65056 [TI]

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs; 6通道电源管理IC具有两个降压型转换器和4低输入电压LDO
65056
型号: 65056
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs
6通道电源管理IC具有两个降压型转换器和4低输入电压LDO

转换器 输入元件
文件: 总41页 (文件大小:1222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS  
AND 4 LOW-INPUT VOLTAGE LDOs  
FEATURES  
APPLICATIONS  
Cell Phones, Smart-Phones  
WLAN  
PDAs, Pocket PCs  
OMAP™ and Low-Power TMS320™ DSP  
Supply  
Up To 95% Efficiency  
Output Current for DC/DC Converters:  
TPS65050: 2 x 0.6 A  
TPS65051: DCDC1 = 1 A; DCDC2 = 0.6 A  
TPS65052: DCDC1 = 1 A; DCDC2 = 0.6 A  
TPS65054: 2 x 0.6 A  
Samsung S3C24xx application processor  
Supply  
Portable Media Players  
TPS65056: DCDC1 = 1 A; DCDC2 = 0.6 A  
Output Voltages for DC/DC Converters  
DESCRIPTION  
TPS65050: Externally Adjustable  
TPS65051: Externally Adjustable  
The TPS6505x are integrated Power Management  
ICs for applications powered by one Li-Ion or  
Li-Polymer cell, which require multiple power rails.  
The TPS6505x provides two efficient, 2.25-MHz  
step-down converters targeted at providing the core  
voltage and I/O voltage in a processor based  
system. Both step-down converters enter a low  
power mode at light load for maximum efficiency  
across the widest possible range of load currents.  
TPS65052: DCDC1 = Fixed at 3.3 V;  
DCDC2 = 1 V / 1.3 V for Samsung  
Application Processors  
TPS65054: DCDC1 = Externally Adjustable;  
DCDC2 = 1.3 V / 1.05 V for OMAP™1710  
Processor  
TPS65056: DCDC1 = Fixed at 3.3 V;  
DCDC2 = 1 V / 1.3 V for Samsung  
Application Processors  
For low noise applications, the devices can be forced  
into fixed frequency PWM mode by pulling the  
MODE pin high. In the shutdown mode, the current  
consumption is reduced to less than 1 µA. The  
devices allow the use of small inductors and  
VI Range for DC/DC Converters  
From 2.5 V to 6 V  
2.25-MHz Fixed Frequency Operation  
Power Save Mode at Light Load Current  
180° Out-of-Phase Operation  
capacitors to achieve  
a
small solution size.  
TPS6505x provides an output current of up to 1 A on  
each DC/DC converter. The TPS6505x also integrate  
two 400-mA LDO and two 200-mA LDO voltage  
regulators, which can be turned on/off using separate  
enable pins on each LDO. Each LDO operates with  
an input voltage range between 1.5 V and 6.5 V  
allowing them to be supplied from one of the  
step-down converters or directly from the main  
battery.  
Output Voltage Accuracy in PWM mode ±1%  
Low Ripple PFM Mode  
Total Typical 32-µA Quiescent Current for  
Both DC/DC Converters  
100% Duty Cycle for Lowest Dropout  
Two General-Purpose 400-mA, High PSRR  
LDOs  
Four digital input pins are used to set the output  
voltage of the LDOs from a set of 16 different  
combinations for LDO1 to LDO4 on TPS65050 and  
TPS65052. In TPS65051, TPS65054 and TPS65056,  
the LDO voltages are adjustable using external  
resistor dividers.  
Two General-Purpose 200-mA, High PSRR  
LDOs  
VI range for LDOs from 1.5 V to 6.5 V  
Digital Voltage Selection for the LDOs  
The TPS6505x come in a small 32-pin leadless  
package (4 mm x 4 mm QFN) with a 0.4 mm pitch.  
Available in a 4 mm x 4 mm 32-Pin QFN  
Package  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
OMAP, TMS320, PowerPAD are trademarks of Texas Instruments.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007, Texas Instruments Incorporated  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PART  
NUMBER  
OUTPUT CURRENT  
for DC/DC CONVERTERS  
QFN(1)  
PACKAGE(2)  
PACKAGE  
MARKING  
TA  
OPTION  
LDO voltages according to Table 1  
DC/DC converters externally adjustable  
TPS65050  
TPS65051  
TPS65052  
2 x 600 mA  
65050  
65051  
65052  
LDO voltages externally adjustable  
DC/DC converters externally adjustable  
DCDC1 = 1 A  
DCDC2 = 600 mA  
LDO voltages according to Table 1  
DCDC1 = 3.3 V; DCDC2 = 1 V / 1.3 V  
DCDC1 = 1 A  
DCDC2 = 600 mA  
-40°C to 85°C  
RSM  
LDO voltages externally adjustable  
DCDC1 = externally adjustable  
DCDC2 = 1.3 V / 1.05 V  
TPS65054  
TPS65056  
2 x 600 mA  
65054  
65056  
LDO voltages externally adjustable  
DCDC1 = 3.3 V  
DCDC1 = 1A  
DCDC2 = 600 mA  
DCDC2 = 1.0 V / 1.3 V  
(1) The RSM package is available in tape and reel. Add the R suffix (TPS65050RSMR) to order quantities per reel. Add the T suffix  
(TPS65050RSMT) to order quantities of 250 parts per reel.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNITS  
Input voltage range on all pins except AGND, PGND, and EN_LDO1 pins with  
-0.3 V to 7 V  
respect to AGND  
VI  
II  
Input voltage range on EN_LDO1 pins with respect to AGND  
Current at VINDCDC1/2, L1, PGND1, L2, PGND2  
Current at all other pins  
-0.3 V to VCC + 0.5 V  
1800 mA  
1000 mA  
Continuous total power dissipation  
Operating free-air temperature  
See the dissipation rating table  
–40°C to 85°C  
125°C  
TA  
TJ  
Maximum junction temperature  
Tstg  
Storage temperature range  
–65°C to 150°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATINGS  
POWER RATING DERATING FACTOR  
POWER RATING  
POWER RATING  
(1)  
PACKAGE  
RθJA  
58 K/W  
TA 25°C  
ABOVE TA = 25°C  
TA = 70°C  
TA = 85°C  
RSM  
1.7 W  
17 mW/K  
0.95 W  
0.68 W  
(1) The thermal resistance junction to case of the RSM package is 4 K/W measured on a high K board  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6
UNIT  
VI  
Input voltage range for step-down converters, VINDCDC1/2  
Output voltage range for step-down converter, VDCDC1  
Output voltage range for step-down converter, VDCDC2  
Input voltage range for LDOs, VINLDO1, VINLDO2, VINLDO3/4  
2.5  
0.6  
0.6  
1.5  
V
V
V
V
VINDCDC1/2  
VINDCDC1/2  
6.5  
VO  
VI  
2
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
RECOMMENDED OPERATING CONDITIONS (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1
NOM  
MAX  
UNIT  
VINLDO1,  
VINLDO2  
Output voltage range for LDO1 and LDO2  
VO  
V
Output voltage range for LDO3 and LDO4  
1
VINLDO3/4  
1000  
600  
V
Output current at L1 (DCDC1) for TPS65051, TPS65052  
Output current at L1 (DCDC1) for TPS65050, TPS65054  
mA  
mA  
mA  
mA  
mA  
µH  
µF  
µF  
µF  
µF  
µF  
°C  
IO  
Output current at L1 (DCDC2)  
600  
Output current at VLDO1, VLDO2  
Output current at VLDO3, VLDO4  
Inductor at L1, L2(1)  
Output capacitor at VDCDC1, VDCDC2(2)  
Output capacitor at VLDO1, VLDO2, VLDO3, VLDO4(2)  
Input capacitor at VCC(2)  
400  
200  
1.5  
10  
2.2  
22  
CO  
CI  
2.2  
1
Input capacitor at VINLDO1/2(2)  
Input capacitor at VINLDO3/4(2)  
2.2  
2.2  
-40  
-40  
TA  
TJ  
Operating ambient temperature range  
Operating junction temperature range  
Resistor from battery voltage to VCC used for filtering(3)  
85  
125  
10  
°C  
1
(1) See the Application Information section of this data sheet for more details.  
(2) See the Application Information section of this data sheet for more details.  
(3) Up to 2 mA can flow into VCC when both converters are running in PWM, this resistor causes the UVLO threshold to be shifted  
accordingly.  
ELECTRICAL CHARACTERISTICS  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 µH, CO = 10 µF. TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VI  
Input voltage range at VINDCDC1/2  
2.5  
6
V
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not  
switching, EN_DCDC1 = VI OR EN_DCDC2 = VI;  
EN_LDO1= EN_LDO2 = EN_LDO3/4 = GND  
20  
32  
30  
µA  
Two converters, IO = 0 mA  
Operating quiescent current  
PFM mode enabled (Mode = 0) device not  
switching, EN_DCDC1 = VI AND EN_DCDC2 = VI;  
EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND  
40  
µA  
µA  
IQ  
Total current into VCC, VINDCDC1/2,  
VINLDO1, VINLDO2, VINLDO3/4  
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not  
switching, EN_DCDC1 = VI OR EN_DCDC2 = VI;  
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 =  
VI  
180  
250  
One converter, IO = 0 mA.  
Switching with no load (Mode = VI), PWM operation  
EN_DCDC1 = VI OR EN_DCDC2 = VI; EN_LDO1 =  
EN_LDO2 = EN_LDO3/4 = GND  
0.85  
1.25  
mA  
mA  
IQ  
Operating quiescent current into VCC  
Two converters, IO = 0 mA  
Switching with no load (Mode = VI), PWM operation  
EN_DCDC1 = VI AND EN_DCDC2 = VI; EN_LDO1  
= EN_LDO2 = EN_LDO3/4 = GND  
EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 =  
EN_LDO2 = EN_LDO3 = EN_LDO4 = GND  
I(SD)  
Shutdown current  
9
12  
2
µA  
Undervoltage lockout threshold for  
DCDC converters and LDOs  
V(UVLO)  
Voltage at VCC  
1.8  
V
3
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 µH, CO = 10 µF. TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4  
MODE/DATA, EN_DCDC1, EN_DCDC2,  
DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3,  
DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3,  
EN_LDO4  
VIH  
High-level input voltage  
Low-level input voltage  
1.2  
0
VCC  
0.4  
V
V
MODE/DATA, EN_DCDC1, EN_DCDC2, DEFLDO1,  
DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1,  
EN_LDO2, EN_LDO3, EN_LDO4, DEFDCDC2  
VIL  
MODE/DATA = GND or VI  
MODE/DATA, EN_DCDC1, EN_DCDC2,  
DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3,  
DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3,  
EN_LDO4  
0.01  
1
µA  
IlB  
Input bias current  
TPS65051 and TPS65052 only  
V_FB_LDOx = 1 V  
100  
nA  
FB_LDO1, FB_LDO2, FB_LDO3, FB_LDO4  
POWER SWITCH  
VINDCDC1/2 = 3.6 V  
280  
400  
280  
400  
630  
630  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
P-channel MOSFET on resistance  
mΩ  
µA  
VINDCDC1/2 = 3.6 V  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
P-channel leakage current  
VDCDCx = V(DS) = 6 V  
1
VINDCDC1/2 = 3.6 V  
220  
320  
220  
320  
7
450  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
N-channel MOSFET on resistance  
N-channel leakage current  
mΩ  
VINDCDC1/2 = 3.6 V  
450  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
VDCDCx = V(DS) = 6 V  
TPS65050  
10  
µA  
0.85  
1.19  
0.85  
1
1.4  
1
1.15  
TPS65054  
2.5 V VINDCDC1/2 6  
V
Forward Current Limit  
PMOS (High-Side)  
and NMOS (Low  
side)  
DCDC1:  
DCDC2:  
A
TPS65051, TPS65052,  
TPS65056  
I(LIMF)  
1.65  
1.15  
2.5 V VINDCDC1/2 6  
TPS65050 - TPS65056  
V
A
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
OSCILLATOR  
fSW Oscillator frequency  
2.025  
2.25  
2.475  
MHz  
4
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 µH, CO = 10 µF. TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Output voltage range for DCDC1,  
DCDC2  
externally adjustable  
versions  
VINDCDC  
1/2  
VO  
0.6  
V
externally adjustable  
versions  
Vref  
Reference voltage  
600  
0
mV  
VINDCDC1/2 = 2.5 V to 6 V  
0 mA < IO = < IO(max)  
Mode = GND, PFM operation  
-2%  
-1%  
2%  
1%  
DC output voltage  
accuracy  
DCDC1,  
DCDC2(1)  
VO  
VINDCDC1/2 = 2.5 V to 6 V  
0 mA < IO = < IO(max)  
0
Mode = VI, PWM operation  
IO = 1 mA, Mode = GND, VO = 1.3 V,  
Bandwith = 20 MHz  
VO  
Power save mode ripple voltage(2)  
25  
mVPP  
tStart  
Start-up time  
time from active EN to Start switching  
time to ramp from 5% to 95% of VO  
Input voltage at threshold pin rising  
170  
750  
100  
32  
µs  
µs  
tRamp  
VOUT Ramp up Time  
RESET delay time  
80  
26  
120  
38  
ms  
ms  
V
PB-ONOFF debounce time  
RESET, PB_OUT output low voltage  
RESET, PB_OUT sink current  
VOL  
IOL  
IOL = 1 mA, Vhysteresis < 1 V, Vthreshold < 1 V  
0.2  
1
10  
1
mA  
RESET, PB_OUT output leakage  
current  
After PB_IN has been pulled high once; Vthreshold  
> 1 V and Vhysteresis > 1 V, VOH = 6 V  
nA  
V
Vth  
Vthreshold, Vhysteresis threshold  
0.98  
1.5  
1.02  
6.5  
VLDO1, VLDO2, VLDO3 and VLDO4 Low Dropout Regulators  
Input voltage range for LDO1, LDO2,  
LDO3, LDO4  
VI  
V
VO  
LDO1 output voltage range  
LDO2 output voltage range  
LDO3 output voltage range  
LDO4 output voltage range  
TPS65050, TPS65052 only  
TPS65050, TPS65052 only  
TPS65050, TPS65052 only  
TPS65050, TPS65052 only  
1.2  
1.8  
1.1  
1.2  
3.3  
3.3  
V
V
V
V
3.3  
2.85  
Feedback voltage for FB_LDO1,  
FB_LDO2, FB_LDO3, and FB_LDO4  
V(FB)  
IO  
TPS65051, TPS65054 and TPS65056 only  
1
V
Maximum output current for LDO1,  
LDO2  
400  
200  
mA  
mA  
Maximum output current for LDO3,  
LDO4  
I(SC)  
LDO1 short-circuit current limit  
LDO2 short-circuit current limit  
VLDO1 = GND  
VLDO2 = GND  
750  
850  
mA  
mA  
LDO3 and LDO4 short-circuit current  
limit  
VLDO3 = GND, VLDO4 = GND  
420  
mA  
Dropout voltage at LDO1  
Dropout voltage at LDO2  
Dropout voltage at LDO3, LDO4  
IO = 400 mA, VINLDO = 3.4 V  
IO = 400 mA, VINLDO = 1.8 V  
IO = 200 mA, VINLDO = 1.8 V  
400  
280  
280  
mV  
mV  
mV  
Leakage current from VinLDOx to  
VLDOx  
LDO enabled, VINLDO = 6.5 V, VO = 1 V,  
at TA = 140°C  
Ilkg  
VO  
3
µA  
Output voltage accuracy for LDO1,  
LDO2, LDO3, LDO4  
IO = 10 mA  
-2%  
-1%  
-1%  
1%  
1%  
1%  
VINLDO1,2 = VLDO1,2 + 0.5 V (min. 2.5 V) to 6.5V,  
VINLDO3,4 = VLDO3,4 + 0.5 V (min. 2.5 V) to 6.5V,  
IO = 10 mA  
Line regulation for LDO1, LDO2,  
LDO3, LDO4  
Load regulation for LDO1, LDO2,  
LDO3, LDO4  
IO = 0 mA to 400 mA for LDO1, LDO2  
IO = 0 mA to 200 mA for LDO3, LDO4  
Regulation time for LDO1, LDO2,  
LDO3, LDO4  
Load change from 10% to 90%  
10  
70  
µs  
PSRR  
Power supply rejection ratio  
f = 10 kHz; IO = 50 mA; VI = VO + 1 V  
dB  
(1) Output voltage specification does not include tolerance of external voltage programming resistors.  
(2) In Power Save Mode, operation is typically entered at IPSM = VI / 32 .  
5
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 µH, CO = 10 µF. TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal discharge resistor at VLDO1,  
VLDO2, VLDO3, VLDO4  
R(DIS)  
active when LDO is disabled  
350  
R
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
140  
20  
°C  
°C  
Thermal shutdown hysteresis  
6
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
PIN ASSIGNMENTS  
RSM PACKAGE  
(TOP VIEW)  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
EN_LDO4  
EN_LDO3  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
EN_LDO4  
EN_LDO3  
PB_OUT  
DEFLDO4  
VLDO4  
TPS65051  
TPS65054  
TPS65056  
TPS65050  
RESET  
FB4  
VLDO4  
VLDO1  
FB1  
VINLDO3/4  
VLDO3  
FB3  
VLDO1  
DEFLDO1  
MODE  
VINLDO3/4  
VLDO3  
MODE  
DEFLDO3  
EN_DCDC1  
EN_LDO4  
EN_LDO3  
RESET  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
TPS65052  
DEFLDO4  
VLDO4  
VLDO1  
DEFLDO1  
MODE  
VINLDO3/4  
VLDO3  
DEFLDO3  
TERMINAL FUNCTIONS  
TERMINAL  
TPS65050 TPS65051 TPS65052 TPS65054 TPS65056  
I/O  
DESCRIPTION  
NAME  
Power supply for digital and analog circuitry of DCDC1, DCDC2  
and LDOs. This pin must be connected to the same voltage supply  
as VINDCDC1/2.  
VCC  
3
3
3
3
3
I
I
Input to adjust output voltage of converter 1 between 0.6 V and VI.  
Connect external resistor divider between VOUT1, this pin, and  
GND.  
FB_DCDC1  
24  
24  
24  
24  
24  
Select between Power Safe Mode and forced PWM Mode for  
DCDC1 and DCDC2. In Power Safe Mode, PFM is used at light  
loads, PWM for higher loads. If PIN is set to high level, forced  
PWM Mode is selected. If Pin has low level, then the device  
operates in Power Safe Mode.  
MODE  
32  
32  
32  
32  
32  
I
Input voltage for VDCDC1 and VDCDC2 step-down converter.  
VINDCDC1/2  
VDCDC2  
21  
18  
21  
18  
21  
18  
21  
18  
21  
18  
I
I
This must be connected to the same voltage supply as VCC  
.
Feedback voltage sense input, connect directly to the output of  
converter 2.  
TPS65050 and TPS65051: Feedback pin for converter 2. Connect  
DEFDCDC2 to the center of the external resistor divider.  
TPS65052 and TPS65056: Select pin of converter 2 output  
voltage.  
High = 1.3 V, Low = 1 V  
TPS65054: Select pin of converter 2 output voltage.  
High = 1.05 V, Low = 1.3 V  
DEFDCDC2  
L1  
17  
22  
17  
22  
17  
22  
17  
22  
17  
22  
I
O
Switch pin of converter 1. Connected to Inductor .  
7
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
TPS65050 TPS65051 TPS65052 TPS65054 TPS65056  
I/O  
DESCRIPTION  
NAME  
PGND1  
PGND2  
AGND  
23  
19  
2
23  
19  
2
23  
19  
2
23  
19  
2
23  
19  
2
I
I
GND for converter 1  
GND for converter 2  
I
Analog GND, connect to PGND and PowerPad™  
Switch Pin of converter 2. Connected to Inductor.  
Enable Input for converter 1, active high  
Enable Input for converter 2, active high  
Input voltage for LDO1  
L2  
20  
25  
26  
29  
4
20  
25  
26  
29  
4
20  
25  
26  
29  
4
20  
25  
26  
29  
4
20  
25  
26  
29  
4
O
I
EN_DCDC1  
EN_DCDC2  
VINLDO1  
VINLDO2  
VINLDO3/4  
VLDO1  
I
I
I
Input voltage for LDO2  
11  
30  
5
11  
30  
5
11  
30  
5
11  
30  
5
11  
30  
5
I
Input voltage for LDO3 and LDO4  
Output voltage of LDO1  
O
O
O
O
VLDO2  
Output voltage of LDO2  
VLDO3  
10  
12  
10  
12  
10  
12  
10  
12  
10  
12  
Output voltage of LDO3  
VLDO4  
Output voltage of LDO4  
Digital input, used to set the default output voltage of LDO1 to  
LDO4; LSB  
DEFLDO1  
FB1  
31  
--  
--  
31  
--  
31  
--  
--  
31  
--  
--  
31  
--  
I
I
I
I
I
I
I
I
I
Feedback input for the external voltage divider.  
Digital input, used to set the default output voltage of LDO1 to  
LDO4.  
DEFLDO2  
FB2  
6
6
--  
6
--  
6
6
Feedback input for the external voltage divider.  
Digital input, used to set the default output voltage of LDO1 to  
LDO4.  
DEFLDO3  
FB3  
9
--  
9
--  
--  
--  
9
--  
9
9
Feedback input for the external voltage divider.  
Digital input, used to set the default output voltage of LDO1 to  
LDO4; MSB  
DEFLDO4  
FB4  
13  
--  
--  
13  
--  
--  
--  
13  
27  
13  
27  
13  
27  
Feedback input for the external voltage divider.  
Enable input for LDO1. Logic high enables the LDO, logic low  
disables the LDO.  
EN_LDO1  
27  
27  
Enable input for LDO2. Logic high enables the LDO, logic low  
disables the LDO.  
EN_LDO2  
EN_LDO3  
EN_LDO4  
28  
15  
16  
28  
15  
16  
28  
15  
16  
28  
15  
16  
28  
15  
16  
I
I
I
Enable input for LDO3. Logic high enables the LDO, logic low  
disables the LDO.  
Enable input for LDO4. Logic high enables the LDO, logic low  
disables the LDO.  
THRESHOLD  
PB_IN  
--  
7
7
--  
7
--  
7
--  
7
--  
I
I
Reset input  
Input for the pushbutton ON-OFF function  
Input for hysteresis on reset threshold  
Connect to GND  
HYSTERESIS  
GND  
--  
8
8
8
8
8
I
--  
--  
--  
--  
-
RESET  
--  
14  
14  
14  
14  
O
Open drain active low reset output, 100 ms reset delay time.  
Open drain output. Active low after the supply voltage (VCC  
)
PB_OUT  
14  
--  
--  
--  
--  
O
I
exceeded the undervoltage lockout threshold. The pin can be  
toggled pulling PB_IN high.  
BP  
1
1
1
1
1
Input for bypass capacitor for internal reference.  
Connect to GND  
PowerPAD™  
--  
--  
--  
--  
--  
8
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
FUNCTIONAL BLOCK DIAGRAM  
TPS65050  
VINDCDC1/2  
1 W  
Vbat  
VCC  
10 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
Cff  
R1  
EN_DCDC1  
ENABLE  
MODE  
FB_DCDC1  
STEP-DOWN  
CONVERTER  
600 mA  
10 mF  
PGND1  
R2  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
Interface  
L2  
2.2 mH  
DCDC2 (core)  
R3  
R4  
VDCDC2  
DEFDCDC2  
PGND2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
ENABLE  
VLDO1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
2.2 mF  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
VIN  
VLDO2  
ENABLE  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
BP  
200-mA LDO  
ENABLE  
0.1 mF  
EN_LDO4  
VLDO4  
VLDO4  
ENABLE  
Vbat  
200-mA LDO  
I/Ovoltage  
R19  
PB_OUT  
default  
turned on  
Flipflop with  
32-ms debounce  
PB_IN  
AGND  
9
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TPS65051  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
Cff  
EN_DCDC1  
R1  
R2  
ENABLE  
FB_DCDC1  
PGND1  
STEP-DOWN  
CONVERTER  
1 A  
10 mF  
MODE  
L2  
2.2 mH  
DCDC2 (core)  
VDCDC2  
R3  
R4  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
PGND2  
ENABLE  
VLDO1  
FB1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
4.7 mF  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
FB3  
VLDO3  
R9  
2.2 mF  
200-mA LDO  
ENABLE  
BP  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
10  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TPS65052  
VINDCDC1/2  
1 W  
Vbat  
VCC  
10 mF  
1 mF  
3.3 mH  
L1  
DCDC1 (I/O)  
EN_DCDC1  
FB_DCDC1  
ENABLE  
STEP-DOWN  
CONVERTER  
1 A  
10 mF  
PGND1  
MODE  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
Interface  
L2  
DCDC2 (core)  
2.2 mH  
VDCDC2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
1 V/1.3 V  
PGND2  
VLDO1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
VIN  
VLDO2  
ENABLE  
4.7 mF  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
BP  
2.2 mF  
200-mA LDO  
ENABLE  
0.1 mF  
EN_LDO4  
VLDO4  
RESET  
VLDO4  
ENABLE  
2.2 mF  
200-mA LDO  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
AGND  
11  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TPS65054  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
Cff  
EN_DCDC1  
R1  
R2  
ENABLE  
FB_DCDC1  
PGND1  
STEP-DOWN  
CONVERTER  
600 mA  
10 mF  
MODE  
L2  
DCDC2 (core)  
2.2 mH  
VDCDC2  
PGND2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
1.3 V/1.05 V  
VLDO1  
FB1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
4.7 mF  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
R9  
2.2 mF  
FB3  
BP  
200-mA LDO  
ENABLE  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
12  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TPS65056  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
3.3 mH  
L1  
DCDC1 (I/O)  
EN_DCDC1  
ENABLE  
FB_DCDC1  
STEP-DOWN  
CONVERTER  
1 A  
10 mF  
PGND1  
MODE  
L2  
2.2 mH  
DCDC2 (core)  
VDCDC2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
PGND2  
VLDO1  
1 V / 1.3 V  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
R5  
R6  
FB1  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
R9  
FB3  
BP  
200-mA LDO  
ENABLE  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
13  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Efficiency converter 1  
vs Output current  
vs Output current  
vs Output current  
vs Output current  
PWM/PFM mode = low  
PWM mode = high  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Efficiency converter 2  
Efficiency converter 1  
Efficiency converter 2  
Output voltage ripple  
Output voltage ripple  
DCDC1 startup timing  
LDO1 to LDO4 startup timing  
DCDC1 load transient response  
DCDC1 load transient response  
DCDC2 load transient response  
DCDC2 load transient response  
DCDC1 line transient response  
DCDC2 line transient response  
LDO1 load transient response  
LDO4 load transient response  
LDO1 line transient response  
Power supply rejection ratio  
PWM mode = high  
PFM mode = low  
PWM mode = high  
PFM mode = low  
vs Frequency  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
100  
90  
80  
80  
70  
3.8 V  
5 V  
4.2 V  
70  
3.8 V  
5 V  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
3.4 V  
3.4 V  
4.2 V  
V
T
= 3.3 V  
= 25oC  
V
T
= 3.3 V  
= 25oC  
O
O
A
A
10  
10  
PWM Mode  
PWM/PFM Mode  
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I
− Output Current − A  
I
− Output Current − A  
O
O
Figure 1.  
Figure 2.  
14  
Submit Documentation Feedback  
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
100  
90  
3.3 V  
V
T
= 1.3 V  
= 25oC  
O
A
PWM Mode  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
3.8 V  
3.8 V  
4.2 V  
5 V  
3.3 V  
5 V  
4.2 V  
V
O
= 1.3 V  
= 25oC  
T
A
PFM Mode  
10  
10  
0
0
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
I
− Output Current − A  
I
− Output Current − A  
O
O
Figure 3.  
Figure 4.  
OUTPUT VOLTAGE RIPPLE  
PWM/PFM MODE = LOW  
OUTPUT VOLTAGE RIPPLE  
PWM MODE = HIGH  
V
= 4.2 V,  
T
= 25oC  
A
CH1 (VDCDC1 = 3.3 V)  
= 25oC  
A
I
V
= 4.2 V,  
T
CH1 (VDCDC1 = 3.3 V)  
I
CH1 (VDCDC2 = 1.5 V)  
CH2 (VDCDC2 = 1.5 V)  
CH3 (I DCDC2 = 600 mA)  
L
CH3 (I DCDC2 = 80 mA)  
L
CH4 (I DCDC1 = 600 mA)  
L
CH4 (I DCDC1 = 80 mA)  
L
t − Time = 500 ns/div  
Figure 6.  
t − Time = 2 ms/div  
Figure 5.  
15  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
DCDC1 STARTUP TIMING  
LDO1 TO LDO4 STARTUP TIMING  
CH1 (EN)  
CH4 (VLDO1)  
EN  
CH1 (VLDO1)  
CH2 (VLDO2)  
V
T
= 3.6 V  
= 25oC  
I
A
Mode = Low  
CH3 (VLDO3)  
CH4 (VLDO4)  
CH3  
(VDCDC2 = 1.5 V)  
V
T
= 3.6 V  
= 25oC  
I
A
CH2  
(VDCDC1 = 3.3 V)  
Load DCDC1 = 600 mA  
Load DCDC2 = 600 mA  
ILDO1/2/3/4 = 100 mA  
Mode = Low  
t − Time = 200 ms/div  
Figure 7.  
DCDC1 LOAD TRANSIENT RESPONSE  
t − Time = 20 ms/div  
Figure 8.  
DCDC1 LOAD TRANSIENT RESPONSE  
CH1 (VDCDC1)  
CH1 (VDCDC1)  
V
T
= 4.2 V  
= 25oC  
I
V
T
= 4.2 V  
= 25oC  
I
A
A
Mode = Low  
Mode = High  
CH2  
I(DCDC1)  
CH2  
I(DCDC1)  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
Figure 9.  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
Figure 10.  
16  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
DCDC2 LOAD TRANSIENT RESPONSE  
DCDC2 LOAD TRANSIENT RESPONSE  
CH1 (VDCDC2)  
CH1 (VDCDC2)  
V
T
= 3.6 V  
= 25oC  
I
V
T
= 3.6 V  
= 25oC  
I
A
A
Mode = High  
Mode = Low  
CH2  
I(DCDC2)  
CH2  
I(DCDC2)  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
Figure 12.  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
Figure 11.  
DCDC1 LINE TRANSIENT RESPONSE  
DCDC2 LINE TRANSIENT RESPONSE  
CH1  
VIN (VDCDC1)  
CH1  
VIN (VDCDC2)  
V
T
= 3.6 V to 4.5 V to 3.6 V  
= 25oC  
I
A
Mode = High  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 600 mA  
CH2 (VDCDC2)  
CH2 (VDCDC1)  
VDCDC2 = 1.5 V  
V
T
= 3.4 V to 4.4 V to 3.4 V  
= 25oC  
I
ENDCDC1 = Low  
ENDCDC2 = High  
Load Current = 600 mA  
A
Mode = High  
t − Time = 100 ms/div  
Figure 14.  
t − Time = 100 ms/div  
Figure 13.  
17  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
LDO1 LOAD TRANSIENT RESPONSE  
LDO4 LOAD TRANSIENT RESPONSE  
CH1 (VLDO4)  
CH1 (VLDO1)  
V
= 3.6 V  
I
V
T
= 3.6 V  
= 25oC  
I
VLDO4 = 1.3 V  
VLDO4 = 20 mA to 180 mA  
= 25oC  
A
VLDO1 = 3.3 V  
VLDO1 = 40 mA to 360 mA  
T
A
CH2  
I(LDO4)  
CH2  
I(LDO1)  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 15.  
Figure 16.  
POWER SUPPLY REJECTION RATIO  
vs  
LDO1 LINE TRANSIENT RESPONSE  
FREQUENCY  
100  
90  
CH1  
VIN (LDO1)  
80  
70  
60  
50  
40  
30  
20  
CH2 (VLDO1)  
V
T
= 3.6 V to 4.2 V to 3.6 V  
= 25oC  
I
A
VLDO1 = 3.3 V  
VLDO1 = 100 mA  
Mode = High  
10  
0
t − Time = 100 ms/div  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 17.  
Figure 18.  
18  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
DETAILED DESCRIPTION  
Operation  
The TPS6505x include each two synchronous step-down converters. The converters operate with 2.25-MHz  
(typical) fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load  
currents, the converters automatically enter Power Save Mode and operate with PFM (Pulse Frequency  
Modulation).  
During PWM operation the converters use a unique fast response voltage mode controller scheme with input  
voltage feed-forward to achieve good line and load regulation allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch is  
turned on, and the inductor current ramps up until the current comparator trips, and the control logic turns off the  
switch. The current limit comparator turns off the switch if the current limit of the P-channel switch is exceeded.  
After the adaptive dead time, which prevents shoot through current, the N-channel MOSFET rectifier is turned  
on, and the inductor current ramps down. The next cycle is initiated by the clock signal turning off the N-channel  
rectifier, and turning on the on the P-channel switch.  
The two DC/DC converters operate synchronized to each other, with converter 1 as the master. A 180° phase  
shift between converter 1 and converter 2 decreases the input RMS current. Therefore, smaller input capacitors  
can be used.  
DCDC1 Converter  
The converter 1 output voltage is set by an external resistor divider connected to FB_DCDC1 pin for TPS65050,  
TPS65051 and TPS65054. For TPS65052, the output voltage is fixed to 3.3 V and this pin needs to be directly  
connected to the output. See the Application Information section for more details. The maximum output current  
on DCDC1 is 600 mA for TPS65050 and TPS65054. For TPS65051, TPS65052 and TPS65056, the maximum  
output current is 1 A.  
DCDC2 Converter  
The VDCDC2 pin must be directly connected to the DCDC2 converter output voltage. The DCDC2 converter  
output voltage is selected via the DEFDCDC2 pin.  
TPS65050 and TPS65051: The output voltage is set with an external resistor divider. Connect the DEFDCDC2  
pin to the external resistor divider.  
TPS65052, TPS65054 and TPS65056: The DEFDCDC2 pin can either be connected to GND, or to VCC. The  
converter 2 output voltage defaults to:  
Device  
TPS65052 , TPS65056  
TPS65054  
DEFDCDC2 = low  
DEFDCDC2 = high  
1.3 V  
1 V  
1.3 V  
1.05 V  
19  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Power-Save Mode  
The Power Save Mode is enabled with the Mode pin set to 0. If the load current decreases, the converters  
enters Power Save Mode operation automatically. During Power Save Mode, the converters operate with  
reduced switching frequency in PFM mode, and with a minimum quiescent current to maintain high efficiency.  
The converter positions the output voltage 1% above the nominal output voltage. This voltage positioning feature  
minimizes voltage drops caused by a sudden load step.  
To optimize the converter efficiency at light load, the average current is monitored. If in PWM mode, the inductor  
current remains below a certain threshold, then Power Save Mode is entered. The typical threshold is calculated  
according to Equation 1:  
VINDCDC  
I(PFM_enter)  
=
32 W  
(1)  
(2)  
A. Average output current threshold to enter PFM mode.  
VINDCDC  
I(PSMDCDC_leave)  
=
24 W  
A. Average output current threshold to leave PFM mode.  
During the Power Save Mode, the output voltage is monitored with a comparator. As the output voltage falls  
below the skip comparator threshold (skip comp), the P-channel switch turns on, and the converter effectively  
delivers a constant current. If the load is below the delivered current, the output voltage rises until the skip comp  
threshold is crossed again, then all switching activity ceases, reducing the quiescent current to a minimum until  
the output voltage has dropped below the threshold. If the load current is greater than the delivered current, the  
output voltage falls until it crosses the skip comparator low (Skip Comp Low) threshold set to 1% below nominal  
VO, then Power Save Mode is exited, and the converter returns to PWM mode  
These control methods reduce the quiescent current to 12 µA per converter, and the switching frequency to a  
minimum achieving the highest converter efficiency. The PFM mode operates with low output voltage ripple. The  
ripple depends on the comparator delay, and the size of the output capacitor; increasing capacitor values  
decreases the output ripple voltage.  
The Power Save Mode can be disabled by driving the MODE pin high. In forced PWM mode, both converters  
operate with fixed frequency PWM mode regardless of the load.  
Dynamic Voltage Positioning  
This feature reduces the voltage under/overshoots at load steps from light to heavy load and vice versa. It is  
activated in Power Save Mode operation when the converter runs in PFM Mode. It provides more headroom for  
both, the voltage drop at a load step and the voltage increase at a load throw-off. This improves load transient  
behavior.  
At light loads, in which the converter operate in PFM Mode, the output voltage is regulated typically 1% higher  
than the nominal value. In the event of a load transient from light load to heavy load, the output voltage drops  
until it reaches the skip comparator low threshold set to -1% below the nominal value and enters PWM mode.  
During a release from heavy load to light load, the voltage overshoot is also minimized due to active regulation  
turning on the N-channel switch.  
Smooth  
Increased Load  
Fast Load Transient  
+1%  
OUT_NOM  
-1%  
PFM Mode  
Light Load  
PFM Mode  
Light Load  
V
PFM Mode  
Medium/Heavy Load  
PFM Mode  
Medium/Heavy Load  
COMP_LOW Threshold  
Figure 19. Dynamic Voltage Positioning  
20  
Submit Documentation Feedback  
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Soft Start  
The two converters have an internal soft start circuit that limits the inrush current during start-up. During soft  
start, the output voltage ramp up is controlled as shown in Figure 20.  
EN  
95%  
5%  
V
OUT  
t
t
RAMP  
Start  
Figure 20. Soft Start  
100% Duty Cycle Low Dropout Operation  
The converters offer a low input to output voltage difference while still maintaining operation with the use of the  
100% duty cycle mode. In this mode, the P-channel switch is constantly turned on. This is useful in  
battery-powered applications to achieve longest operation time by taking full advantage of the whole battery  
voltage range. (i.e. The minimum input voltage to maintain regulation depends on the load current and output  
voltage) and can be calculated as:  
VI (min) = VO (max) + IO (max) x (rDS(on) (max) + RL)  
(3)  
with:  
IO max = maximum output current plus inductor ripple current  
rDS(on) max = maximum P-channel switch rDS(on)  
.
RL = DC resistance of the inductor  
VO (max) = nominal output voltage plus maximum output voltage tolerance  
Undervoltage Lockout  
The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery and disables all internal circuitry. The undervoltage lockout threshold, sensed  
at the VCC pin is typically 1.8 V, max 2 V.  
Mode Selection  
The MODE pin allows mode selection between forced PWM Mode and power Safe Mode for both converters.  
Connecting this pin to GND enables the automatic PWM and power save mode operation. The converters  
operates in fixed frequency PWM mode at moderate to heavy loads and in the PFM mode during light loads,  
maintaining high efficiency over a wide load current range.  
21  
Submit Documentation Feedback  
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Pulling the MODE pin high forces both converters to operate constantly in the PWM mode even at light load  
currents. The advantage is the converters operate with a fixed frequency that allows simple filtering of the  
switching frequency for noise sensitive applications. In this mode, the efficiency is lower compared to the power  
save mode during light loads. For additional flexibility, it is possible to switch from power save mode to forced  
PWM mode during operation. This allows efficient power management by adjusting the operation of the  
converter to the specific system requirements.  
Enable  
To start up each converter independently, the device has a separate enable pin for each DC/DC converter and  
for each LDO. If EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4 are set to high, the  
corresponding converter starts up with soft start as previously described.  
Pulling the enable pin low forces the device into shutdown, with a shutdown quiescent current as defined in the  
electrical characteristics. In this mode, the P and N-Channel MOSFETs are turned-off, the and the entire internal  
control circuitry is switched-off. If disabled, the outputs of the LDOs are pulled low by internal 350resistors,  
actively discharging the output capacitor. For proper operation, the enable pins must be terminated and must not  
be left unconnected.  
RESET  
The TPS65051, TPS65052, TPS65054 and TPS65056 contain circuitry that can generate a reset pulse for a  
processor with a 100 ms delay time. The input voltage at a comparator is sensed at an input called threshold.  
When the voltage exceeds the threshold, the output goes high with a 100-ms delay time. A hysteresis can be  
defined with an external resistor connected to the hysteresis input. This circuitry is functional as soon as the  
supply voltage at VCC exceeds the undervoltage lockout threshold. Therefore, the TPS6505x has a shutdown  
current (all DCDC converters and LDOs are off) of 9 µA in order to supply bandgap and comparator.  
Vbat  
HYSTERESIS  
RESET  
THRESHOLD  
+
100 ms  
Delay  
-
V
= 1 V  
ref  
Vbat  
THRESHOLD  
THRESHOLD - HYSTERESIS  
Comparator  
Output (Internal)  
t
NRESET  
RESET  
Figure 21. RESET Pulse Circuit  
22  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Push-Button ON-OFF (PB-ON-OFF)  
The TPS65050 provides a PB-ON-OFF functionality instead of supervising a voltage with the threshold and  
hysteresis inputs. The output at PB_OUT is held low after voltage is applied at VCC. Only after the input at PB-IN  
is pulled high once, the output driver at PB_OUT goes to its inactive state, driven high with its external pullup  
resistor. Further low-high pulses at PB-IN toggles the status of the PB_OUT output, and can be used to  
shutdown and start the converter with a single push on a button by connecting the PB_OUT output to the enable  
input of the converters.  
Vbat  
PB_OUT  
JK-  
PB_IN  
Debounce  
32 ms  
Flipflop  
Default  
Low  
Min Pulse  
Width 32 ms  
PB_IN  
RESPWRON  
32 ms  
Figure 22. Push-Button Circuit  
Short-Circuit Protection  
All outputs are short-circuit protected with a maximum output current as defined in the Electrical Characteristics.  
Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typically) for the DC/DC converters, the device goes  
into thermal shutdown. In this mode, the P and N-Channel MOSFETs are turned-off. The device continues its  
operation when the junction temperature falls below the thermal shutdown hysteresis again. A thermal shutdown  
for one of the DC/DC converters disables both converters simultaneously.  
The thermal shutdown temperature for the LDOs are set to typically 140°C. Therefore, a LDO which may be  
used to power an external voltage never heats up the chip high enough to turn off the DC/DC converters. If one  
LDO exceeds the thermal shutdown temperature, all LDOs turns off simultaneously.  
23  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Low Dropout Voltage Regulators  
The low dropout voltage regulators are designed to operate well with small ceramic input and output capacitors.  
They operate with input voltages down to 1.5 V. The LDOs offer a maximum dropout voltage of 280 mV at rated  
output current. Each LDO supports a current limit feature. The LDOs are enabled by the EN_LDO1, ENLDO2,  
EN_LDO3 and EN_LDO4 pin. In TPS65050 and TPS65052, the output voltage of the LDOs is set using 4 pins.  
The DEFLDO1 to DEFLDO4 pins can either be connected to GND or Vbat (VCC) to define a set of output  
voltages for LDO1 to LDO4 according to table 1. Connecting the DEFLDOx pins to a voltage different from GND  
or VCC causes increased leakage current into VCC. In TPS65051 and TPS65054, the output voltage of the LDOs  
is set using external resistor dividers.  
TPS65050 and TPS65052 default voltage options adjustable with DEFLDO4DEFLDO1 according to Table 1.  
Table 1. Default Options  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
400 mA LDO  
400 mA LDO  
200 mA LDO  
200 mA LDO  
1.8 V - 5.5 V  
Input  
1.8 V - 5.5 V  
Input  
1.5 V - 5.5 V  
Input  
1.5 V - 5.5 V  
Input  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.85 V  
2.7 V  
2.5 V  
2.5 V  
1.85 V  
1.8 V  
1.2 V  
3.3 V  
3.3 V  
1.85 V  
1.5 V  
1.85 V  
1.5 V  
2.7 V  
2.5 V  
1.85 V  
1.85 V  
1.5 V  
1.3 V  
1.3 V  
1.85 V  
1.2 V  
1.5 V  
1.3 V  
1.35 V  
2.85 V  
1.3 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
3.3 V  
2.85 V  
2.85 V  
2.85 V  
1.85 V  
1.5 V  
1.5 V  
1.1 V  
1.85 V  
1.2 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
1.85 V  
2.5 V  
1.35 V  
3.3 V  
1.8 V  
1.1 V  
24  
Submit Documentation Feedback  
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
APPLICATION INFORMATION  
Output Voltage Setting  
Converter 1 (DCDC1)  
The output voltage of converter 1 can be set by an external resistor network. The output voltage can be  
calculated using Equation 4.  
R1  
VO = Vref  
x
1 +  
(
)
R2  
(4)  
with an internal reference voltage Vref, 0.6 V .  
Setting the total resistance of R1 + R2 to less than 1 Mis recommended. The resistor network connects to the  
input of the feedback amplifier, therefore, requiring a small feedforward capacitor in parallel to R1. A typical  
value of 47 pF is sufficient.  
Converter 2 (DCDC2)  
The output voltage of converter 2 can be selected as following:  
Adjustable output voltage defined with external resistor network on pin DEFDCDC2. This option is available  
for TPS65050 and TPS65051.  
Two default fixed output voltages selectable by pin DEFDCDC2, see Table 2. This option is available for  
TPS65052 and TPS65054.  
Table 2. Default Fixed Output Voltages  
Converter 2  
TPS65050  
TPS65051  
TPS65052  
TPS65054  
TPS65056  
DEFDCDC2 = low  
DEFDCDC2 = high  
--  
--  
--  
--  
1 V  
1.3 V  
1 V  
1.3 V  
1.05 V  
1.3 V  
The adjustable output voltage can be calculated similar to the DCDC1 converter. Setting the total resistance of  
R3 + R4 to less than 1 Mis recommended. Route the DEFDCDC2 line separate from noise sources, such as  
the inductor or the L2 line. The VDCDC2 line needs to be directly connected to the output capacitor. As the  
VDCDC2 line is the feedback to the internal amplifier, no feedforward capacitor at R3 is needed.  
Using an external resistor divider at DEFDCDC2:  
1 W  
V
Vbat  
CC  
1 mF  
VDCDC2  
L2  
V
O
VINDCDC1/2  
ENDCDC2  
L
C
I
C
O
R3  
R4  
DEFDCDC2  
AGND PGND  
Figure 23. External Resistor Divider  
25  
Submit Documentation Feedback  
 
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
V(DEFDCDC2) = 0.6 V  
R3 + R4  
VO  
VO = V(DEFDCDC2)  
x
R3 = R4 x  
- R4  
(
)
V(DEFDCDC2)  
R4  
(5)  
See Table 3 for typical resistor values:  
Table 3. Typical Resistor Values  
OUTPUT VOLTAGE  
R1  
R2  
NOMINAL VOLTAGE  
Typical CFF  
3.3 V  
3 V  
680 kΩ  
510 kΩ  
560 kΩ  
510 kΩ  
300 kΩ  
200 kΩ  
300 kΩ  
330 kΩ  
150 kΩ  
130 kΩ  
150 kΩ  
160 kΩ  
150 kΩ  
120 kΩ  
200 kΩ  
330 kΩ  
3.32 V  
2.95 V  
2.84 V  
2.51 V  
1.8 v  
47 pF  
47 pF  
47 pF  
47 pF  
47 pF  
47 pF  
47 pF  
47 pF  
2.85 V  
2.5 V  
1.8 V  
1.6 V  
1.5 V  
1.2 V  
1.6 V  
1.5 V  
1.2 V  
Output Filter Design (Inductor and Output Capacitor)  
Inductor Selection  
The two converters operate with 2.2-µH output inductor. Larger or smaller inductor values can be used to  
optimize the performance of the device for specific operation conditions. The selected inductor has to be rated  
for its dc resistance and saturation current. The dc resistance of the inductance directly influences the efficiency  
of the converter. Therefore, an inductor with lowest dc resistance should be selected for highest efficiency. The  
minimum inductor value is 1.5 µH, but an output capacitor of 22 µF minimum is needed in this case. For an  
output voltage above 2.8 V, an inductor value of 3.3 µH minimum is recommended. Lower values result in an  
increased output voltage ripple in PFM mode.  
Equation 6 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 6. This is  
recommended because during heavy load transient the inductor current rises above the calculated value.  
VO  
1 -  
VI  
DIL  
DIL = VO  
x
IL(max) = IO (max) +  
2
L x ¦  
(6)  
with:  
f = Switching Frequency (2.25-MHz typical)  
L = Inductor Value  
IL= Peak-to-peak inductor ripple current  
ILmax = Maximum Inductor current  
The highest inductor current occurs at maximum VI. Open core inductors have a soft saturation characteristic,  
and they can normally handle higher inductor currents versus a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Consideration must be given to the difference in the core material from inductor to  
inductor which has an impact on the efficiency especially at high switching frequencies. See Table 4 and the  
typical applications for possible inductors.  
26  
Submit Documentation Feedback  
 
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Table 4. Tested Inductors  
Inductor Type  
LPS3010  
Inductor Value  
2.2 µH  
Supplier  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
LPS3015  
3.3 µH  
LPS4012  
2.2 µH  
VLF4012  
2.2 µH  
Output Capacitor Selection  
The advanced Fast Response voltage mode control scheme of the two converters allow the use of small  
ceramic capacitors with a value of 22-µF (typical), without having large output voltage undershoots and  
overshoots during heavy load transients. Ceramic capacitors having low ESR values result in lowest output  
voltage ripple, and are recommended.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application  
requirements. For completeness, the RMS ripple current is calculated as:  
VO  
1 -  
VI  
1
x
I(RMSCout) = VO  
x
2 x Ö3  
L x ¦  
(7)  
At nominal load current, the inductive converters operate in PWM mode, and the overall output voltage ripple is  
the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor:  
VO  
1 -  
VI  
1
8 x CO x ¦  
x
+ ESR  
DVO = VO  
x
(
)
L x ¦  
(8)  
Where the highest output voltage ripple occurs at the highest input voltage VI.  
At light load currents, the converters operate in Power Save Mode and the output voltage ripple is dependent on  
the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external  
capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.  
Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing the interference with other circuits caused by high input  
voltage spikes. The converters need a ceramic input capacitor of 10 µF. The input capacitor can be increased  
without any limit for better input voltage filtering.  
Table 5. Possible Capacitors  
Capacitor Value  
2.2 µF  
Size  
0805  
0805  
0805  
0805  
0603  
Supplier  
Type  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
Taiyo Yuden JMK212BJ106M  
TDK C2012X5R0J106M  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
2.2 µF  
10 µF  
10 µF  
10 µF  
Taiyo Yuden JMK107BJ106MA  
27  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
Low Drop Out Voltage Regulators (LDOs)  
The output voltage of all 4 LDOs in TPS65051, TPS65054 and TPS65056 are set by an external resistor  
network. The output voltage is calculated using Equation 9:  
R5  
VO = Vref  
x
1 +  
(
)
R6  
(9)  
with an internal reference voltage, Vref, 1 V (typical)  
Setting the total resistance of R5 + R6 to less than 1 Mis recommended. Typically, there is no feedforward  
capacitor needed at the voltage dividers for the LDOs.  
VO  
R5 + R6  
VO = V(FB_LDOs)  
x
R5 = R6 x  
- R6  
(
)
V(FB_LDOs)  
R6  
(10)  
Typical resistor values:  
Table 6. Typical Resistor Values  
OUTPUT VOLTAGE  
R5  
R6  
NOMINAL VOLTAGE  
3.3 V  
3 V  
300 kΩ  
300 kΩ  
240 kΩ  
260 kΩ  
300 kΩ  
240 kΩ  
150 kΩ  
36 kΩ  
130 kΩ  
150 kΩ  
130 kΩ  
200 kΩ  
200 kΩ  
300 kΩ  
300 kΩ  
120 kΩ  
510 kΩ  
330 kΩ  
3.31 V  
3 V  
2.85 V  
2.8 V  
2.5 V  
1.8 V  
1.5 V  
1.3 V  
1.2 V  
1.1 V  
2.85 V  
2.8 V  
2.5 V  
1.8 v  
1.5 V  
1.3 V  
1.19 V  
1.1 V  
100 kΩ  
33 kΩ  
LAYOUT CONSIDERATIONS  
Application Circuits  
PB-ONOFF and Sequencing  
The PB-ONOFF output can be used to enable one or several converters. After power up, the PB_OUT pin is  
low, and pulls down the enable pins connected to PB_OUT; EN_DCDC1, and EN_LDO1 in Figure 24. When  
PB_IN is pulled to VCC for longer than 32 ms, the PB_OUT pin is turned off, hence the enable pins pulled high  
using a pull-up resistor to VCC. This enables the DCDC1 converter and LDO1. The output voltage of DCDC1  
(VOUT1) is used as the enable signal for DCDC2 and LDO2 to LDO4. LDO1 with its output voltage of 3.3 V and  
LDO2 for an output voltage of 2.5 V are powered from the battery (V(bat)) directly. To save power, the input  
voltage for the lower voltage rails at LDO3 and LDO4 are derived from the output of the step-down converters,  
keeping the voltage drop at the LDOs low to increase efficiency. As LDO3 and LDO4 are powered from the  
output of DCDC1, the total output current on VOUT1, LDO3 and LDO4 must not exceed the maximum rating of  
DCDC1.  
Figure 25 shows the power up timing for this application.  
28  
Submit Documentation Feedback  
 
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
LAYOUT CONSIDERATIONS (continued)  
1 W  
VINDCDC1/2  
Vbat  
V
Vbat  
CC  
10 mF  
1 mF  
2.2 mH  
L1  
Vout1 = 2.85 V  
Cff  
FB_DCDC1  
MODE  
R1  
R2  
GND  
10 mF  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
GND  
GND  
Vbat  
Vbat  
PGND1  
2.2 mH  
L2  
Vbat Vbat  
TPS65050  
Vout2 = 1.575 V  
VDCDC2  
DEFDCDC2  
PGND2  
PB_IN  
R3  
R4  
10 mF  
PB_OUT  
VLDO1  
VLDO1 = 3.3 V  
4.7 mF  
EN_DCDC1  
EN_LDO1  
VLDO2  
VLDO3  
VLDO4  
VLDO2 = 2.5 V  
4.7 mF  
VDCDC1  
EN_DCDC2  
EN_LDO2  
EN_LDO3  
EN_LDO4  
VLDO3 = 1.5 V  
2.2 mF  
VIN_LDO1  
VIN_LDO2  
Vbat  
Vbat  
VLDO4 = 1.3 V  
2.2 mF  
VIN_LDO3/4  
Vout1  
BP  
AGND  
0.1 mF  
Figure 24. PB_ON/OFF Circuit  
29  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
LAYOUT CONSIDERATIONS (continued)  
Vbat  
PB_IN  
32 ms  
EN_DCDC1  
EN_LDO1  
32 ms  
Vout1  
1.2V  
170 ms  
VLDO1  
EN_DCDC2  
EN_LDO3  
EN_LDO4  
EN_LDO2  
Vout2  
VLDO2  
VLDO3  
170 ms  
VLDO4  
Figure 25. Power Up Timing  
RESET  
TPS65051, TPS65052, TPS65054 and TPS65056 contain a comparator that are used to supervise a voltage  
connected to an external voltage divider, and generate a reset signal if the voltage is lower than the threshold.  
The rising edge is delayed by 100 ms at the open drain RESET output. The values for the external resistors R3  
to R5 are calculated as follows:  
VL = lower voltage threshold  
VH = higher voltage threshold  
VREF = reference voltage (1 V)  
Example:  
VL = 3.3 V  
VH = 3.4 V  
Set R5 = 100 kΩ  
R3 + R4 = 240 kΩ  
R4 = 3.03 kΩ  
R3 = 237 kΩ  
30  
Submit Documentation Feedback  
TPS65050, TPS65051, TPS65052  
TPS65054, TPS65056  
www.ti.com  
SLVS710JANUARY 2007  
LAYOUT CONSIDERATIONS (continued)  
VH  
R3 + R4 = R5  
x
- 1  
(
)
Vref  
VH - VL  
VL  
R4 = R5  
x
(11)  
VINDCDC1/2  
1 W  
V
CC  
Vbat  
2.2 mH  
2.2 mH  
1 mF  
L1  
Cff  
Vout1 = 2.85 V  
R1  
FB_DCDC1  
10 mF  
R2  
PGND1  
TPS65051  
L2  
2.2 mH  
Vout2 = 1.575 V  
R3  
VDCDC2  
Vbat  
Vout1  
R3  
DEFDCDC2  
PGND2  
10 mF  
HYSTERESIS  
R4  
R4  
R5  
THRESHOLD  
VLDO1  
FB1  
VLDO1 = 3.3 V  
R5  
R6  
1 MW  
4.7 mF  
RESET  
Vbat  
VLDO2  
FB2  
EN_DCDC1  
EN_DCDC2  
VLDO2 = 1.8 V  
R7  
R8  
4.7 mF  
EN_LDO1  
EN_LDO2  
EN_LDO3  
EN_LDO4  
VLDO3  
VLDO3 = 1.2 V  
R9  
FB3  
BP  
2.2 mF  
R10  
VIN_LDO1  
VIN_LDO2  
Vbat  
0.1 mF  
Vbat  
VIN_LDO3/4  
Vout1  
VLDO4  
FB4  
VLDO4 = 1.3 V  
MODE  
R11  
R12  
Vbat  
2.2 mF  
AGND  
Figure 26. RESET Circuit  
31  
Submit Documentation Feedback  
www.ti.com  
40  
WWW.TI.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS65050RSMR  
TPS65050RSMRG4  
TPS65050RSMT  
TPS65050RSMTG4  
TPS65051RSMR  
TPS65051RSMRG4  
TPS65051RSMT  
TPS65051RSMTG4  
TPS65052RSMR  
TPS65052RSMRG4  
TPS65052RSMT  
TPS65052RSMTG4  
TPS65054RSMR  
TPS65054RSMRG4  
TPS65054RSMT  
TPS65054RSMTG4  
TPS65056RSMR  
TPS65056RSMRG4  
TPS65056RSMT  
TPS65056RSMTG4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RSM  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
4.3  
B0 (mm)  
4.3  
K0 (mm)  
1.5  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
TPS65050RSMR  
TPS65050RSMT  
TPS65051RSMR  
TPS65051RSMT  
TPS65052RSMR  
TPS65052RSMT  
TPS65054RSMR  
TPS65054RSMT  
TPS65056RSMR  
TPS65056RSMT  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
330  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12 PKGORN  
T2TR-MS  
P
330  
330  
330  
330  
330  
330  
330  
330  
330  
12  
12  
12  
12  
12  
12  
12  
12  
12  
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS65050RSMR  
TPS65050RSMT  
TPS65051RSMR  
TPS65051RSMT  
TPS65052RSMR  
TPS65052RSMT  
TPS65054RSMR  
TPS65054RSMT  
TPS65056RSMR  
TPS65056RSMT  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
RSM  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
FRB  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

65057-002

Board Connector, 60 Contact(s), 2 Row(s), Male, 0.15 inch Pitch, Black Insulator, Receptacle
AMPHENOL

65057-004

Board Connector, 56 Contact(s), 2 Row(s), Male, 0.15 inch Pitch, Black Insulator, Receptacle
AMPHENOL

65057-007

Board Connector, 50 Contact(s), 2 Row(s), Male, 0.15 inch Pitch, Crimp Terminal, Black Insulator, Receptacle,
AMPHENOL

65057-014

Board Connector, 36 Contact(s), 2 Row(s), Male, 0.15 inch Pitch, Black Insulator, Receptacle
AMPHENOL

65057-029

Board Connector, 6 Contact(s), 2 Row(s), Male, 0.15 inch Pitch, Black Insulator, Receptacle
AMPHENOL

65059-001

Board Connector, 5 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator
AMPHENOL

65059-002

Board Connector, 6 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator
AMPHENOL

65059-003LF

Board Connector, 7 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator, LEAD FREE
AMPHENOL

65059-005

Board Connector, 9 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator
AMPHENOL

65059-005LF

Board Connector, 9 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator, LEAD FREE
AMPHENOL

65059-006

Board Connector, 10 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator,
AMPHENOL

65059-006LF

Board Connector, 10 Contact(s), 1 Row(s), Female, Right Angle, 0.15 inch Pitch, Solder Terminal, Locking, Black Insulator, LEAD FREE
AMPHENOL