5962R1124201VFA [TI]

具有 RHA 的 QML V 类 2×2 1Gbps LVDS 交叉点开关 | W | 16 | -55 to 125;
5962R1124201VFA
型号: 5962R1124201VFA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 RHA 的 QML V 类 2×2 1Gbps LVDS 交叉点开关 | W | 16 | -55 to 125

开关
文件: 总25页 (文件大小:1619K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
SN55LVCP22A-SP QML V 2×2 1Gbps LVDS 交叉点开关  
卫星电力系(EPS)  
1 特性  
3 说明  
QML V 类、RHASMD 5962-11242  
• 辐射性能  
SN55LVCP22A-SP 是一2×2 交叉点开关使每个路  
径实现大于 1000Mbps 的运行速度。两个通道组装有  
宽共模0V 4V接收器从而实现对 LVDS、  
LVPECL CML 信号的接收。两路输出为 LVDS 驱动  
于实现低功耗、低 EMI 高速运转。  
SN55LVCP22A-SP 器件支持 2:2 缓冲重复1:2  
分配、2:1 用、2×2 及每个通道上的  
LVPECL/CML LVDS 电平转换。SN55LVCP22A-SP  
的灵活运行可满足光网络、无线基础设施和数据通信系  
统中容错交换系统对于冗余串行总线传输的需求运转  
和保护交换卡。  
RHA 能力高100krad(Si)  
100 krad(Si) 的条件下ELDRS  
SEL LET 的抗扰= 75 MeVcm2/mg  
SEE LET 的额定= 75MeVcm2/mg  
• 高速1000Mbps)  
• 低抖动完全差分数据路径  
50ps典型值的峰峰值抖动,  
PRBS = 223-1 模式  
• 总功率耗散少227mW典型值),313mW最  
大值)  
• 输出通道间延迟80ps典型值)  
• 可配置2:1 多路复用器1:2 多路信号分离器,  
中继器或1:2 信号分配器  
• 输入可接LVDSLVPECL CML 信号  
1.7ns典型值的快速交换时间  
0.65ns典型值的快速传播延迟  
TIA/EIA-644-A LVDS 标准互操作  
• 支持国防、航空航天和医疗应用:  
SN55LVCP22A-SP 使用一个完全差分数据路径来确保  
低噪声生成、快速交换时间、低脉宽失真和低抖动。  
80ps典型值的输出通道间延迟确保所有应用中输  
出的准确一致。  
器件信息  
封装尺寸标  
封装(1)  
器件型号  
等级  
QMLV RHA  
工程样片(2)  
称值)  
5962R11242  
01VFA  
6.73mm x  
10.3mm  
CFP (16)  
CFP (16)  
– 受控基线  
– 一个组装/测试厂和一个制造厂  
– 延长产品生命周期和延长产品变更通知  
– 产品可追溯性  
SN55LVCP2  
2W/EM  
6.73mm x  
10.3mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 这些器件仅适用于工程评估。以非合规性流程对其进行了处理  
例如未进行老化处理),并且仅25°C 的额定温度下进  
行了测试。这些器件不适用于鉴定、生产、辐射测试或飞行用  
途。  
2 应用  
命令和数据处(C&DH)  
通信负载  
雷达成像有效载荷  
光学成像有效载荷  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFI8  
 
 
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Application.................................................... 16  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................21  
12.1 Trademarks.............................................................21  
12.2 静电放电警告.......................................................... 21  
12.3 术语表..................................................................... 21  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 Handling Ratings ........................................................4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Switching Characteristics ...........................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
February 2021  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
W PACKAGE  
(TOP VIEW)  
SEL1  
SEL0  
IN0+  
IN0-  
16  
15  
14  
13  
12  
11  
10  
9
EN0  
1
2
3
4
5
EN1  
OUT0+  
OUT0-  
GND  
VCC  
IN1+  
IN1-  
OUT1+  
OUT1-  
NC  
6
7
NC  
8
NC - No internal connection  
5-1. Pin Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
SEL1  
SEL0  
IN0+  
IN0-  
NO.  
1
Input  
Input  
Switch Selection Control 1  
Switch Selection Control 2  
LVDS Receiver Positive Input 0  
LVDS Receiver Negative Input 0  
3.3V Supply Voltage  
2
3
Input  
4
Input  
VCC  
5
Power  
Input  
IN1+  
IN1-  
6
LVDS Receiver Positive Input 1  
LVDS Receiver Negative Input 1  
No Internal Connection  
7
Input  
NC  
8
N/A  
NC  
9
N/A  
No Internal Connection  
OUT1-  
OUT1+  
GND  
OUT0-  
OUT0+  
EN1  
10  
11  
12  
13  
14  
15  
16  
Output  
Output  
Ground  
Output  
Output  
Input  
LVDS Driver Negative Output 1  
LVDS Driver Positive Output 1  
Ground  
LVDS Driver Negative Output 0  
LVDS Driver Positive Output 0  
Output Enable for Driver 1  
Output Enable for Driver 0  
EN0  
Input  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN55LVCP22A-SP  
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted(1)  
UNIT  
Supply voltage(2), VCC  
0.5 V to 4 V  
0.5 V to 4 V  
0.7 V to 4.3 V  
0.5 V to 4 V  
150°C  
CMOS/TTL input voltage (ENO, EN1, SEL0, SEL1)  
LVDS receiver input voltage (IN+, IN)  
LVDS driver output voltage (OUT+, OUT)  
Maximum Junction temperature  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminals.  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
-65  
125  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
-5000  
-500  
5000  
500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM MAX UNIT  
Supply voltage, VCC  
3.3  
3.6  
4
V
V
Receiver input voltage  
0
(1)  
Operating case (top) temperature, TC  
125  
3
°C  
V
55  
0.1  
Magnitude of differential input voltage, |VID|  
(1) Maximum case temperature operation is allowed as long as the device maximum junction temperature is not exceeded.  
6.4 Thermal Information  
SN55LVCP22A-SP  
THERMAL METRIC(1)  
W (CFP)  
16 PINS  
118.1  
51.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
107.2  
28.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
95.1  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
 
 
 
 
 
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
CMOS/TTL DC SPECIFICATIONS (EN0, EN1, SEL0, SEL1)  
VIH  
VIL  
IIH2  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
High-level input current  
Low-level input current  
Low-level input current  
Input clamp voltage  
2
GND  
-250  
-25  
1.5  
1.5  
±3  
VCC  
0.8  
250  
25  
V
V
VIN = 3.6 V or 2.0 V, VCC = 0 V  
VIN = 3.6 V or 2.0 V, VCC = 3.6 V  
VIN = 0.0 V or 0.8 V, VCC = 0 V  
VIN = 0.0 V or 0.8 V, VCC = 3.6 V  
ICL = 18 mA  
µA  
µA  
µA  
µA  
V
±3  
IIL2  
IIL  
-150  
-15  
±1  
150  
15  
±1  
VCL  
-0.8  
-1.5  
LVDS OUTPUT SPECIFICATIONS (OUT0, OUT1)  
255  
320  
390  
390  
475  
430  
RL = 75 , See 7-3  
|VOD  
|
Differential output voltage  
mV  
RL = 75 , VCC = 3.3 V, TA = 25°C, See 图  
7-3  
Change in differential output voltage magnitude  
between logic states  
25  
1.45  
25  
mV  
V
Δ|VOD  
|
VID = ±100 mV, See 7-3  
See 7-4  
25  
1
VOS  
Steady-state offset voltage  
1.2  
50  
Change in steady-state offset voltage between  
logic states  
mV  
ΔVOS  
See 7-4  
25  
VOC(PP) Peak-to-peak common-mode output voltage  
mV  
µA  
µA  
See 7-4  
IOZ  
High-impedance output current  
Power-off leakage current  
VOUT = GND or VCC  
-15  
-15  
15  
15  
IOFF  
VCC = 0 V, 1.5 V; VOUT = 3.6 V or GND  
High-impedance output current, after HDR 100  
krad  
IOZH  
VOUT = VCC, TA = 25°C  
-120  
-50  
350  
150  
µA  
µA  
Power-off leakage current, after after HDR 100  
krad  
IOFFH  
VCC = 0 V, 1.5 V; VOUT = 3.6 V, TA = 25°C  
IOS  
Output short-circuit current  
VOUT+ or VOUT- = 0 V  
-8  
8
mA  
mA  
pF  
IOSB  
CO  
Both outputs short-circuit current  
Differential output capacitance  
VOUT+ and VOUT- = 0 V  
VI = 0.4 sin(4E6πt) + 0.5 V  
8  
3
LVDS RECEIVER DC SPECIFICATIONS (IN0, IN1)  
VTH  
VTL  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
100  
mV  
mV  
mV  
V
See 7-2 and 7-1  
See 7-2 and 7-1  
100  
VID(HYS) Differential input voltage hysteresis  
20  
150  
3.95  
18  
VCMR  
Common-mode voltage range  
VID = 100 mV, VCC = 3.0 V to 3.6 V  
VIN = 4 V, VCC = 3.6 V or 0.0  
VIN = 0 V, VCC = 3.6V or 0.0  
VI = 0.4 sin (4E6πt) + 0.5 V  
0.05  
-18  
±1  
±1  
3
IIN  
Input current  
µA  
pF  
-18  
18  
CIN  
Differential input capacitance  
SUPPLY CURRENT  
ICCQ  
ICCD  
ICCZ  
Quiescent supply current  
60  
63  
25  
87  
87  
35  
mA  
mA  
mA  
RL = 75 , EN0=EN1=High  
RL = 75 , CL = 5 pF, 500 MHz (1000  
Mbps), EN0=EN1=High  
Total supply current  
3-state supply current  
EN0 = EN1 = Low  
(1) All typical values are at 25°C and with a 3.3-V supply.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN55LVCP22A-SP  
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
MAX UNIT  
6.6 Switching Characteristics  
over recommended operating conditions unless otherwise noted  
parameter  
TEST CONDITIONS  
MIN  
TYP  
0.8  
1.0  
1.7  
2
tSET  
Input to SEL setup time  
Input to SEL hold time  
2.2  
2.2  
2.6  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
See 7-7  
See 7-7  
See 7-7  
See 7-6  
See 7-6  
See 7-6  
See 7-6  
tHOLD  
tSWITCH SEL to switched output  
tPHZ  
tPLZ  
tPZH  
tPZL  
tLHT  
tHLT  
Disable time, high-level-to-high-impedance  
Disable time, low-level-to-high-impedance  
2
8
Enable time, high-impedance -to-high-level output  
Enable time, high-impedance-to-low-level output  
Differential output signal rise time (20%-80%)(1)  
Differential output signal fall time (20%-80%)(1)  
2
8
2
8
280  
280  
620  
620  
CL = 5 pF, See 7-5  
CL = 5 pF, See 7-5  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 50 MHz, CL = 5 pF  
13.7  
13.4  
14.4  
68.3  
73.2  
0.97  
0.85  
0.86  
22.2  
24.5  
35.7  
204  
282  
1.5  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 240 MHz, CL = 5 pF  
ps  
ps  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 500 MHz, CL = 5 pF  
tJIT  
Added peak-to-peak jitter(3)  
VID = 200 mV, PRBS = 215-1 data pattern,  
VCM = 1.2 V, 240 Mbps, CL = 5 pF  
VID = 200 mV, PRBS = 215-1 data pattern,  
VCM = 1.2 V, 1000 Mbps, CL = 5 pF  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 50 MHz, CL = 5 pF  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 240 MHz, CL = 5 pF  
tJrms  
Added random jitter (rms)(3)  
1.53 psRMS  
1.79  
VID = 200 mV, 50% duty cycle,  
VCM = 1.2 V, 500 MHz, CL = 5 pF  
tPLHD  
tPHLD  
tskew  
tCCS  
Propagation delay time, low-to-high-level output(1)  
Propagation delay time, high-to-low-level output(1)  
Pulse skew (|tPLHD tPHLD|)(2)  
200  
200  
650  
650  
45  
2350  
2350  
160  
ps  
ps  
(5)  
ps  
CL = 5 pF, See 7-5  
CL = 5 pF, See 7-5  
Output channel-to-channel skew, splitter mode  
Maximum operating frequency(4)  
80  
ps  
(5)  
fMAX  
1
GHz  
(1) Input: VIC = 1.2 V, VID = 200 mV, 50% duty cycle, 1 MHz, tr/tf = 500 ps  
(2) tskew is the magnitude of the time difference between the tPLHD and tPHLD of any output of a single device.  
(3) Not production tested.  
(4) Signal generator conditions: 50% duty cycle, tr or tf 100 ps (10% to 90%), transmitter output criteria: duty cycle = 45% to 55% VOD ≥  
300 mV.  
(5) tskew and fMAX parameters are guaranteed by characterization, but not production tested.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
600  
500  
400  
300  
200  
100  
0
75  
50  
25  
0
0
40  
80  
120  
160  
200  
0
400  
800  
1200  
1600  
2000  
C002  
Resistive Load ()  
Frequency (MHz)  
C001  
VCC = 3.3 V  
TA = 25°C  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.2 V  
|VID| = 200 mV  
6-1. Differential Output Voltage vs Resistive  
Load  
6-2. Supply Current vs Frequency  
900  
30  
25  
20  
15  
10  
5
300 mV  
t
PLH  
400 mV  
500 mV  
600 mV  
800 mV  
tPHL  
825  
750  
675  
600  
0
0
20  
40  
60  
80  
100  
0
100  
200  
300  
400  
500  
600  
œ60  
œ40  
œ20  
Free-Air Temperature (°C)  
Frequency (MHz)  
C003  
C004  
VCC = 3 V - 3.6 V  
Input = 1 MHz  
VIC = 1.2 V  
|VID| = 300 mV  
VCC = 3.3 V  
TA = 25°C  
VIC = 400 mV  
Input = Clock  
6-3. Propagation Delay Time bs Ffree-Air  
6-4. Peak-To-Peak Jitter vs Frequency  
Temperature  
60  
30  
300 mV  
300 mV  
400 mV  
400 mV  
50  
25  
500 mV  
500 mV  
600 mV  
800 mV  
600 mV  
800 mV  
40  
30  
20  
10  
0
20  
15  
10  
5
0
0
200  
400  
600  
800  
1000  
1200  
0
100  
200  
300  
400  
500  
600  
Data Rate (Mbps)  
Frequency (MHz)  
C005  
C006  
VCC = 3.3 V  
TA = 25°C  
VIC = 400 mV  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.2 V  
Input = PRBS 223 1  
Input = Clock  
6-6. Peak-To-Peak Jitter vs Frequency  
6-5. Peak-To-Peak Jitter vs Data Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN55LVCP22A-SP  
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
60  
30  
25  
20  
15  
10  
5
300 mV  
300 mV  
400 mV  
500 mV  
600 mV  
800 mV  
400 mV  
50  
500 mV  
600 mV  
800 mV  
40  
30  
20  
10  
0
0
0
200  
400  
600  
800  
1000  
1200  
0
100  
200  
300  
400  
500  
600  
C008  
Data Rate (Mbps)  
Frequency (MHz)  
C007  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.2 V  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.6 V  
Input = PRBS 223 1  
Input = Clock  
6-8. Peak-To-Peak Jitter vs Frequency  
6-7. Peak-To-Peak Jitter vs Data Rate  
60  
30  
300 mV  
300 mV  
400 mV  
50  
500 mV  
400 mV  
25  
500 mV  
600 mV  
800 mV  
600 mV  
800 mV  
40  
30  
20  
10  
0
20  
15  
10  
5
0
0
200  
400  
600  
800  
1000  
1200  
0
100  
200  
300  
400  
500  
600  
Data Rate (Mbps)  
Frequency (MHz)  
C009  
C010  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.6 V  
VCC = 3.3 V  
TA = 25°C  
VIC = 3.3 V  
Input = PRBS 223 1  
Input = Clock  
6-10. Peak-To-Peak Jitter vs Frequency  
6-9. Peak-To-Peak Jitter vs Data Rate  
400  
350  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
300 mV  
400 mV  
50  
500 mV  
600 mV  
40  
800 mV  
30  
Added Random Jitter  
20  
10  
0
0
0
400  
800  
1200  
1600  
2000  
Frequency (MHz)  
C012  
0
200  
400  
600  
800  
1000  
1200  
VCC = 3.3 V  
TA = 25°C  
VIC = 1.2 V  
Data Rate (Mbps)  
C011  
|VID| = 200 mV  
VCC = 3.3 V  
TA = 25°C  
VIC = 3.3 V  
Input = PRBS 223 1  
6-12. Differential Output Voltage vs Frequency  
6-11. Peak-To-Peak Jitter vs Data Rate  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
230  
200  
170  
140  
110  
80  
50  
20  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Data Rate (Mbps)  
C013  
VCC = 3.3 V  
TA = 25°C  
Input = PRBS 223 1  
VIC = 1.2 V  
|VID| = 200 mV  
6-13. Peak-To-Peak Jitter vs Data Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN55LVCP22A-SP  
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
INPUTS  
V
CC  
IN +  
IN -  
400  
SEL, EN  
300 kΩ  
7 V  
7 V  
7 V  
OUTPUTS  
V
CC  
OUT +  
OUT -  
7 V  
7 V  
7-1. Equivalent Input and Output Schematic Diagrams  
I
IN+  
OUT +  
IN+  
V
ID  
V
OD  
V
IN+  
V
OY  
IN-  
V
IC  
OUT -  
IN+ + IN-  
2
V
OUT+  
+ V  
2
OUT-  
V
OZ  
I
IN-  
V
IN-  
7-2. Voltage And Current Definitions  
3.74 kΩ  
Y
+
_
0 V V  
2.4 V  
V
OD  
75 Ω  
(test)  
Z
3.74 kΩ  
7-3. Differential Output Voltage (VOD) Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
IN+  
IN-  
1.4 V  
1 V  
37.4 1%  
37.4 1%  
OUT+  
OUT-  
IN+  
IN-  
V
ID  
V
V
OS  
OC(PP)  
V
OS  
1 pF  
V
OC  
All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse-repetition rate (PRR) = 0.5 Mpps,  
pulse width = 500 ±10 ns; RL = 100 ; CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.; the  
measurement of VOC(PP) is made on test equipment with a 3 dB bandwidth of at least 300 MHz.  
7-4. Test Circuit And Definitions For The Driver Common-Mode Output Voltage  
OUT+  
IN+  
75  
1 pF  
OUT-  
V
ID  
V
OD  
V
OUT+  
IN-  
V
IN+  
5 pF  
V
IN-  
V
OUT-  
V
IN+  
1.3 V  
V
IN-  
1.1 V  
0.2 V  
0 V  
V
ID  
-0.2 V  
t
t
PLHD  
PHLD  
+V  
OD  
80%  
0 V  
Vdiff = (OUT+) - (OUT-)  
20%  
-V  
OD  
t
t
LHT  
HLT  
All input pulses are supplied by a generator having the following characteristics: tr or tf .25 ns, pulse-repetition rate (PRR) = 0.5  
Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.  
7-5. Timing Test Circuit And Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN55LVCP22A-SP  
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
37.4 1%  
37.4 1%  
OUT+  
OUT-  
1 V or 1.4 V  
1.2 V  
V
OUT+  
1.2 V  
EN  
5 pF  
V
OUT-  
3 V  
EN  
1.5 V  
0 V  
V
OH  
OUT  
OUT  
50%  
1.2 V  
t
t
PHZ  
PZH  
1.2 V  
50%  
V
OL  
t
t
PLZ  
PZL  
All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse-repetition rate (PRR) = 0.5 Mpps,  
pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.  
7-6. Enable And Disable Time Circuit And Definitions  
7-1. Receiver Input Voltage Threshold Test  
RESULTING DIFFERENTIAL RESULTING COMMON-  
APPLIED VOLTAGES  
OUTPUT(1)  
INPUT VOLTAGE  
VID  
MODE INPUT VOLTAGE  
VIA  
VIB  
VIC  
1.25 V  
1.15 V  
4.0 V  
3.9 V  
0.1 V  
0.0 V  
1.7 V  
0.7 V  
4.0 V  
3.0 V  
1.0 V  
0.0 V  
1.15 V  
1.25 V  
3.9 V  
4. 0 V  
0.0 V  
0.1 V  
0.7 V  
1.7 V  
3.0 V  
4.0 V  
0.0 V  
1.0 V  
100 mV  
1.2 V  
1.2 V  
3.95 V  
3.95 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
3.5 V  
3.5 V  
0.5 V  
0.5 V  
H
L
100 mV  
100 mV  
H
L
100 mV  
100 mV  
H
L
100 mV  
1000 mV  
1000 mV  
1000 mV  
1000 mV  
1000 mV  
1000 mV  
H
L
H
L
H
L
(1) H = high level, L = low level  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
IN0  
IN1  
SEL  
t
t
HOLD  
SET  
OUT  
IN0  
t
IN1  
SWITCH  
EN  
IN0  
IN1  
SEL  
t
t
SET  
HOLD  
IN1  
t
IN0  
OUT  
SWITCH  
EN  
tSET and tHOLD times specify that data must be in a stable state before and after mux control switches.  
7-7. Input To Select For Both Rising And Falling Edge Setup And Hold Times  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN55LVCP22A-SP  
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN55LVCP22A-SP is a high-speed 1-Gbps 2x2 LVDS redriving cross-point switch that can be used in mux  
or demux or splitter configurations. The SN55LVCP22A-SP provides multiple signal switching options that allow  
system implementation flexibility as described in 8-1. The SN55LVCP22A-SP incorporates wide common-  
mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals and low-power LVDS  
drivers to provide high-speed operations. The SN55LVCP22A-SP uses a fully differential data path to ensure  
low-noise generation, fast switching times, low pulse width distortion, and low jitter.  
8.2 Functional Block Diagram  
OUT 0  
OUT 1  
EN 0  
EN 1  
SEL 1  
SEL 0  
IN 0  
0
1
0
1
IN 1  
8.3 Feature Description  
8.3.1 Input Select Pins  
SEL0 pin selects which differential input lane will be routed to Lane 0 driver differential output OUT0 and SEL1  
pin selects which differential input lane will be routed to Lane 1 driver differential output OUT1  
8.3.2 Output Enable Pins  
EN0 pin is an active high enable for OUT0 driver differential output and EN1 pin is an active high enable for  
OUT1 driver differential output.  
8.4 Device Functional Modes  
8-1. Function Table  
SEL0  
SEL1  
EN0  
EN1  
OUT0  
OUT1  
FUNCTION  
SIGNAL FLOW  
1:2 Splitter  
OUT0 +  
OUT0 -  
1:2 Splitter  
Input IN0  
IN0 +  
IN0 -  
0
0
1
1
IN0  
IN0  
OUT1 +  
OUT1 -  
1:2 Splitter  
OUT0 +  
OUT0 -  
1:2 Splitter  
Input IN1  
IN+  
IN-  
1
1
1
1
IN1  
IN1  
OUT1 +  
OUT1 -  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
SEL0  
8-1. Function Table (continued)  
SEL1  
EN0  
EN1  
OUT0  
OUT1  
FUNCTION  
SIGNAL FLOW  
Dual Repeater  
OUT0 +  
IN0 +  
IN0 -  
IN1 +  
OUT0 -  
OUT1 +  
OUT1 -  
0
1
1
1
IN0  
IN1  
2-lane Repeater  
IN1 -  
2 X 2 Crosspoint  
IN0 +  
IN0 -  
IN1 +  
OUT0 +  
OUT0 -  
1
0
1
1
0
1
0
1
IN1  
IN0  
Cross-switch  
OUT1 +  
OUT1 -  
IN1 -  
2:1 Mux  
0
1
IN0  
IN1  
IN0 +  
2:1 Mux Output  
OUT0  
OUT+  
OUT-  
IN0 -  
X
High-Z  
MUX  
IN1 +  
IN1 -  
2:1 Mux  
0
1
IN0  
IN1  
IN0 +  
IN0 -  
IN1 +  
2:1 Mux  
Output OUT1  
OUT+  
OUT-  
X
High-Z  
MUX  
IN1 -  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN55LVCP22A-SP  
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN55LVCP22A-SP can support different kind of signaling at the receiver with proper termination network.  
The output drivers will output LVDS differential signals.  
9.2 Typical Application  
9.2.1 Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
50 1  
3.3 V or 5 V  
3.3 V  
5HGULYLQJꢀ  
/9'6ꢀ  
A
B
6ZLWFK  
ECL  
50 1  
50 1  
50 1  
V
TT  
= V -2 V  
CC  
V
TT  
9-1. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
9.2.1.1 Design Requirements  
9-1. Design Parameters  
DESIGN PARAMETER  
Single-ended termination  
VTT termination voltage  
EXAMPLE VALUE  
50 Ω  
VCC -2 V  
9.2.1.2 Detailed Design Procedure  
Use two 50 Ω termination resistors (as close to the input pins as possible) with termination voltage of VTT as  
described in 9-1 to receive LVPECL input signals.  
9.2.2 Current-Mode Logic (CML)  
3.3 V  
5HGULYLQJ  
50 1  
/9'6  
50 1  
3.3 V  
3.3 V  
6ZLWFK  
A
B
CML  
50 1  
50 1  
3.3 V  
9-2. Current-Mode Logic (CML)  
9.2.2.1 Design Requirements  
9-2. Design Parameters  
DESIGN PARAMETER  
Single-ended termination  
EXAMPLE VALUE  
50 Ω  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
9-2. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
Termination Voltage  
VCC = 3.3V  
9.2.2.2 Detailed Design Procedure  
Use two 50 Ω termination resistors (as close to the input pin as possible) with termination voltage of VCC as  
described in 9-2 to receive CML input signals.  
9.2.3 Single-Ended (LVPECL)  
3.3 V  
5HGULYLQJꢀ  
3.3 V  
/9'6ꢀ  
50 1  
A
6ZLWFK  
ECL  
B
50 1  
1.1 k1  
3.3 V  
1.5 k1  
V
TT  
= V -2 V  
CC  
V
TT  
9-3. Single-Ended (LVPECL)  
9.2.3.1 Design Requirements  
9-3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
50 Ω  
Single-ended termination for input used  
VTT termination voltage  
VCC - 2 V  
1.1 kΩ  
Unused input pull-up termination to VCC  
Unused input pull-down termination to Gound  
1.5 kΩ  
9.2.3.2 Detailed Design Procedure  
Use a 50 Ω termination resistor (as close to the input pin as possible) with termination voltage of VTT as  
described in 9-3 to receive Single-ended LVPECL input signals. Terminate Unused input pin with 1.1 kΩ pull-  
up to VCC and 1.5 kΩpull-down to ground.  
9.2.4 Low-Voltage Differential Signaling (LVDS)  
50 1  
3.3 V or 5 V  
3.3 V  
5HGULYLQJꢀ  
/9'6ꢀ  
A
B
6ZLWFK  
LVDS  
100 1  
50 1  
9-4. Low-Voltage Differential Signaling (LVDS)  
9.2.4.1 Design Requirements  
9-4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Differential Termination  
100 Ω  
9.2.4.2 Detailed Design Procedure  
Use a 100 Ω differential termination resistor (as close to the input pins as possible) as described in 9-4 to  
receive LVDS input signals.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN55LVCP22A-SP  
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
9.2.5 Cold Sparing  
VCCA  
TXA  
VCCA  
RXA  
100 Ω  
GND  
GND  
GND  
GND  
ENA  
VCCB  
TXB  
ENA  
VCCB  
RXB  
ENB  
ENB  
9-5. LVDS Cold sparing example  
SN55LVCP22A-SP can be used in cold sparing application where a redundant device is on the data bus without  
drawing additional power. One of the devices TXA or TXB form transmitter redundant pair can be powered down  
in cold spare mode. Similarly, one for the devices RXA or RXB from receiver redundant pair can be powered  
down in cold spare mode.  
SN55LVCP22A-SP remains in a high impedance power-off state, when VCC is grounded at 0V (within 250mV of  
GND).  
9-5. Cold sparing TX configuration example  
Transmitter redundant pair  
Operating state  
VCCA  
VCCB  
TXA  
TXB  
TXA  
TXB  
Active  
3.3 V  
0 V  
Cold spare  
Cold spare  
Active  
0 V  
3.3 V  
9-6. Cold sparing RX configuration example  
Receiver redundant pair  
Operating state  
VCCA  
VCCB  
RXA  
RXB  
RXA  
RXB  
Active  
3.3 V  
0 V  
Cold spare  
Cold spare  
Active  
0 V  
3.3 V  
9.2.6 Application Curves  
1 Gbps  
23  
2
-1 PRBS  
OUTPUT 1  
V
= 3.3 V  
CC  
|V | = 200 mV, V = 1.2 V  
ID IC  
Vertical Scale = 200 mV/div  
OUTPUT 2  
500 MHz  
Horizontal Scale = 300 ps  
9-6. LVDS Output  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
There is no power supply sequence required for SN55LVCP22A-SP. It is recommended that at least a 0.1uF  
decoupling capacitor is placed at the device VCC near the pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN55LVCP22A-SP  
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
High performance layout practices are paramount for board layout for high speed signals to ensure good signal  
integrity. Even minor imperfection can cause impedance mismatch resulting reflection. Special care is warranted  
for traces, connections to device, and connectors.  
11.2 Layout Example  
Via to  
VDD33  
Plane  
Via to  
GND  
Plane  
EN0  
EN1  
SEL1  
SEL0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD33  
GND  
OUT0+  
IN0+  
From Main  
Controller  
To FPGA 1  
input  
100 O  
IN0-  
OUT0-  
VDD33  
GND  
GND  
GND  
0.1 uF  
IN1+  
OUT1+  
From Backup  
Controller  
To FPGA 2  
input  
100 O  
OUT1-  
IN1-  
11-1. Layout Example with LVDS input signals  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
SN55LVCP22A-SP  
ZHCSNB2 FEBRUARY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Trademarks  
所有商标均为其各自所有者的财产。  
12.2 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.3 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN55LVCP22A-SP  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R1124201VFA  
ACTIVE  
CFP  
W
16  
1
Non-RoHS  
& Green  
SNPB  
N / A for Pkg Type  
-55 to 125  
5962R1124201VF  
A
LVCP22W-SP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
CFP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962R1124201VFA  
W
16  
1
506.98  
26.16  
6220  
NA  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

5962R1220201V9A

Rad Hard and SEE Hard 12A Synchronous Buck Regulator with Multi-Phase Current Sharing
INTERSIL

5962R1220201VXC

Rad Hard and SEE Hard 12A Synchronous Buck Regulator with Multi-Phase Current Sharing
INTERSIL

5962R1222201V9A

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

5962R1222201VXC

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

5962R1222301V9A

36V Rad Hard Dual Precision Operational Amplifier
INTERSIL

5962R1222301VXA

36V Rad Hard Dual Precision Operational Amplifier
INTERSIL

5962R1222403V9A

耐辐射加固保障 (RHA)、1.5V 至 20V 输入、1.5A、可调节低压降 (LDO) 稳压器 | KGD | 0 | -55 to 125
TI

5962R1222403VXC

耐辐射加固保障 (RHA)、1.5V 至 20V 输入、1.5A、可调节低压降 (LDO) 稳压器 | HKU | 10 | -55 to 125
TI

5962R1222801V9AX

Rad Hard 40V Quad Precision Low Power Operational Amplifiers
INTERSIL

5962R1222801VXC

Rad Hard 40V Quad Precision Low Power Operational Amplifiers
INTERSIL

5962R1320201VXC

1.5-V to 7-V, ULTRA LOW DROPOUT REGULATOR
TI

5962R1320202V9A

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器 | KGD | 0 | -55 to 125
TI