions is important.  
14  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
Device Functional Modes (continued)  
When VSENSE approaches 0 mV, in these VCM regions, the device output accuracy degrades. A larger-than-  
normal offset can appear at the current shunt monitor output with a typical maximum value of VOUT = 60 mV for  
VSENSE = 0 mV. When VSENSE approaches 20 mV, VOUT returns to the expected output value with accuracy as  
specified in the Electrical Characteristics table. Figure 17 shows this effect using the INA901-SP (gain = 20).  
0.40  
0.36  
0.32  
0.28  
0.24  
Actual  
0.20  
0.16  
Ideal  
0.12  
0.08  
0.04  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VSENSE (mV)  
Figure 17. Example For Low VSENSE Cases 1 and 3 (INA901-SP Gain = 20)  
7.4.2.4 Low VSENSE Case 2: VSENSE < 20 mV, 0 V VCM VS  
This region of operation is the least accurate for the INA901-SP. To achieve the wide input common-mode  
voltage range, these devices use two op amp front ends in parallel. One op amp front end operates in the  
positive input common-mode voltage range, and the other in the negative input region. For this case, neither of  
these two internal amplifiers dominates and overall loop gain is very low. Within this region, VOUT approaches  
voltages close to linear operation levels for Normal Case 2.  
This deviation from linear operation becomes greatest the closer VSENSE approaches 0 V. Within this region,  
when VSENSE approaches 20 mV, device operation is closer to that described by Normal Case 2. Figure 18  
shows this behavior for the INA901-SP. The VOUT maximum peak for this case is determined by maintaining a  
constant VS, setting VSENSE = 0 mV, and sweeping VCM from 0 V to VS. The exact VCM at which VOUT peaks  
during this case varies from device to device. The maximum peak voltage for the INA901-SP is 0.4 V.  
0.48  
VOUT Limit  
0.44  
VCM1  
0.40  
Ideal  
0.36  
VCM2  
0.32  
0.28  
VCM3  
0.24  
0.20  
VOUT limit at VSENSE = 0 mV,  
0.16  
0.12  
0.08  
0.04  
0
VCM4  
0 VCM1 VS  
VCM2, VCM3, and VCM4 illustrate the variance  
from part to part of the VCM that can cause  
maximum VOUT with VSENSE < 20 mV.  
0
2
4
6
8
10 12 14 16 18 20 22 24  
VSENSE (mV)  
Figure 18. Example for Low VSENSE Case 2 (INA901-SP, Gain = 20)  
Copyright © 2018, Texas Instruments Incorporated  
15  
 
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA901-SP measures the voltage developed across a current-sensing resistor when current passes through  
it. There is also a filtering feature to remove unwanted transients and smooth the output voltage.  
8.2 Typical Application  
RS  
16 V to +80 V  
Supply  
Load  
Single-Pole Filter  
Capacitor  
+2.7 V to +18 V  
PRE OUT  
BUF IN  
0.01 mF  
0.1 mF  
IN+  
IN-  
V+  
5 kW  
5 kW  
OUT  
A1  
96 kW  
A2  
R
L
GND  
Figure 19. Filtering Configuration  
8.2.1 Design Requirements  
In this application, the device is configured to measure a triangular periodic current at 10 kHz with filtering. The  
average current through the shunt is the information that is desired. This current can be either solenoid current or  
inductor current where current is being pulsed through.  
Selecting the capacitor size is based on the lowest frequency component to be filtered out. The amount of signal  
that is filtered out is dependant on this cutoff frequency. From the cutoff frequency, the attenuation is 20 dB per  
decade.  
16  
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
Without this filtering capability, an input filter must be used. When series resistance is added to the input, large  
errors also come into play because the resistance must be large to create a low cutoff frequency. By using a  
10-nF capacitor for the single-pole filter capacitor, the 10-kHz signal is averaged. The cutoff frequency made by  
the capacitor is set at 166-Hz frequency. This frequency is well below the periodic frequency and reduces the  
ripple on the output and the average current can easily be measured.  
8.2.3 Application Curves  
Figure 20 shows the output waveform without filtering. The output signal tracks the input signal with a large  
ripple. If this current is sampled by an ADC, many samples must be taken to average the current digitally. This  
process requires additional time for sampling or operating at a higher sampling rate, which may be undesirable  
for the application.  
Figure 21 shows the output waveform with filtering. shows the output waveform with filtering. The average value  
of the current with a small ripple can now be easily sampled by the converter without the need for digital  
averaging.  
Figure 20. Without Filtering  
Figure 21. With Filtering  
Copyright © 2018, Texas Instruments Incorporated  
17  
 
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The input circuitry of the INA901-SP can accurately measure beyond its power-supply voltage, V+. For example,  
the V+ power supply can be 5 V, whereas the load power-supply voltage is up to 80 V. The output voltage range  
of the OUT terminal, however, is limited by the voltages on the power-supply pin.  
18  
Copyright © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of  
the current-sensing resistor commonly results in additional resistance present between the input pins. Given  
the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause  
significant measurement errors.  
Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The  
recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added to  
compensate for noisy or high-impedance power supplies.  
10.1.1 RFI and EMI  
Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed  
circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible.  
Small ceramic capacitors placed directly across amplifier inputs can reduce RFI and EMI sensitivity. PCB layout  
must locate the amplifier as far away as possible from RFI sources. Sources can include other components in  
the same system as the amplifier itself, such as inductors (particularly switched inductors handling a lot of current  
and at high frequencies). RFI can generally be identified as a variation in offset voltage or dc signal levels with  
changes in the interfering RF signal. If the amplifier cannot be located away from sources of radiation, shielding  
may be needed. Twisting wire input leads makes them more resistant to RF fields.  
10.2 Layout Example  
Shunt Resistor  
IN-  
IN+  
NC  
V+  
Supply Bypass  
Capacitor  
GND  
PRE  
OUT  
Single-Pole Filter  
Capacitor  
Supply Voltage  
Analog Output  
BUF IN  
OUT  
Via to Power or Ground Plane  
Via to Internal Layer  
Figure 22. Example Layout  
版权 © 2018, Texas Instruments Incorporated  
19  
INA901-SP  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅 ti.com.cn 中的 INA901-SP 产品文件夹,获取技术文档工具与软件的链接。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
20  
版权 © 2018, Texas Instruments Incorporated  
INA901-SP  
www.ti.com.cn  
ZHCSIX1B OCTOBER 2018REVISED DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-1821001VXC  
5962L1821001VXC  
INA901HKX/EM  
ACTIVE  
CFP  
CFP  
CFP  
HKX  
8
8
8
1
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
25 to 25  
1821001VXC  
INA901-SP  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
HKX  
1
NIAU  
NIAU  
5962L1821001VXC  
INA901-SP  
HKX  
1
INA901HKX/EM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962-1821001VXC  
5962L1821001VXC  
INA901HKX/EM  
HKX  
HKX  
HKX  
CFP (HSL)  
CFP (HSL)  
CFP (HSL)  
8
8
8
1
1
1
506.98  
506.98  
506.98  
26.16  
26.16  
26.16  
6220  
6220  
6220  
NA  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HKX0008A  
CFP - 2.785 mm max height  
S
C
A
L
E
1
.
0
0
0
CERAMIC FLATPACK  
B
6X 1.27  
2X 3.81  
1
4
8
5
6.725  
6.225  
0.52  
8X  
0.42  
6.735  
6.235  
A
0.2  
C A B  
2.785 MAX  
0.20  
0.12  
0.95 MAX  
(4.445)  
C
4
5
8
1
PIN 1 ID  
24 MAX  
4223439/C 08/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid.  
4. The leads are gold plated.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

5962L1821702V9A

Analog Circuit
RENESAS

5962L1821702VXC

Analog Circuit
RENESAS

5962L1821704V9A

Analog Circuit
RENESAS

5962L1821704VXC

Analog Circuit
RENESAS

5962L1822102V9A

Line Driver
RENESAS

5962L1822102VXC

Line Driver
RENESAS

5962L1920802V9A

Peripheral Driver
RENESAS

5962L1920802VXC

Peripheral Driver
RENESAS

5962L1920902V9A

Switching Regulator/Controller
RENESAS

5962L1920902VXC

Switching Regulator/Controller
RENESAS

5962L1921202V9A

Peripheral Driver
RENESAS

5962L8771002QGA

Voltage-Feedback Operational Amplifier
ETC