5962R1320202VXC [TI]

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器 | HKR | 16 | -55 to 125;
5962R1320202VXC
型号: 5962R1320202VXC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器 | HKR | 16 | -55 to 125

输出元件 稳压器 调节器
文件: 总32页 (文件大小:2100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator  
PMOS pass element configuration. It operates over  
1 Features  
a wide range of input voltage, from 1.5 V to 7 V  
while offering excellent PSRR. The TPS7H1101A-SP  
features a precise and programmable foldback current  
limit implementation with a very-wide adjustment  
range. To support the complex power requirements of  
FPGAs, DSPs, or microcontrollers, the TPS7H1101A-  
SP provides enable on and off functionality,  
programmable soft start, current sharing capability,  
and a Power Good open-drain output.  
5962R13202 (1)  
:
– Radiation hardness assurance (RHA) qualified  
up to total ionizing dose (TID) 100 krad(Si)  
– ELDRS-free: 100 krad(Si)  
– Dose rate: 10 mrad(Si)/s  
– Single event latch-up (SEL) immune to  
LET = 85 MeV-cm2/mg  
– SEB and SEGR immune to  
LET = 85 MeV-cm2/mg  
Device Information  
– SET/SEFI onset threshold > 40 MeV-cm2/mg(2)  
PART NUMBER(1)  
GRADE  
PACKAGE  
Specifically designed to always upset low  
to avoid damage to critical downstream  
component  
KGD Flight Grade  
RHA 100 krad(Si)  
5962R1320202V9A  
Flight Grade RHA  
100 krad(Si)  
5962R1320202VXC  
TPS7H1101HKR/EM  
TPS7H1101AHKR/EM  
TPS7H1101SPEVM  
16-Pin CFP  
– SET/SEFI cross-section plot(2)  
Ultra-low VIN range: 1.5 V to 7 V  
3-A maximum output current  
Current share/parallel operation to provide up to  
6-A output current  
Stable with ceramic output capacitor  
±2% accuracy over line, load, and temperature  
Programmable soft start through external capacitor  
Input enable across all input voltages and power-  
good output for power sequencing  
Ultra-low dropout LDO voltage:  
62 mV at 1 A (25°C), VOUT = 1.8 V  
Low noise:  
20.33 µVRMS, VIN = 2 V, VOUT = 1.8 V at 3 A  
PSRR: over 45 dB at 1 kHz  
Excellent load/line transient response  
Foldback current limit  
See the Design and development tab  
Thermally-enhanced CFP package, 0.4° C/W RθJC  
9.60 mm × 11.00 mm  
Weight: 1.55 g(4)  
Engineering  
Modules(3) (5)  
Engineering  
Modules(3)  
Ceramic  
Evaluation Board  
EVM  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) See Radiation Report (SNAA257) for details.  
(3) These units are intended for engineering evaluation only.  
They are processed to a noncompliant flow (that is, no  
burn-in, and so forth) and are tested to a temperature  
rating of 25°C only. These units are not suitable for  
qualification, production, radiation testing or flight use. Parts  
are not warranted for performance over the full MIL specified  
temperature range of –55°C to 125°C or operating life.  
(4) Weight is accurate to ±10%.  
(5) TPS7H1101HKR/EM with device Date Code newer than 1705  
is equivalent to TPS7H1101AHKR/EM using rev A silicon.  
2 Applications  
TPS7H1101A-SP  
5 V  
Power  
V
Space satellite point of load supply for FPGAs,  
microcontrollers, ASICs, and data converters  
Radiation-hardened low-noise linear regulator  
power supply for RF, VCOs, receivers, and  
amplifiers  
IN  
Good  
C
IN  
R
CS  
COMP  
EN  
3.3 V  
C
V
OUT  
CS  
R
PCL  
T
OUT  
Soft  
Start  
Feed  
Back  
R
PCL  
GND  
Clean analog supply requirements  
Command and data handling (C&DH)  
Optical imaging payload  
Radar imaging payload  
Satellite electrical power system (EPS)  
R
B
C
SS  
Copyright © 2017, Texas Instruments Incorporated  
Typical Application Circuit  
3 Description  
The TPS7H1101A-SP is an improved version of  
the TPS7H1101-SP allowing the use of the enable  
feature across the entire input voltage range. It is a  
radiation-hardened LDO linear regulator that uses a  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Typical Characteristics..............................................10  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 15  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 Receiving Notification of Documentation Updates..27  
11.4 Support Resources................................................. 27  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 Glossary..................................................................27  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 27  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (June 2020) to Revision C (April 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Added TPS7H1101AHKR/EM to Device Information table.................................................................................1  
Changes from Revision A (August 2017) to Revision B (June 2020)  
Page  
Added package weight to Device Information table............................................................................................1  
Added note to Pin Functions table for thermal pad and lid.................................................................................3  
Added updated thermal metrics in Thermal Information table............................................................................6  
Changed and relaxed VCS operating range........................................................................................................7  
Added table note for VCS ................................................................................................................................... 7  
Changed CSR ratio. Added limits by temperature .............................................................................................7  
Added clarification for TEN ................................................................................................................................. 7  
Changed Overview section for improved clarity .............................................................................................. 12  
Changed and clarifed VREF voltage in CSS calculation .................................................................................... 13  
Changed Stability applications section............................................................................................................. 14  
Changed and corrected PCL section description............................................................................................. 16  
Changed and clarified High-Side Current Sense section description ..............................................................17  
Changed and clarified Current Foldback section description........................................................................... 19  
Changed and improved Layout Example section............................................................................................. 26  
Changes from Revision * (April 2017) to Revision A (August 2017)  
Page  
Added Bare Die Information table.......................................................................................................................3  
Added Bond Pad Coordinates in Microns table..................................................................................................3  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
5 Pin Configuration and Functions  
SS  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
FB  
COMP  
VOUT  
VOUT  
VOUT  
VOUT  
CS  
VIN  
VIN  
VIN  
VIN  
PCL  
GND  
Thermal  
Pad  
PG/OC  
Not to scale  
Figure 5-1. HKR Package  
16-Pin CFP  
Bottom View  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Soft-start terminal. Connecting an external capacitor slows down the output voltage ramp rate after enable  
event.  
SS  
1
I/O  
I
Enable terminal. Driving this terminal to logic high enables the device; driving the terminal to logic low  
disables the device.  
EN  
2
3
4
5
6
VIN  
I
Unregulated supply voltage. TI recommends to connect an input capacitor as a good analog circuit practice.  
Programmable current limit. A resistor to GND sets the overcurrent limit activation point.  
The range of resistor that can be used on the PCL terminal to GND is 8.2 kΩ to 160 kΩ.  
PCL  
7
8
I/O  
GND  
Ground/thermal pad.(1) (2)  
Power Good terminal. PG is an open-drain output to indicate the output voltage reaches 90% of target. PG  
terminal is also used as indicator when an overcurrent condition is activated. PG pin should have a pull-up  
resistor to the VOUT pin.  
PG/OC  
CS  
9
O
Current sense terminal. Resistor connected from CS to VIN. CS terminal indicates voltage proportional to  
output current.  
CS terminal low: Foldback current limit disabled.  
10  
I/O  
CS terminal high: Foldback current limit enabled.  
11  
12  
13  
14  
15  
16  
VOUT  
O
Regulated output.  
COMP  
FB  
I/O  
I
Internal compensation point for error amplifier.  
The output voltage feedback input through voltage dividers. See Section 8.2.1.1.  
(1) Thermal pad must be connected to GND.  
(2) Thermal pad and package lid are internally connected to GND.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H1101A-SP  
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
Table 5-2. Bare Die Information  
BACKSIDE  
POTENTIAL  
BOND PAD  
METALLIZATION COMPOSITION  
DIE THICKNESS  
BACKSIDE FINISH  
BOND PAD THICKNESS  
15 mils  
Silicon with backgrind  
Ground  
AlCu  
30 kA  
All dimensions are in microns.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
Table 5-3. Bond Pad Coordinates in Microns  
DESCRIPTION  
PAD NUMBER  
X MIN  
Y MIN  
X MAX  
287.19  
Y MAX  
4224.105  
3670.65  
3198.645  
2926.305  
2731.005  
2458.665  
2263.365  
1991.025  
1795.725  
837.585  
496.755  
287.235  
1523.385  
556.92  
SS  
EN  
1
109.89  
4046.805  
3493.35  
3021.345  
2749.005  
2553.705  
2281.365  
2086.065  
1813.725  
1618.425  
660.285  
319.455  
109.935  
1346.085  
379.62  
2
109.89  
287.19  
VIN  
3
1359.99  
1359.99  
1359.99  
1359.99  
1359.99  
1359.99  
1359.99  
109.89  
1537.29  
1537.29  
1537.29  
1537.29  
1537.29  
1537.29  
1537.29  
287.19  
VIN  
4
VIN  
5
VIN  
6
VIN  
7
VIN  
8
VIN  
9
PCL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
GND  
VIN  
109.89  
287.19  
392.58  
569.88  
1359.99  
2898.945  
2898.945  
2829.105  
2829.105  
2829.105  
2829.105  
2829.105  
2829.105  
2829.105  
2829.105  
2898.945  
2898.945  
1537.29  
3076.245  
3076.245  
3006.405  
3006.405  
3006.405  
3006.405  
3006.405  
3006.405  
3006.405  
3006.405  
3076.245  
3076.245  
PG/OC  
CS  
724.32  
901.62  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
COMP  
FB  
1384.695  
1579.815  
1852.335  
2047.455  
2319.975  
2515.095  
2787.615  
2982.735  
3519.72  
3956.535  
1561.995  
1757.115  
2029.635  
2224.755  
2497.275  
2692.395  
2964.915  
3160.035  
3697.02  
4133.835  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H1101A-SP  
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
–0.3  
–0.3  
–0.3  
0.001  
–55  
MAX  
7.5  
UNIT  
VIN, PG  
Input voltage  
V
FB, COMP, PCL, CS, EN  
VIN + 0.3  
7.5  
Output voltage  
VOUT, SS  
V
PG terminal sink current  
5
mA  
°C  
°C  
Maximum operating junction temperature, TJ  
Storage temperature, Tstg  
150  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
±1000  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
TJ  
Operating junction temperature  
–55  
125  
°C  
6.4 Thermal Information  
TPS7H1101A-SP  
THERMAL METRIC(1) (2) (3)  
HKR (CFP)  
16 PINS  
24.3  
UNIT  
Rθ JA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Rθ JC(top)  
Rθ JB  
5.5  
8.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
8.1  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Do not allow package body temperature to exceed 265°C at any time or permanent damage may result.  
(3) Maximum power dissipation may be limited by overcurrent protection.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
 
 
 
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics  
1.5 V ≤ VIN ≤ 7 V, VOUT(target) = VIN – 0.35 V, IOUT = 10 mA, VEN = 1.1 V, COUT = 22 µF, PG terminal pulled up to VIN with  
50 kΩ, over operating temperature range (TJ = –55°C to 125°C), unless otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
1.5  
7
V
V
V
VFB  
VOUT  
Feedback terminal voltage(1) 0 A ≤ IOUT ≤ 3 A, 1.5 V ≤ VIN ≤ 7 V  
0.594  
0.8  
0.605  
0.616  
VIN  
Output voltage range  
0 A ≤ IOUT ≤ 3 A, 1.5 V ≤ VIN ≤ 7 V,  
Output voltage accuracy(1)  
–2%  
2%  
VOUT = 0.8 V, 1.2 V, 1.8 V, 6.65 V  
ΔVOUT%/  
ΔVIN  
Line regulation  
Load regulation  
1.5 V ≤ VIN ≤ 7 V  
–0.07  
0.01  
0.08  
0.5  
0.07  
%/V  
%/A  
ΔVOUT%/  
ΔIOUT  
0.8 V ≤ VOUT ≤ 6.65 V, 0 ≤ ILoad ≤ 3 A  
1.5 V ≤ VIN ≤ 7 V, VOUT = 0.8 V, 1.2 V, 1.8 V,  
IOUT = 10 mA, TJ = –55°C(2)  
3
0.6  
1
1.5 V ≤ VIN ≤ 7 V, VOUT = 0.8 V, 1.2 V, 1.8 V,  
IOUT = 10 mA, TJ = 25°C(2)  
ΔVOUT  
DC input line regulation  
0.2  
mV  
1.5 V ≤ VIN ≤ 7 V, VOUT = 0.8 V, 1.2 V, 1.8 V,  
IOUT = 10 mA, TJ = 125°C(2)  
0.2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
1.5 V ≤ VIN ≤ 7 V, VOUT(target) = VIN – 0.35 V, IOUT = 10 mA, VEN = 1.1 V, COUT = 22 µF, PG terminal pulled up to VIN with  
50 kΩ, over operating temperature range (TJ = –55°C to 125°C), unless otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.4  
0.6  
0.8  
0.8  
1.3  
1.6  
1.1  
1.9  
2.5  
0.3  
0.5  
0.6  
0.8  
1.1  
1.5  
1
MAX  
UNIT  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 1 A, TJ = –55°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 1 A, TJ = 25°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 1 A, TJ = 125°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 2 A, TJ = –55°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 2 A, TJ = 25°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 2 A, TJ = 125°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 3 A, TJ = –55°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 3 A, TJ = 25°C(2)  
VOUT = 0.8 V, 0 ≤ ILoad ≤ 3 A, TJ = 125°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 1 A, TJ = –55°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 1 A, TJ = 25°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 1 A, TJ = 125°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 2 A, TJ = –55°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 2 A, TJ = 25°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 2 A, TJ = 125°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 3 A, TJ = –55°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 3 A, TJ = 25°C(2)  
VOUT = 1.2 V, 0 ≤ ILoad ≤ 3 A, TJ = 125°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 1 A, TJ = –55°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 1 A, TJ = 25°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 1 A, TJ = 125°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 2 A, TJ = –55°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 2 A, TJ = 25°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 2 A, TJ = 125°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 3 A, TJ = –55°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 3 A, TJ = 25°C(2)  
VOUT = 1.8 V, 0 ≤ ILoad ≤ 3 A, TJ = 125°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 1 A, TJ = –55°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 1 A, TJ = 25°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 1 A, TJ = 125°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 2 A, TJ = –55°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 2 A, TJ = 25°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 2 A, TJ = 125°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 3 A, TJ = –55°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 3 A, TJ = 25°C(2)  
VOUT = 6.65 V, 0 ≤ ILoad ≤ 3 A, TJ = 125°C(2)  
IOUT = 3 A, VOUT = 1.3 V, VIN = VOUT + VDO  
1
1.1  
1.3  
1.8  
1.8  
2.4  
1.9  
2.6  
3.4  
1.2  
1.3  
1.3  
1.6  
2.1  
2.1  
1.7  
2.4  
3.5  
0.9  
0.9  
1.2  
2.4  
1.4  
1.9  
3.9  
2.1  
2.5  
2.9  
2.6  
3.5  
5.9  
4.7  
8
1.1  
2.2  
0.1  
0.3  
0.4  
1.4  
0.7  
0.6  
2.5  
1.2  
1.2  
1.5  
0.4  
2.8  
3.5  
1.1  
5.8  
5.6  
3.7  
13  
ΔVO  
DC output load regulation(3)  
mV  
9.3  
8
25  
VDO  
Dropout voltage(3)  
210  
335  
mV  
mA  
VIN = 1.5 V, VOUT = 1.2 V,  
PCL resistance = 47 kΩ  
500  
200  
0
750  
3500(4)  
VIN  
Programmable output current  
limit range  
ICL  
VIN = 1.5 V, VOUT = 1.2 V,  
PCL resistance varies  
Operating voltage range at  
CS (see Section 7)(5)  
VCS  
V
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
1.5 V ≤ VIN ≤ 7 V, VOUT(target) = VIN – 0.35 V, IOUT = 10 mA, VEN = 1.1 V, COUT = 22 µF, PG terminal pulled up to VIN with  
50 kΩ, over operating temperature range (TJ = –55°C to 125°C), unless otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILOAD / ICS, VIN = 2.3 V, VOUT = 1.9 V, TJ =  
–55°C, ILOAD ≥ 500 mA  
45000  
55500  
65000  
LOAD / ICS, VIN = 2.3 V, VOUT = 1.9 V, TJ =  
25°C, ILOAD ≥ 500 mA  
CSR  
Current sense ratio  
45000  
45000  
52000  
51000  
59000  
56000  
A/A  
LOAD / ICS, VIN = 2.3 V, VOUT = 1.9 V, TJ =  
125°C, ILOAD≥ 500 mA  
IGND  
IQ  
GND terminal current  
VIN = 1.5 V, VOUT = 1.2 V, IOUT = 2 A  
VIN = VOUT + 0.5 V, IOUT = 0 A  
10  
7
16  
10  
mA  
mA  
Quiescent current (no load)  
1.5 V ≤ VIN ≤ 7 V, pre and post 100 krad(Si),  
TJ = 25°C(6)  
ISHDN  
Shutdown current  
26  
230  
µA  
ISNS, IFB  
IEN  
FB/SNS terminal current  
EN terminal input current  
VIN = 7 V, VOUT = 6.65 V  
1
5
nA  
nA  
VIN = 7 V, VEN = 7 V, VOUT = 6.65 V  
20  
150  
EN terminal input low  
(disable)  
VILEN  
1.5 V < VIN < 7 V  
0.55  
V
V
EN terminal input high  
(enable)  
VIHEN  
1.5 V < VIN < 7 V  
VIN – 0.7  
Enable terminal propagation  
delay  
Eprop Dly  
TEN  
VIN = 2.2 V, EN rise to IOUTrise  
650  
1.4  
1000  
1.6  
µs  
ms  
Enable terminal turn-on delay VIN = 2.2 V, VOUT = 1.8 V, ILOAD = 1 A,  
(delay to PG assertion)  
COUT = 220 µF, CSS = 2 nF  
No load, 0.8 V ≤ VOUT ≤ 6.65 V  
1.5 V ≤ VIN ≤ 7 V  
VTHPG  
PG threshold  
86%  
90%  
2%  
120  
0.2  
0.5  
2.5  
5
VTHPGHYS  
VOL PG  
PG hysteresis  
PG terminal output low  
IPG = 0 mA to –1 mA  
300  
1.5  
2.5  
3.5  
10  
mV  
µA  
VOUT > VTHPG, VPG = 1.2 V  
VOUT > VTHPG, VPG = 7 V  
VIN = 1.5 V to 7 V  
ILKGPG  
PG terminal leakage current  
ISS  
SS terminal charge current  
SS terminal disable current  
µA  
µA  
ISSdisb  
VIN = 1.5 V to 7 V  
SS terminal voltage (device  
enabled)(7)  
VSS  
VIN = 1.5 V to 7 V  
VIN = 1.5 V to 7 V  
1.232  
0.4  
V
V
SS terminal low-level input  
voltage to disable device  
VSSdisb  
1 kHz  
48  
25  
VIN = 2.5 V, VOUT = 1.8 V,  
COUT = 220 µF  
PSRR  
Power-supply rejection ratio  
Output noise voltage  
dB  
100 kHz  
BW = 10 Hz to 100 kHz,  
VN  
20.33  
185  
µVRMS  
°C  
IOUT = 3 A, VIN = 2 V, VOUT = 1.8 V  
Thermal shutdown  
temperature  
TSD  
(1) The output voltage accuracy of condition at IOUT = 2 A and IOUT = 3 A is specified by characterization, but not production tested.  
(2) Line and load regulations done under pulse condition for t < 10 ms.  
(3) The parameter is specified to the limit in characterization, but not production tested.  
(4) The maximum limit of the ICLparameter is specified to the limit in characterization, but not production tested.  
(5) To insure foldback is enabled, VCS must be > 0.9 · VFB  
.
(6) This maximum limit applies to SMD 5962R13202 post 100-krad(Si) test at 25°C.  
(7) Any external pullup voltage should not exceed 1.188 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics  
0.608  
0.607  
0.606  
0.605  
10  
9
8
VIN = 7 V  
7
VIN = 1.5 V  
0.604  
VIN = 1.5 V  
6
0.603  
VIN = 7 V  
5
0.602  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
5
25  
45  
65  
85  
105 125  
œ55 œ35 œ15  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
Figure 6-1. Feedback Voltage vs Temperature  
Figure 6-2. Quiescent Current vs Temperature  
320  
280  
240  
200  
160  
120  
13  
12  
11  
10  
9
Load = 2 A  
No Load  
8
7
6
5
5
25  
45  
65  
85  
105 125  
œ55 œ35 œ15  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
C015  
VOUT = 1.8 V  
Load = 3 A  
Figure 6-4. Dropout Voltage vs Temperature  
Figure 6-3. Ground Current vs Temperature  
100  
80  
60  
40  
20  
0
100  
95  
VIN = 7 V  
90  
VIN = 1.5 V  
85  
80  
5
25  
45  
65  
85  
105 125  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
-55  
-35  
-15  
Junction Temperature (°C)  
Junction Temperature (°C)  
C017  
C018  
Figure 6-5. Shutdown Current vs Temperature  
Figure 6-6. PG Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
100  
No load  
1A  
2A  
3A  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
VIN = 2.5 V  
VOUT = 1.8 V  
Figure 6-7. Power Supply Ripple Rejection vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H1101A-SP  
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7H1101A-SP is 3-A, 1.5-V to 7-V LDO linear regulator that uses PMOS pass element configuration.  
It uses TI’s proprietary process to achieve low noise, high PSRR combined with high-thermal performance in a  
16-pin ceramic flatpack package (HKR).  
A number of features are incorporated in the design to provide high reliability and system flexibility. Current  
foldback, current limit, and thermal protection are incorporated in the design to make it viable for space  
environments.  
The device also has a current sense monitoring feature. A resistor connected from the current sense (CS)  
terminal to VIN indicates voltage proportional to the output current. Section 8.2.1.3 provides a detailed  
description of this feature. When CS is pulled high to voltage greater than 90% Vref (0.544 V), foldback current  
limit is enabled. Pulling CS below 0.544 V disables the foldback current limit.  
A resistor connected from the programmable current limit (PCL) terminal to ground sets the overcurrent limit  
activation point. When overcurrent limit activation point is reached, it results in the LDO going into current  
foldback mode. Output current is reduced to approximately 50% of the current limit set point. Section 8.2.1.2  
provides a detailed description of this feature.  
TPS7H1101A-SP incorporates thermal protection, which disables the output when the junction temperature rises  
to approximately 185°C, allowing the device to cool. Cycling limits the dissipation of the regulator, protecting it  
from catastrophic damage as a result of overheating.  
To provide system flexibility for demanding current needs, the LDO can be configured in parallel operation as  
indicated in Figure 8-12. Section 8.2.1.6 provides detailed parallel operation information.  
An enable feature is incorporated in the design allowing the user to enable or disable the LDO. Power  
Good (PG), is an open-drain connection, indicating status of the output voltage regulation. These provide the  
customers system flexibility in monitoring and controlling the LDO operation.  
7.2 Functional Block Diagram  
CS  
VIN  
1.2 V  
2 mA  
RTOP  
EN  
ISS  
OCP  
PCL  
RBOT  
Thermal  
Protection  
VREF  
1.1*VREF  
PG  
0.9*VREF  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Soft Start  
Connecting a capacitor (CSS) from the SS terminal to GND slows down the output voltage ramp rate. The  
soft-start capacitor charges up to 1.2 V, with a threshold of VFB.  
tSS · ISS  
CSS =  
VFB  
(1)  
where  
tss = soft-start time  
Iss = 2.5 µA  
VFB = VREF = 0.605 V  
7.3.2 Power Good (PG)  
Power Good terminal (9) is an open-drain connection and can be used to sequence multiple LDOs. Figure  
7-1 shows typical connection. The PG terminal will be pulled low until the output voltage reaches 90% of its  
maximum level. At that point, the PG pin will be pulled up. Since the PG pin is open drain, it can be pulled up to  
any voltage as long as it does not exceed the absolute max of 7.5 V listed in Section 6.5.  
TPS7H1101A-SP  
TPS7H1101A-SP  
PG  
PG  
EN  
EN  
SS  
SS  
VIN  
VIN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-1. Sequencing LDOs With Power Good  
Note  
For PSpice models, WEBENCH, and reference design, see the Design & development tab of the  
product folder.  
1. PSpice transient model (switching, transient, and stability simulations)  
2. PSpice Worst Case Analysis (WCA) model (radiation and aging stability – Bode plot)  
7.4 Device Functional Modes  
7.4.1 Enable/Disable  
For VIN from 1.5 V to 7 V, TPS7H1101A-SP can be disabled by pulling the enable terminal to logic low at a  
minimum of 0.7 V. Enable cannot exceed VIN by more than 0.3 V, and in most cases, the enable terminal is  
connected to VIN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS7H1101A-SP LDO linear regulator is targeted space environment applications. This regulator has  
various features such as low dropout, soft start, output current foldback, high-side current sensing (where  
sensing voltage at CS pin provides voltage proportional to output current), and current sharing.  
8.1.1 Stability  
Bode plots are a standard approach in assessing stability. This approach requires a single feedback path  
where an AC signal is injected across a resistor (typically 50 Ω) and measurements are taken on either side  
of the resistor as shown in Figure 8-1. From this measurement, loop gain and phase plots can be generated.  
Crossover frequency, ƒC, is defined as the frequency where the magnitude of the loop gain is unity and phase  
margin is evaluated at the crossover frequency ƒC.  
Signal  
injection  
TPS7H1101A-SP  
IN  
OUT  
50Ω  
+
RESR  
VIN  
RESR  
CCOMP  
œ
RLOAD  
COMP  
FB  
RT  
gm  
COUT  
CIN  
RB  
0.6V VREF  
Figure 8-1. Conventional Bode Plot With Simplified Feedback Loops  
However, it is important the AC signal is injected as shown in Figure 8-1. This injection point ensures that the  
feedback signal goes through both the outer loop (consisting of the top feedback resistor, RT) and the inner loop  
(consisting of the compensation capacitor, CCOMP). If the only the outer loop is measured, the resulting crossover  
frequency will be lower which would indicate a poorer transient response than reality. Therefore, it is best to  
inject the measurement signal at a point where it goes through both loops. If this is not possible, the two loops  
may be measured independently and added using the superposition principle.  
Furthermore, the stability of the device can be qualitatively validated by applying a step load to the output and  
observing the response. The SPICE models for the device can be found on the TPS7H1101A-SP product page.  
To simulate impedance measurements, the transient model should be used.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8.2 Typical Application  
TPS7H1101A-SP  
Power  
5 V  
V
IN  
Good  
C
IN  
R
CS  
COMP  
EN  
3.3 V  
V
OUT  
CS  
R
PCL  
C
T
OUT  
Soft  
Start  
Feed  
Back  
R
PCL  
GND  
R
B
C
SS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-2. Typical Application Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8.2.1 Detailed Design Procedure  
8.2.1.1 Adjustable Output Voltage (Feedback Circuit)  
The output voltage of the TPS7H1101A-SP can be set to a user-programmable level between 0.8 V and 6.65  
V. Achieve this by using a resistor divider connected between VOUT, FB, and GND terminals. RTOP connected  
between VOUT and VFB, and RBOTTOM connected between VFB and GND.  
Use Equation 2 to determine VOUT  
.
(RTOP + RBOTTOM) · VFB  
RBOTTOM  
VOUT  
=
(2)  
where  
VFB = 0.605 V  
Table 8-1. Example Resistor Values for Typical  
Voltages  
Standard 1% Resistors  
Standard 0.1% Resistors  
VOUT  
RTOP  
RBOTTOM  
33.2 kΩ  
21 kΩ  
RTOP  
RBOTTOM  
33.2 kΩ  
19.3 kΩ  
12 kΩ  
0.8 V  
1 V  
10.7 kΩ  
13.7 kΩ  
11.3 kΩ  
15.8 kΩ  
23.2 kΩ  
10.7 kΩ  
51.1 kΩ  
13.3 kΩ  
11.5 kΩ  
17.4 kΩ  
90.9 kΩ  
26.7 kΩ  
11.3 kΩ  
39.2 kΩ  
10.7 kΩ  
12.6 kΩ  
11.8 kΩ  
18.2 kΩ  
32 kΩ  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
4 V  
11.5 kΩ  
10.7 kΩ  
11.8 kΩ  
3.4 kΩ  
12.3 kΩ  
16.2 kΩ  
12.1 kΩ  
2.29 kΩ  
5.56 kΩ  
2.23 kΩ  
11.1 kΩ  
1.2 kΩ  
37.9 kΩ  
10.2 kΩ  
31.2 kΩ  
16.2 kΩ  
89.8 kΩ  
10.7 kΩ  
15.2 kΩ  
22.1 kΩ  
13.8 kΩ  
11.5 kΩ  
2.37 kΩ  
1.58 kΩ  
2.15 kΩ  
10.2 kΩ  
2.74 kΩ  
1.15 kΩ  
3.92 kΩ  
5 V  
5.5 V  
6 V  
6.5 V  
6.6 V  
6.7 V  
1.56 kΩ  
2.23 kΩ  
1.37 kΩ  
8.2.1.2 PCL  
PCL resistor, RPCL, sets the overcurrent limit activation point and can be calculated per Equation 3.  
RPCL = (CSR × VREF) / (ICL – 0.0403)  
where  
(3)  
VREF = 0.605 V  
ICL = Programmable current limit (A)  
Current sense ratio (CSR) is the ratio of output load current to ICS; typical value of the CSR is 52000  
Offset value 0.0403 is a fixed offset derived from internal keep-alive biasing  
Figure 8-3 shows the output load current (ILOAD) versus PCL terminal current (IPCL) varied with minimum and  
maximum range of CSR values by temperature. The RPCL resistor should be chosen to set the worst case ILOAD  
across system normal operating load and temperature range without reaching overcurrent activation point of IPCL  
· RPCL ≥ VREF  
.
Additionally, a suitable resistor RCS must be chosen to ensure the CS terminal is within its operating range of 0.3  
V to VIN and VCS needs to be greater than 0.9 · VREF (0.544 V) to insure foldback remains enabled when current  
activation point is triggered.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
The maximum PCL is 3.5 A. The range of resistor that can be used on the PCL terminal to GND is 8.2 kΩ to 160  
kΩ. It is not recommended to use overcurrent limit activation thresholds of less than 500 mA due to internal bias  
offset currents representing a larger percentage of total IPCLcurrent and therefore additional error.  
ILOAD Vs IPCL across CSR range  
6
Min CSR: ILOAD = 45000 * IPCL +0.0403  
25c Nom CSR: ILOAD = 52000 * IPCL +0.0403  
125c Max CSR: ILOAD = 56000 * IPCL +0.0403  
5
-55c Max CSR: ILOAD = 65000 * IPCL +0.0403  
4
3
2
1
0
0x100  
10x10-6 20x10-6 30x10-6 40x10-6 50x10-6 60x10-6 70x10-6 80x10-6  
IPCL (A)  
CSR_  
Figure 8-3. ILOAD (A) vs IPCL (A)  
8.2.1.3 High-Side Current Sense  
Figure 8-4 shows the cascode NMOS current mirror. VCS must be ≥ 0.3 V for proper biasing. Additionally VCS  
must be greater than 0.9 · VREF (0.544 V) if foldback current limiting is intended to be enabled. The following  
example shows the typical calculation of RCS  
.
ILOAD + Ioffset  
ICS  
=
CSR  
(4)  
(5)  
VIN - VCS  
¾¾  
ICS  
RCS =  
where  
ILOAD is the output load current  
CSR is the current sense ratio  
Ioffset is internal keep-alive bias current times CSR  
Ioffset = 5 µA · CSR  
When VIN = 2.3 V, select VCS = 2.05 V, ILOAD = 3 A, CSR = 52000, and Ioffset = 0.26 A, then ICS = 62.69 µA and  
RCS = 3.99 kΩ.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
Vin  
Rcs  
Iout  
Ics  
Vcs  
Vcs  
Figure 8-4. Cascode NMOS Current Mirror  
For TPS7H1101A-SP, Figure 8-5 shows a typical curve VCS vs IOUT for VIN = 2.28 V and RCS = 3.65 kΩ. A  
resistor connected from the CS terminal to VIN indicates voltage proportional to the output current.  
Monitoring current in the CS terminal (ICS vs ILOAD) indicates the current sense ratio between the main  
PMOSFET and the current sense MOSFET as shown in Figure 8-6. Additionally Figure 8-6 shows the linearity  
of the CSR ratio across VCS pin voltage range of 0.3 V to VIN. VCS must be ≥ 0.3-V minimum to keep circuit  
properly biased.  
Figure 8-7 shows ILOAD vs ICS across the full range of CSR values.  
3.5  
2.35  
ICS (uA) vs ILOAD at VCS = 0.3V  
ICS (uA) vs ILOAD at VCS = 2.3V  
ICS (uA) vs ILOAD at VCS = 5V  
3
2.30  
2.25  
2.5  
2.20  
2
2.15  
1.5  
2.10  
1
2.05  
0.5  
2.00  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
ICS (uA)  
Load Current (A)  
VCS_  
C003  
VIN = 2.3 V  
VOUT = 1.8 V  
y = –0.078x + 2.2853  
VIN = 2.3 V  
VOUT = 1.8 V  
Figure 8-5. VCS (V) vs I LOAD (A)  
Figure 8-6. IOUT (A) vs ICS (A)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
ILOAD Vs ICS across CSR range  
6
5
4
3
2
1
Min CSR: ILOAD = 45000(ICS - 5uA)  
25c Nom CSR: ILOAD = 52000(ICS - 5uA)  
-55c Max CSR: ILOAD = 65000(ICS - 5uA)  
125c Max CSR: ILOAD = 56000(ICS - 5uA)  
0
0x100  
10x10-6 20x10-6 30x10-6 40x10-6 50x10-6 60x10-6 70x10-6 80x10-6  
ICS (A)  
CSR_  
Figure 8-7. IOUT (A) vs ICS (A)  
8.2.1.4 Current Foldback  
1. The TPS7H1101A-SP has a current foldback feature which can be enabled when the CS terminal is greater  
than 0.9 · VREF (0.544 V). Pulling CS below this threshold disables the foldback current limit. If the foldback  
current limit is disabled, then the LDO will begin regulating again as soon as the current falls below the  
clamp threshold.  
2. With foldback current limit enabled, when current limit trip point is activated,  
a. Output voltage drops low, and  
b. Output current folds back to approximately 50% of the current limit trip point.  
This results in minimizing the power loss under fault conditions. Monitoring the voltage at the CS terminal  
indicates voltage proportional to the output current. It is important to note that the current sense voltage  
range on CS pin must be designed to stay above the 0.9 · VREF threshold to insure foldback is not  
inadvertently disabled at high currents.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8.2.1.5 Transient Response  
Figure 8-8, Figure 8-9, and Figure 8-10 indicate the transient response behavior of the LDO for 50% step load  
change.  
Channel 1: Input voltage  
Channel 3: Step load in current  
Channel 4: Output voltage overshoot/undershoot  
Figure 8-9. Expanded View Overshoot  
Figure 8-8. Load Transient Response: Step Load  
0.1 to 1.6 A, VIN = 2.3 V, VOUT = 1.8 V  
Figure 8-10. Expanded View Undershoot  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8.2.1.6 Current Sharing  
For demanding load requirements, multiple LDOs can be paralleled as indicated in Figure 8-12. In parallel mode,  
the CS terminal of LDO1 must be connected to the PCL terminal of LDO2 via a series resistor, RCL, and CS  
terminal of LDO2 must be connected to PCL terminal of LDO1 via series resistor, RCL. The typical value of RCL  
in parallel operation is 3.75 kΩ for current limit > 6 A. In parallel configuration, RCL (resistor from PCL to GND)  
and RCS (resistor from CS terminal to VIN) must be left open (unpopulated). The RCL value must be selected so  
that the operating condition of the CS terminal is maintained, as specified in Section 6.5. VCS must be greater  
than 0.3 V to insure proper current sense operation. The current from PCL through RCL of LDO1 is determined  
by the output load current of LDO2 divided by the CSR. Hence, the voltage at CS terminal of the LDO1 is 0.605  
V – ((output load current of LDO2 + 0.2458) / CSR × RCL).  
Alternately, it can also provide twice the output current to meet system needs. When using two LDOs in parallel  
operation for higher output load current, use POL TPS50601-SP as an input source.  
65.00  
LDO1  
LDO2  
60.00  
55.00  
50.00  
45.00  
40.00  
35.00  
0
1
2
3
4
5
6
Output Current  
Figure 8-11. LDO Current Share  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
RPG  
Supply  
Ccomp  
PG  
VIN  
Comp  
VOUT  
LDO1  
SS  
FB  
PCL  
CS  
RTOP  
RLOAD  
COUT  
CX  
RBOT  
RCL  
Optional  
RCL  
RCL  
Supply  
Ccomp  
CS  
PCL  
VIN  
SS  
FB  
Comp  
VOUT  
LDO1  
PG  
RPG  
CSS  
Figure 8-12. Block Diagram (Parallel Operation)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
8.2.1.7 Compensation  
Figure 8-13 shows a generic block diagram for TPS7H1101A-SP LDO with external compensation components.  
LDO incorporates nested loops, thus providing the high gain necessary to meet design performance.  
Q1  
CCOMP  
CFF  
RTOP  
RESR  
+
Buffer  
-
RINESR  
+
VOUT  
-
RL  
E/A  
VIN  
+
CO  
RBOT  
CIN  
VREF = 0.605 V  
CX  
-
Figure 8-13. TPS7H1101A-SP Compensation  
Resistor divider composed of Rtop and Rbottom determine the output voltage set points as indicated by Equation  
2.  
Output capacitor COUT introduces a pole and a zero as shown in the following.  
1
Fp_co  
=
2·p·Co·RL  
(6)  
(7)  
1
Fz_co  
=
2·p·Co·Cesr  
The TPS7H1101A-SP was designed so that the ESR of the output capacitor will not have a strong influence on  
the response of the LDO. However, an optional capacitor, Cx, can be added in parallel with the bottom feedback  
resistor to introduce a pole to cancel Fz_co. Equation 8 shows how to calculate the location of the pole introduced  
by Cx. To cancel the zero directly, Fp should be equal to Fz_co  
.
1
Fp =  
2·p·Cx·Rbottom  
(8)  
Cx is calculated to be 1000 pF for Co = 220 µF, Cesr = 45 mΩ, and Rbottom = 10 kΩ.  
Figure 8-13 also includes a place holder for a feed forward capacitance Cff. Use of feed forward compensation  
can be more advantageous than use of Cx. Please reference application note Pros and Cons of Using a  
Feedforward Capacitor with a Low-Dropout Regulator for additional information on usage of CFF.  
Internal compensation in the LDO cancels the output capacitor pole introduced by COUT and RL.  
Ccomp introduces a dominant pole at low frequency. TI recommends that a Ccomp value of 10 nF.  
8.2.1.8 Output Noise  
Output noise is measured using an HP3495A. Figure 8-14 and Figure 8-15 show noise of the TPS7H1101A-SP  
in µV/√ Hz vs frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
10  
10  
1
1
0.1  
0.1  
0.01  
10  
0.01  
10  
100  
1,000  
10,000  
100,000  
100  
1000  
10000  
100000  
Frequency  
(Hz)  
Frequency (Hz)  
VIN = 2 V  
CIN = 220 µF  
VOUT = 1.8 V at 3 A  
CLOAD = 220 µF  
VIN = 7 V  
CIN = 220 µF  
VOUT = 6.7 V at ILOAD = 3 A  
CLOAD = 220 µF  
Figure 8-14. RMS Noise (10 Hz to 100 kHz) = 20.33 Figure 8-15. RMS Noise (10 Hz to 100 kHz) = 31.68  
µVrms  
µVrms  
8.2.1.9 Capacitors  
TPS7H1101A-SP requires the use of a combination of tantalum and ceramic capacitors to achieve good volume  
to capacitance ratio. Table 8-2 highlights some of the capacitors used in the device. TI recommends to follow  
proper derating guidelines as recommended by the capacitor manufacturer based upon output voltage and  
operating temperature.  
Note that polymer-based tantalum capacitors must be derated to at least 60% of rated voltage, whereas  
manganese oxide (MnO2) based tantalum capacitors should be derated to 33% of rated voltage depending  
upon the operating temperature.  
TI recommends to use a tantalum capacitor along with a 0.1-µF ceramic capacitor. The device is stable for input  
and output tantalum capacitor values of 10 µF to 220 µF with the ESR range of 10 mΩ to 2 Ω. However, the  
dynamic performance of the device varies based on load conditions and the capacitor values used.  
TI recommends a minimum output capacitor of 22 µF with ESR of 1 Ω or less to prevent oscillations. X7R  
dielectrics are preferred. See Table 8-2 for various capacitor recommendations.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
Table 8-2. TPS7H1101A-SP Capacitors  
CAPACITOR DETAILS  
(CAPACITOR, VOLTAGE, ESR)  
CAPACITOR PART NUMBER  
TYPE  
Tantalum - MnO2  
VENDOR  
T493X107K016CH612A(1)  
T493X226M025AH6x20(1)  
T525D476M016ATE035(1)  
T540D476M016AH6520(1)  
T525D107M010ATE025(1)  
T541X337M010AH6720(1)  
T525D227M010ATE025(1)  
T495X107K016ATE100(1)  
CWR29FK227JTHC(1)  
100 µF, 16 V, 100 mΩ  
22 µF, 25 V, 35 mΩ  
47 µF, 10 V, 35 mΩ  
47 µF, 16 V, 20 mΩ  
100 µF, 10 V, 25 mΩ  
330 µF, 10 V, 6 mΩ  
220 µF, 10 V, 25 mΩ  
100 µF, 16 V, 100 mΩ  
220 µF, 10 V, 180 mΩ  
100 µF, 16 V, 58 mΩ  
220 µF, 10 V, 40 mΩ  
33 µF, 25 V  
Kemet  
Tantalum - MnO2  
Tantalum - Polymer  
Tantalum - Polymer  
Tantalum - Polymer  
Tantalum - Polymer  
Tantalum - Polymer  
Tantalum - MnO2  
Tantalum - MnO2  
Tantalum  
Kemet  
Kemet  
Kemet  
Kemet  
Kemet  
Kemet  
Kemet  
AVX  
THJE107K016AJH  
AVX  
THJE227K010AJH  
Tantalum  
AVX  
AVX  
SMX33C336KAN360  
Stacked ceramic  
Ceramic  
SR2225X7R335K1P5#M123  
3.3 µF, 25 V, 10 mΩ  
Presidio Components Inc  
(1) Operating temperature is –55°C to 125°C.  
8.2.2 Application Curves  
350  
300  
250  
200  
150  
100  
50  
125 °C  
25 °C  
-55 °C  
0
0
0.5  
1
1.5  
IOUT (A)  
2
2.5  
3
Figure 8-16. VDO vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7H1101A-SP  
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
9 Power Supply Recommendations  
This device is designed to operate with an input voltage supply up to 7 V. The minimum input voltage should  
provide adequate headroom greater than the dropout voltage for the device to have a regulated output. If the  
input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.  
10 Layout  
10.1 Layout Guidelines  
For best performance, all traces should be as short as possible, and no longer than 5 cm.  
Use wide traces for IN, OUT and GND to minimize the parasitic electrical effects.  
Place the output capacitors (COUT) as close as possible to the OUT pin of the device.  
10.2 Layout Example  
C
1
2
3
4
5
6
7
8
SS  
FB 16  
COMP 15  
VOUT 14  
VOUT 13  
VOUT 12  
VOUT 11  
CS 10  
EN  
Cap  
Cap  
Cap  
C
VIN  
VIN  
VIN  
VIN  
PCL  
GND  
VIN  
plane  
Vout plane  
Cap  
Cap  
To CS sense  
PG/OC  
9
To PG/OC sense  
Vias from top layer  
thermal pad GND to  
main GND plane(s)  
Via to GND  
Main GND layer(s) plane  
Figure 10-1. PCB Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
TPS7H1101A-SP  
SLVSDW6C – APRIL 2017 – REVISED APRIL 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 Device Nomenclature  
KGD  
Known good die  
RHA  
Radiation hardness assurance for space systems  
Same device as TPS50601-SP, shown with standard microcircuit drawing (SMD)  
5962R13202  
TPS7H1101A-SP Same device as 5962R10221, shown with TI package drawing  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator  
application note (SBVA042)  
Texas Instruments, TPS7H1101SP TID and SEE radiation report (SNAA257)  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7H1101A-SP  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R1320202V9A  
5962R1320202VXC  
ACTIVE  
ACTIVE  
XCEPT  
CFP  
KGD  
HKR  
0
70  
1
RoHS & Green  
RoHS & Green  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
16  
NIAU  
NIAU  
NIAU  
5962R1320202VXC  
TPS7H1101-RHA  
TPS7H1101AHKR/EM  
TPS7H1101HKR/EM  
ACTIVE  
ACTIVE  
CFP  
CFP  
HKR  
HKR  
16  
16  
1
1
RoHS & Green  
RoHS & Green  
N / A for Pkg Type  
N / A for Pkg Type  
25 to 25  
25 to 25  
TPS7H1101AHKR/EM  
EVAL ONLY  
TPS7H1101HKREM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
HKR0016A  
CFP - 2.416 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
9.88  
9.38  
B
METAL LID  
A
PIN 1 ID  
14X 1.27  
16  
1
11.26  
10.76  
(10.41)  
2X 8.89  
8
9
0.482  
16X  
0.382  
(9.14)  
0.2  
C A B  
METAL LID  
C
2.416  
1.850  
0.177  
0.097  
(6.59)  
1.19  
0.69  
25.142  
24.642  
HEATSINK  
8
9
8.95  
8.65  
16  
1
6.74  
6.44  
PIN 1 ID  
4226020/B 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. Lid is connected to Heatsink and pin 8 (GND).  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HKR0016A  
CFP - 2.416 mm max height  
CERAMIC DUAL FLATPACK  
(6.59)  
(1.2) TYP  
(0.6)  
(1.2) TYP  
(0.6)  
(8.8)  
PKG  
(
0.2) TYP  
PKG  
HEATSINK LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
4226020/B 12/2020  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

5962R1320801VXC

耐辐射加固保障 (RHA)、QMLV、100krad、陶瓷、14 位、单通道、400MSPS ADC | HFG | 84 | -55 to 125
TI

5962R1322001V9A

1.5A, Rad Hard, Positive, High Voltage LDO
INTERSIL

5962R1322001VXC

1.5A, Rad Hard, Positive, High Voltage LDO
INTERSIL

5962R1420302V9A

Radiation and SEE Tolerant 3V to 13.2V, 9A Buck Regulator
INTERSIL

5962R1420302VYC

Radiation and SEE Tolerant 3V to 13.2V, 9A Buck Regulator
INTERSIL

5962R1420801V9A

2.048V Radiation Hardened Ultra Low Noise
INTERSIL

5962R1420801VXC

2.048V Radiation Hardened Ultra Low Noise
INTERSIL

5962R1420802V9A

3.3V Radiation Hardened Ultra Low Noise,
INTERSIL

5962R1420802VXC

3.3V Radiation Hardened Ultra Low Noise,
INTERSIL

5962R1420803V9A

4.096V Radiation Hardened Ultra Low Noise,
INTERSIL

5962R1420803VXC

4.096V Radiation Hardened Ultra Low Noise,
INTERSIL

5962R1420804V9A

10V Radiation Hardened Ultra Low Noise
INTERSIL