695D106X0035G2T [TI]

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS; 微功耗低压差( LDO)稳压器
695D106X0035G2T
型号: 695D106X0035G2T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS
微功耗低压差( LDO)稳压器

稳压器
文件: 总37页 (文件大小:627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
D, P, OR PW PACKAGE  
Available in 5-V, 4.85-V, 3.3-V, 3.0-V, and  
2.5-V Fixed-Output and Adjustable Versions  
(TOP VIEW)  
Dropout Voltage <85 mV Max at  
SENSE /FB  
OUT  
OUT  
IN  
1
2
3
4
8
7
6
5
I
= 100 mA (TPS7250)  
O
RESET/PG  
GND  
Low Quiescent Current, Independent of  
Load, 180 µA Typ  
EN  
IN  
8-Pin SOIC and 8-Pin TSSOP Package  
SENSE  
Fixed voltage options only  
Output Regulated to ±2% Over Full  
Operating Range for Fixed-Output Versions  
(TPS7225, TPS7230, TPS7233, TPS7248,  
and TPS7250)  
Extremely Low Sleep-State Current,  
FB – Adjustable version only (TPS7201)  
0.5 µA Max  
600  
Power-Good (PG) Status Output  
T
A
= 25°C  
description  
500  
The TPS72xx family of low-dropout (LDO) voltage  
regulators offers the benefits of low-dropout  
voltage, micropower operation, and miniaturized  
packaging. These regulators feature extremely  
low dropout voltages and quiescent currents  
compared to conventional LDO regulators.  
Offered in small-outline integrated-circuit (SOIC)  
packages and 8-terminal thin shrink small-outline  
(TSSOP), the TPS72xx series devices are ideal  
for cost-sensitive designs and for designs where  
board space is at a premium.  
TPS7225  
400  
300  
200  
100  
TPS7230  
TPS7233  
TPS7248  
TPS7250  
150  
A combination of new circuit design and process  
innovation has enabled the usual pnp pass  
transistor to be replaced by a PMOS device.  
Because the PMOS pass element behaves as a  
low-value resistor, the dropout voltage is very low  
– maximum of 85 mV at 100 mA of load current  
(TPS7250) – and is directly proportional to the  
load current (see Figure 1). Since the PMOS pass  
0
0
50  
100  
200  
250  
I
O
– Output Current – mA  
Figure 1. Typical Dropout Voltage Versus  
Output Current  
element is a voltage-driven device, the quiescent current is very low (300 µA maximum) and is stable over the  
entire range of output load current (0 mA to 250 mA). Intended for use in portable systems such as laptops and  
cellular phones, the low-dropout voltage and micropower operation result in a significant increase in system  
battery operating life.  
The TPS72xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current  
to 0.5 µA maximum at T = 25°C. Other features include a power-good function that reports low output voltage  
J
and may be used to implement a power-on reset or a low-battery indicator.  
The TPS72xx is offered in 2.5-V, 3-V, 3.3-V, 4.85-V, and 5-V fixed-voltage versions and in an adjustable version  
(programmable over the range of 1.2 V to 9.75 V). Output voltage tolerance is specified as a maximum of 2%  
over line, load, and temperature ranges (3% for adjustable version).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
AVAILABLE OPTIONS  
OUTPUT VOLTAGE  
PACKAGED DEVICES  
(V)  
CHIP FORM  
(Y)  
T
J
SMALL OUTLINE  
(D)  
PDIP  
(P)  
TSSOP  
(PW)  
MIN  
TYP  
MAX  
4.9  
4.75  
3.23  
2.94  
2.45  
5
4.85  
5.1  
4.95  
3.37  
3.06  
2.55  
TPS7250QD  
TPS7248QD  
TPS7233QD  
TPS7230QD  
TPS7225QD  
TPS7250QP  
TPS7248QP  
TPS7233QP  
TPS7230QP  
TPS7225QP  
TPS7250QPWR  
TPS7248QPWR  
TPS7233QPWR  
TPS7230QPWR  
TPS7225QPWR  
TPS7250Y  
TPS7248Y  
TPS7233Y  
TPS7230Y  
TPS7225Y  
3.3  
55°C to 150°C  
3
2.5  
Adjustable  
1.2 V to 9.75 V  
TPS7201QD  
TPS7201QP  
TPS7201QPWR  
TPS7201Y  
The D package is available taped and reeled. Add R suffix to device type (e.g., TPS7250QDR). The PW package is only available left-end  
taped and reeled. The TPS7201Q is programmable using an external resistor divider (see application information). The chip form is tested  
at 25°C.  
TPS72xx  
5
6
2
1
7
8
V
IN  
IN  
PG  
PG  
I
250 kΩ  
SENSE  
OUT  
V
O
4
0.1 µF  
EN  
OUT  
C
O
(see Note A)  
+
GND  
10 µF  
3
CSR = 1 Ω  
TPS7225Q, TPS7230Q, TPS7233Q, TPS7248Q, TPS7250Q (fixed-voltage  
options)  
NOTE A: Capacitor selection is nontrivial. See application information section  
for details.  
Figure 2. Typical Application Configuration  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS72xx chip information  
These chips, when properly assembled, display characteristics similar to the TPS72xxQ. Thermal compression  
or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
(5)  
BONDING PAD ASSIGNMENTS  
SENSE  
FB  
(3)  
(2)  
(6)  
(4)  
(7)  
IN  
4
7
TPS72xx  
6
OUT  
PG  
EN  
5
(1)  
GND  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
57  
T max = 150°C  
J
1
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
Fixed-voltage options only (TPS7225, TPS7230,  
TPS7233, TPS7248, and TPS7250)  
2
3
Adjustable version only (TPS7201)  
NOTE A. For most applications, OUT and SENSE should  
betied together as close as possible to the device;  
for other implementations, refer to the SENSE-pin  
connection discussion in the application  
information section of this data sheet.  
69  
functional block diagram  
IN  
RESISTOR DIVIDER OPTIONS  
§
DEVICE  
R1  
R2  
UNIT  
§
§
EN  
TPS7201  
TPS7225  
TPS7230  
TPS7233  
TPS7248  
TPS7250  
0
257  
357  
420  
726  
756  
233  
233  
233  
233  
233  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
PG  
_
+
OUT  
NOTE A: Resistors are nominal values only.  
1.12 V  
SENSE /FB  
+
_
R1  
R2  
V
ref  
= 1.188 V  
COMPONENT COUNT  
MOS transistors  
Bilpolar transistors  
Diodes  
108  
41  
4
Capacitors  
Resistors  
15  
75  
GND  
Switch positions are shown with EN low (active).  
For most applications, SENSE should be externally connected to OUT as close as possible to the device.  
For other implementations, refer to the SENSE-pin connection discussion in application information section.  
§
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range , V , PG, SENSE, EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 11 V  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Tables 1 and 2  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURE (see Note 1 and Figure 3)  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D
P
PW  
725 mW  
1175 mW  
525 mW  
5.8 mW/°C  
8.74 mW/°C  
4.2 mW/°C  
464 mW  
782 mW  
336 mW  
377 mW  
650 mW  
273 mW  
145 mW  
301 mW  
105 mW  
DISSIPATION RATING TABLE 2 – CASE TEMPERATURE (see Note 1 and Figure 4)  
25°C DERATING FACTOR = 70°C = 85°C T = 125°C  
C
T
T
T
C
C
C
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
C
D
P
PW  
2063 mW  
2738 mW  
2900 mW  
16.5 mW/°C  
20.49 mW/°C  
23.2 mW/°C  
1320 mW  
1816 mW  
1856 mW  
1073 mW  
1508 mW  
1508 mW  
413 mW  
689 mW  
580 mW  
NOTE 1: Dissipation rating tables and figures are provided for maintenance of junction temperature at or below absolute  
maximumof150°C.Forguidelinesonmaintainingjunctiontemperaturewithintherecommendedoperatingrange,  
see application information section.  
MAXIMUM CONTINUOUS DISSIPATION  
MAXIMUM CONTINUOUS DISSIPATION  
vs  
vs  
FREE-AIR TEMPERATURE  
CASE TEMPERATURE  
1200  
1100  
3000  
P Package  
R
= 48.8°C/W  
θJC  
P Package  
= 114.4°C/W  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2500  
2000  
1500  
1000  
500  
R
θJA  
PW Package  
D Package  
R
= 43.1°C/W  
θJC  
R
= 172°C/W  
θJA  
D Package  
= 60.6°C/W  
R
θJC  
PW Package  
= 238°C/W  
R
θJA  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
T
A
– Free-Air Temperature – °C  
T
C
– Case Temperature – °C  
Figure 3  
Figure 4  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
recommended operating conditions  
MIN  
3
MAX  
10  
UNIT  
TPS7201Q  
TPS7225Q  
TPS7230Q  
TPS7233Q  
TPS7248Q  
TPS7250Q  
3.65  
3.96  
3.98  
5.24  
5.41  
2
10  
10  
Input voltage, V  
V
I
10  
10  
10  
High-level input voltage at EN, V  
V
V
IH  
Low-level input voltage at EN, V  
0.5  
250  
125  
IL  
Output current, I  
0
mA  
°C  
O
Operating virtual junction temperature, T  
40  
J
Minimum input voltage defined in the recommended operating conditions is the maximum specified output voltage plus dropout voltage at the  
maximum specified load range. Since dropout voltage is a function of output current, the usable range can be extended for lighter loads. To  
calculate the minimum input voltage for the maximum load current used in a given application, use the following equation:  
V
V
V
I(min)  
O(max)  
DO(max load)  
Because the TPS7201 is programmable, r  
should be used to calculate V  
DO  
before applying the above equation. The equation for  
DS(on)  
is given in Note 3 under the TPS7201 electrical characteristics table. The minimum value of 3 V is the absolute  
calculating V  
DO  
from r  
DS(on)  
lower limit for the recommended input-voltage range for the TPS7201.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), SENSE/FB shorted to OUT  
O
O
(unless otherwise noted)  
TPS72xxQ  
TYP  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
µA  
µA  
A
J
MIN  
MAX  
225  
325  
0.5  
1
25°C  
40°C to 125°C  
25°C  
180  
EN 0.5 V,  
V = V + 1 V,  
I O  
Ground current (active mode)  
Input current (standby mode)  
Output current limit threshold  
0 mA I 250 mA  
O
EN = V ,  
3 V V 10 V  
I
I
40°C to 125°C  
25°C  
0.6  
1
V
O
= 0 V  
V = 10 V  
I
40°C to 125°C  
25°C  
1.5  
0.5  
1
Pass-element leakage current in  
standby mode  
µA  
µA  
EN = V ,  
3 V V 10 V  
I
I
40°C to 125°C  
25°C  
0.5  
0.5  
V
PG  
= 10 V,  
Normal operation  
PG leakage current  
40°C to 125°C  
40°C to 125°C  
Output voltage temperature coefficient  
Thermal shutdown junction temperature  
31  
75 ppm/°C  
°C  
165  
3 V V 6 V  
2
I
40°C to 125°C  
V
EN logic high (standby mode)  
6 V V 10 V  
2.7  
I
25°C  
40°C to 125°C  
25°C  
0.5  
V
3 V V 10 V  
EN logic low (active mode)  
EN hysteresis voltage  
I
0.5  
50  
mV  
25°C  
0.5  
0.5  
0.5  
µA  
0.5  
0 V V 10 V  
EN input current  
I
40°C to 125°C  
25°C  
1.9  
1.1  
2.5  
V
Minimum V for active pass element  
I
40°C to 125°C  
25°C  
2.5  
1.5  
V
Minimum V for valid PG  
I
= 300 µA  
I
PG  
40°C to 125°C  
1.9  
CSR(compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any  
series resistance added externally, and PWB trace resistance to C .  
O
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7201Q electrical characteristics, I = 10 mA, V = 3.5 V, EN = 0 V, C = 4.7 µF (CSR = 1 ), FB  
O
I
O
shorted to OUT at device leads (unless otherwise noted)  
TPS7201Q  
TYP  
T
PARAMETER  
UNIT  
V
TEST CONDITIONS  
J
MIN  
MAX  
V = 3.5 V,  
I = 10 mA  
O
25°C  
1.188  
Reference voltage (measured  
at FB with OUT connected to  
FB)  
I
3 V V 10 V,  
5 mA I 250 mA,  
O
I
40°C to 125°C 1.152  
40°C to 125°C  
1.224  
V
See Note 2  
Reference voltage  
temperature coefficient  
31  
75 ppm/°C  
§
§
V = 2.4 V,  
50 µA I 100 mA  
25°C  
25°C  
2.1  
2.9  
1.6  
I
O
V = 2.4 V,  
I
100 mA I 200 mA  
O
25°C  
2.7  
Pass-element series  
resistance (see Note 3)  
V = 2.9 V,  
50 µA I 250 mA  
O
I
40°C to 125°C  
25°C  
4.5  
V = 3.9 V,  
50 µA I 250 mA  
1
I
O
V = 5.9 V,  
I
50 µA I 250 mA  
25°C  
0.8  
O
25°C  
23  
V = 3 V to 10 V,  
I
50 µA I 250 mA,  
O
Input regulation  
mV  
36  
See Note 2  
40°C to 125°C  
25°C  
15  
17  
60  
50  
25  
I
= 5 mA to 250 mA, 3 V V 10 V,  
I
O
See Note 2  
40°C to 125°C  
25°C  
36  
Output regulation  
mV  
27  
I
O
= 50 µA to 250 mA, 3 V V 10 V,  
I
See Note 2  
f = 120 Hz  
40°C to 125°C  
43  
25°C  
40°C to 125°C  
25°C  
49  
32  
45  
30  
I
I
= 50 µA  
O
Ripple rejection  
dB  
= 250 mA,  
O
See Note 2  
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
µV/Hz  
µVrms  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
25°C  
235  
O
O
O
10 Hz f 100 kHz,  
25°C  
190  
CSR = 1 Ω  
25°C  
125  
0.95 ×  
V
FB  
voltage decreasing from above V  
PG  
40°C to 125°C  
V
PG trip-threshold voltage  
V
FB(nom)  
25°C  
25°C  
12  
mV  
Measured at V  
PG hysteresis voltage  
FB  
0.1  
0.1  
0.4  
V
I
= 400 µA,  
V = 2.13 V  
I
PG output low voltage  
PG  
40°C to 125°C  
25°C  
0.4  
10  
20  
10  
nA  
20  
FB input current  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
§
This voltage is not recommended.  
Output voltage programmed to 2.5 V with closed-loop configuration (see application information).  
NOTES: 2. When V < 2.9 V and I > 100 mA simultaneously, pass element r  
increases (see Figure 10) to a point such that the resulting  
I
O
DS(on)  
dropout voltage prevents the regulator from maintaining the specified tolerance range.  
3. To calculate dropout voltage, use equation:  
V
DO  
= I  
r
O
DS(on)  
r
is a function of both output current and input voltage. The parametric table lists r  
for V = 2.4 V, 2.9 V, 3.9 V, and  
I
DS(on)  
DS(on)  
5.9 V, which corresponds to dropout conditions for programmed output voltages of 2.5 V, 3 V, 4 V, and 6 V, respectively. For other  
programmed values, refer to Figures 10 and 11.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7225Q electrical characteristics, I =10mA, V = 3.5 V, EN = 0 V, C = 4.7 µF(CSR = 1 ), SENSE  
O
I
O
shorted to OUT (unless otherwise noted)  
TPS7225Q  
TYP  
T
PARAMETER  
UNIT  
TEST CONDITIONS  
= 10 mA  
J
MIN  
MAX  
V = 3.5 V,  
I
O
25°C  
2.5  
I
Output voltage  
V
3.5 V V 10 V,  
5 mA I 250 mA 40°C to 125°C  
2.45  
2.55  
850  
1.1  
3.4  
3.84  
27  
I
O
25°C  
560  
2.24  
9
mV  
V
I
O
= 250 mA,  
V = 2.97 V  
I
Dropout voltage  
40°C to 125°C  
25°C  
40°C to 125°C  
25°C  
(2.97 V – V )/I ,  
V = 2.97 V,  
I
O
O
Pass-element series resistance  
Input regulation  
I
O
= 250 mA  
V = 3.5 V to 10 V,  
50 µA I 250 mA  
mV  
I
O
40°C to 125°C  
25°C  
33  
28  
36  
I
O
I
O
= 5 mA to 250 mA, 3.5 V V 10 V  
I
40°C to 125°C  
25°C  
60  
Output regulation  
Ripple rejection  
mV  
dB  
24  
41  
= 50 µA to 250 mA, 3.5 V V 10 V  
I
40°C to 125°C  
25°C  
73  
47  
45  
40  
38  
58  
I
I
= 50 µA  
O
40°C to 125°C  
25°C  
f = 120 Hz  
46  
= 250 mA  
O
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
µV/Hz  
µVrms  
25°C  
248  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
10 Hz f 100 kHz,  
CSR = 
1
Ω  
25°C  
200  
25°C  
130  
0.95 ×  
V
voltage decreasing from above V  
PG  
40°C to 125°C  
V
PG trip-threshold voltage  
PG hysteresis voltage  
O
V
O(nom)  
50  
25°C  
25°C  
mV  
0.3  
0.44  
0.5  
PG output low voltage  
I
= 1.2 mA,  
V = 2.13 V  
I
V
PG  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7230Q electrical characteristics, I = 10 mA, V = 4 V, EN = 0 V, C = 4.7 µF (CSR = 1 ), SENSE  
O
I
O
shorted to OUT (unless otherwise noted)  
TPS7230Q  
T
PARAMETER  
UNIT  
TEST CONDITIONS  
= 10 mA  
J
MIN  
TYP  
MAX  
V = 4 V,  
I
O
25°C  
3
I
Output voltage  
V
4 V V 10 V,  
5 mA I 250 mA 40°C to 125°C  
2.94  
3.06  
185  
270  
502  
900  
2.01  
3.6  
27  
I
O
25°C  
145  
390  
1.56  
9
I
= 100 mA,  
= 250 mA,  
V = 2.97 V  
I
O
O
40°C to 125°C  
25°C  
mV  
Dropout voltage  
I
V = 2.97 V  
I
40°C to 125°C  
25°C  
(2.97 V – V )/I ,  
V = 2.97 V,  
I
O
O
Pass-element series resistance  
Input regulation  
I
O
= 250 mA  
40°C to 125°C  
25°C  
V = 4 V to 10 V,  
50 µA I 250 mA  
mV  
I
O
40°C to 125°C  
25°C  
33  
34  
45  
I
= 5 mA to 250 mA,  
4 V V 10 V  
I
O
O
40°C to 125°C  
25°C  
74  
Output regulation  
Ripple rejection  
mV  
dB  
42  
60  
I
= 50 µA to 250 mA, 4 V V 10 V  
I
40°C to 125°C  
25°C  
98  
45  
44  
40  
38  
56  
I
= 50 µA  
O
O
40°C to 125°C  
25°C  
f = 120 Hz  
45  
I
= 250 mA  
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
256  
µV/Hz  
µVrms  
25°C  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
10 Hz f 100 kHz,  
25°C  
206  
CSR = 1
Ω  
25°C  
132  
0.95 ×  
V
O
voltage decreasing from above V  
PG  
40°C to 125°C  
25°C  
V
PG trip-threshold voltage  
PG hysteresis voltage  
V
O(nom)  
50  
mV  
25°C  
0.25  
0.44  
0.44  
PG output low voltage  
I
= 1.2 mA,  
V = 2.55 V  
I
V
PG  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7233Q electrical characteristics, I =10mA, V = 4.3 V, EN = 0 V, C = 4.7 µF(CSR = 1 ), SENSE  
O
I
O
shorted to OUT (unless otherwise noted)  
TPS7233Q  
TYP  
T
PARAMETER  
UNIT  
TEST CONDITIONS  
= 10 mA  
J
MIN  
MAX  
V = 4.3 V,  
I
O
25°C  
3.3  
I
Output voltage  
V
4.3 V V 10 V,  
5 mA I 250 mA 40°C to 125°C  
3.23  
3.37  
20  
I
O
25°C  
14  
140  
360  
1.5  
8
I
O
I
O
I
O
= 10 mA,  
= 100 mA,  
= 250 mA,  
V = 3.23 V  
I
40°C to 125°C  
25°C  
30  
180  
232  
460  
610  
1.84  
2.5  
25  
V = 3.23 V  
I
mV  
Dropout voltage  
40°C to 125°C  
25°C  
V = 3.23 V  
I
40°C to 125°C  
25°C  
(3.23 V – V )/I ,  
V = 3.23 V,  
I
O
O
Pass-element series resistance  
Input regulation  
I
O
= 250 mA  
40°C to 125°C  
25°C  
V = 4.3 V to 10 V,  
50 µA I 250 mA  
mV  
I
O
40°C to 125°C  
25°C  
33  
32  
42  
I
I
= 5 mA to 250 mA, 4.3 V V 10 V  
I
O
40°C to 125°C  
25°C  
71  
Output regulation  
Ripple rejection  
mV  
dB  
41  
55  
= 50 µA to 250 mA, 4.3 V V 10 V  
O
I
40°C to 125°C  
25°C  
98  
40  
38  
35  
33  
52  
I
I
= 50 µA  
O
40°C to 125°C  
25°C  
f = 120 Hz  
44  
= 250 mA  
O
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
µV/Hz  
µVrms  
25°C  
265  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
10 Hz f 100 kHz,  
CSR = 1 Ω  
25°C  
212  
25°C  
135  
0.95 ×  
V
voltage decreasing from above V  
PG  
40°C to 125°C  
V
PG trip-threshold voltage  
PG hysteresis voltage  
O
V
O(nom)  
32  
25°C  
25°C  
mV  
0.22  
0.4  
0.4  
PG output low voltage  
I
= 1.2 mA,  
V = 2.8 V  
I
V
PG  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7248Q electrical characteristics, I = 10 mA, V = 5.85 V, EN = 0 V, C = 4.7 µF (CSR = 1 ),  
O
I
O
SENSE shorted to OUT (unless otherwise noted)  
TPS7248Q  
TYP  
T
J
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
MAX  
V = 5.85 V,  
I
= 10 mA  
25°C  
4.85  
I
O
Output voltage  
V
5.85 V V 10 V,  
5 mA I 250 mA 40°C to 125°C  
4.75  
4.95  
19  
I
O
25°C  
10  
90  
I
O
I
O
I
O
= 10 mA,  
= 100 mA,  
= 250 mA,  
V = 4.75 V  
I
40°C to 125°C  
25°C  
30  
100  
150  
250  
285  
1
V = 4.75 V  
I
mV  
Dropout voltage  
40°C to 125°C  
25°C  
216  
0.8  
V = 4.75 V  
I
40°C to 125°C  
25°C  
(4.75 V – V )/I ,  
V = 4.75 V,  
I
O
O
Pass-element series resistance  
Input regulation  
I
O
= 250 mA  
40°C to 125°C  
25°C  
1.4  
34  
V = 5.85 V to 10 V,  
I
50 µA I 250 mA  
mV  
O
40°C to 125°C  
25°C  
50  
43  
55  
53  
46  
55  
I
I
= 5 mA to 250 mA,  
5.85 V V 10 V  
I
O
40°C to 125°C  
25°C  
95  
Output regulation  
Ripple rejection  
mV  
dB  
75  
= 50 µA to 250 mA, 5.85 V V 10 V  
O
I
40°C to 125°C  
25°C  
135  
42  
36  
36  
34  
I
I
= 50 µA  
O
40°C to 125°C  
25°C  
f = 120 Hz  
= 250 mA  
O
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
370  
µV/Hz  
µVrms  
25°C  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
10 Hz f 100 kHz,  
25°C  
290  
CSR = 1 Ω  
25°C  
168  
0.95 ×  
V
O
voltage decreasing from above V  
PG  
40°C to 125°C  
25°C  
V
PG trip-threshold voltage  
PG hysteresis voltage  
V
O(nom)  
50  
mV  
25°C  
0.2  
0.4  
0.4  
PG output low voltage  
I
= 1.2 mA,  
V = 4.12 V  
I
V
PG  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TPS7250Q electrical characteristics, I = 10 mA, V = 6 V, EN = 0 V, C = 4.7 µF (CSR = 1 ), SENSE  
O
I
O
shorted to OUT (unless otherwise noted)  
TPS7250Q  
T
PARAMETER  
UNIT  
TEST CONDITIONS  
= 10 mA  
J
MIN  
TYP  
MAX  
V = 6 V,  
I
O
25°C  
5
I
Output voltage  
V
6 V V 10 V,  
5 mA I 250 mA 40°C to 125°C  
4.9  
5.1  
12  
I
O
25°C  
8
76  
I
O
I
O
I
O
= 10 mA,  
= 100 mA,  
= 250 mA,  
V = 4.88 V  
I
40°C to 125°C  
25°C  
30  
85  
V = 4.88 V  
I
mV  
Dropout voltage  
40°C to 125°C  
25°C  
136  
206  
312  
0.825  
1.25  
28  
190  
0.76  
V = 4.88 V  
I
40°C to 125°C  
25°C  
(4.88 V – V )/I ,  
V = 4.88 V,  
I
O
O
Pass-element series resistance  
Input regulation  
I
O
= 250 mA  
40°C to 125°C  
25°C  
V = 6 V to 10 V,  
50 µA I 250 mA  
mV  
I
O
40°C to 125°C  
25°C  
35  
46  
59  
52  
46  
61  
I
I
= 5 mA to 250 mA, 6 V V 10 V  
I
O
40°C to 125°C  
25°C  
100  
79  
Output regulation  
Ripple rejection  
mV  
dB  
= 50 µA to 250 mA, 6 V V 10 V  
O
I
40°C to 125°C  
25°C  
150  
41  
37  
36  
32  
I
I
= 50 µA  
O
40°C to 125°C  
25°C  
f = 120 Hz  
= 250 mA  
O
40°C to 125°C  
25°C  
Output noise spectral density  
Output noise voltage  
f = 120 Hz  
2
390  
µV/Hz  
µVrms  
25°C  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
10 Hz f 100 kHz,  
CSR = 1 Ω  
25°C  
300  
25°C  
175  
0.95 ×  
V
voltage decreasing from above V  
PG  
40°C to 125°C  
V
PG trip-threshold voltage  
PG hysteresis voltage  
O
V
O(nom)  
50  
25°C  
25°C  
mV  
0.19  
0.4  
0.4  
PG output low voltage  
I
= 1.2 mA,  
V = 4.25 V  
I
V
PG  
40°C to 125°C  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), T = 25°C, SENSE/FB  
O
O
J
shorted to OUT (unless otherwise noted)  
TPS72xxY  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
EN 0.5 V,  
0 mA I 250 mA  
V = V + 1 V,  
I O  
Ground current (active mode)  
180  
µA  
O
Output current limit threshold  
Thermal shutdown junction temperature  
EN hysteresis voltage  
V
= 0 V,  
V = 10 V  
I
0.6  
165  
50  
A
°C  
mV  
V
O
Minimum V for active pass element  
1.9  
1.1  
I
Minimum V for valid PG  
I
= 300 µA  
V
I
PG  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), T = 25°C, FB shorted to  
O
O
J
OUT at device leads (unless otherwise noted)  
TPS7201Y  
TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
MAX  
Reference voltage (measured at FB with OUT  
connected to FB)  
V = 3.5 V,  
I
I
O
= 10 mA  
1.188  
V
§
§
V = 2.4 V,  
50 µA I 100 mA  
2.1  
2.9  
1.6  
1
I
O
V = 2.4 V,  
I
100 mA I 200 mA  
O
V = 2.9 V,  
I
50 µA I 250 mA  
Pass-element series resistance (see Note 3)  
O
V = 3.9 V,  
50 µA I 250 mA  
O
I
V = 5.9 V,  
I
50 µA I 250 mA  
0.8  
O
3 V V 10 V,  
See Note 2  
I
O
= 5 mA to 250 mA,  
I
15  
Output regulation  
mV  
3 V V 10 V,  
See Note 2  
I
= 50 µA to 250 mA,  
I
O
17  
60  
50  
I
I
= 50 µA  
O
V = 3.5 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA,  
O
See Note 2  
Output noise spectral density  
V = 3.5 V,  
I
f = 120 Hz  
2
235  
190  
125  
12  
µV/Hz  
µVrms  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 3.5 V,  
I
Output noise voltage  
10 Hz f 100 kHz,  
CSR = 1 Ω  
mV  
V
V = 3.5 V,  
I
Measured at V  
FB  
PG hysteresis voltage  
V = 2.13 V,  
I
I
= 400 µA  
0.1  
0.1  
PG output low voltage  
PG  
FB input current  
nA  
V = 3.5 V  
I
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
This voltage is not recommended.  
Output voltage programmed to 2.5 V with closed-loop configuration (see application information).  
.
O
§
NOTES:  
2
3
When V < 2.9 V and I > 100 mA simultaneously, pass element r increases (see Figure 10) to a point such that the resulting  
dropout voltage prevents the regulator from maintaining the specified tolerance range.  
To calculate dropout voltage, use equation:  
I
O
DS(on)  
V
DO  
= I  
r
O
DS(on)  
r
is a function of both output current and input voltage. The parametric table lists r  
for V = 2.4 V, 2.9 V, 3.9 V, and  
I
DS(on)  
DS(on)  
5.9 V, which corresponds to dropout conditions for programmed output voltages of 2.5 V, 3 V, 4 V, and 6 V, respectively. For other  
programmed values, refer to Figures 10 and 11.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), T = 25°C, FB shorted to  
O
O
J
OUT at device leads (unless otherwise noted)  
TPS7225Y  
MIN TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MAX  
Output voltage  
Dropout voltage  
V = 3.5 V,  
I
I
= 10 mA  
2.5  
V
I
O
V = 2.97 V,  
I
= 250 mA  
560  
mV  
O
(2.97 V – V )/I ,  
V = 2.97 V,  
I
O
O
Pass-element series resistance  
Input regulation  
2.24  
I
O
= 250 mA  
V = 3.5 V to 10 V,  
I
50 µA I 250 mA  
9
28  
mV  
O
3.5 V V 10 V  
I
O
I
O
I
O
I
O
= 5 mA to 250 mA  
= 50 µA to 250 mA  
= 50 µA  
I
Output regulation  
mV  
3.5 V V 10 V  
24  
I
58  
V = 3.5 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA  
46  
Output noise spectral density  
V = 3.5 V,  
I
f = 120 Hz  
2
µV/Hz  
248  
200  
130  
50  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 3.5 V,  
I
10 Hz f 100 kHz,  
Output noise voltage  
µVrms  
CSR = 1 Ω  
mV  
V
PG hysteresis voltage  
PG output low voltage  
V = 3.5 V  
I
V = 2.13 V  
I
I
= 1.2 mA  
0.3  
PG  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), T = 25°C, SENSE shorted  
O
O
J
to OUT (unless otherwise noted)  
TPS7230Y  
MIN TYP  
PARAMETER  
UNIT  
V
TEST CONDITIONS  
MAX  
Output voltage  
V = 4 V,  
I
O
I
O
I
O
= 10 mA  
= 100 mA  
= 250 mA  
3
145  
390  
I
V = 2.97 V,  
I
mV  
Dropout voltage  
V = 2.97 V,  
I
(2.97 V – V )/I ,  
V = 2.97 V,  
I
O
O
Pass-element series resistance  
Input regulation  
1.56  
I
O
= 250 mA  
V = 4 V to 10 V,  
I
50 µA I 250 mA  
9
34  
mV  
O
4 V V 10 V  
I
O
I
O
I
O
I
O
= 5 mA to 250 mA  
= 50 µA to 250 mA  
= 50 µA  
I
Output regulation  
mV  
4 V V 10 V  
41  
I
56  
V = 4 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA  
45  
Output noise spectral density  
V = 4 V,  
I
f = 120 Hz  
2
µV/Hz  
256  
206  
132  
50  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 4 V,  
I
10 Hz f 100 kHz,  
Output noise voltage  
µVrms  
CSR = 1 Ω  
mV  
V
PG hysteresis voltage  
PG output low voltage  
V = 4 V  
I
V = 2.55 V  
I
I
= 1.2 mA  
0.25  
PG  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
TPS7233Y  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN TYP  
MAX  
Output voltage  
V = 4.3 V,  
I
O
I
O
I
O
I
O
= 10 mA  
= 10 mA  
= 100 mA  
= 250 mA  
3.3  
14  
V
I
V = 3.23 V,  
I
V = 3.23 V,  
I
140  
360  
mV  
Dropout voltage  
V = 3.23 V,  
I
(3.23 V – V )/I ,  
V = 3.23 V,  
I
O
O
Pass-element series resistance  
Input regulation  
1.5  
I
O
= 250 mA  
V = 4.3 V to 10 V,  
I
50 µA I 250 mA  
8
32  
mV  
O
4.3 V V 10 V,  
I
O
I
O
I
O
I
O
= 5 mA to 250 mA  
= 50 µA to 250 mA  
= 50 µA  
I
Output regulation  
mV  
4.3 V V 10 V,  
41  
I
52  
V = 4.3 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA  
44  
Output noise spectral density  
V = 4.3 V,  
I
f = 120 Hz  
2
µV/Hz  
265  
212  
135  
32  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 4.3 V,  
I
10 Hz f 100 kHz,  
Output noise voltage  
µVrms  
CSR = 1 Ω  
mV  
V
PG hysteresis voltage  
PG output low voltage  
V = 4.3 V  
I
V = 2.8 V,  
I
I
= 1.2 mA  
0.22  
PG  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
electrical characteristics, I = 10 mA, EN = 0 V, C = 4.7 µF (CSR = 1 ), T = 25°C, SENSE shorted  
O
O
J
to OUT (unless otherwise noted) (continued)  
TPS7248Y  
MIN TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MAX  
Output voltage  
Dropout voltage  
V = 5.85 V,  
I
O
I
O
I
O
I
O
= 10 mA  
= 10 mA  
= 100 mA  
= 250 mA  
4.85  
10  
V
I
V = 4.75 V,  
I
V = 4.75 V,  
I
90  
mV  
V = 4.75 V,  
I
216  
(4.75 V – V )/I ,  
V = 4.75 V,  
I
O
O
Pass-element series resistance  
Output regulation  
0.8  
I
O
= 250 mA  
5.85 V V 10 V  
I
O
I
O
I
O
I
O
= 5 mA to 250 mA  
= 50 µA to 250 mA  
= 50 µA  
43  
55  
I
mV  
5.85 V V 10 V  
I
53  
V = 5.85 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA  
46  
Output noise spectral density  
V = 5.85 V,  
I
f = 120 Hz  
2
µV/Hz  
370  
290  
168  
50  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 5.85 V,  
I
10 Hz f 100 kHz,  
Output noise voltage  
µVrms  
CSR = 1 Ω  
mV  
V
PG hysteresis voltage  
PG output low voltage  
V = 5.85 V  
I
V = 4.12 V  
I
I
= 1.2 mA  
0.2  
PG  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
TPS7250Y  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN TYP  
MAX  
Output voltage  
V = 6 V,  
I
O
I
O
I
O
I
O
= 10 mA  
= 10 mA  
= 100 mA  
= 250 mA  
5
8
V
I
V = 4.88 V  
I
V = 4.88 V  
I
76  
mV  
Dropout voltage  
V = 4.88 V,  
I
190  
(4.88 V – V )/I ,  
V = 4.88 V,  
I
O
O
Pass-element series resistance  
Input regulation  
0.76  
I
O
= 250 mA  
V = 6 V to 10 V,  
I
50 µA I 250 mA  
mV  
O
6 V V 10 V,  
I
O
I
O
I
O
I
O
= 5 mA to 250 mA  
= 50 µA to 250 mA  
= 50 µA  
46  
59  
I
Output regulation  
mV  
6 V V 10 V,  
I
52  
V = 6 V,  
I
f = 120 Hz  
Ripple rejection  
dB  
= 250 mA  
46  
Output noise spectral density  
V = 6 V,  
I
f = 120 Hz  
2
µV/Hz  
390  
300  
175  
50  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
O
O
O
V = 6 V,  
I
10 Hz f 100 kHz,  
Output noise voltage  
µVrms  
CSR = 1 Ω  
mV  
V
PG hysteresis voltage  
PG output low voltage  
V = 6 V  
I
V = 4.25 V,  
I
I
= 1.2 mA  
0.19  
PG  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance  
to C  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
.
O
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
vs Output current  
vs Input voltage  
5
6
I
Q
Quiescent current  
I  
Change in quiescent current  
Dropout voltage  
vs Free-air temperature  
vs Output current  
vs Free-air temperature  
vs Output current  
vs Input voltage  
7
Q
V
8
DO  
V  
Change in dropout voltage  
Dropout voltage (TPS7201 only)  
Pass-element series resistance  
Change in output voltage  
Output voltage  
9
DO  
V
10  
11  
12  
13  
DO  
r
DS(on)  
V  
vs Free-air temperature  
vs Input voltage  
O
V
O
Line regulation  
(TPS7201, TPS7233, TPS7248, TPS7250)  
14  
Load regulation  
(TPS7225, TPS7233, TPS7248, TPS7250)  
15  
16  
V
Power-good (PG) voltage  
vs Output voltage  
O(PG)  
r
Power-good (PG) on-resistance  
vs Input voltage  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DS(on)PG  
V
Minimum input voltage for valid PG  
Output voltage response from enable (EN)  
Load transient response (TPS7201/TPS7233)  
Load transient response (TPS7248/TPS7250)  
Line transient response (TPS7201)  
Line transient response (TPS7233)  
Line transient response (TPS7248/TPS7250)  
Ripple rejection  
vs Free-air temperature  
I
vs Frequency  
vs Frequency  
Output Spectral Noise Density  
vs Output current (C = 4.7 µF)  
O
vs Added ceramic capacitance (C = 4.7 µF)  
O
Compensation series resistance (CSR)  
vs Output current (C = 10 µF)  
O
vs Added ceramic capacitance (C = 10 µF)  
O
This symbol is not currently listed within EIA or JEDEC standards for semiconductor symbology.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
QUIESCENT CURRENT  
vs  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
230  
220  
210  
200  
190  
180  
170  
250  
200  
T
A
= 25°C  
TPS7248  
T
25°C  
= 250 mA  
TPS7248 V = 10 V  
A
I
I
O
TPS7233  
TPS7233 V = 10 V  
I
150  
100  
TPS7250 V = 10 V  
I
TPS7201 With  
V
O
Programmed to 2.5 V  
TPS7248 V = 5.85 V  
I
TPS7250  
TPS7250 V = 6.0 V  
I
50  
0
160  
150  
TPS7233 V = 4.3 V  
I
0
50  
100  
150  
200  
250  
0
1
2
3
4
5
6
7
8
9
10  
I
O
– Output Current – mA  
V – Input Voltage – V  
I
Figure 5  
Figure 6  
DROPOUT VOLTAGE  
vs  
OUTPUT CURRENT  
CHANGE IN QUIESCENT CURRENT  
vs  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
50  
I
= 10 mA  
T
A
= 25°C  
O
I
V = V + 1 V  
O
40  
30  
20  
10  
TPS7225  
TPS7230  
TPS7233  
TPS7248  
0
10  
20  
100  
0
TPS7250  
150  
30  
– 40  
0
50  
100  
200  
250  
– 40 – 20  
0
20  
40 60  
80 100 120 140  
T
A
– Free-Air Temperature – °C  
I
O
– Output Current – mA  
Figure 7  
Figure 8  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TPS7201  
DROPOUT VOLTAGE  
vs  
CHANGE IN DROPOUT VOLTAGE  
vs  
OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
1.6  
1.4  
1.2  
0.05  
V = 2.4 V  
I
0.04  
0.03  
0.02  
0.01  
TPS7230  
TPS7233  
V = 2.6 V  
I
V = 2.9 V  
I
1
0.8  
0.6  
0.4  
V = 3.2 V  
I
V = 3.9 V  
I
TPS7248/TPS7250  
0
V = 5.9 V  
I
V = 9.65 V  
I
0.01  
0.02  
0.2  
0
0.03  
0.04  
0
50  
100  
150  
200  
250  
40 20  
0
20  
40  
60 80 100 120  
140  
I
– Output Current – mA  
T
A
– Free-Air Temperature – °C  
O
This voltage is not recommended.  
Figure 9  
Figure 10  
CHANGE IN OUTPUT VOLTAGE  
vs  
PASS ELEMENT SERIES RESISTANCE  
vs  
FREE-AIR TEMPERATURE  
INPUT VOLTAGE  
15  
10  
6
5
4
3
2
1
0
T
V
= 25°C  
A
I
= 10 mA  
O
I
= 1.12 V  
FB  
V = V + 1 V  
O
5
0
I
= 250 mA  
O
–5  
10  
15  
I
O
= 100 mA  
20  
25  
2
3
4
5
6
7
8
9
10  
40 20  
0
20 40  
60  
80 100 120 140  
V – Input Voltage – V  
I
T
A
– Free-Air Temperature – °C  
Figure 11  
Figure 12  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
LINE REGULATION  
TPS7201 With  
5.5  
5
25  
20  
T
= 25°C  
= 250 mA  
A
T
= 25°C  
= 250 mA  
TPS7250  
TPS7248  
A
I
O
I
O
4.5  
4
15  
10  
V
Programmed to 2.5 V  
O
3.5  
3
5
TPS7233  
TPS7233  
0
2.5  
2
–5  
10  
15  
TPS7248  
TPS7250  
TPS7201 With  
1.5  
1
V
O
Programmed to 2.5 V  
20  
25  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 13  
Figure 14  
POWER-GOOD (PG) VOLTAGE  
vs  
OUTPUT VOLTAGE  
LOAD REGULATION  
6
50  
40  
T
= 25°C  
A
T
A
= 25°C  
PG Pulled Up to V With 5 kResistor  
I
V
I
30  
20  
10  
TPS7233  
0
10  
20  
30  
TPS7225  
TPS7248  
TPS7250  
GND  
0
40  
50  
92  
93  
94  
95  
96  
97  
98  
0
50  
100  
150  
200  
250  
V
– Output Voltage – %  
O
I
O
– Output Current – mA  
V
O
as a percent of V nom.  
O
Figure 15  
Figure 16  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
MINIMUM INPUT VOLTAGE FOR VALID PG  
POWER-GOOD (PG) ON-RESISTANCE  
vs  
vs  
FREE-AIR TEMPERATURE  
INPUT VOLTAGE  
1.3  
1.125  
1.12  
100  
10  
T
A
= 25°C  
1.115  
1.11  
1
0
1.105  
1.1  
1.095  
40 20  
0
T
20  
40  
60  
80 100 120 140  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
– Free-Air Temperature – °C  
V – Input Voltage – V  
I
A
Figure 17  
Figure 18  
OUTPUT VOLTAGE RESPONSE FROM  
ENABLE (EN)  
10  
T
= 25°C  
A
I
O
C = 0  
C
5
0
= 4.7 µF (CSR = 1 )  
V
O
nom  
0
50  
100  
150  
t – Time – µs  
Figure 19  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TPS7201 (WITH V PROGRAMMED TO 2.5 V), TPS7233  
O
LOAD TRANSIENT RESPONSE  
200  
100  
0
T
= 25°C  
A
I
I
O
100  
200  
V = 6 V  
C = 0  
C
= 4.7 µF (CSR = 1 )  
105  
55  
5
0
100  
200  
300  
400  
500  
t – Time – µs  
Figure 20  
TPS7248/TPS7250  
LOAD TRANSIENT RESPONSE  
200  
100  
0
T
= 25°C  
A
I
I
O
100  
200  
V = 6 V  
C = 0  
C
= 4.7 µF (CSR = 1 )  
105  
55  
5
0
100  
200  
300  
400  
500  
t – Time – µs  
Figure 21  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TPS7201 WITH V PROGRAMMED TO 2.5 V  
O
LINE TRANSIENT RESPONSE  
100  
50  
0
T
= 25°C  
A
I
O
50  
100  
C = 0  
C
= 4.7 µF (CSR = 1 )  
6.5  
6.25  
6
0
100  
200  
300  
400  
t – Time – µs  
Figure 22  
TPS7233  
LINE TRANSIENT RESPONSE  
200  
100  
0
50  
100  
T
= 25°C  
A
I
O
C = 0  
C
= 4.7 µF (CSR = 1 )  
6.5  
6.25  
6
5.75  
0
100  
200  
300  
400  
500  
t – Time – µs  
Figure 23  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TPS7248/TPS7250  
LINE TRANSIENT RESPONSE  
100  
50  
0
50  
T
= 25°C  
A
I
O
100  
C = 0  
C
= 4.7 µF (CSR = 1 )  
6.5  
6.25  
6
0
100  
200  
300  
400  
500  
t – Time – µs  
Figure 24  
RIPPLE REJECTION  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
FREQUENCY  
FREQUENCY  
60  
50  
10  
TPS7233  
T
= 25°C  
A
T
= 25°C  
A
No Input  
Capacitance Added  
V = V + 1 V  
No Input Capacitance Added  
V = V + 1 V  
I
O
I
O
I
C
= 100 mA  
O
C
= 4.7 µF (CSR = 1 )  
O
= 4.7 µF (CSR = 1 )  
O
40  
30  
20  
1
TPS7248/  
TPS7250  
TPS7201 With  
C
= 10 µF (CSR = 1 )  
O
V
O
Programmed  
to 2.5 V  
0.1  
10  
0
C
= 100 µF (CSR = 1 )  
O
0.01  
10  
100  
1 K  
10 K  
100 K  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 25  
Figure 26  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
OUTPUT CURRENT  
ADDED CERAMIC CAPACITANCE  
100  
100  
T
= 25°C  
Region of  
Instability  
A
I
Region of Instability  
V = V + 1 V  
O
I
C
= 250 mA  
O
= 4.7 µF  
O
10  
1
10  
No Input Capacitor Added  
1
T
= 25°C  
A
I
O
V = V + 1 V  
C
O
0.1  
0.1  
= 4.7 µF  
Region of Instability  
No Added Ceramic Capacitance  
No Input Capacitance Added  
Region of Instability  
50 100  
0.01  
0.01  
0
150  
200  
250  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
I
O
– Output Current – mA  
Added Ceramic Capacitance – µF  
Figure 27  
Figure 28  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE (CSR)  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
vs  
OUTPUT CURRENT  
ADDED CERAMIC CAPACITANCE  
100  
100  
10  
T
= 25°C  
Region of  
Instability  
A
I
Region of Instability  
V = V + 1 V  
O
I
C
= 250 mA  
O
= 10 µF  
O
10  
1
No Input Capacitor Added  
T
= 25°C  
A
I
C
V = V + 1 V  
O
1
= 10 µF  
O
No Added Ceramic Capacitance  
No Input Capacitor Added  
0.1  
0.1  
Region of Instability  
Region of Instability  
0.01  
0.01  
0
50  
100  
150  
200  
250  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
I
O
– Output Current – mA  
Added Ceramic Capacitance – µF  
Figure 29  
Figure 30  
CSRreferstothetotalseriesresistance, includingtheESRofthecapacitor, anyseriesresistanceaddedexternally, andPWBtraceresistance  
to C  
.
O
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
APPLICATION INFORMATION  
The design of the TPS72xx family of low-dropout (LDO) regulators is based on the higher-current TPS71xx  
family. These new families of regulators have been optimized for use in battery-operated equipment and feature  
extremely low dropout voltages, low supply currents that remain constant over the full-output-current range of  
the device, and an enable input to reduce supply currents to less than 0.5 µA when the regulator is turned off.  
device operation  
The TPS72xx uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over  
more conventional PNP-pass-element LDO designs. The PMOS transistor is a voltage-controlled device that,  
unlike a PNP transistor, does not require increased drive current as output current increases. Supply current  
in the TPS72xx is essentially constant from no-load to maximum.  
Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation.  
Thedeviceswitchesintoaconstant-currentmodeatapproximately1A;furtherloadincreasesreducetheoutput  
voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction  
temperature rises above 165°C. Recovery is automatic when the junction temperature drops approximately 5°C  
below the high temperature trip point. The PMOS pass element includes a back diode that safely conducts  
reverse current when the input voltage level drops below the output voltage level.  
A logic high on the enable input, EN, shuts off the output and reduces the supply current to less than 0.5 µA.  
EN should be grounded in applications where the shutdown feature is not used.  
Power good (PG) is an open-drain output signal used to indicate output-voltage status. A comparator circuit  
continuously monitors the output voltage. When the output drops to approximately 95% of its nominal regulated  
value, the comparator turns on and pulls PG low.  
Transient loads or line pulses can also cause activation of PG if proper care is not taken in selecting the input  
and output capacitors. Load transients that are faster than 5 µs can cause a signal on PG if high-ESR output  
capacitors (greater than approximately 7 ) are used. A 1-µs transient causes a PG signal when using an output  
capacitorwithgreaterthan3.5ofESR. Itisinterestingtonotethattheoutput-voltagespikeduringthetransient  
can drop well below the reset threshold and still not trip if the transient duration is short. A 1-µs transient must  
drop at least 500 mV below the threshold before tripping the PG circuit. A 2-µs transient trips PG at just 400 mV  
below the threshold. Lower-ESR output capacitors help by reducing the drop in output voltage during a transient  
and should be used when fast transients are expected.  
A typical application circuit is shown in Figure 31.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
APPLICATION INFORMATION  
TPS72xx  
(see Note A)  
5
6
2
1
7
8
V
IN  
IN  
PG  
PG  
I
250 kΩ  
SENSE  
OUT  
V
O
C1  
0.1 µF  
4
EN  
OUT  
+
10 µF  
GND  
CSR = 1 Ω  
3
NOTE A: TPS7225, TPS7230, TPS7233, TPS7248, TPS7250  
(fixed-voltage options).  
Figure 31. Typical Application Circuit  
external capacitor requirements  
Although not required, a 0.047-µF to 0.1-µF ceramic bypass input capacitor, connected between IN and GND  
and located close to the TPS72xx, is recommended to improve transient response and noise rejection. A  
higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated  
and the device is located several inches from the power source.  
An output capacitor is required to stabilize the internal feedback loop. For most applications, a 10-µF to 15-µF  
solid-tantalum capacitor with a 0.5-resistor (see capacitor selection table) in series issufficient. The maximum  
capacitor ESR should be limited to 1.3 to allow for ESR doubling at cold temperatures. Figure 32 shows the  
transient response of a 5-mA to 85-mA load using a 10-µF output capacitor with a total ESR of 1.7 .  
A 4.7-µF solid-tantalum capacitor in series with a 1-resistor may also be used (see Figures 27 and 28)  
provided the ESR of the capacitor does not exceed 1 at room temperature and 2 over the full operating  
temperature range.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
APPLICATION INFORMATION  
V = V + 1 V  
I
O
V
O
1→  
I
= 85 mA  
= 5 mA  
O
I
O
2→  
Ch 2  
Ch1 50 mV  
50 mA  
100 µs/div  
Figure 32. Load Transient Response (CSR total = 1.7 ), TPS7248Q  
A partial listing of surface-mount capacitors usable with the TPS72xx family is provided below. This information  
(along with the stability graphs, Figures 27 through 30) is included to assist the designer in selecting suitable  
capacitors.  
CAPACITOR SELECTION  
PART NO.  
MFR.  
VALUE  
MAX ESR  
SIZE (H × L × W)  
1.2 × 7.2 × 6  
592D156X0020R2T  
595D156X0025C2T  
595D106X0025C2T  
695D106X0035G2T  
Sprague  
Sprague  
Sprague  
Sprague  
15 µF, 20 V  
15 µF, 25 V  
10 µF, 25 V  
10 µF, 35 V  
1.1  
1
2.5 × 7.1 × 3.2  
2.5 × 7.1 × 3.2  
2.5 × 7.6 × 2.5  
1.2  
1.3  
Size is in mm. ESR is maximum resistance in ohms at 100 kHz and T = 25°C. Listings are sorted by height.  
A
sense-pin connection  
SENSE must be connected to OUT for proper operation of the regulator. Normally this connection should be  
as short as possible; however, remote sense may be implemented in critical applications when proper care of  
the circuit path is exercised. SENSE internally connects to a high-impedance wide-bandwidth amplifier through  
a resistor-divider network, and any noise pickup on the PCB trace will feed through to the regulator output.  
SENSE must be routed to minimize noise pickup. Filtering SENSE using an RC network is not recommended  
because of the possibility of inducing regulator instability.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
APPLICATION INFORMATION  
output voltage programming  
The output voltage of the TPS7201 adjustable regulator is programmed using an external resistor divider as  
shown in Figure 33. The output voltage is calculated using:  
R1  
R2  
(1)  
V
V
1
O
ref  
Where:  
V
= 1.188 V typ (the internal reference voltage)  
ref  
Resistors R1 and R2 should be chosen for approximately 7-µA divider current. Lower value resistors can be  
used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage  
currents at FB increase the output voltage error. The recommended design procedure is to choose  
R2 = 169 kto set the divider current at 7 µA and then calculate R1 using:  
V
O
R1  
1
R2  
(2)  
V
ref  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
TPS7201  
IN  
5
6
DIVIDER RESISTANCE  
OUTPUT  
VOLTAGE  
(V)  
(k)  
2
8
V
I
IN  
PG  
Power-Good Indicator  
250 kΩ  
R1  
R2  
0.1 µF  
OUT  
2.5  
3.3  
3.6  
4
191  
309  
348  
402  
549  
750  
169  
169  
169  
169  
169  
169  
>2.7 V  
4
7
V
O
EN  
OUT  
FB  
<0.4 V  
R1  
R2  
+
1
10 µF  
CSR = 1 Ω  
5
GND  
3
6.4  
1% values shown.  
Figure 33. TPS7201 Adjustable LDO Regulator Programming  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
APPLICATION INFORMATION  
power dissipation and junction temperature  
Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature  
allowableto avoid damaging the device is 150°C. These restrictions limit the power dissipation that the regulator  
can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate  
the maximum allowable dissipation, P  
, and the actual dissipation, P , which must be less than or equal  
D(max)  
D
to P  
.
D(max)  
The maximum-power-dissipation limit is determined using the following equation:  
T max  
J
T
A
P
D(max)  
R
JA  
Where:  
T max is the maximum allowable junction temperature, i.e.,150°C absolute maximum and 125°C  
J
recommended operating temperature.  
R
is the thermal resistance junction-to-ambient for the package, i.e., 172°C/W for the 8-terminal  
θJA  
SOIC and 238°C/W for the 8-terminal TSSOP.  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
P
V
V
I
D
I
O
O
Power dissipation resulting from quiescent current is negligible.  
regulator protection  
The TPS72xx PMOS-pass transistor has a built-in back diode that safely conducts reverse currents when the  
input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output  
to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be  
appropriate.  
The TPS72xx also features internal current limiting and thermal protection. During normal operation, the  
TPS72xx limits output current to approximately 1 A. When current limiting engages, the output voltage scales  
back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device  
failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of  
the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled, regulator  
operation resumes.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS7201Q, TPS7225Q, TPS7230Q  
TPS7233Q, TPS7248Q, TPS7250Q, TPS72xxY  
MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS  
SLVS102G – MARCH 1995 – REVISED JUNE 2000  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,65  
M
0,10  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS7201QD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7201QDG4  
TPS7201QDR  
TPS7201QDRG4  
TPS7201QP  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TPS7201QPE4  
TPS7201QPW  
TPS7201QPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7201QPWLE  
TPS7201QPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7201QPWRG4  
TPS7225QD  
PW  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7225QDG4  
TPS7225QDR  
TPS7225QDRG4  
TPS7225QP  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TPS7225QPE4  
TPS7225QPWR  
TPS7225QPWRG4  
TPS7230QD  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7230QDR  
TPS7230QDRG4  
TPS7230QP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TPS7230QPE4  
TPS7230QPWR  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2007  
Orderable Device  
TPS7230QPWRG4  
TPS7233QD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
8
8
8
8
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7233QDG4  
TPS7233QDR  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7233QDRG4  
TPS7233QP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TPS7233QPE4  
TPS7233QPW  
TPS7233QPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7233QPWLE  
TPS7233QPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7233QPWRG4  
TPS7248QD  
PW  
D
8
8
8
8
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7248QDG4  
TPS7248QDR  
TPS7248QDRG4  
TPS7248QP  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TPS7248QPE4  
TPS7248QPW  
TPS7248QPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7248QPWLE  
TPS7248QPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7248QPWRG4  
TPS7250QD  
PW  
D
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7250QDG4  
TPS7250QDR  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7250QDRG4  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TPS7250QP  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
P
P
8
8
50  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
TPS7250QPE4  
Pb-Free  
(RoHS)  
TPS7250QPWLE  
TPS7250QPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
TSSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS7250QPWRG4  
ACTIVE  
TSSOP  
PW  
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

695D106X0050H2

Solid Tantalum Chip Capacitors
VISHAY

695D106X0050H2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 10 uF, SURFACE MOUNT, 3015, CHIP, ROHS COMPLIANT
VISHAY

695D106X9004B2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9006D2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9006D2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6 V, 10 uF, SURFACE MOUNT, 1910, CHIP, ROHS COMPLIANT
VISHAY

695D106X9006D2W

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6 V, 10 uF, SURFACE MOUNT, 1910, CHIP, ROHS COMPLIANT
VISHAY

695D106X9010D2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9015D2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9020F2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9020F2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 20 V, 10 uF, SURFACE MOUNT, 2614, CHIP, ROHS COMPLIANT
VISHAY

695D106X9025F2

Solid Tantalum Chip Capacitors
VISHAY

695D106X9025F2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 25 V, 10 uF, SURFACE MOUNT, 2614, CHIP, ROHS COMPLIANT
VISHAY