6PAIC3109TWRHMRQ1 [TI]

汽车类低功耗 96kHz 单声道音频编解码器 | RHM | 32 | -40 to 105;
6PAIC3109TWRHMRQ1
型号: 6PAIC3109TWRHMRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低功耗 96kHz 单声道音频编解码器 | RHM | 32 | -40 to 105

PC 电信 电信集成电路 编解码器
文件: 总122页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
TLV320AIC3109-Q1 汽车低功耗 96kHz 单声道音频编解码器  
1 特性  
2 应用  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
紧急呼叫 (eCall) 系统  
远程信息处理控制单元 (TCU)  
汽车音响主机  
温度等级 2-40°C +105°C  
人体放电模型 (HBM) 静电放电 (ESD) 分类等级  
3 说明  
2
TLV320AIC3109-Q1 器件是一款低功耗单声道编解码  
器,配备单声道耳机放大器和多个输入输出通道,且在  
单端或全差动配置下可编程。该器件包括全面的基于寄  
存器的电源控制,可实现 48kHz 数模转换器 (DAC) 回  
放,功耗低至  
组件充电模型 (CDM) ESD 分类等级 C4B  
单声道音频 DAC:  
102dBA 信噪比  
支持 8kHz 96kHz 的采样率  
3D、低音、高音、EQ 或去加重效果  
14mW,因此非常适合低功耗 应用。  
单声道音频 ADC:  
92dBA 信噪比  
TLV320AIC3109-Q1 的录音路径包含集成式麦克风偏  
置、数控麦克风前置放大器、自动增益控制 (AGC)、  
灵活的前端多路复用器 (MUX) 和前端模拟混频器  
(MIX)。录音过程中,可编程滤波器能够移除可闻噪  
声。回放路径包括 MIX MUX 功能(从单声道 DAC  
和所选输入,经可编程音量控制至各种输出)。  
支持 8kHz 96kHz 的采样率  
数字信号处理和噪声过滤  
四个音频输入引脚:  
多达 2 个差动输入  
多达 2 个单端输入  
六个音频输出驱动器:  
器件信息(1)  
一个全差动或两个单端耳机驱动器  
单声道全差动线路输出对  
器件型号  
封装  
封装尺寸(标称值)  
TLV320AIC3109-Q1  
VQFN (32)  
5.00mm x 5.00mm  
低功耗:3.3V 模拟电源电压、14mW 单声道、  
48kHz 回放  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
具有无源模拟旁路的超低功耗模式  
前端可编程增益放大器 (PGA)  
用于 DAC 回放的可编程数字增益:  
用于录音的自动增益控制 (AGC)  
可编程麦克风偏置  
空白  
简化图表  
DIN WCLK BCLK DOUT  
Digital Audio Interface  
用于灵活时钟生成的可编程锁相环路 (PLL)  
I2C 控制总线  
音频数据格式:I2S、左平衡和右平衡、DSP 和  
HPCOM  
Audio  
ADC  
Audio  
DAC  
Digital  
Filters  
PGA  
MIC1P/LINE1P  
MIC1M/LINE1M  
HPOUT  
MIX,  
MUX  
MIX,  
MUX  
LEFT_LOM  
LEFT_LOP  
TDM  
MIC2P/LINE2P  
MIC2M/LINE2M  
RIGHT_LOM  
RIGHT_LOP  
PGA_AUX  
电源:  
模拟 (AVDD, DRVDD)2.7V 3.6V  
数字内核 (DVDD)1.525V 1.95V  
数字 I/O (IOVDD)1.1V 3.6V  
可提供两个 VQFN-32 封装选项:  
非湿润性侧面 (6PAIC3109TRHBRQ1)  
可湿侧面 (6PAIC3109TWRHMRQ1)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE93  
 
 
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 38  
7.6 Register Maps......................................................... 40  
Application and Implementation ...................... 104  
8.1 Application Information.......................................... 104  
8.2 Typical Application ................................................ 104  
Power Supply Recommendations.................... 107  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Audio Data Serial Interface Timing Requirements.. 10  
6.7 Typical Characteristics............................................ 14  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 35  
8
9
10 Layout................................................................. 107  
10.1 Layout Guidelines ............................................... 107  
10.2 Layout Example .................................................. 108  
11 器件和文档支持 ................................................... 109  
11.1 文档支持.............................................................. 109  
11.2 接收文档更新通知 ............................................... 109  
11.3 社区资源.............................................................. 109  
11.4 ..................................................................... 109  
11.5 静电放电警告....................................................... 109  
11.6 Glossary.............................................................. 109  
12 机械、封装和可订购信息..................................... 109  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2017) to Revision A  
Page  
已将 6PAIC3109TWRHMRQ1(可湿侧面封装选项)的状态更新为生产 ............................................................................... 1  
已添加 已将 TI 设计添加至文档 .............................................................................................................................................. 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
5 Pin Configuration and Functions  
RHB, RHM Packages  
32-Pin VQFN  
Top View  
MCLK  
BCLK  
WCLK  
DIN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DRVDD  
HPOUT  
HPCOM  
DRVSS  
NC  
Thermal  
Pad  
DOUT  
DVSS  
IOVDD  
SCL  
NC  
DRVDD  
AVSS  
Not to scale  
NOTE: Connect the device thermal pad to DRVSS.  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Analog DAC voltage supply; connect 1-µF and 0.1-µF decoupling capacitors in parallel  
to AVSS  
AVDD  
25  
AVSS  
BCLK  
DIN  
17, 26  
Analog ground  
2
4
5
Digital I/O  
Digital input  
Digital output  
Audio serial data bus bit clock input/output  
Audio serial data bus data input  
Audio serial data bus data output  
DOUT  
Analog ADC and output driver voltage supply; connect 1-µF and 0.1-µF decoupling  
capacitors in parallel to DRVSS  
DRVDD  
DRVSS  
DVDD  
18, 24  
21  
Analog output driver ground supply  
Digital core voltage supply; connect 1-µF and 0.1-µF decoupling capacitors in parallel  
to DVSS  
32  
DVSS  
6
Digital core and I/O ground supply  
HPCOM  
HPOUT  
22  
23  
7
Analog output High-power output driver (single-ended output, differential output (–), or VCM output)  
Analog output High-power output driver, single-ended output or differential output (+)  
IOVDD  
Digital I/O voltage supply  
LEFT_LOM  
LEFT_LOP  
28  
27  
Analog output Left line output (–); leave floating when not used  
Analog output Left line output (+); leave floating when not used  
Copyright © 2017, Texas Instruments Incorporated  
3
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
MCLK  
1
Digital input  
Analog input  
Master clock input  
Microphone or line input, differential only (–); connect a 0.47-µF capacitor to AVSS  
when not used  
MIC1M/LINE1M  
MIC1P/LINE1P  
MIC2M/LINE2M  
MIC2P/LINE2P  
11  
10  
13  
12  
Microphone or line input, differential (+) or single-ended; connect a 0.47-µF capacitor to  
AVSS when not used  
Analog input  
Analog input  
Analog input  
Microphone or line input, differential only (–); connect a 0.47-µF capacitor to AVSS  
when not used  
Microphone or line input, differential (+) or single-ended; connect a 0.47-µF capacitor to  
AVSS when not used  
MICDET  
NC  
14  
Analog input  
Microphone detection input; leave floating when not used  
Not connected; always leave floating  
16, 19, 20  
MICBIAS  
RESET  
RIGHT_LOM  
RIGHT_LOP  
SCL  
15  
31  
30  
29  
8
Analog output Microphone bias voltage output; leave floating when not used  
Digital input Reset  
Analog output Right line output (–); leave floating when not used  
Analog output Right line output (+); leave floating when not used  
Digital I/O  
Digital I/O  
Digital I/O  
I2C serial clock input  
I2C serial data input/output  
SDA  
9
WCLK  
3
Audio serial data bus word clock input/output  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
MAX  
UNIT  
AVDD to AVSS, DRVDD to DRVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–40  
3.9  
3.9  
AVDD to DRVSS  
Power-supply voltage  
IOVDD to DVSS  
3.9  
V
DVDD to DVSS  
2.5  
AVDD to DRVDD  
0.1  
Analog input voltage  
Digital input voltage  
Analog input voltage to AVSS  
Digital input voltage to DVSS  
Operating ambient, TA  
Junction, TJ  
AVDD + 0.3  
IOVDD + 0.3  
105  
V
V
Temperature  
–40  
125  
°C  
Storage, Tstg  
–40  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) ESD compliance tested to EIA/JESD22-A114-B and passed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins  
(1, 8, 9, 16,17, 24, 25, 32)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged-device model (CDM),  
per AEC Q100-011  
All other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
Analog supply voltage (AVDD to AVSS, DRVDD to DRVSS)  
Digital core supply voltage (DVDD to DVSS)  
Digital I/O supply voltage (IOVDD to DVSS)  
ANALOG INPUTS  
2.7  
1.525  
1.1  
3.3  
1.8  
1.8  
3.6  
1.95  
3.6  
V
V
V
VI  
Analog full-scale, 0-dB input voltage (DRVDD = 3.3 V)  
0.707  
VRMS  
DIGITAL INPUTS  
VDIG  
Digital input voltage  
DVSS  
–40  
IOVDD  
105  
V
TEMPERATURE  
TA  
Operating free-air temperature  
°C  
OTHERS  
Mono line output load resistance  
Mono headphone output load resistance  
Digital output load capacitance  
10  
16  
k  
10  
pF  
6.4 Thermal Information  
TLV320AIC3109-Q1  
THERMAL METRIC(1)  
RHB (VQFN)  
RHM (VQFN)  
32 PINS  
31.3  
UNIT  
32 PINS  
31.1  
19.5  
10.6  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
18.9  
11.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.6  
0.9  
11.1  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AUDIO ADC  
Input signal level  
Single-ended configurations  
0.707  
92  
VRMS  
dB  
A-weighted, fS = 48 kSPS, 0-dB PGA gain,  
inputs ac-shorted to ground  
SNR  
DR  
Signal-to-noise ratio(1)(2)  
80  
fS = 48 kSPS; 0-dB PGA gain; 1-kHz, –60-dB,  
full-scale input signal  
Dynamic range(1)(2)  
93  
dB  
fS = 48 kSPS; 0-dB PGA gain; 1-kHz, –2-dB,  
full-scale input signal  
THD  
Total harmonic distortion  
–89  
–75  
dB  
dB  
217-Hz signal applied to DRVDD  
55  
44  
PSRR  
Power-supply rejection ratio  
1-kHz signal applied to DRVDD  
Input channel separation  
Gain error  
1-kHz, –2-dB, full-scale signal, MIC1 to MIC2  
–71  
dB  
dB  
fS = 48 kSPS; 0-dB PGA gain; 1-kHz, –2-dB,  
full-scale input signal  
0.82  
59.5  
0.5  
20  
ADC programmable-gain  
amplifier maximum gain  
1-kHz input tone  
dB  
dB  
ADC programmable-gain  
amplifier step size  
MIC1/MIC2 inputs routed to single ADC  
input MIX attenuation = 0 dB  
Input resistance  
kΩ  
MIC1/MIC2 inputs routed to single ADC  
input MIX attenuation = 12 dB  
80  
Input resistance  
80  
10  
kΩ  
Input capacitance  
MIC1/LINE1 inputs  
pF  
Input level control minimum  
attenuation setting  
0
12  
dB  
dB  
dB  
Input level control maximum  
attenuation setting  
Input level control attenuation  
step size  
1.5  
ANALOG PASSTHROUGH MODE  
RDS(on)  
Input-to-output switch resistance MIC1/LINE1 to LINEOUT  
330  
INPUT SIGNAL LEVEL, DIFFERENTIAL  
A-weighted, fS = 48 kSPS, 0-dB PGA gain,  
inputs ac-shorted to ground  
SNR  
THD  
Signal-to-noise ratio  
92  
dB  
dB  
fS = 48 kHz; 0-dB PGA gain, 1-kHz, –2-dB,  
full-scale input signal  
Total harmonic distortion  
–94  
ADC DIGITAL DECIMATION FILTER (fS = 48 kHz)  
From 0 fS to 0.39 fS  
±0.1  
–0.25  
–3  
At 0.4125 fS  
At 0.45 fS  
Filter gain  
dB  
s
At 0.5 fS  
–17.5  
–75  
From 0.55 fS to 64 fS  
Filter group delay  
17/fS  
(1) Ratio of output level with 1-kHz, full-scale, sine-wave input to the output level with the inputs short-circuited, measured A-weighted over  
a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz, low-pass filter and an A-weighted filter, where noted. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
6
Copyright © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Electrical Characteristics (continued)  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
MICROPHONE BIAS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Programmable setting = 2 V  
2
2.455  
AVDD  
4
Bias voltage  
Programmable setting = 2.5 V  
Programmable setting = AVDD  
Programmable setting = 2.5 V  
2.3  
2.7  
V
Current sourcing  
mA  
AUDIO DAC, DIFFERENTIAL LINE OUTPUT (RLOAD = 10 k)  
1.414  
4
VRMS  
VPP  
0-dB input full-scale signal, output common-mode  
setting = 1.35 V, output volume control = 0 dB  
Full-scale output voltage  
Signal-to-noise ratio(3)  
A-weighted, fS = 48 kHz, output volume control =  
0 dB, no input signal, referenced to full-scale input  
level  
SNR  
DR  
88  
102  
97  
dB  
dB  
A-weighted, fS = 48 kHz, –60-dB input full-scale  
signal, output volume control = 0 dB, output  
common-mode setting = 1.35 V  
Dynamic range  
fS = 48 kHz; 0-dB, 1-kHz input full-scale signal;  
output volume control = 0 dB; output common-  
mode setting = 1.35 V  
THD  
Total harmonic distortion  
Power-supply rejection ratio  
DAC gain error  
–95  
–75  
dB  
dB  
dB  
217-Hz signal applied to DRVDD, AVDD  
1-kHz signal applied to DRVDD, AVDD  
78  
80  
PSRR  
0-dB, 1-kHz input full-scale signal; output volume  
control = 0 dB; output common-mode setting =  
1.35 V; fS = 48 kHz  
–0.2  
AUDIO DAC, SINGLE-ENDED LINE OUTPUT (RLOAD = 10 k)  
0-dB input full-scale signal, output common-mode  
setting = 1.35 V, output volume control = 0 dB  
Full-scale output voltage  
Signal-to-noise ratio  
0.707  
96  
VRMS  
A-weighted, fS = 48 kHz, output volume control =  
0 dB, no input signal, referenced to full-scale input  
level  
SNR  
DR  
dB  
A-weighted, fS = 48 kHz, output volume control =  
0 dB, no input signal, referenced to full-scale input  
level, 50% DAC current-boost mode  
97  
91  
A-weighted, fS = 48 kHz, –60-dB input full-scale  
signal, output volume control = 0 dB, output  
common-mode setting = 1.35 V  
Dynamic range  
DAC gain error  
dB  
dB  
0-dB, 1-kHz input full-scale signal; output volume  
control = 0 dB; output common-mode setting =  
1.35 V; fS = 48 kHz  
–0.85  
(3) Unless otherwise noted, all measurements use an output common-mode voltage setting of 1.35 V, a 0-dB output level control gain, and  
a 16-single-ended load.  
Copyright © 2017, Texas Instruments Incorporated  
7
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AUDIO DAC, SINGLE-ENDED HEADPHONE OUTPUT (RLOAD = 16 )  
0-dB input full-scale signal, output common-mode  
setting = 1.35 V, output volume control = 0 dB  
Full-scale output voltage  
Signal-to-noise ratio  
0.707  
96  
VRMS  
A-weighted, fS = 48 kHz, output volume control =  
0 dB, no input signal, referenced to full-scale input  
level  
SNR  
DR  
dB  
dB  
A-weighted, fS = 48 kHz, output volume control =  
0 dB, no input signal, referenced to full-scale input  
level, 50% DAC current-boost mode  
97  
91  
A-weighted, fS = 48 kHz, –60-dB input full-scale  
signal, output volume control = 0 dB, output  
common-mode setting = 1.35 V  
Dynamic range  
fS = 48 kHz, 0-dB input full-scale signal, output  
volume control = 0 dB, output common-mode  
setting = 1.35 V  
THD  
Total harmonic distortion  
Power-supply rejection ratio  
DAC gain error  
–71  
–65  
dB  
dB  
dB  
217-Hz signal applied to DRVDD, AVDD  
1-kHz signal applied to DRVDD, AVDD  
43  
41  
PSRR  
0-dB, 1-kHz input full-scale signal; output volume  
control = 0 dB; output common-mode setting =  
1.35 V; fS = 48 kHz  
–0.85  
DAC DIGITAL INTERPOLATION FILTER (fS = 48 kHz)  
Pass band  
0
0.45 fS  
Hz  
dB  
Hz  
Hz  
dB  
s
Pass-band ripple  
±0.06  
Transition band  
0.45 fS  
0.55 fS  
0.55 fS  
7.5 fS  
Stop band  
Stop-band attenuation  
65  
Group delay  
21 / fS  
MONO HEADPHONE DRIVER (AC-Coupled Output Configuration(3)  
)
0-dB gain to high-power outputs, output common-  
mode voltage setting = 1.35 V  
0-dB full-scale output voltage  
0.707  
VRMS  
First option  
1.35  
1.5  
Programmable output common-  
mode voltage (applicable to line  
outputs also)  
Second option  
Third option  
Fourth option  
V
1.65  
1.8  
Maximum programmable output  
level control gain  
9
1
dB  
dB  
Programmable output level  
control gain step size  
RL = 32 Ω  
RL = 16 Ω  
A-weighted  
15  
30  
94  
PO  
Maximum output power  
Signal-to-noise ratio(4)  
mW  
dB  
SNR  
(4) Ratio of output level with a 1-kHz, full-scale input to the output level playing an all-zero signal, measured A-weighted over a 20-Hz to  
20-kHz bandwidth.  
8
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Electrical Characteristics (continued)  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MONO HEADPHONE DRIVER (AC-Coupled Output Configuration, continued)  
–77  
0.014%  
–76  
dB  
dB  
dB  
dB  
1-kHz output, PO = 5 mW, RL = 32 Ω  
1-kHz output, PO = 10 mW, RL = 32 Ω  
0.016%  
–73  
THD  
Total harmonic distortion  
1-kHz output, PO = 10 mW, RL = 16 Ω  
1-kHz output, PO = 20 mW, RL = 16 Ω  
0.022%  
–71  
0.028%  
90  
Channel separation  
Power-supply rejection ratio  
Mute attenuation  
1-kHz, 0-dB input  
dB  
dB  
dB  
PSRR  
217 Hz, 100 mVPP on AVDD, DRVDD  
1-kHz output  
48  
107  
DIGITAL I/O  
VIL  
Input low level  
–0.3  
0.7 IOVDD  
1.1  
0.3 IOVDD  
V
V
IOVDD > 1.6 V  
VIH  
Input high level(5)  
IOVDD 1.6 V  
VOL  
VOH  
Output low level  
Output high level  
0.1 IOVDD  
V
V
0.8 IOVDD  
CURRENT CONSUMPTION (DRVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V)  
IDRVDD + IAVDD  
RESET held low  
IDVDD  
0.1  
0.2  
µA  
mA  
µA  
Mono ADC record, fS = 8 kSPS, I2S slave,  
IDRVDD + IAVDD  
2.15  
0.48  
4.31(6)  
2.45(6)  
3.5  
AGC off, no signal  
IDVDD  
Mono ADC record, fS = 48 kSPS, I2S slave,  
AGC off, no signal  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
IDRVDD + IAVDD  
IDVDD  
Mono DAC playback to lineout, analog mixer  
bypassed, fS = 48 kSPS, I2S slave  
2.3  
4.9  
Mono DAC playback to lineout, fS = 48 kSPS,  
I2S slave, no signal  
IIN  
2.3  
6.7  
Mono DAC playback to mono single-ended  
headphone, fS = 48 kSPS, I2S slave, no signal  
2.3  
3.11  
0
Mono line in to mono line out, no signal  
Extra power when PLL enabled  
1.4  
0.9  
28  
All blocks powered down, headset detection  
enabled, headset not inserted  
2
(5) When IOVDD < 1.6 V, minimum VIH is 1.1 V.  
(6) Additional power is consumed when the PLL is powered.  
Copyright © 2017, Texas Instruments Incorporated  
9
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
6.6 Audio Data Serial Interface Timing Requirements(1)(2)  
IOVDD = 1.1 V  
IOVDD = 3.3 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
I2S, LEFT-JUSTIFIED AND RIGHT-JUSTIFIED TIMING IN MASTER MODE (See 1)  
td(WS)  
ADWS, WCLK delay time  
ADWS, WCLK to DOUT delay time  
BCLK to DOUT delay time  
DIN setup time  
50  
50  
50  
15  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(DO-WS)  
td(DO-BCLK)  
ts(DI)  
th(DI)  
tr  
10  
10  
6
6
DIN hold time  
Rise time  
30  
30  
10  
10  
tf  
Fall time  
DSP TIMING IN MASTER MODE (See 2)  
td(WS)  
ADWS, WCLK delay time  
BCLK to DOUT delay time  
DIN setup time  
DIN hold time  
50  
50  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
td(DO-BCLK)  
ts(DI)  
th(DI)  
tr  
10  
10  
6
6
Rise time  
30  
30  
10  
10  
tf  
Fall time  
I2S, LEFT-JUSTIFIED AND RIGHT-JUSTIFIED TIMING IN SLAVE MODE (See 3)  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
td(DO-WS)  
td(DO-BCLK)  
ts(DI)  
BCLK high period  
70  
70  
10  
10  
35  
35  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low period  
ADWS, WCLK setup time  
ADWS, WCLK hold time  
6
ADWS, WCLK to DOUT delay time (for left-justified mode only)  
50  
50  
35  
20  
BCLK to DOUT delay time  
DIN setup time  
DIN hold time  
Rise time  
10  
10  
6
6
th(DI)  
tr  
8
8
4
4
tf  
Fall time  
DSP TIMING IN SLAVE MODE (See 4)  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
td(DO-BCLK)  
ts(DI)  
BCLK high period  
BCLK low period  
ADWS, WCLK setup time  
ADWS, WCLK hold time  
BCLK to DOUT delay time  
DIN setup time  
70  
70  
10  
10  
35  
35  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
50  
20  
10  
10  
6
6
th(DI)  
DIN hold time  
tr  
Rise time  
8
8
4
4
tf  
Fall time  
(1) All timing specifications are measured at characterization but not tested at final test.  
(2) All specifications at 25°C, DVDD = 1.8 V.  
10  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
WCLK  
td(WS)  
BCLK  
td(DO-WS)  
td(DO-BCLK)  
SDOUT  
tS(DI)  
th(DI)  
SDIN  
WCLK  
BCLK  
T0145-01  
1. I2S, Left-Justified and Right-Justified Format Timing in Master Mode  
td(WS)  
td(WS)  
td(DO-BCLK)  
SDOUT  
tS(DI)  
th(DI)  
SDIN  
T0146-01  
2. DSP Timing in Master Mode  
版权 © 2017, Texas Instruments Incorporated  
11  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
WCLK  
tS(WS)  
th(WS)  
tH(BCLK)  
BCLK  
tL(BCLK)  
td(DO-WS)  
td(DO-BCLK)  
SDOUT  
tS(DI)  
th(DI)  
SDIN  
T0145-02  
3. I2S, Left-Justified and Right-Justified Format Timing in Slave Mode  
12  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
WCLK  
tS(WS)  
th(WS)  
tS(WS)  
th(WS)  
tL(BCLK)  
BCLK  
tH(BCLK)  
td(DO-BCLK)  
SDOUT  
tS(DI)  
th(DI)  
SDIN  
T0146-02  
4. DSP Timing in Slave Mode  
版权 © 2017, Texas Instruments Incorporated  
13  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
−20  
−40  
−60  
HPOUT DRVDD = 2.7 V  
HPOUT DRVDD = 3.3 V  
HPOUT DRVDD = 3.6 V  
−80  
−100  
−120  
−140  
−160  
0
2
4
6
8
10  
12 14  
16 18  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Headphone Power (mW)  
f − Frequency − kHz  
G003  
Load = 16 Ω, ac-coupled  
5. THD vs Headphone Power, 16-Load  
6. DAC to Line Output FFT Plot  
0
−20  
−40  
−60  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
−80  
−100  
−120  
−140  
−160  
0
2
4
6
8
10  
12 14  
16 18  
20  
0
10  
20  
30  
40  
50  
60  
f − Frequency − kHz  
PGA Gain Setting − dB  
G006  
G004  
Input = –65 dBFS  
7. Line Input to ADC FFT Plot  
8. ADC SNR vs PGA Gain Setting, –65-dBFS Input  
0.85  
0.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
MICBIAS = AVDD  
0.75  
0.7  
MICBIAS = 2.5 V  
0.65  
0.6  
MICBIAS = 2 V  
0.55  
0.5  
ADC  
70  
2.7  
2.8  
2.9  
3.0 3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
10  
20  
30  
40  
50  
60  
AVDD - Supply Voltage - V  
G007  
PGA Setting (dB)  
10. MICBIAS Output Voltage vs AVDD  
9. ADC Gain Error vs PGA Gain Setting  
14  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
at 25°C, AVDD = DRVDD = IOVDD = 3.3 V, DVDD = 1.8 V, fS = 48 kHz, and 16-bit audio data (unless otherwise noted)  
3.2  
3.0  
MICBIAS = AVDD  
2.8  
2.6  
2.4  
MICBIAS = 2.5 V  
2.2  
2.0  
MICBIAS = 2 V  
1.8  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85  
T
A
- Ambient Temperature - °C  
G008  
11. MICBIAS Output Voltage vs Ambient Temperature  
版权 © 2017, Texas Instruments Incorporated  
15  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV320AIC3109-Q1 is a highly flexible, low-power, mono audio codec with extensive feature integration  
intended for automotive applications. Available in a 5-mm × 5-mm, 32-lead VQFN, the device integrates a host of  
features to reduce cost, board space, and power consumption in space-constrained, battery-powered, portable  
applications.  
The TLV320AIC3109-Q1 consists of the following blocks:  
Mono audio multi-bit, delta-sigma digital-to-analog converter (DAC): 8 kHz–96 kHz  
Mono audio multi-bit, delta-sigma analog-to-digital converter (ADC): 8 kHz–96 kHz  
Programmable gain amplifier (PGA): 0-dB to 59.5-dB gain  
Programmable digital audio effects processing (bass, treble, midrange, EQ, notch filter, de-emphasis)  
Two differential or two single-ended microphone or line inputs  
One differential or two single-ended headphone drivers  
Two fully differential line output drivers  
Fully programmable PLL  
Headphone, headset jack detection available as a register status bit  
7.2 Functional Block Diagram  
Audio Serial Bus Interface  
VCM  
HPCOM  
HPOUT  
AGC  
SW-D2  
LINE1P  
PGA  
0 dB-59.5 dB  
MIC1P/LINE1P  
Volume  
Control  
Digital  
Filters  
DAC  
ADC  
in  
SW-D1  
MIC1M/LINE1M  
0.5-dB Steps  
LINE1M  
LINE1P  
LINE1M  
SW-L1  
LINE2P  
LEFT_LOP  
LEFT_LOM  
PGA  
0 dB-59.5 dB  
SW-L0  
SW-L3  
MIC2P/LINE2P  
in  
MIC2M/LINE2M  
0.5-dB Steps  
SW-L4  
LINE2M  
LINE2P  
LINE2M  
SW-R1  
RIGHT_LOP  
RIGHT_LOM  
SW-R0  
SW-R3  
I2C Serial  
Control Bus  
Bias ,  
Reference  
Audio Clock  
Generation  
Voltage Supplies  
SW-R4  
16  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.3 Feature Description  
7.3.1 Hardware Reset  
The TLV320AIC3109-Q1 requires a hardware reset after power-up for proper operation. After all power supplies  
are at their specified values, the RESET pin must be driven low for at least 10 ns. If this reset sequence is not  
performed, the TLV320AIC3109-Q1 may not respond properly to register reads or writes.  
This device also offers a software reset (page 0, register 1) that can be used by the host to reset all registers on  
page 0 and page 1 to their reset values. In cases where changes are needed only for routing or volume-control  
registers, these changes can be accomplished by writing directly to the appropriate registers rather than using  
the software or hardware reset.  
In cases where the ESD events generate a device reset, a minimum 1-nF capacitor is recommended to be  
connected between the RESET pin and DVSS. This capacitor avoids ESD events that can place the codec in  
default state.  
7.3.2 Digital Audio Data Serial Interface  
Audio data are transferred between the host processor and the TLV320AIC3109-Q1 via the digital audio data  
serial interface. The audio bus of the TLV320AIC3109-Q1 can be configured for left- or right-justified, I2S, DSP,  
or TDM modes of operation, where communication with standard PCM interfaces is supported within TDM mode.  
These modes are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits. In addition, the word  
clock (WCLK) and bit clock (BCLK) can be independently configured in either master or slave mode for flexible  
connectivity to a wide variety of processors.  
The word clock (WCLK) is used to define the beginning of a frame, and can be programmed as either a pulse or  
a square-wave signal. The frequency of this clock corresponds to the selected ADC and DAC sampling  
frequency.  
The bit clock (BCLK) is used to clock in and out the digital audio data across the serial bus. When in master  
mode, this signal can be programmed in two further modes: continuous transfer mode, and 256-clock mode. In  
continuous transfer mode, only the minimal number of bit clocks required to transfer the audio data are  
generated, so in general the number of bit clocks per frame is two times the data width. For example, if the data  
width is chosen as 16 bits, then 32-bit clocks are generated per frame. If the bit clock signal in master mode is to  
be used by a PLL in another device, then the 16-bit or 32-bit data-width selections are recommended be used.  
These cases result in a low-jitter bit clock signal being generated, with frequencies of 32 fS or 64 fS. For a 20-bit  
and 24-bit data width in master mode, the bit clocks generated in each frame are not all of equal period because  
the device does not have a clean 40-fS or 48-fS clock signal readily available. The average frequency of the bit  
clock signal is still accurate in these cases (40 fS or 48 fS), but the resulting clock signal has higher jitter than in  
the 16-bit and 32-bit cases.  
In 256-clock mode, a constant 256 bit clocks per frame are generated, independent of the data width chosen.  
The TLV320AIC3109-Q1 further includes programmability to place the DOUT line in the high-impedance state  
during all bit clocks when valid data are not being sent. By combining this capability with the ability to program at  
what bit clock in a frame the audio data begins, time-division multiplexing (TDM) can be accomplished, resulting  
in multiple codecs able to use a single audio serial data bus.  
When the digital audio data serial interface is powered down when configured in master mode, the pins  
associated with the interface are put into a high-impedance state.  
The following subsections describe the supported data interface protocols. These protocols can be used for left-  
and right-channel applications. Only one of the two possible channels can be selected because the  
TLV320AIC3109-Q1 is a mono audio codec. Only the left channel is valid for DOUT (output data). For DIN (input  
data), valid data can be selected with bits 4 and 3 of register 7, page 0.  
版权 © 2017, Texas Instruments Incorporated  
17  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2.1 Right-Justified Mode  
In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling  
edge of the word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock  
preceding the rising edge of the word clock. 12 shows a timing diagram of this operation.  
1/fs  
WCLK  
BCLK  
Right Channel  
Left Channel  
SDIN/SDOUT  
0
n–1 n–2 n–3  
MSB  
2
1
0
n–1 n–2 n–3  
2
1
0
LSB  
T0149-01  
12. Right-Justified Serial Data Bus Mode Operation  
7.3.2.2 Left-Justified Mode  
In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock following the falling  
edge of the word clock. Similarly, the MSB of the left channel is valid on the rising edge of the bit clock following  
the rising edge of the word clock. 13 shows a timing diagram of this operation.  
1/fs  
WCLK  
BCLK  
Right Channel  
Left Channel  
SDIN/SDOUT  
0
n–1 n–2 n–3  
MSB  
2
1
0
n–1 n–2 n–3  
2
1
0
n–1 n–2  
LSB  
T0150-01  
13. Left-Justified Serial Data Bus Mode Operation  
18  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Feature Description (接下页)  
7.3.2.3 I2S Mode  
In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge  
of the word clock. Similarly, the MSB of the right channel is valid on the second rising edge of the bit clock after  
the rising edge of the word clock. 14 shows a timing diagram of this operation.  
1/fs  
WCLK  
BCLK  
1 Clock Before MSB  
Right Channel  
Left Channel  
SDIN/SDOUT  
n–1 n–2 n–3  
MSB  
2
1
0
n–1 n–2 n–3  
2
1
0
n–1  
LSB  
T0151-01  
14. I2S Serial Data Bus Mode Operation  
7.3.2.4 DSP Mode  
In DSP mode, the rising edge of the word clock starts the data transfer with the left-channel data first,  
immediately followed by the right-channel data. Each data bit is valid on the falling edge of the bit clock. 15  
shows a timing diagram of this operation.  
1/fs  
WCLK  
BCLK  
Right Channel  
Left Channel  
SDIN/SDOUT  
n–1 n–2 n–3 n–4  
LSB MSB  
2
1
0
n–1 n–2 n–3  
2
1
0
n–1  
LSB MSB  
LSB  
T0152-01  
15. DSP Serial Data Bus Mode Operation  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2.5 TDM Data Transfer  
Time-division multiplexed data transfer can be realized in any of the left-justified transfer modes if the 256-clock  
bit-clock mode is selected, although it is recommended to be used in either left-justified mode or DSP mode. By  
changing the programmable offset, the bit clock in each frame where the data begins can be changed, and the  
serial data output driver (DOUT) can also be programmed to the high-impedance state during all bit clocks  
except when valid data is being put onto the bus. This format allows other codecs to be programmed with  
different offsets and to drive their data onto the same DOUT line, just in a different slot. For incoming data, the  
codec simply ignores data on the bus except when expected based on the programmed offset.  
The location of the data when an offset is programmed is different depending on what transfer mode is selected.  
In DSP mode, both the left and right channels of data are transferred immediately adjacent to each other in the  
frame. This configuration differs from left-justified mode, where the left- and right-channel data are always a half-  
frame apart in each frame. In this case, when the offset is programmed from zero to some higher value, both the  
left- and right-channel data move across the frame, but still stay a full half-frame apart from each other. 16  
shows the TDM transfer for DSP mode and left-justified mode.  
DSP Mode  
Word Clock  
Bit Clock  
• • • •  
• • • • • •  
Data In/Out  
N–1 N–2  
1
0
N–1 N–2  
1
0
Offset  
Right-Channel Data  
Left-Channel Data  
Left-Justified Mode  
Word Clock  
Bit Clock  
• • • •  
• • • •  
N–1 N–2  
1
0
Data In/Out  
N–1 N–2  
1
0
Offset  
Offset  
Right-Channel Data  
Left-Channel Data  
T0153-01  
16. DSP Mode and Left-Justified Mode, Showing the  
Effect of a Programmed Data-Word Offset  
7.3.3 Audio Data Converters  
The TLV320AIC3109-Q1 supports the following standard audio sampling rates: 8 kHz, 11.025 kHz, 12 kHz,  
16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz. The converters also can operate at  
different sampling rates in various combinations, as described in this section.  
The data converters are based on the concept of an fS(ref) rate that is used internal to the device, and is related to  
the actual sampling rates of the converters through a series of ratios. For typical sampling rates, fS(ref) is either  
44.1 kHz or 48 kHz, although fS(ref) can realistically be set over a wider range of rates up to 53 kHz, with  
additional restrictions if the PLL is used. This concept is used to set the sampling rates of the ADC and DAC, and  
also to enable high-quality playback of low-sampling-rate data without high-frequency audible noise being  
generated.  
20  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Feature Description (接下页)  
The sampling rate of the ADC and DAC is determined by the clock divider (NCODEC). The sampling rate can be  
set to fS(ref) / NCODEC or 2 × fS(ref) / NCODEC, with NCODEC being 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, or 6 for  
both the NDAC and NADC settings. In the TLV320AIC3109-Q1, NDAC and NADC must be set to the same value  
because the device only supports a common sampling rate for the ADC and DAC channels. Therefore, NCODEC  
= NDAC = NADC and this value is programmed by setting the value of bits 7–4 equal to the value of bits 3–0 in  
register 2, page 0.  
7.3.3.1 Audio Clock Generation  
The audio converters in the TLV320AIC3109-Q1 need an internal audio master clock at a frequency of 256 fS(ref)  
,
which can be obtained in a variety of manners from an external clock signal applied to the device. 17 shows a  
detailed diagram of the audio clock section of the TLV320AIC3109-Q1.  
MCLK BCLK  
PLL_CLKIN  
CLKDIV_CLKIN  
CLKDIV_IN  
PLL_IN  
K = J.D  
J = 1, 2, 3, ...., 62, 63  
K*R/P  
D = 0000, 0001, ...., 9998, 9999  
R = 1, 2, 3, 4, ...., 15, 16  
P = 1, 2, ...., 7, 8  
Q = 2, 3,….., 16, 17  
2/Q  
CLKDIV_OUT  
PLL_OUT  
1/8  
PLLDIV_OUT  
CODEC_CLKIN  
CODEC_CLK = 256 ´ fS(ref)  
CODEC  
DAC fS  
ADC fS  
WCLK = fS(ref)/NCODEC  
CODEC fS = DAC fS = ADC fS  
Set NCODEC = NADC = NDAC = 1, 1.5, 2, ...., 5.5, 6  
DAC DRA => NDAC = 0.5  
ADC DRA => NADC = 0.5  
B0153-01  
17. Audio Clock Generation Processing  
The device can accept an MCLK input from 512 kHz to 50 MHz that can then be passed through either a  
programmable divider or a PLL to get the proper internal audio master clock required by the device. The BCLK  
input can also be used to generate the internal audio master clock.  
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
A primary concern is proper operation of the codec at various sample rates with the limited MCLK frequencies  
available in the system. This device includes a highly programmable PLL to accommodate such situations easily.  
The integrated PLL can generate audio clocks from a wide variety of possible MCLK inputs, with particular focus  
paid to the standard MCLK rates already widely used.  
When the PLL is disabled,  
fS(ref) = CLKDIV_IN / (128 × Q)  
where  
Q = 2, 3…17; Q is register-programmable and can be set by bits 6–3 in register 3, page 0  
(1)  
CLKDIV_IN can be MCLK or BCLK, selected by register 102, bits 7–6.  
When NCODEC = 1.5, 2.5, 3.5, 4.5, or 5.5, odd values of Q are not allowed. In this mode,  
MCLK can be as high as 50 MHz, and fS(ref) must fall within 39 kHz to 53 kHz, inclusively.  
When the PLL is enabled,  
fS(ref) = (PLLCLK_IN × K × R) / (2048 × P)  
where  
P = 1, 2, 3…8  
R = 1, 2…16  
K = J.D  
J = 1, 2, 3…63  
D = 0000, 0001, 0002, 0003…9998, 9999  
PLLCLK_IN can be MCLK or BCLK, selected by bits 5–4 in register 102, page 0  
(2)  
P, R, J, and D are register programmable. J is the integer portion of K (the numbers to the left of the decimal  
point), whereas D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits  
of precision). P can be set by bits 2–0 in register 3, page 0. R can be set by bits 3–0 in register 11, page 0. J can  
be set by bits 7–2 in register 4, page 0. The most-significant bits of D can be set by bits 7–0 in register 5, page 0,  
and the least-significant bits of D can be set by bits 7–2 in register 6, page 0.  
Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied to meet specified  
performance:  
2 MHz (PLLCLK_IN / P) 20 MHz  
80 MHz (PLLCLK _IN × K × R / P) 110 MHz  
4 J 55  
When the PLL is enabled and D 0000, the following conditions must be satisfied to meet specified  
performance:  
10 MHz PLLCLK _IN / P 20 MHz  
80 MHz PLLCLK _IN × K × R / P 110 MHz  
4 J 11  
R = 1  
Example:  
MCLK = 12 MHz and fS(ref) = 44.1 kHz  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
22  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Feature Description (接下页)  
Example:  
MCLK = 12 MHz and fS(ref) = 48 kHz  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
1 lists several example cases of typical MCLK rates and how to program the PLL to achieve fS(ref) = 44.1 kHz  
or 48 kHz.  
1. Typical MCLK Rates  
MCLK (MHz)  
P
R
J
D
ACHIEVED fS(ref)  
% ERROR  
fS(ref) = 44.1 kHz  
2.8224  
5.6448  
12  
1
1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
32  
16  
7
0
44,100  
44,100  
0
0
0
5264  
9474  
6448  
7040  
5893  
5264  
44,100  
0
13  
6
44,099.71  
44,100  
–0.0007  
16  
5
0
19.2  
4
44,100  
0
19.68  
48  
4
44,100.3  
44,100  
0.0007  
0
7
fS(ref) = 48 kHz  
2.048  
3.072  
4.096  
6.144  
8.192  
12  
1
1
1
1
1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
48  
32  
24  
16  
12  
8
0
48,000  
48,000  
0
0
0
0
48,000  
0
0
48,000  
0
0
48,000  
0
1920  
5618  
1440  
1200  
9951  
1920  
48,000  
0
13  
7
47,999.71  
48,000  
–0.0006  
16  
6
0
19.2  
5
48,000  
0
–0.0004  
0
19.68  
48  
4
47,999.79  
48,000  
8
7.3.3.2 Mono Audio ADC  
The TLV320AIC3109-Q1 includes a mono audio ADC that uses a delta-sigma modulator with 128-times  
oversampling in single-rate mode, followed by a digital decimation filter. The ADC supports sampling rates from  
8 kHz to 96 kHz. Whenever the ADC or DAC is in operation, the device requires that an audio master clock be  
provided and appropriate audio clock generation be set up within the device.  
The integrated digital decimation filter removes high-frequency content and downsamples the audio data from an  
initial sampling rate of 128 fS to the final output sampling rate of fS. The decimation filter provides a linear phase  
output response with a group delay of 17 / fS. The –3-dB bandwidth of the decimation filter extends to 0.45 fS and  
scales with the sample rate (fS). The filter has minimum 75-dB attenuation over the stop band from 0.55 fS to 64  
fS. The device also provide options to select the corner frequency of the digital high-pass filter.  
Requirements for analog antialiasing filtering are very relaxed because of the oversampling nature of the audio  
ADC and the integrated digital decimation filtering. The TLV320AIC3109-Q1 integrates a second-order analog  
antialiasing filter with 20-dB attenuation at 1 MHz. This filter, combined with the digital decimation filter, provides  
sufficient antialiasing filtering without requiring additional external components.  
The ADC is preceded by a programmable gain amplifier (PGA) that allows analog gain control from 0 dB to  
59.5 dB in steps of 0.5 dB. The PGA gain changes are implemented with an internal soft-stepping algorithm that  
only changes the actual volume level by one 0.5-dB step every one or two ADC output samples, depending on  
the register programming (see registers 19 and 22, page 0). This soft-stepping ensures that volume control  
changes occur smoothly with no audible artifacts. On reset, the PGA gain defaults to a mute condition, and on  
版权 © 2017, Texas Instruments Incorporated  
23  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
power-down, the PGA soft-steps the volume to mute before shutting down. A read-only flag is set whenever the  
gain applied by PGA equals the desired value set by the register. The soft-stepping control can also be disabled  
by programming a register bit. When soft-stepping is enabled, the audio master clock must be applied to the  
device after the ADC power-down register is written to ensure the soft-stepping to mute has completed. When  
the ADC power-down flag is no longer set, the audio master clock can be shut down.  
An additional auxiliary PGA is provided to allow the mixing of the DAC output signals with an input not routed  
through the ADC. This PGA has the same specifications as the ADC PGA.  
7.3.3.2.1 Mono Audio ADC High-Pass Filter  
Often in audio applications, the dc offset needs to be removed from the converted audio data stream. The  
TLV320AIC3109-Q1 has a programmable first-order, high-pass filter that can be used for this purpose. The  
digital filter coefficients are in 16-bit format and therefore use two 8-bit registers for each of the three coefficients,  
N0, N1, and D1. 公式 3 shows the form of the digital high-pass filter transfer function:  
*1  
N0 ) N1   z  
H(z) +  
*1  
32, 768 * D1   z  
(3)  
Programming the channel is done by writing to registers 65–70, page 1. After the coefficients are loaded, these  
ADC high-pass filter coefficients can be selected by writing to bit 7 in register 107, page 0, and the high-pass  
filter can be enabled by writing to bit 7 in register 12, page 0.  
7.3.3.2.2 Automatic Gain Control (AGC)  
An automatic gain control (AGC) circuit is included with the ADC and can be used to maintain nominally constant  
output signal amplitude when recording speech signals (the AGC can be fully disabled if not needed). This  
circuitry automatically adjusts the PGA gain when the input signal becomes overly loud or very weak, such as  
when a person speaking into a microphone moves closer or farther from the microphone. The AGC algorithm has  
several programmable settings, including target level, attack and decay time constants, noise threshold, and  
maximum PGA gain applicable that allow the algorithm to be fine-tuned for any particular application. These AGC  
features are explained in this section, and 18 illustrates their operation. The algorithm uses the absolute  
average of the signal (which is the average of the absolute value of the signal) as a measure of the nominal  
amplitude of the output signal.  
24  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Attack  
Time  
Decay Time  
W0002-01  
18. Typical Operation of the AGC Algorithm During Speech Recording  
7.3.3.2.2.1 Target Level  
Target value represents the nominal output level at which the AGC attempts to hold the ADC output signal level.  
The TLV320AIC3109-Q1 allows programming of eight different target levels, which can be programmed from  
–5.5 dB to –24 dB relative to a full-scale signal. The target level is recommended to be set with enough margin to  
avoid clipping at the occurrence of loud sounds because the device reacts to the signal absolute average and not  
to peak levels.  
7.3.3.2.2.2 Attack Time  
Attack time determines how quickly the AGC circuitry reduces the PGA gain when the input signal is too loud. It  
Attack time can be varied from 7 ms to 1,408 ms. The attack time can be programmed by writing to register 105,  
page 0.  
7.3.3.2.2.3 Decay Time  
Decay time determines how quickly the PGA gain is increased when the input signal is too low. It Decay time can  
be varied in the range from 0.05 s to 22.4 s. Decay time is programmed by writing to register 106, page 0.  
The actual maximum AGC decay time is based on a counter length, so the maximum decay time scales with the  
clock setup that is used. 2 lists the relationship of the NCODEC ratio to the maximum time available for the  
AGC decay. In practice, these maximum times are extremely long for audio applications and must not limit any  
practical AGC decay time that is needed by the system.  
版权 © 2017, Texas Instruments Incorporated  
25  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
2. AGC Decay Time Restriction  
NCODEC RATIO  
MAXIMUM DECAY TIME  
(SECONDS)  
1
1.5  
2
4
5.6  
8
2.5  
3
9.6  
11.2  
11.2  
16  
3.5  
4
4.5  
5
16  
19.2  
22.4  
22.4  
5.5  
6
7.3.3.2.2.4 Noise Gate Threshold  
If the input speech average value falls below the level determined by this threshold, the AGC considers the  
speech input to be silent and brings down the gain to 0 dB in steps of 0.5 dB every sample period and sets the  
noise threshold flag. The gain stays at 0 dB unless the input speech signal average rises above the noise  
threshold setting. This threshold ensures that noise is not gained up during times of silence. The noise threshold  
level in the AGC algorithm is programmable from –30 dB to –90 dB relative to full-scale. A disable noise gate  
feature is also available. This operation includes programmable debounce and hysteresis functionality to avoid  
the AGC gain from cycling between high gain and 0 dB when signals are near the noise threshold level. When  
the noise threshold flag is set, ignore the status of gain applied by the AGC and the saturation flag.  
7.3.3.2.2.5 Maximum PGA Gain Applicable  
The maximum PGA gain that can be applied by the AGC algorithm can be restricted. This restriction can be used  
for limiting PGA gain in situations where environmental noise is greater than the programmed noise threshold.  
The PGA gain can be programmed from 0 dB to 59.5 dB in steps of 0.5 dB.  
The time constants are correct when the ADC is not in double-rate audio mode. The time constants are achieved  
by using the fS(ref) value programmed in the control registers. However, if the fS(ref) is set in the registers (for  
example, to 48 kHz), but the actual audio clock or PLL programming results in a different fS(ref) in practice, then  
the time constants are incorrect; see the Decay Time section for more information.  
7.3.4 Mono Audio DAC  
The TLV320AIC3109-Q1 includes a mono audio DAC supporting sampling rates from 8 kHz to 96 kHz. The DAC  
consists of a digital audio processing block, a digital interpolation filter, a multi-bit digital delta-sigma modulator,  
and an analog reconstruction filter. The DAC is designed to provide enhanced performance at low sampling rates  
through increased oversampling and image filtering, thereby keeping quantization noise generated within the  
delta-sigma modulator and signal images strongly suppressed within the audio band to beyond 20 kHz. This is  
realized by keeping the upsampled rate constant at 128 fS(ref) and changing the oversampling ratio when the  
input sample rate changes. For an fS(ref) of 48 kHz, the digital delta-sigma modulator always operates at a rate of  
6.144 MHz, which ensures that quantization noise generated within the delta-sigma modulator stays low within  
the frequency band below 20 kHz at all sample rates. Similarly, for an fS(ref) rate of 44.1 kHz, the digital delta-  
sigma modulator always operates at a rate of 5.6448 MHz.  
The following restrictions apply in the case when the PLL is powered down and double-rate audio mode is  
enabled in the DAC.  
Allowed Q values = 4, 8, 9, 12, 16  
Q values where equivalent fS(ref) can be achieved by turning on the PLL  
Q = 5, 6, 7 (set P = 5, 6, or 7, K = 16, and PLL enabled)  
Q = 10, 14 (set P = 5 or 7, K = 8, and PLL enabled)  
26  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.3.4.1 Digital Audio Processing for Playback  
The DAC channel consists of optional filters for de-emphasis and bass, treble, midrange level adjustment, and  
speaker equalization. The de-emphasis function is implemented by a programmable digital filter block with fully  
programmable coefficients (see registers 21–26, page 1). If de-emphasis is not required in a particular  
application, this programmable filter block can be used for some other purpose. 公式 4 gives the de-emphasis  
filter transfer function:  
*1  
N0 ) N1   z  
H(z) +  
*1  
32, 768 * D1   z  
where  
The N0, N1, and D1 coefficients are fully programmable individually  
(4)  
3 lists the coefficients that must be loaded to implement standard de-emphasis filters.  
3. De-Emphasis Coefficients for Common Audio Sampling Rates  
SAMPLING FREQUENCY  
32 kHz  
N0  
N1  
D1  
16,950  
15,091  
14,677  
–1,220  
–2,877  
–3,283  
17,037  
20,555  
21,374  
44.1 kHz  
48 kHz(1)  
(1) The 48-kHz coefficients listed in 3 are used as defaults.  
In addition to the de-emphasis filter block, the DAC digital effects processing includes a fourth-order digital IIR  
filter with programmable coefficients. This filter is implemented as a cascade of two biquad sections with the  
frequency response given by:  
N0 ) 2   N1   z*1 ) N2   z*2  
N3 ) 2   N4   z*1 ) N5   z*2  
ǒ
Ǔǒ  
Ǔ
32, 768 * 2   D1   z*1 * D2   z*2 32, 768 * 2   D4   z*1 * D5   z*2  
(5)  
The N and D coefficients are fully programmable and the entire filter can be enabled or bypassed. The structure  
of the filtering when configured for channel processing is illustrated in 19, with LB1 corresponding to the first  
biquad filter using coefficients N0, N1, N2, D1, and D2. LB2 similarly corresponds to the second biquad filter  
using coefficients N3, N4, N5, D4, and D5.  
LB1  
LB2  
B0154-01  
19. Structure of Digital Effects Processing for Channel Processing  
The coefficients for this filter implement a variety of sound effects, with bass boost or treble boost being the most  
commonly used in portable audio applications. The default N and D coefficients in the device are given in 4  
and implement a shelving filter with 0-dB gain from dc to approximately 150 Hz, at which point the filter rolls off to  
a 3-dB attenuation for higher frequency signals, thus giving a 3-dB boost to signals below 150 Hz. The N and D  
coefficients are represented by 16-bit, 2's-complement numbers with values ranging from –32,768 to 32,767.  
4. Default Digital Effects Processing Filter Coefficients,  
When in Independent Channel Processing Configuration  
COEFFICIENTS  
N0 = N3  
D1 = D4  
N1 = N4  
D2 = D5  
N2 = N5  
27,619  
32,131  
–27,034  
–31,506  
26,461  
版权 © 2017, Texas Instruments Incorporated  
27  
 
 
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
The digital effects filters are recommended to be disabled when the filter coefficients are being modified. When  
new coefficients are being written to the device over the control port, a filter using partially updated coefficients  
can possibly implement an unstable system and lead to oscillation or objectionable audio output. By disabling the  
filters, changing the coefficients, and then reenabling the filters, these types of effects can be entirely avoided.  
7.3.4.2 Digital Interpolation Filter  
The digital interpolation filter upsamples the output of the digital audio processing block by the required  
oversampling ratio before data are provided to the digital delta-sigma modulator and analog reconstruction filter  
stages. The filter provides a linear phase output with a group delay of 21 / fS. In addition, programmable digital  
interpolation filtering is included to provide enhanced image filtering and reduce signal images caused by the  
upsampling process that are below 20 kHz. For example, upsampling an 8-kHz signal produces signal images at  
multiples of 8-kHz (that is, 8 kHz, 16 kHz, 24 kHz, and so forth). The images at 8 kHz and 16 kHz are below  
20 kHz and are still audible to the listener; therefore, these images must be filtered heavily to maintain a good  
quality output. The interpolation filter is designed to maintain at least 65-dB rejection of images that are below  
7.455 fS. In order to use the programmable interpolation capability, program fS(ref) to a higher rate (restricted to be  
in the range of 39 kHz to 53 kHz when the PLL is in use), and the actual fS is set using the NCODEC divider,  
where NCODEC = NDAC = NADC. For example, if fS = 8 kHz is required, then fS(ref) can be set to 48 kHz and  
the DAC fS set to fS(ref) / 6. This setting ensures that all images of the 8-kHz data are sufficiently attenuated well  
beyond a 20-kHz audible frequency range.  
7.3.4.3 Delta-Sigma Audio DAC  
The mono audio DAC incorporates a third-order, multi-bit, delta-sigma modulator followed by an analog  
reconstruction filter. The DAC provides high-resolution, low-noise performance, using oversampling and noise  
shaping techniques. The analog reconstruction filter design consists of a six-tap analog FIR filter followed by a  
continuous-time RC filter. The analog FIR operates at a rate of 128 fS(ref) (6.144 MHz when fS(ref) = 48 kHz,  
5.6448 MHz when fS(ref) = 44.1 kHz). The DAC analog performance can be degraded by excessive clock jitter on  
the MCLK input. Therefore, care must be taken to keep jitter on this clock to a minimum.  
7.3.4.4 Audio DAC Digital Volume Control  
The audio DAC includes a digital volume control block that implements a programmable digital gain. The volume  
level can be varied from 0 dB to –63.5 dB in 0.5-dB steps, or set to mute, independently for each channel. The  
volume level can also be changed by the master volume control. Gain changes are implemented with a soft-  
stepping algorithm that only changes the actual volume by one step per input sample, either up or down, until the  
desired volume is reached. The rate of soft-stepping can be slowed to one step per two input samples through a  
register bit.  
The host does not know when the DAC is muted because of the soft-stepping, which may be important if the  
host wishes to mute the DAC before making a significant change, such as changing sample rates. In order to  
help with this situation, the device provides a flag back to the host via a read-only register bit that alerts the host  
when the device completes the soft-stepping and the actual volume reaches the desired volume level. The soft-  
stepping feature can be disabled through register programming. If soft-stepping is enabled, keep the MCLK  
signal applied to the device until the DAC power-down flag is set. When this flag is set, the internal soft-stepping  
process and power-down sequence is complete, and the MCLK can then be stopped if desired.  
The TLV320AIC3109-Q1 also includes functionality to detect when the selection of de-emphasis or digital audio  
processing functionality is changed. When the new selection is detected, the TLV320AIC3109-Q1 (1) soft-mutes  
the DAC volume control, (2) changes the operation of the digital effects processing to match the new selection,  
and (3) soft-unmutes the device. These steps avoid any possible pops or clicks in the audio output resulting from  
instantaneous changes in the filtering. A similar algorithm is used when first powering up or powering down the  
DAC. The circuit begins operation at power-up with the volume control muted, then soft-steps the volume up to  
the desired level. At power-down, the logic first soft-steps the volume down to a mute level, then powers down  
the circuitry.  
7.3.4.5 Increasing DAC Dynamic Range  
The TLV320AIC3109-Q1 allows trading off dynamic range with power consumption. The DAC dynamic range can  
be increased by writing to bits 7–6 in register 109, page 0. The lowest DAC current setting is the default, and the  
dynamic range is displayed in the Audio DAC, Differential Line Output section of the Electrical Characteristics  
table. Increasing the current can increase the DAC dynamic range by up to 1.5 dB.  
28  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.3.4.6 Analog Output Common-mode Adjustment  
The output common-mode voltage and output range of the analog output are determined by an internal band-gap  
reference, in contrast to other codecs that can use a scaled version of the analog supply. This scheme is used to  
reduce noise coupling that can be on the supply (such as 217-Hz noise in a GSM cell phone) into the audio  
signal path.  
However, because of the possible wide variation in analog supply range (2.7 V–3.6 V), an output common-mode  
voltage setting of 1.35 V, which is used for a 2.7-V supply case, is overly conservative if the supply is much  
larger (such as 3.3 V or 3.6 V). In order to optimize device operation, the TLV320AIC3109-Q1 includes a  
programmable output common-mode level that can be set by register programming to a level most appropriate to  
the actual supply range used by a particular customer. The output common-mode level can be varied among four  
different values, ranging from 1.35 V (most appropriate for low supply ranges, near 2.7 V) to 1.8 V (most  
appropriate for high supply ranges, near 3.6 V). As described in 5, the recommended DVDD voltage is  
dependent on the CM setting.  
5. Appropriate Settings  
CM SETTING  
1.35 V  
RECOMMENDED AVDD, DRVDD  
RECOMMENDED DVDD  
1.525 V–1.95 V  
1.65 V–1.95 V  
1.8 V–1.95 V  
2.7 V–3.6 V  
3 V–3.6 V  
3.3 V–3.6 V  
3.6 V  
1.5 V  
1.65 V  
1.8 V  
1.95 V  
7.3.5 Audio Analog Inputs  
The TLV320AIC3109-Q1 includes two single-ended audio inputs. These pins connect through series resistors  
and switches to the virtual ground pins of two fully differential operational amplifiers. By selecting to turn on only  
one set of switches per operational amplifier at a time, the inputs can be multiplexed effectively to the PGA.  
By selecting to turn on multiple sets of switches per operational amplifier at a time, mixing can also be achieved.  
Mixing of multiple inputs can easily lead to PGA outputs that exceed the range of the internal operational  
amplifiers, resulting in saturation and clipping of the mixed output signal. Whenever mixing is being implemented,  
take adequate precautions to avoid such saturation from occurring. In general, the mixed signal should not  
exceed 2 VPP (single-ended).  
In most mixing applications, there is also a general need to adjust the levels of the individual signals being  
mixed. For example, if a soft signal and a large signal are to be mixed and played together, the soft signal  
generally should be amplified to a level comparable to the large signal before mixing. In order to accommodate  
this need, the TLV320AIC3109-Q1 includes input level controls on each of the individual inputs before being  
mixed or multiplexed into the ADC PGA, with gain programmable from 0 dB to –12 dB in 1.5-dB steps. This input  
level control is not intended to be a volume control, but instead used occasionally for level setting. Soft-stepping  
of the input level control settings is implemented in this device, with the speed and functionality following the  
settings used by the ADC PGA for soft-stepping.  
版权 © 2017, Texas Instruments Incorporated  
29  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
20 shows the single-ended mixing configuration for the PGA, which enables mixing of the signals LINE1L and  
LINE1R. The PGA MIX is similar, enabling mixing of the LINE1R and LINE1L signals.  
Gain = 0, –1.5, –3, . . ., –12 dB, Mute  
MIC1P/LINE1P  
To ADC PGA  
Gain = 0, –1.5, –3, . . ., –12 dB, Mute  
MIC2P/LINE2P  
B0156-01  
20. Single-Ended Analog Input Mixing Configuration  
7.3.6 Analog Fully Differential Line Output Drivers  
The TLV320AIC3109-Q1 has two fully differential line output drivers, each capable of driving a 10-kdifferential  
load. 21 and 22 illustrate the output stage design leading to the fully differential line output drivers. This  
design includes extensive capability to adjust signal levels independently before any mixing occurs, beyond that  
already provided by the PGA gain and the DAC digital volume control.  
The PGA signal refers to the output of the ADC PGA stage that is passed around the ADC to the output stage.  
PGA_AUX is the output of the auxiliary PGA. The DAC output can be sent to the output driver and mixed with  
the PGA or PGA_AUX signal. Undesired signals can also be disconnected from the MIX through register control.  
DAC_1  
Mono  
Audio  
DAC  
DAC  
DAC_3  
PGA  
PGA_AUX  
DAC_1  
Volume  
Controls,  
Mixing  
LEFT_LOP  
LEFT_LOM  
Gain = 0 dB to 9 dB,  
Mute  
DAC_3  
PGA  
PGA_AUX  
DAC_1  
RIGHT_LOP  
RIGHT_LOM  
Volume  
Controls,  
Mixing  
Gain = 0 dB to 9 dB,  
Mute  
21. Architecture of the Output Stage Leading to the Fully Differential Line Output Drivers  
30  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
PGA  
0 dB to –78 dB  
0 dB to –78 dB  
PGA_AUX  
+
DAC_1  
0 dB to –78 dB  
22. Detail of the Volume Control and Mixing Function in 19 and 29  
The DAC signal is the output of the mono audio DAC that can be steered by register control based on the  
requirements of the system. If mixing of the DAC audio with other signals is not required, and the DAC output is  
only needed at the mono line outputs, then use the routing through the DAC_3 path to the fully differential line  
outputs. This configuration results in lower-power operation because the analog volume controls and mixing  
blocks ahead of these drivers can be powered down.  
If instead the DAC analog output must be routed to multiple output drivers simultaneously (such as to  
LEFT_LOP, LEFT_LOM and RIGHT_LOP, RIGHT_LOM) or must be mixed with other analog signals, then  
switch the DAC outputs through the DAC_1 path. This option provides the maximum flexibility for routing of the  
DAC analog signals to the output drivers.  
The TLV320AIC3109-Q1 includes an output level control on each output driver with limited gain adjustment from  
0 dB to 9 dB. The output driver circuitry in this device is designed to provide a low-distortion output when playing  
full-scale mono DAC signals at a 0-dB gain setting. However, a higher amplitude output can be obtained at the  
cost of increased signal distortion at the output. This output level control allows this tradeoff to be made based on  
the requirements of the end equipment. This output level control is not intended to be used as a standard output  
volume control, but is expected to be used only sparingly for level setting (that is, for adjustment of the full-scale  
output range of the device).  
Each differential line output driver can be powered down independently of the others when not needed in the  
system. When placed into powerdown through register programming, the driver output pins are placed into a  
high-impedance state.  
7.3.7 Analog High-Power Output Drivers  
The TLV320AIC3109-Q1 includes two high-power output drivers with extensive flexibility in their usage. These  
output drivers are individually capable of driving 30 mW each into a 16-load in single-ended configuration, and  
can be used in pairs connected in a bridge-terminated load (BTL) configuration between two driver outputs.  
The high-power output drivers can be configured in a variety of ways, including:  
1. Driving up to two single-ended output signals  
2. Driving one single-ended output signal, with the remaining driver driving a fixed VCM level  
The output stage architecture leading to the high-power output drivers is provided in 23, with the volume  
control and mixing blocks being effectively identical to those in 22. Each of these drivers has an output level  
control block like those included with the line output drivers, allowing gain adjustment up to 9 dB on the output  
signal. As in the previous case, this output level adjustment is not intended to be used as a standard volume  
control, but instead is included for additional full-scale output signal-level control.  
版权 © 2017, Texas Instruments Incorporated  
31  
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
PGA  
Volume  
Controls,  
Mixing  
PGA_AUX  
Volume Level  
0 dB to 9 dB, Mute  
VCM  
HPCOM  
DAC_1  
PGA  
Volume Level  
0 dB to 9 dB, Mute  
Volume  
Controls,  
Mixing  
HPOUT  
PGA_AUX  
DAC_2  
23. Architecture of the Output Stage Leading to the High-Power Output Drivers  
The high-power output drivers include additional circuitry to avoid artifacts on the audio output during power-on  
and power-off transient conditions. First program the type of output configuration being used in register 14, page  
0 to allow the device to select the optimal power-up scheme to avoid output artifacts. The power-up delay time  
for the high-power output drivers is also programmable over a wide range of time delays, from instantaneous up  
to 4 s, using register 42, page 0.  
When powered down, place these output drivers into a variety of output conditions based on register  
programming. If lowest-power operation is desired, then the outputs can be placed into a high-impedance state  
and all power to the output stage is removed. However, this generally results in the output nodes drifting to rest  
near the upper or lower analog supply because of small leakage currents at the pins, which then results in a  
longer delay requirement to avoid output artifacts during driver power-on. In order to reduce this required power-  
on delay, the TLV320AIC3109-Q1 includes an option for the output pins of the drivers to be weakly driven to the  
VCM level that the pins normally rest at when powered with no signal applied. This output VCM level is  
determined by an internal band-gap voltage reference, and thus results in extra power dissipation when the  
drivers are in power down. However, this option provides the fastest method for transitioning the drivers from  
power-down to full-power operation without any output artifact introduced.  
The device includes a further option that falls between the other two—although less power is required when the  
output drivers are in power down, a slightly longer delay is required to power up without artifacts than if the band-  
gap reference is kept alive. In this alternate mode, the powered-down output driver pin is weakly driven to a  
voltage of approximately half the DRVDD supply level using an internal voltage divider. This voltage does not  
match the actual VCM of a fully powered driver, but because of the output voltage being close to the final value,  
a much shorter power-up delay time setting can be used and still avoid any audible output artifacts. These output  
voltage options are controlled in page 0, register 42.  
The high-power output drivers can also be programmed to power up first with the output level (gain) control in a  
highly attenuated state; then the output driver automatically reduces the output attenuation slowly to reach the  
programmed output gain. This capability is enabled by default but can be enabled in register 40, page 0.  
7.3.8 Output Stage Volume Controls  
A basic analog volume control with a range from 0 dB to –78 dB and mute is replicated multiple times in the  
output stage network, connected to each of the analog signals that route to the output stage. In addition, to  
enable completely independent mixing operations to be performed for each output driver, each analog signal  
coming into the output stage can have up to seven separate volume controls. These volume controls all have  
approximately 0.5-dB step programmability over most of the gain range, with steps increasing slightly at the  
lowest attenuations. 6 lists the detailed gain versus programmed setting for this basic volume control.  
32  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
6. Output Stage Volume Control Settings and Gains  
GAIN  
SETTING  
ANALOG  
GAIN  
GAIN  
SETTING  
ANALOG  
GAIN  
GAIN  
SETTING  
ANALOG  
GAIN  
GAIN  
SETTING  
ANALOG  
GAIN  
(dB)  
(dB)  
(dB)  
(dB)  
0
1
0
–0.5  
–1  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
–15  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
–30.1  
–30.6  
–31.1  
–31.6  
–32.1  
–32.6  
–33.1  
–33.6  
–34.1  
–34.6  
–35.1  
–35.7  
–36.1  
–36.7  
–37.1  
–37.7  
–38.2  
–38.7  
–39.2  
–39.7  
–40.2  
–40.7  
–41.2  
–41.7  
–42.2  
–42.7  
–43.2  
–43.8  
–44.3  
–44.8  
90  
91  
–45.2  
–45.8  
–46.2  
–46.7  
–47.4  
–47.9  
–48.2  
–48.7  
–49.3  
–50  
–15.5  
–16  
2
92  
3
–1.5  
–2  
–16.5  
–17  
93  
4
94  
5
–2.5  
–3  
–17.5  
–18  
95  
6
96  
7
–3.5  
–4  
–18.6  
–19.1  
–19.6  
–20.1  
–20.6  
–21.1  
–21.6  
–22.1  
–22.6  
–23.1  
–23.6  
–24.1  
–24.6  
–25.1  
–25.6  
–26.1  
–26.6  
–27.1  
–27.6  
–28.1  
–28.6  
–29.1  
–29.6  
97  
8
98  
9
–4.5  
–5  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118–127  
–50.3  
–51  
–5.5  
–6  
–51.4  
–51.8  
–52.2  
–52.7  
–53.7  
–54.2  
–55.3  
–56.7  
–58.3  
–60.2  
–62.7  
–64.3  
–66.2  
–68.7  
–72.2  
–78.3  
Mute  
–6.5  
–7  
–7.5  
–8  
–8.5  
–9  
–9.5  
–10  
–10.5  
–11  
–11.5  
–12  
–12.5  
–13  
–13.5  
–14  
–14.5  
7.3.9 Input Impedance and VCM Control  
The TLV320AIC3109-Q1 includes several programmable settings to control analog input pins, particularly when  
these inputs are not selected for connection to a PGA. The default option allows unselected inputs to be put into  
a high-impedance state such that the input impedance of the device is extremely high. However, the pins on the  
device do include protection diode circuits connected to AVDD and AVSS. Thus, if any voltage is driven onto a  
pin approximately one diode drop (~0.6 V) above AVDD or one diode drop below AVSS, these protection diodes  
begin conducting current, resulting in an effective impedance that no longer appears as a high-impedance state.  
In most cases, ac-couple the analog input pins on the TLV320AIC3109-Q1 to the analog input sources, except if  
an ADC is used for dc voltage measurement. The ac-coupling capacitor causes a high-pass filter pole to be  
inserted into the analog signal path, so the size of the capacitor must be chosen to move that filter pole  
sufficiently low in frequency to cause minimal effect on the processed analog signal. The input impedance of the  
analog inputs when selected for connection to a PGA varies with the setting of the input level control, starting at  
approximately 20 kwith an input level control setting of 0 dB, and increasing to approximately 80 kwhen the  
input level control is set at –12 dB. For example, using a 0.1-μF ac-coupling capacitor at an analog input results  
in a high-pass filter pole of 80 Hz when the 0-dB input level control setting is selected.  
版权 © 2017, Texas Instruments Incorporated  
33  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.3.10 MICBIAS Generation  
The TLV320AIC3109-Q1 includes a programmable microphone bias output voltage (MICBIAS), capable of  
providing output voltages of 2 V or 2.5 V (both derived from the on-chip, band-gap voltage) with a 4-mA output  
current drive. In addition, the MICBIAS can be programmed to be connected to AVDD directly through an on-chip  
switch, or powered down completely when not needed for power savings. This function is controlled by register  
programming in register 25, page 0.  
7.3.11 Short-Circuit Output Protection  
The TLV320AIC3109-Q1 includes programmable short-circuit protection for the high-power output drivers for  
maximum flexibility in a given application. By default, if shorted, these output drivers automatically limit the  
maximum amount of current that can be sourced to or sunk from a load, thereby protecting the device from an  
overcurrent condition. In this mode, register 95, page 0 can be read to determine whether the device is in short-  
circuit protection or not, and then the device can be programmed to power-down the output drivers if needed.  
However, the device includes further capability to power-down an output driver automatically whenever the driver  
goes into short-circuit protection without requiring user intervention. In this case, the output driver remains in a  
power-down condition until specifically programmed to power down and then power back up again to clear the  
short-circuit flag.  
7.3.12 Jack and Headset Detection  
The TLV320AIC3109-Q1 includes extensive capability to monitor a headphone, microphone, or headset jack,  
determine if a plug has been inserted into the jack, and then determine what type of headset or headphone is  
wired to the plug. 24 shows one configuration of the device that enables detection and determination of  
headset type when a pseudo-differential (capacitor free) mono headphone output configuration is used. The  
registers used for this function are registers 14, 96, 97, and 13, page 0. The type of headset detected can be  
read back from register 13, page 0. For best results, select a MICBIAS value as high as possible and program  
the output driver common-mode level at a 1.35-V or 1.5-V level.  
AVDD  
MICBIAS  
MICDET  
To Detection Block  
g
s
s
Mono  
MIC1P  
MIC PreAmp  
g
m
Cellular  
HPOUT  
HPCOM  
Pwr  
Amp  
m = mic  
s = ear speaker  
g = ground/vcm  
To  
Detection  
Block  
24. Configuration of Device for Jack Detection Using a Pseudo-Differential (Capacitor Free)  
Headphone Output Connection  
34  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
25 shows a modified output configuration used when the output drivers are ac-coupled.  
AVDD  
MICBIAS  
MICDET  
To Detection Block  
MIC PreAmp  
g
s
s
s
Mono  
MIC1P  
g
m
Cellular  
HPCOM  
HPOUT  
Pwr  
Amp  
Pwr  
Amp  
m = mic  
s = ear speaker  
g = ground/vcm  
25. Configuration of Device for Jack Detection Using an AC-Coupled Mono Headphone Output  
Connection  
7.4 Device Functional Modes  
7.4.1 Bypass Path Mode  
The TLV320AIC3109-Q1 is a versatile device designed for low-power applications. In some cases, only a few  
features of the device are required. For these applications, the unused stages of the device must be powered  
down to save power and use an alternate route. This path is called a bypass path. The bypass path modes let  
the device save power by turning off unused stages (such as the ADC, DAC, and PGA).  
7.4.1.1 ADC PGA Signal Bypass Path Functionality  
In addition to the input bypass path described previously, the TLV320AIC3109-Q1 also includes the ability to  
route the ADC PGA output signals past the ADC for mixing with other analog signals and then for direct  
connection to the output drivers. These bypass functions are described in more detail in the Analog Fully  
Differential Line Output Drivers and Analog High-Power Output Drivers sections.  
版权 © 2017, Texas Instruments Incorporated  
35  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.1.2 Passive Analog Bypass During Power Down  
Programming the TLV320AIC3109-Q1 to passive analog bypass occurs by configuring the output stage switches  
for passthrough. 26 shows that this process is done by opening switches SW-L0, SW-L3, SW-R0, and SW-R3  
and closing either SW-L1 and SW-R1. Programming this mode is done by writing to register 108, page 0.  
Connecting the MIC1P/LINE1P input signal to the LEFT_LOP pin is done by closing SW-L1 and opening SW-L0;  
this action is done by writing a 1 to bit 0 in register 108, page 0. Connecting the MIC1M/LINE1M input signal to  
the LEFT_LOM pin is done by closing SW-L4 and opening SW-L3; this action is done by writing a 1 to bit 1 in  
register 108, page 0.  
Connecting the MIC2P/LINE2P input signal to the RIGHT_LOP pin is done by closing SW-R1 and opening SW-  
R0; this action is done by writing a 1 to bit 4 in register 108, page 0. 26 shows a diagram of the passive  
analog bypass mode configuration.  
SW-L1  
SW-L0  
LEFT_LOP  
SW-L3  
LINE1P  
LEFT_LOM  
SW-L4  
MIC1P/LINE1P  
MIC1M/LINE1M  
LINE1M  
SW-R1  
SW-R0  
RIGHT_LOP  
SW-R3  
LINE2P  
RIGHT_LOM  
SW-R4  
MIC2P/LINE2P  
MIC2M/LINE2M  
LINE2M  
B0174-01  
26. Passive Analog Bypass Mode Configuration  
36  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Device Functional Modes (接下页)  
7.4.2 Digital Audio Processing for Record Path  
In applications where record-only is selected and the DAC is powered down, the playback path signal processing  
blocks can be used in the ADC record path. These filtering blocks can support high-pass, low-pass, band-pass,  
or notch filtering. In this mode, the record-only path has switches SW-D1 and SW-D2 closed, and reroutes the  
ADC output data through the digital signal processing blocks. Because the DAC digital signal processing blocks  
are being re-used, naturally the addresses of these digital filter coefficients are the same as for the DAC digital  
processing and are located in registers 1–26, page 1. This record-only mode is enabled by powering down the  
DAC by writing to bit 7 in register 37, page 0 (where bit 7 = 0). Next, enable the digital filter pathway for the ADC  
by writing a 1 to bit 3 in register 107, page 0. (This pathway is only enabled if the DAC is powered down.) 27  
shows the record-only path.  
Digital Audio Data Serial Interface  
DAC  
Powered  
Down  
AGC  
Record Path  
SW-D2  
PGA  
0 dB–59.5 dB,  
0.5-dB Steps  
Digital  
Filters  
Volume  
Control  
Analog Inputs  
+
DAC  
ADC  
SW-D1  
B0173-01  
27. Record-Only Mode With Digital Processing Path Enabled  
版权 © 2017, Texas Instruments Incorporated  
37  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C Control Interface  
The TLV320AIC3109-Q1 supports the I2C control protocol using 7-bit addressing and is capable of both standard  
and fast modes. As illustrated in 28, the minimum timing for each tHD-STA, tSU-STA, and tSU-STO is 0.9 μs for I2C  
fast mode. The TLV320AIC3109-Q1 responds to the I2C address of 001 1000. I2C is a two-wire, open-drain  
interface supporting multiple devices and masters on a single bus. Devices on the I2C bus only drive the bus  
lines low by connecting the lines to ground; the devices never drive the bus lines high. Instead, the bus wires are  
pulled high by pullup resistors so the bus wires are high when not being driven low by a device. This way two  
devices cannot conflict; if two devices drive the bus simultaneously, there is no driver contention.  
SDA  
tHD-STA ³ 0.9 ms  
SCL  
tSU-STA ³ 0.9 ms  
tSU-STO ³ 0.9 ms  
tHD-STA ³ 0.9 ms  
S
Sr  
P
S
T0114-02  
28. I2C Interface Timing  
Communication on the I2C bus always takes place between two devices, one acting as the master and the other  
acting as the slave. Both masters and slaves can read and write, but slaves can only do so under the direction of  
the master. Some I2C devices can act as masters or slaves, but the TLV320AIC3109-Q1 can only act as a slave  
device.  
An I2C bus consists of two lines, SDA and SCL. SDA carries data; SCL provides the clock. All data are  
transmitted across the I2C bus in groups of eight bits. To send a bit on the I2C bus, the SDA line is driven to the  
appropriate level when SCL is low (a low on SDA indicates the bit is zero; a high indicates the bit is one). When  
the SDA line settles, the SCL line is brought high then low. This pulse on SCL clocks the SDA bit into the  
receiver shift register.  
The I2C bus is bidirectional: the SDA line is used both for transmitting and receiving data. When a master reads  
from a slave, the slave drives the data line; when a master sends to a slave, the master drives the data line.  
Under normal circumstances the master drives the clock line.  
Most of the time the bus is idle, no communication is taking place, and both lines are high. When communication  
is taking place, the bus is active. Only master devices can start a communication by causing a START condition  
on the bus. Normally, the data line is only allowed to change state when the clock line is low. If the data line  
changes state when the clock line is high, then the data line state is either a START condition or a STOP  
condition. A START condition is when the clock line is high and the data line goes from high to low. A STOP  
condition is when the clock line is high and the data line goes from low to high.  
After the master issues a START condition, the master sends a byte that indicates which slave device to  
communicate with. This byte is called the address byte. Each device on an I2C bus has a unique 7-bit address.  
(Slaves can also have 10-bit addresses; see the I2C specification for details.) The master sends an address in  
the address byte with a bit indicating whether to read from or write to the slave device.  
38  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Programming (接下页)  
Every byte transmitted on the I2C bus, address or data, is acknowledged with an acknowledge bit. When a  
master finishes sending a byte (eight data bits) to a slave, the master stops driving SDA and waits for the slave  
to acknowledge the byte. The slave acknowledges the byte by pulling SDA low. The master then sends a clock  
pulse to clock the acknowledge bit. Similarly, when a master finishes reading a byte, the master pulls SDA low to  
acknowledge this operation to the slave. The master then sends a clock pulse to clock the bit.  
A not-acknowledge is performed by simply leaving SDA high during an acknowledge cycle. If a device is not  
present on the bus and the master attempts to address the device, the master receives a not-acknowledge  
because no device is present at that address to pull the line low.  
When a master finishes communicating with a slave, the master can issue a STOP condition. When a STOP  
condition is issued, the bus becomes idle again. A master can also issue another START condition. When a  
START condition is issued when the bus is active, this condition is called a repeated START condition.  
The TLV320AIC3109-Q1 also responds to and acknowledges a general call, which consists of the master issuing  
a command with a slave-address byte of 00h. 29 and 30 show timing diagrams for I2C write and read  
operations, respectively.  
SCL  
DA(6)  
DA(0)  
RA(7)  
RA(0)  
D(7)  
D(0)  
SDA  
Start  
(M)  
7-Bit Device Address  
(M)  
Write  
(M)  
Slave  
Ack  
(S)  
8-Bit Register Address  
(M)  
Slave  
Ack  
(S)  
8-Bit Register data  
(M)  
Slave  
Ack  
(S)  
Stop  
(M)  
(M) – SDA Controlled by Master  
(S) – SDA Controlled by Slave  
T0147-01  
29. I2C Write  
SCL  
SDA  
DA(6)  
DA(0)  
D(7)  
D(0)  
DA(6)  
DA(0)  
RA(7)  
RA(0)  
Start  
(M)  
7-Bit Device Address  
(M)  
Write  
(M)  
Slave  
Ack  
(S)  
8-Bit Register Address Slave Repeat  
7-Bit Device Address Read  
(M) (M)  
Slave  
Ack  
(S)  
8-Bit Register Data  
(S)  
Master  
No Ack  
(M)  
Stop  
(M)  
(M)  
Ack  
(S)  
Start  
(M)  
(M) – SDA Controlled by Master  
(S) – SDA Controlled by Slave  
T0148-01  
30. I2C Read  
In the case of an I2C register write, if the master does not issue a STOP condition, then the device enters auto-  
increment mode. So in the next eight clocks, the data on SDA are treated as data for the next incremental  
register.  
Similarly, in the case of an I2C register read, after the device has sent out the 8-bit data from the addressed  
register, if the master issues an acknowledge, the slave takes over control of the SDA bus and transmits for the  
next 8 clocks the data of the next incremental register.  
7.5.1.1 I2C Bus Debug in a Glitched System  
Occasionally, some systems can encounter noise or glitches on the I2C bus. In the unlikely event that this noise  
affects bus performance, use the I2C debug register. This feature terminates the I2C bus error allowing the I2C  
device and system to resume communications. The I2C bus error detector is enabled by default. The  
TLV320AIC3109-Q1 I2C error detector status can be read from bit 0 in register 107, page 0. If desired, the  
detector can be disabled by writing to bit 2 in register 107, page 0.  
版权 © 2017, Texas Instruments Incorporated  
39  
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Register Map Structure  
The register map of the TLV320AIC3109-Q1 consists of two pages of registers, with each page containing 128  
registers. The register at address zero on each page is used as a page-control register and writing to this register  
determines the active page for the device. All subsequent read/write operations access the page that is active at  
the time unless a register write is performed to change the active page. The active page defaults to page 0 on  
device reset.  
Table 7 lists the different access codes used in the TLV320AIC3109-Q1 registers.  
Table 7. TLV320AIC3109-Q1 Access Type Codes  
Access Type  
Code  
R
Description  
Read  
R
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default  
value  
The control registers for the TLV320AIC3109-Q1 are described in this section. All registers are 8 bits in width,  
with bit 7 referring to the most-significant bit of each register and bit 0 referring to the least-significant bit. Table 8  
lists the registers for page 0 and page 1.  
40  
Copyright © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
REGISTER  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Table 8. TLV320AIC3109-Q1 Register Map  
REGISTER DATA  
7
6
5
4
3
2
1
0
0
0
PAGE 0 REGISTERS  
Register 0  
0
0
0
0
0
0
0
0
0
0
0
Page Select  
0
Register 1  
Software Reset  
Register 2  
ADC Sample Rate Select  
DAC Sample Rate Select  
PLL P  
Register 3  
PLL Q  
PLL Q  
PLL J  
Register 4  
0
Register 5  
PLL D  
Register 6  
PLL D  
0
0
0
0
DAC Dual-Rate  
DAC Data Path  
Control  
Register 7  
Register 8  
Register 9  
fS(ref) Setting  
DAC Data Path Control  
0
Control  
Word Clock  
Directional Control  
Serial Output Data  
Driver  
Bit, Word Clock Drive Bit, Word Clock Drive  
0
0
0
0
Control  
Control  
Re-Sync Mute  
Behavior  
Re-Sync Mute  
Behavior  
Audio Serial Data Interface Transfer Mode  
Bit Clock Rate Control  
Bit Clock Rate Control  
ADC Re-Sync  
Register 10  
Register 11  
Audio Serial Data Word Offset Control  
0
ADC Overflow Flag  
ADC High-Pass Filter Control  
Headset Detection  
0
DAC Overflow Flag  
0
PLL R  
DAC De- Emphasis  
DAC De- Emphasis  
Filter Control  
Register 12  
Register 13  
Register 14  
0
0
0
Filter Control  
Headset Glitch Suppression Debounce Control  
for Button Press  
Headset Type Detection Results  
Headset Glitch Suppression Debounce Control for Button Press  
Headset Detection  
Control  
Driver Capacitive  
Coupling  
0
0
0
0
0
0
Flag  
Register 15  
Register 16  
ADC PGA Mute  
PGA_AUX Mute  
ADC PGA Gain Setting  
PGA _AUX Gain Setting  
MIC1P/LINE1P Input  
Level Control for ADC  
PGA Mix  
ADC PGA Soft-  
Stepping Control  
Register 19  
Register 21  
MIC1P/LINE1P Input Level Control for ADC PGA Mix  
MIC2P/LINE2P Input Level Control for ADC PGA Mix  
ADC PGA Soft-Stepping Control  
MIC2P/LINE2P Input  
Level Control for ADC  
PGA Mix  
0
0
0
0
0
0
Register 25  
Register 26  
Register 27  
MICBIAS Level Control  
AGC Enable  
0
0
0
AGC Attack Time  
AGC Decay Time  
AGC Decay Time  
AGC Maximum Gain Allowed  
0
AGC Clip Stepping  
Control  
Register 28  
Noise Gate Hysteresis Level Control  
AGC Clip Stepping Control  
Register 32  
Register 34  
Channel Gain Applied by AGC Algorithm  
AGC Noise Detection Debounce Control  
AGC Signal Detection  
AGC Signal Detection Debounce Control  
Register 36  
Register 37  
ADC PGA Status  
ADC Power Status  
AGC Saturation Flag  
0
0
0
0
0
0
0
0
Status  
DAC Power Control  
0
0
0
Copyright © 2017, Texas Instruments Incorporated  
41  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Table 8. TLV320AIC3109-Q1 Register Map (continued)  
REGISTER DATA  
REGISTER  
7
6
5
4
3
2
1
0
Short-Circuit  
Protection Mode  
Control  
Short-Circuit  
Protection Control  
Register 38  
0
0
HPCOM Output Driver Configuration Control  
0
Register 40  
Register 41  
Output Common-Mode Voltage Control  
DAC Output Switching Control  
0
0
0
0
0
0
0
0
Output Volume Control Soft- Stepping  
0
0
Weak Output  
Common-Mode  
Voltage Control  
Register 42  
Output Driver Power-On Delay Control  
Driver Ramp-Up Step Timing Control  
DAC Digital Volume Control Setting  
0
Register 43  
Register 60  
DAC Digital Mute  
PGA Output Routing  
Control  
PGA to HPOUT Analog Volume Control  
DAC_1 to HPOUT Analog Volume Control  
PGA_AUX to HPOUT Analog Volume Control  
DAC_1 Output  
Routing Control  
Register 61  
Register 63  
Register 65  
Register 67  
Register 68  
Register 70  
Register 72  
Register 81  
Register 82  
Register 84  
Register 86  
Register 88  
Register 89  
Register 91  
PGA_AUX Output  
Routing Control  
HPOUT Power- Down  
Drive Control  
HPOUT Volume  
Control Status  
HPOUT Power  
Control  
HPOUT Output Level Control  
HPCOM Output Level Control  
LEFT_LOP/M Output Level Control  
HPOUT Mute  
PGA Output Routing  
Control  
PGA to HPCOM Analog Volume Control  
DAC_1 to HPCOM Analog Volume Control  
PGA_AUX to HPCOM Analog Volume Control  
DAC_1 Output  
Routing Control  
PGA_AUX Output  
Routing Control  
HPCOM Volume  
Control Status  
HPCOM Volume  
Control Status  
HPCOM Power  
Control  
HPCOM Mute  
PGA Output Routing  
Control  
PGA to LEFT_LOP/M Analog Volume Control  
DAC_1 to LEFT_LOP/M Analog Volume Control  
PGA_AUX to LEFT_LOP/M Analog Volume Control  
DAC_1 Output  
Routing Control  
PGA_AUX Output  
Routing Control  
LEFT_LOP/M Volume LEFT_LOP/M Power  
LEFT_LOP/M Mute  
0
Control Status  
Status  
PGA Output Routing  
Control  
DAC_1 Output Routing Control  
DAC_1 Output  
Routing Control  
DAC_1 to RIGHT_LOP/M Analog Volume Control  
PGA_AUX to RIGHT_LOP/M Analog Volume Control  
PGA_AUX Output  
Routing Control  
RIGHT_LOP/M  
Volume Control  
Status  
RIGHT_LOP/M Power  
Status  
Register 93  
RIGHT_LOP/M Output Level Control  
RIGHT_LOP/M Mute  
0
42  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
REGISTER  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Table 8. TLV320AIC3109-Q1 Register Map (continued)  
REGISTER DATA  
7
6
5
4
3
2
1
0
LEFT_LOP/M Power RIGHT_LOP/M Power  
HPOUT Driver Power  
Status  
Register 94  
Register 95  
Register 96  
Register 97  
DAC Power Status  
0
0
0
0
Status  
Status  
HPOUT Short- Circuit  
Detection Status  
HPCOM Short- Circuit  
Detection Status  
0
0
0
0
0
0
0
0
0
HPCOM Power Status  
0
0
0
0
HPOUT Short- Circuit  
Detection Status  
HPCOM Short- Circuit  
Detection Status  
Headset Detection  
Status  
ADC AGC Noise Gate  
Status  
0
0
HPOUT Short- Circuit  
Detection Status  
HPCOM Short- Circuit  
Detection Status  
Headset Detection  
Status  
ADC AGC Noise Gate  
Status  
CODEC_CLKIN  
Source Selection  
Register 101  
Register 102  
Register 103  
0
0
0
0
0
0
0
1
0
CLKDIV_IN Source Selection  
PLLCLK_IN Source Selection  
Baseline AGC Attack Time  
Baseline AGC Decay Time  
0
0
Attack Time Register  
Selection  
Multiplication Factor for Baseline AGC  
Decay Time Register  
Selection  
Register 104  
Register 107  
Register 108  
Multiplication Factor for Baseline AGC  
ADC Digital Output to  
0
0
0
Channel High- Pass  
Filter Coefficient  
Selection  
I2C Bus Condition  
I2C Bus Error  
Detection Status  
0
0
0
0
Programmable Filter  
Path Selection  
Detector  
LINE1RM Path  
Selection  
LINE1RP Path  
Selection  
LINE1LM Path  
Selection  
LINE1LP Path  
Selection  
0
0
0
0
0
Register 109  
PAGE 1 REGISTERS  
Register 0  
DAC Current Adjustment  
0
0
0
0
0
0
0
0
0
0
0
Page Select Bit  
Register 1  
Audio Effects Filter N0 Coefficient MSB  
Audio Effects Filter N0 Coefficient LSB  
Audio Effects Filter N1 Coefficient MSB  
Audio Effects Filter N1 Coefficient LSB  
Audio Effects Filter N2 Coefficient MSB  
Audio Effects Filter N2 Coefficient LSB  
Audio Effects Filter N3 Coefficient MSB  
Audio Effects Filter N3 Coefficient LSB  
Audio Effects Filter N4 Coefficient MSB  
Audio Effects Filter N4 Coefficient LSB  
Audio Effects Filter N5 Coefficient MSB  
Audio Effects Filter N5 Coefficient LSB  
Audio Effects Filter D1 Coefficient MSB  
Audio Effects Filter D1 Coefficient LSB  
Audio Effects Filter D2 Coefficient MSB  
Audio Effects Filter D2 Coefficient LSB  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
Register 13  
Register 14  
Register 15  
Register 16  
Copyright © 2017, Texas Instruments Incorporated  
43  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
Table 8. TLV320AIC3109-Q1 Register Map (continued)  
REGISTER DATA  
REGISTER  
7
6
5
4
3
2
1
0
Register 17  
Register 18  
Register 19  
Register 20  
Register 21  
Register 22  
Register 23  
Register 24  
Register 25  
Register 26  
Register 65  
Register 66  
Register 67  
Register 68  
Register 69  
Register 70  
Audio Effects Filter D4 Coefficient MSB  
Audio Effects Filter D4 Coefficient LSB  
Audio Effects Filter D5 Coefficient MSB  
Audio Effects Filter D5 Coefficient LSB  
De-Emphasis Filter N0 Coefficient MSB  
De-Emphasis Filter N0 Coefficient LSB  
De-Emphasis Filter N1 Coefficient MSB  
De-Emphasis Filter N1 Coefficient LSB  
De-Emphasis Filter D1 Coefficient MSB  
De-Emphasis Filter D1 Coefficient LSB  
ADC High-Pass Filter N0 Coefficient MSB  
Channel ADC High-Pass Filter N0 Coefficient LSB  
Channel ADC High-Pass Filter N1 Coefficient MSB  
Channel ADC High-Pass Filter N1 Coefficient LSB  
Channel ADC High-Pass Filter D1 Coefficient MSB  
Channel ADC High-Pass Filter D1 Coefficient LSB  
44  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2 Page 0 Registers  
These registers are held within page 0.  
7.6.2.1 Register 0: Page Select (address = 0h) [reset = 0000 0000], Page 0  
Figure 31. Register 0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Page Select  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 9. Register 0 Field Descriptions  
Bit  
7:1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Always write zeros to these bits.  
Page select bit.  
Page Select  
R/W  
0h  
Writing a 0 to this bit sets page 0 as the active page for the  
following register accesses. Writing a 1 to this bit sets page 1 as  
the active page for the following register accesses. This register  
bit is recommended to be read back after each write to ensure  
that the proper page is being accessed for future register reads  
or writes.  
7.6.2.2 Register 1: Software Reset Register (address = 1h) [reset = 0000 0000], Page 0  
Figure 32. Register 1  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Software Reset  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 10. Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Software Reset  
W
0h  
Software reset bit.  
0 : Don’t care  
1 : Self-clearing software reset  
6:0  
Reserved  
W
0h  
Reserved. Always write zeros to these bits.  
Copyright © 2017, Texas Instruments Incorporated  
45  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.3 Register 2: Codec Sample Rate Select Register (address = 2h) [reset = 0000 0000], Page 0  
Figure 33. Register 2  
7
6
5
4
3
2
1
0
ADC Sample Rate Select  
R/W-0h  
DAC Sample Rate Select  
R/W-0h  
Table 11. Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
ADC Sample Rate Select(1)  
R/W  
0h  
0000: ADC fS = fS(ref) / 1  
0001: ADC fS = fS(ref) / 1.5  
0010: ADC fS = fS(ref) / 2  
0011: ADC fS = fS(ref) / 2.5  
0100: ADC fS = fS(ref) / 3  
0101: ADC fS = fS(ref) / 3.5  
0110: ADC fS = fS(ref) / 4  
0111: ADC fS = fS(ref) / 4.5  
1000: ADC fS = fS(ref) / 5  
1001: ADC fS = fS(ref) / 5.5  
1010: ADC fS = fS(ref) / 6  
1011–1111: Reserved. Do not write these sequences.  
3:0  
DAC Sample Rate Select(1)  
R/W  
0h  
0000: DAC fS = fS(ref) / 1  
0001: DAC fS = fS(ref) / 1.5  
0010: DAC fS = fS(ref) / 2  
0011: DAC fS = fS(ref) / 2.5  
0100: DAC fS = fS(ref) / 3  
0101: DAC fS = fS(ref) / 3.5  
0110: DAC fS = fS(ref) / 4  
0111: DAC fS = fS(ref) / 4.5  
1000: DAC fS = fS(ref) / 5  
1001: DAC fS = fS(ref) / 5.5  
1010: DAC fS = fS(ref) / 6  
1011–1111 : Reserved, do not write these sequences.  
(1) In the TLV320AIC3109-Q1, the ADC fS must be set equal to the DAC fS, which is done by setting the value of bits 7–4 equal to the  
value of bits 3–0.  
46  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.4 Register 3: PLL Programming Register A (address = 3h) [reset = 0001 0000], Page 0  
Figure 34. Register 3  
7
6
5
4
3
2
1
0
PLL  
PLL Q  
PLL P  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
Table 12. Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PLL  
0h  
PLL control bit.  
0: PLL is disabled  
1: PLL is enabled  
6:3  
PLL Q  
0010h  
These bits control the PLL Q value.  
0000: Q = 16  
0001: Q = 17  
0010: Q = 2  
0011: Q = 3  
0100: Q = 4  
1110: Q = 14  
1111: Q = 15  
PLL P  
0h  
These bits control the PLL P value.  
000: P = 8  
001: P = 1  
010: P = 2  
011: P = 3  
100: P = 4  
101: P = 5  
110: P = 6  
111: P = 7  
7.6.2.5 Register 4: PLL Programming Register B (address = 4h) [reset = 0000 0100]  
Figure 35. Register 4  
7
6
5
4
3
2
1
0
0
0
PLL J  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 13. Register 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
PLL J  
R/W  
0000 01h  
These bits control the PLL J value.  
0000 00: Reserved, do not write this sequence  
0000 01: J = 1  
0000 10: J = 2  
0000 11: J = 3  
1111 10: J = 62  
1111 11: J = 63  
1:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
Copyright © 2017, Texas Instruments Incorporated  
47  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.6 Register 5: PLL Programming Register C (address = 5h) [reset = 0000 0000], Page 0  
Figure 36. Register 5  
7
6
5
4
3
2
1
0
PLL D  
R/W-0h  
Table 14. Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
PLL D(1)  
R/W  
0h  
These bits control the PLL D value. The eight most-significant  
bits of a 14-bit unsigned integer valid values for D are from 0 to  
9999, represented by a 14-bit integer located in registers 5–6,  
page 0. Do not write values into these registers that result in a D  
value outside the valid range.  
(1) Whenever the D value is changed, write register 5 immediately followed by register 6. Even if only the MSB or LSB of the value  
changes, both registers must be written.  
7.6.2.7 Register 6: PLL Programming Register D (address = 6h) [reset = 0000 0000]  
Figure 37. Register 6  
7
6
5
4
3
2
1
0
0
0
PLL D  
R/W-0h  
R/W-0h  
R/W-0h  
Table 15. Register 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
PLL D(1)  
R/W  
0h  
These bits control the PLL D value. The six least-significant bits  
of a 14-bit unsigned integer valid values for D are from 0 to  
9999, represented by a 14-bit integer located in registers 5–6,  
page 0. Do not write values into these registers that result in a D  
value outside the valid range.  
1:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
(1) Whenever the D value is changed, write register 5 immediately followed by register 6. Even if only the MSB or LSB of the value  
changes, both registers must be written.  
48  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.8 Register 7: Codec Data-Path Setup Register (address = 7h) [reset = 0000 0000], Page 0  
Figure 38. Register 7  
7
6
5
4
3
2
0
1
0
0
0
fS(ref) Setting  
R/W-0h  
ADC Dual-Rate Control DAC Dual-Rate Control DAC Data Path Control  
R/W-0h R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 16. Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
fS(ref) Setting  
R/W  
0h  
This bit controls the fS(ref) setting.  
This register setting controls timers related to the AGC time  
constants.  
0: fS(ref) = 48 kHz  
1: fS(ref) = 44.1 kHz  
6
ADC Dual-Rate Control  
R/W  
0h  
0: ADC dual-rate mode is disabled  
1: ADC dual-rate mode is enabled  
The ADC dual-rate mode must match the DAC dual-rate mode.  
5
DAC Dual-Rate Control  
DAC Data Path Control  
R/W  
R/W  
0h  
0h  
0: DAC dual-rate mode is disabled  
1: DAC dual-rate mode is enabled  
4:3  
00: DAC data path is off (muted)  
01: DAC data path plays left-channel input data  
10: DAC data path plays right-channel input data  
11: DAC data path plays mono mix of left- and right-channel  
input data  
2:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
7.6.2.9 Register 8: Audio Serial Data Interface Control Register A (address = 8h) [reset = 0000 0000],  
Page 0  
Figure 39. Register 8  
7
6
5
4
3
0
2
0
1
0
0
0
Bit Clock Directional  
Control  
Word Clock  
Directional Control  
Serial Output Data  
Driver  
Bit, Word Clock Drive  
Control  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 17. Register 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Bit Clock Directional Control  
Word Clock Directional Control  
Serial Output Data Driver  
R/W  
0h  
Bit clock directional control.  
0: BCLK is an input (slave mode)  
1: BCLK is an output (master mode)  
6
5
R/W  
R/W  
0h  
0h  
Word clock directional control.  
0: WCLK is an input (slave mode)  
1: WCLK is an output (master mode)  
Serial output data driver (DOUT) 3-state control.  
0: Do not place DOUT in a high-impedance state when valid  
data are not being sent  
1: Place DOUT in high-impedance state when valid data are not  
being sent  
4
Bit, Word Clock Drive Control  
R/W  
0h  
Bit, word clock drive control.  
0: BCLK, WCLK do not continue to be transmitted when running  
in master mode if the codec is powered down  
1: BCLK, WCLK continue to be transmitted when running in  
master mode, even if the codec is powered down  
3
Reserved  
Reserved  
R
0h  
0h  
Reserved. Always write zeros to these bits.  
Reserved. Always write zeros to these bits.  
2:0  
R/W  
Copyright © 2017, Texas Instruments Incorporated  
49  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.10 Register 9: Audio Serial Data Interface Control Register B (address = 9h) [reset = 0000 0000],  
Page 0  
Figure 40. Register 9  
7
6
5
4
3
2
1
0
Audio Serial Data Interface  
Transfer Mode  
Audio Serial Data Word Length  
Control  
Bit Clock Rate  
Control  
Re-Sync Mute  
Behavior  
DAC Re-Sync  
R/W-0h  
ADC Re-Sync  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 18. Register 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Audio Serial Data Interface Transfer R/W  
Mode  
0h  
Audio serial data interface transfer mode.  
00: Serial data bus uses I2S mode  
01: Serial data bus uses DSP mode  
10: Serial data bus uses right-justified mode  
11: Serial data bus uses left-justified mode  
5:4  
3
Audio Serial Data Word Length  
Control  
R/W  
R/W  
0h  
0h  
Audio serial data word length control.  
00: Audio data word length = 16 bits  
01: Audio data word length = 20 bits  
10: Audio data word length = 24 bits  
11: Audio data word length = 32 bits  
Bit Clock Rate Control  
Bit clock rate control.  
This register only has effect when the bit clock is programmed  
as an output.  
0: Continuous-transfer mode used to determine master mode bit  
clock rate  
1: 256-clock transfer mode used, resulting in 256 bit clocks per  
frame  
2
1
0
DAC Re-Sync  
R/W  
R/W  
R/W  
0h  
0h  
0h  
DAC re-sync.  
0: Don’t care  
1: Re-sync mono DAC with codec interface if the group delay  
changes by more than ±DAC (fS / 4)  
ADC Re-Sync  
ADC re-sync.  
0: Don’t care  
1: Re-sync mono ADC with codec interface if the group delay  
changes by more than ±ADC (fS / 4)  
Re-Sync Mute Behavior  
Re-sync mute behavior.  
0: Re-sync is done without soft-muting the channel (ADC or  
DAC)  
1: Re-sync is done by internally soft-muting the channel (ADC or  
DAC)  
50  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.11 Register 10: Audio Serial Data Interface Control Register C (address = Ah) [reset = 0000 0000],  
Page 0  
Figure 41. Register 10  
7
6
5
4
3
2
1
0
Audio Serial Data Word Offset Control  
R/W-0h  
Table 19. Register 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Serial Data Word Offset  
Control  
R/W  
0h  
Audio serial data word offset control.  
This register determines where valid data are placed or  
expected in each frame by controlling the offset from beginning  
of the frame where valid data begins. The offset is measured  
from the rising edge of the word clock when in DSP mode.  
0000 0000: Data offset = 0 bit clocks  
0000 0001: Data offset = 1 bit clock  
0000 0010: Data offset = 2 bit clocks  
Note: In continuous transfer mode the maximum offset is 17 for  
the I2S, left-justified format, and right-justified format modes and  
16 for DSP mode. In 256-clock mode, the maximum offset is  
242 for the I2S, left-justified format, and right-justified format  
modes and 241 for DSP modes.  
1111 1110: Data offset = 254 bit clocks  
1111 1111: Data offset = 255 bit clocks  
7.6.2.12 Register 11: Audio Codec Overflow Flag Register (address = Bh) [reset = 0000 0001], Page 0  
Figure 42. Register 11  
7
6
0
5
4
0
3
2
1
0
ADC Overflow Flag  
R-0h  
DAC Overflow Flag  
R-0h  
PLL R  
R-0h  
R-0h  
R/W-0001h  
Table 20. Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ADC Overflow Flag  
R
0h  
ADC overflow flag.  
This bit is a sticky bit, which stays set if an overflow occurs,  
even if the overflow condition is removed. The register bit is  
reset to 0 after being read.  
0: No overflow has occurred  
1: An overflow has occurred  
6
5
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
DAC Overflow Flag  
DAC overflow flag.  
This bit is a sticky bit, which stays set if an overflow occurs,  
even if the overflow condition is removed. The register bit is  
reset to 0 after being read.  
0: No overflow has occurred  
1: An overflow has occurred  
4
Reserved  
PLL R  
R
0h  
Reserved. Always write zero to this bit.  
3:0  
R/W  
0001h  
PLL R value.  
0000: R = 16  
0001: R = 1  
0010: R = 2  
0011: R = 3  
0100: R = 4  
1110: R = 14  
1111: R = 15  
Copyright © 2017, Texas Instruments Incorporated  
51  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.13 Register 12: Audio Codec Digital Filter Control Register (address = Ch) [reset = 0000 0000],  
Page 0  
Figure 43. Register 12  
7
6
5
0
4
0
3
2
1
0
0
0
ADC High-Pass Filter  
Control  
DAC Digital Effects Filter  
Control  
DAC De-Emphasis Filter  
Control  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 21. Register 12 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
ADC High-Pass Filter Control  
R/W  
0h  
ADC high-pass filter control.  
00: ADC high-pass filter disabled  
01: ADC high-pass filter –3-dB frequency = 0.0045 × ADC fS  
10:ADC high-pass filter –3-dB frequency = 0.0125 × ADC fS  
11: ADC high-pass filter –3-dB frequency = 0.025 × ADC fS  
5:4  
3
Reserved  
R/W  
R/W  
0h  
0h  
Reserved. Always write zeros to these bits.  
DAC Digital Effects Filter Control  
DAC digital effects filter control.  
0: DAC digital effects filter disabled (bypassed)  
1: DAC digital effects filter enabled  
2
DAC De-Emphasis Filter Control  
Reserved  
R/W  
R/W  
0h  
0h  
DAC de-emphasis filter control.  
0: DAC de-emphasis filter disabled (bypassed)  
1: DAC de-emphasis filter enabled  
1:0  
Reserved. Always write zeros to these bits.  
7.6.2.14 Register 13: Headset/Button Press Detection Register A (address = Dh) [reset = 0000 0000],  
Page 0  
Figure 44. Register 13  
7
6
5
4
3
2
1
0
Headset Glitch Suppression  
Debounce Control for Button  
Press  
Headset Type Detection  
Results  
Headset Glitch Suppression Debounce  
Control for Jack Detection  
Headset Detection Control  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h  
Table 22. Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Headset Detection Control  
R/W  
0h  
Headset detection control.  
0: Headset detection disabled  
1: Headset detection enabled  
6:5  
4:2  
Headset Type Detection Results  
R
0h  
0h  
Headset type detection results.  
00: No headset detected  
01: Headset without microphone detected  
10: Ignore (reserved)  
11: Headset with microphone detected  
Headset Glitch Suppression  
Debounce Control for Jack  
Detection  
R/W  
Headset glitch suppression debounce control for jack detection.  
000: Debounce = 16 ms (sampled with 2-ms clock)  
001: Debounce = 32 ms (sampled with 4-ms clock)  
010: Debounce = 64 ms (sampled with 8-ms clock)  
011: Debounce = 128 ms (sampled with 16-ms clock)  
100: Debounce = 256 ms (sampled with 32-ms clock)  
101: Debounce = 512 ms (sampled with 64-ms clock)  
110, 111: Reserved, do not write this bit sequence to these  
register bits  
1:0  
Headset Glitch Suppression  
Debounce Control for Button Press  
R/W  
0h  
Headset glitch suppression debounce control for button press.  
00: Debounce = 0 ms  
01: Debounce = 8 ms (sampled with 1-ms clock)  
10: Debounce = 16 ms (sampled with 2-ms clock)  
11: Debounce = 32 ms (sampled with 4-ms clock)  
52  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.15 Register 14: Headset/Button Press Detection Register B (address = Eh) [reset = 0000 0000],  
Page 0  
Figure 45. Register 14  
7
6
0
5
0
4
Headset Detection Flag  
R-0h  
3
0
2
0
1
0
0
0
Driver Capacitive  
Coupling  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 23. Register 14 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Driver Capacitive Coupling  
R/W  
0h  
Driver capacitive coupling.  
0: Programs high-power outputs for capacitor-free driver  
configuration  
1: Programs high-power outputs for ac-coupled driver  
configuration  
6
5
4
Reserved  
R/W  
R
0h  
0h  
0h  
Reserved. Always write zero to this bit.  
Reserved. Always write zero to this bit.  
Reserved  
Headset Detection Flag  
R
Headset detection flag.  
0: A headset is not detected  
1: A headset is detected  
3:0  
Reserved  
R
0h  
Reserved. Always write zeros to these bits  
7.6.2.16 Register 15: ADC PGA Gain Control Register (address = Fh) [reset = 1000 0000], Page 0  
Figure 46. Register 15  
7
6
5
4
3
2
1
0
ADC PGA Mute  
R/W-1h  
ADC PGA Gain Setting  
R/W-0h  
Table 24. Register 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ADC PGA Mute  
R/W  
1h  
ADC PGA mute.  
0: The ADC PGA is not muted  
1: The ADC PGA is muted  
6:0  
ADC PGA Gain Setting  
R/W  
0h  
ADC PGA gain setting.  
000 0000: Gain = 0 dB  
000 0001: Gain = 0.5 dB  
000 0010: Gain = 1 dB  
111 0110: Gain = 59 dB  
111 0111: Gain = 59.5 dB  
111 1000: Gain = 59.5 dB  
111 1111: Gain = 59.5 dB  
Copyright © 2017, Texas Instruments Incorporated  
53  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.17 Register 16: Auxiliary PGA Gain Control Register (address = Fh) [reset = 1000 0000], Page 0  
Figure 47. Register 16  
7
6
5
4
3
2
1
0
PGA_AUX Mute  
R/W-1h  
PGA _AUX Gain Setting  
R/W-0h  
Table 25. Register 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA_AUX Mute  
R/W  
1h  
PGA_AUX mute.  
0: The auxiliary PGA is not muted  
1: The auxiliary PGA is muted  
6:0  
PGA_AUX Gain Setting  
R/W  
0h  
PGA_AUX gain setting.  
000 0000: Gain = 0 dB  
000 0001: Gain = 0.5 dB  
000 0010: Gain = 1 dB  
111 0110: Gain = 59 dB  
111 0111: Gain = 59.5 dB  
111 1000: Gain = 59.5 dB  
111 1111: Gain = 59.5 dB  
7.6.2.18 Register 17–18: Reserved (address = 11h–12h) [reset = 1111 1111], Page 0  
Figure 48. Register 17  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 26. Register 17 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write ones to these bits.  
7:0  
R/W  
1h  
54  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.19 Register 19: MIC1P/LINE1P to ADC Control Register (address = 13h) [reset = 0111 1000], Page 0  
Figure 49. Register 19  
7
6
5
4
3
2
1
0
MIC1P/LINE1P Single-  
Ended vs Fully Differential MIC1P/LINE1P Input Level Control for ADC PGA Mix  
Control  
ADC Channel Power  
Control  
ADC PGA Soft-Stepping  
Control  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 27. Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MIC1P/LINE1P Single-Ended vs  
Fully Differential Control  
R/W  
0h  
MIC1P/LINE1P single-ended vs fully differential control.  
0: MIC1P/LINE1P is configured in single-ended mode  
1: MIC1P/LINE1P and MIC1M/LINE1M are configured in fully  
differential mode  
6:3  
MIC1P/LINE1P Input Level Control  
for ADC PGA Mix  
R/W  
1h  
MIC1P/LINE1P input level control for ADC PGA mix.  
Setting the input level control to one of the following gains  
automatically connects LINE1L to the ADC PGA mix.  
0000: Input level control gain = 0 dB  
0001: Input level control gain = –1.5 dB  
0010: Input level control gain = –3 dB  
0011: Input level control gain = –4.5 dB  
0100: Input level control gain = –6 dB  
0101: Input level control gain = –7.5 dB  
0110: Input level control gain = –9 dB  
0111: Input level control gain = –10.5 dB  
1000: Input level control gain = –12 dB  
1001–1110: Reserved; do not write these sequences to these  
register bits  
1111: LINE1L is not connected to the ADC PGA  
2
ADC Channel Power Control  
R/W  
R/W  
0h  
0h  
ADC channel power control.  
0: ADC channel is powered down  
1: ADC channel is powered up  
1:0  
ADC PGA Soft-Stepping Control  
ADC PGA soft-stepping control.  
00: ADC PGA soft-stepping at one time per sample period  
01: ADC PGA soft-stepping at one time per two sample periods  
10–11: ADC PGA soft-stepping is disabled  
7.6.2.20 Register 20: Reserved (address = 14h) [reset = 0111 1000], Page 0  
Figure 50. Register 20  
7
0
6
1
5
1
4
1
3
1
2
0
1
0
0
0
R-0h  
R-1h  
R-1h  
R-1h  
R-1h  
R-0h  
R-0h  
R-0h  
Table 28. Register 20 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1000 to these bits  
Reserved.  
R
0111 1000h  
Copyright © 2017, Texas Instruments Incorporated  
55  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.21 Register 21: MIC2P/LINE2P to ADC Control Register (address = 15h) [reset = 0111 1000], Page 0  
Figure 51. Register 21  
7
6
5
4
3
2
0
1
0
0
0
MIC2P/LINE2P Single-Ended  
vs Fully Differential Control  
MIC2P/LINE2P Input Level Control for ADC PGA Mix  
R/W-1h  
R/W-0h  
R-0h  
R-0h  
R-0h  
Table 29. Register 21 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MIC2P/LINE2P Single-Ended vs  
Fully Differential Control  
R/W  
0h  
MIC2P/LINE2P single-ended vs fully differential control.  
0: MIC2P/LINE2P is configured in single-ended mode  
1: MIC2P/LINE2P and MIC2M/LINE2M are configured in fully  
differential mode  
6:3  
MIC2P/LINE2P Input Level Control  
for ADC PGA Mix  
R/W  
1h  
MIC2P/LINE2P input level control for ADC PGA mix.  
Setting the input level control to one of the following gains  
automatically connects LINE1R to the ADC PGA mix.  
0000: Input level control gain = 0 dB  
0001: Input level control gain = –1.5 dB  
0010: Input level control gain = –3 dB  
0011: Input level control gain = –4.5 dB  
0100: Input level control gain = –6 dB  
0101: Input level control gain = –7.5 dB  
0110: Input level control gain = –9 dB  
0111: Input level control gain = –10.5 dB  
1000: Input level control gain = –12 dB  
1001–1110: Reserved; do not write these sequences to these  
register bits  
1111: LINE1R is not connected to the ADC PGA  
2:0  
Reserved  
R
0h  
Reserved. Always write zeros to these bits.  
7.6.2.22 Registers 22–24: Reserved (address = 16h–18h) [reset = 0111 1000], Page 0  
Figure 52. Register 22  
7
0
6
1
5
1
4
1
3
1
2
0
1
0
0
0
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 30. Register 22 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1000 to these bits.  
Reserved  
R/W  
0111 1000h  
56  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.23 Register 25: MICBIAS Control Register (address = 25h) [reset = 0000 0110], Page 0  
Figure 53. Register 25  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
MICBIAS Level Control  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-Xh  
R-Xh  
R-Xh  
Table 31. Register 25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
MICBIAS Level Control  
R/W  
0h  
MICBIAS level control.  
00: MICBIAS output is powered down  
01: MICBIAS output is powered to 2 V  
10: MICBIAS output is powered to 2.5 V  
11: MICBIAS output is connected to AVDD  
5:3  
2:1  
0
Reserved  
Reserved  
Reserved  
R
R
R
0h  
1h  
0h  
Reserved. Always write zeros to these bits  
Reserved. Always write ones to these bits.  
Reserved. Always write zero to this bit.  
7.6.2.24 Register 26: AGC Control Register A (address = 1Ah) [reset = 0000 0000], Page 0  
Figure 54. Register 26  
7
6
5
4
3
2
1
0
AGC Enable  
R/W-0h  
AGC Target Level  
R/W-0h  
AGC Attack Time  
R/W-0h  
AGC Decay Time  
Table 32. Register 26 Field Descriptions  
Bit  
Field  
AGC Enable  
Type  
Reset  
Description  
7
R/W  
0h  
AGC enable.  
0: AGC is disabled  
1: AGC is enabled  
6:4  
AGC Target Level  
R/W  
0h  
AGC target level.  
000: AGC target level = –5.5 dB  
001: AGC target level = –8 dB  
010: AGC target level = –10 dB  
011: AGC target level = –12 dB  
100: AGC target level = –14 dB  
101: AGC target level = –17 dB  
110: AGC target level = –20 dB  
111: AGC target level = –24 dB  
3:2  
1:0  
AGC Attack Time  
AGC Decay Time  
R/W  
R/W  
0h  
0h  
AGC attack time.  
These time constants(1) are not accurate when double-rate  
audio mode is enabled.  
00: AGC attack time = 8 ms  
01: AGC attack time = 11 ms  
10: AGC attack time = 16 ms  
11: AGC attack time = 20 ms  
AGC decay time.  
These time constants(1) are not accurate when double-rate  
audio mode is enabled.  
00: AGC decay time = 100 ms  
01: AGC decay time = 200 ms  
10: AGC decay time = 400 ms  
11: AGC decay time = 500 ms  
(1) Time constants are valid when DRA is not enabled. The values change if DRA is enabled.  
Copyright © 2017, Texas Instruments Incorporated  
57  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.25 Register 27: AGC Control Register B (address = 1Bh) [reset = 1111 1110], Page 0  
Figure 55. Register 27  
7
6
5
4
3
2
1
0
0
AGC Maximum Gain Allowed  
R/W-1h  
R/W-0h  
Table 33. Register 27 Field Descriptions  
Bit  
Field  
AGC Maximum Gain Allowed  
Type  
Reset  
Description  
7:1  
R/W  
1h  
AGC maximum gain allowed.  
0000 000: Maximum gain = 0 dB  
0000 001: Maximum gain = 0.5 dB  
0000 010: Maximum gain = 1 dB  
1110 110: Maximum gain = 59 dB  
1110 111–111 111: Maximum gain = 59.5 dB  
0
Reserved  
R/W  
0h  
Reserved. Always write zero to this bit.  
7.6.2.26 Register 28: AGC Control Register C (address = 1Ch) [reset = 0000 0000], Page 0  
Figure 56. Register 28  
7
6
5
4
3
2
1
0
Noise Gate Hysteresis Level  
Control  
AGC Noise Threshold Control  
R/W-0h  
AGC Clip Stepping Control  
R/W-0h  
R/W-0h  
Table 34. Register 28 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Noise Gate Hysteresis Level Control R/W  
0h  
Noise gate hysteresis level control.  
00: Hysteresis = 1 dB  
01: Hysteresis = 2 dB  
10: Hysteresis = 3 dB  
11: Hysteresis is disabled  
5:1  
AGC Noise Threshold Control  
R/W  
0h  
AGC noise threshold control.  
00000: AGC noise/silence detection disabled  
00001: AGC noise threshold = –30 dB  
00010: AGC noise threshold = –32 dB  
00011: AGC noise threshold = –34 dB  
11101: AGC noise threshold = –86 dB  
11110: AGC noise threshold = –88 dB  
11111: AGC noise threshold = –90 dB  
0
AGC Clip Stepping Control  
R/W  
0h  
AGC clip stepping control.  
0: AGC clip stepping disabled  
1: AGC clip stepping enabled  
58  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.27 Register 29: Reserved (address = 1Dh) [reset = 0000 0000], Page 0  
Figure 57. Register 29  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 35. Register 29 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.28 Register 30: Reserved (address = 1Eh) [reset = 1111 1110], Page 0  
Figure 58. Register 30  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
0
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 36. Register 30 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1111 1110 to these bits.  
Reserved  
R/W  
1111 1110h  
7.6.2.29 Register 31: Reserved (address = 1Fh) [reset = 0000 0000], Page 0  
Figure 59. Register 31  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 37. Register 31 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.30 Register 32: AGC Gain Register (address = 20h) [reset = 1000 0000], Page 0  
Figure 60. Register 32  
7
6
5
4
3
2
1
0
Channel Gain Applied by AGC Algorithm  
R-0h  
Table 38. Register 32 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel Gain Applied by AGC  
Algorithm  
R
80h  
Channel gain applied by AGC algorithm.  
1110 1000: Gain = –12 dB  
1110 1001: Gain = –11.5 dB  
1110 1010: Gain = –11 dB  
0000 0000: Gain = 0.0 dB  
0000 0001: Gain = 0.5 dB  
0111 0110: Gain = 59 dB  
0111 0111: Gain = 59.5 dB  
Copyright © 2017, Texas Instruments Incorporated  
59  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.31 Register 33: Reserved (address = 21h) [reset = 0000 0000], Page 0  
Figure 61. Register 33  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 39. Register 33 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.32 Register 34: AGC Noise Gate Debounce Register (address = 22h) [reset = 0000 0000], Page 0  
Figure 62. Register 34  
7
6
5
4
3
2
1
0
AGC Noise Detection Debounce Control  
R/W-0h  
AGC Signal Detection Debounce Control  
R/W-0h  
Table 40. Register 34 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
AGC Noise Detection Debounce  
Control  
R/W  
0h  
AGC noise detection debounce control.  
These times(1) are not accurate when double-rate audio mode is  
enabled.  
0000 0: Debounce = 0 ms  
0000 1: Debounce = 0.5 ms  
0001 0: Debounce = 1 ms  
0001 1: Debounce = 2 ms  
0010 0: Debounce = 4 ms  
0010 1: Debounce = 8 ms  
0011 0: Debounce = 16 ms  
0011 1: Debounce = 32 ms  
0100 0: Debounce = 64 × 1 = 64 ms  
0100 1: Debounce = 64 × 2 = 128 ms  
0101 0: Debounce = 64 × 3 = 192 ms  
1111 0: Debounce = 64 × 23 = 1,472 ms  
1111 1: Debounce = 64 × 24 = 1,536 ms  
2:0  
AGC Signal Detection Debounce  
Control  
R/W  
0h  
AGC signal detection debounce control.  
These times(1) are not accurate when double-rate audio mode is  
enabled.  
000: Debounce = 0 ms  
001: Debounce = 0.5 ms  
010: Debounce = 1 ms  
011: Debounce = 2 ms  
100: Debounce = 4 ms  
101: Debounce = 8 ms  
110: Debounce = 16 ms  
111: Debounce = 32 ms  
(1) Time constants are valid when DRA is not enabled. The values change when DRA is enabled.  
60  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.33 Register 35: Reserved (address = 23h) [reset = 0000 0000], Page 0  
Figure 63. Register 35  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 41. Register 35 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.34 Register 36: ADC Flag Register (address = 24h) [reset = 0000 0000], Page 0  
Figure 64. Register 36  
7
6
5
4
3
0
2
0
1
0
0
0
AGC Signal Detection  
Status  
ADC PGA Status  
R-0h  
ADC Power Status  
R-0h  
AGC Saturation Flag  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 42. Register 36 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ADC PGA Status  
R
0h  
ADC PGA status.  
0: Applied gain and programmed gain are not the same  
1: Applied gain = programmed gain  
6
5
ADC Power Status  
AGC Signal Detection Status  
AGC Saturation Flag  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
ADC power status.  
0: ADC is in a power-down state  
1: ADC is in a power-up state  
AGC signal detection status.  
0: Signal power is greater than or equal to noise threshold  
1: Signal power is less than noise threshold  
4
AGC saturation flag.  
0: AGC is not saturated  
1: AGC gain applied = maximum allowed gain for AGC  
3:0  
Reserved. Always write zeros to these bits.  
7.6.2.35 Register 37: DAC Power and Output Driver Control Register (address = 25h) [reset = 0000 0000],  
Page 0  
Figure 65. Register 37  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
DAC Power Control  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 43. Register 37 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC Power Control  
R/W  
0h  
DAC power control.  
0: DAC is not powered up  
1: DAC is powered up  
6:4  
3:0  
Reserved  
Reserved  
R/W  
R
0h  
0h  
Reserved. Always write zeros to these bits.  
Reserved. Always write zeros to these bits.  
Copyright © 2017, Texas Instruments Incorporated  
61  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.36 Register 38: High-Power Output Driver Control Register (address = 26h) [reset = 0000 0000],  
Page 0  
Figure 66. Register 38  
7
0
6
0
5
4
3
2
1
0
0
HPCOM Output Driver Configuration  
Control  
Short-Circuit Protection  
Control  
Short-Circuit Protection  
Mode Control  
R-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
Table 44. Register 38 Field Descriptions  
Bit  
7:6  
5:3  
Field  
Reserved  
Type  
Reset  
0h  
Description  
R
Reserved. Always write zeros to these register bits.  
HPCOM Output Driver Configuration R/W  
Control  
0h  
HPCOM output driver configuration control.  
000: HPCOM is configured as a differential of HPOUT  
001: HPCOM is configured as a constant VCM output  
010: HPCOM is configured as independent single-ended output  
011-111: Reserved  
2
1
0
Short-Circuit Protection Control  
R/W  
R/W  
R
0h  
0h  
0h  
Short-circuit protection control.  
0: Short-circuit protection on all high-power output drivers is  
disabled  
1: Short-circuit protection on all high-power output drivers is  
enabled  
Short-Circuit Protection Mode  
Control  
Short-circuit protection mode control.  
0: If short-circuit protection is enabled, the maximum current is  
limited to the load  
1: If short-circuit protection is enabled, the output driver is  
automatically powered down when a short is detected  
Reserved  
Reserved. Always write a zero to this bit.  
7.6.2.37 Register 39: Reserved (address = 27h) [reset = 0000 0000], Page 0  
Figure 67. Register 39  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 45. Register 39 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
Reserved  
R
0h  
62  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.38 Register 40: High-Power Output Stage Control Register (address = 28h) [reset = 0000 0000],  
Page 0  
Figure 68. Register 40  
7
6
5
0
4
0
3
0
2
0
1
0
Output Common-Mode Voltage  
Control  
Output Volume Control Soft-  
Stepping  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 46. Register 40 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Output Common-Mode Voltage  
Control  
R/W  
0h  
Output common-mode voltage control.  
00: Output common-mode voltage = 1.35 V  
01: Output common-mode voltage = 1.5 V  
10: Output common-mode voltage = 1.65 V  
11: Output common-mode voltage = 1.8 V  
5:2  
1:0  
Reserved  
R/W  
R/W  
0h  
0h  
Reserved. Always write zeros to these bits.  
Output Volume Control Soft-  
Stepping  
Output volume control soft-stepping.  
00: Output soft-stepping = one step per sample period  
01: Output soft-stepping = one step per two sample periods  
10: Output soft-stepping disabled  
11: Reserved; do not write this sequence to these bits  
7.6.2.39 Register 41: DAC Output Switching Control Register (address = 29h) [reset = 0000 0000], Page 0  
Figure 69. Register 41  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
DAC Output Switching Control  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 47. Register 41 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
DAC Output Switching Control  
R/W  
0h  
DAC output switching control.  
00: DAC output selects DAC_1 path  
01: DAC output selects DAC_3 path to left line output driver  
10, 11: Reserved. Do not write this sequence to these register  
bits  
5:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
Copyright © 2017, Texas Instruments Incorporated  
63  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.40 Register 42: Output Driver Pop Reduction Register (address = 2Ah) [reset = 0000 0000], Page 0  
Figure 70. Register 42  
7
6
5
4
3
2
1
0
0
Driver Ramp-Up Step Timing Weak Output Common-Mode  
Output Driver Power-On Delay Control  
R/W-0h  
Control  
Voltage Control  
R/W-0h  
R/W-0h  
R/W-0h  
Table 48. Register 42 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Output Driver Power-On Delay  
Control  
R/W  
0h  
Output driver power-on delay control.  
0000: Driver power-on time = 0 μs  
0001: Driver power-on time = 10 μs  
0010: Driver power-on time = 100 μs  
0011: Driver power-on time = 1 ms  
0100: Driver power-on time = 10 ms  
0101: Driver power-on time = 50 ms  
0110: Driver power-on time = 100 ms  
0111: Driver power-on time = 200 ms  
1000: Driver power-on time = 400 ms  
1001: Driver power-on time = 800 ms  
1010: Driver power-on time = 2 s  
1011: Driver power-on time = 4 s  
1100–1111: Reserved; do not write these sequences to these  
register bits  
3:2  
1
Driver Ramp-Up Step Timing  
Control  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Driver ramp-up step timing control.  
00: Driver ramp-up step time = 0 ms  
01: Driver ramp-up step time = 1 ms  
10: Driver ramp-up step time = 2 ms  
11: Driver ramp-up step time = 4 ms  
Weak Output Common-Mode  
Voltage Control  
Weak output common-mode voltage control.  
0: Weakly driven output common-mode voltage is generated  
from resistor divider off the AVDD supply  
1: Weakly driven output common-mode voltage is generated  
from band-gap reference  
0
Reserved  
Reserved. Always write zero to this bit.  
7.6.2.41 Register 43: DAC Digital Volume Control Register (address = 2Bh) [reset = 1000 0000], Page 0  
Figure 71. Register 43  
7
6
5
4
3
2
1
0
DAC Digital Mute  
R/W-1h  
DAC Digital Volume Control Setting  
R/W-0h  
Table 49. Register 43 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC Digital Mute  
R/W  
1h  
DAC digital mute.  
0: The DAC channel is not muted  
1: The DAC channel is muted  
6:0  
DAC Digital Volume Control Setting R/W  
0h  
DAC digital volume control setting.  
000 0000: Gain = 0 dB  
000 0001: Gain = –0.5 dB  
000 0010: Gain = –1 dB  
111 1101: Gain = –62.5 dB  
111 1110: Gain = –63 dB  
111 1111: Gain = –63.5 dB  
64  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.42 Register 44: Reserved (address = 2Ch) [reset = 1000 0000], Page 0  
Figure 72. Register 44  
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 50. Register 44 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0000 to these bits.  
Reserved  
R/W  
1000 0000h  
7.6.2.43 Registers 45–50: Reserved (address = 2Dh–32h) [reset = 0000 0000], Page 0  
Figure 73. Register 45  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 51. Register 45 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.44 Register 51: Reserved (address = 33h) [reset = 0000 0100], Page 0  
Figure 74. Register 51  
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 52. Register 51 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0000 0100 to these bits.  
Reserved  
R/W  
0000 0100h  
7.6.2.45 Registers 52–57: Reserved (address = 34h–39h) [reset = 0000 0000], Page 0  
Figure 75. Register 52  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 53. Register 52 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
65  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.46 Register 58: Reserved (address = 3Ah) [reset = 0000 0100], Page 0  
Figure 76. Register 58  
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 54. Register 58 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0000 0100 to these bits.  
Reserved  
R/W  
0000 0100h  
7.6.2.47 Register 59: Reserved (address = 3Bh) [reset = 0000 0000], Page 0  
Figure 77. Register 59  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 55. Register 59 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.48 Register 60: PGA to HPOUT Volume Control Register (address = 3Ch) [reset = 0000 0000],  
Page 0  
Figure 78. Register 60  
7
6
5
4
3
2
1
0
PGA Output Routing Control  
R/W-0h  
PGA to HPOUT Analog Volume Control  
R/W-0h  
Table 56. Register 60 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA Output Routing Control  
R/W  
0h  
PGA output routing control.  
0: PGA is not routed to HPOUT  
1: PGA is routed to HPOUT  
6:0  
PGA to HPOUT Analog Volume  
Control  
R/W  
0h  
PGA to HPOUT analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
66  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.49 Register 61: DAC_1 to HPOUT Volume Control Register (address = 3Dh) [reset = 0000 0000],  
Page 0  
Figure 79. Register 61  
7
6
5
4
3
2
1
0
DAC_1 Output Routing  
Control  
DAC_1 to HPOUT Analog Volume Control  
R/W-0h  
R/W-0h  
Table 57. Register 61 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_1 Output Routing Control  
R/W  
0h  
DAC_1 output routing control.  
0: DAC_1 is not routed to HPOUT  
1: DAC_1 is routed to HPOUT  
6:0  
DAC_1 to HPOUT Analog Volume  
Control  
R/W  
0h  
DAC_1 to HPOUT analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.50 Register 62: Reserved Register (address = 3Eh) [reset = 0000 0000], Page 0  
Figure 80. Register 62  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 58. Register 62 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
7.6.2.51 Register 63: PGA_AUX to HPOUT Volume Control Register (address = 3Fh) [reset = 0000 0000],  
Page 0  
Figure 81. Register 63  
7
6
5
4
3
2
1
0
PGA_AUX Output Routing  
Control  
PGA_AUX to HPOUT Analog Volume Control  
R/W-0h  
R/W-0h  
Table 59. Register 63 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA_AUX Output Routing Control  
R/W  
0h  
PGA_AUX output routing control.  
0: PGA_AUX is not routed to HPOUT  
1: PGA_AUX is routed to HPOUT  
6:0  
PGA_AUX to HPOUT Analog  
Volume Control  
R/W  
0h  
PGA_AUX to HPOUT analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
Copyright © 2017, Texas Instruments Incorporated  
67  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.52 Register 64: Reserved (address = 40h) [reset = 0000 0000], Page 0  
Figure 82. Register 64  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 60. Register 64 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
RW  
0h  
7.6.2.53 Register 65: HPOUT Output Level Control Register (address = 41h) [reset = 0000 0100], Page 0  
Figure 83. Register 65  
7
6
5
4
3
2
1
0
HPOUT Power-Down  
Drive Control  
HPOUT Volume  
Control Status  
HPOUT Power  
Control  
HPOUT Output Level Control  
R/W-0h  
HPOUT Mute  
R/W-0h  
R/W-1h  
R-0h  
R/W-0h  
Table 61. Register 65 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
HPOUT Output Level Control  
R/W  
0h  
HPOUT output level control.  
0000: Output level control = 0 dB  
0001: Output level control = 1 dB  
0010: Output level control = 2 dB  
...  
1000: Output level control = 8 dB  
1001: Output level control = 9 dB  
1010–1111: Reserved; do not write these sequences to these  
register bits  
3
2
HPOUT Mute  
R/W  
0h  
1h  
HPOUT mute.  
0: HPOUT is muted  
1: HPOUT is not muted.  
HPOUT Power-Down Drive Control R/W  
HPOUT power-down drive control.  
0: HPOUT is weakly driven to a common mode when powered  
down  
1: HPOUT is high-impedance when powered down  
1
0
HPOUT Volume Control Status  
HPOUT Power Control  
R
0h  
0h  
HPOUT volume control status.  
0: All programmed gains to HPOUT are applied  
1: Not all programmed gains to HPOUT are applied yet  
R/W  
HPOUT power control.  
0: HPOUT is not fully powered up  
1: HPOUT is fully powered up  
7.6.2.54 Register 66: Reserved (address = 42h) [reset = 0000 0000], Page 0  
Figure 84. Register 66  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 62. Register 66 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
68  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.55 Register 67: PGA to HPCOM Volume Control Register (address = 43h) [reset = 0000 0000],  
Page 0  
Figure 85. Register 67  
7
6
5
4
3
2
1
0
PGA Output Routing Control  
R/W-0h  
PGA to HPCOM Analog Volume Control  
R/W-0h  
Table 63. Register 67 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA Output Routing Control  
R/W  
0h  
PGA output routing control.  
0: PGA is not routed to HPCOM  
1: PGA is routed to HPCOM  
6:0  
PGA to HPCOM Analog Volume  
Control  
R/W  
0h  
PGA to HPCOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.56 Register 68: DAC_1 to HPCOM Volume Control Register (address = 44h) [reset = 0000 0000],  
Page 0  
Figure 86. Register 68  
7
6
5
4
3
2
1
0
DAC_1 Output Routing  
Control  
DAC_1 to HPCOM Analog Volume Control  
R/W-0h  
R/W-0h  
Table 64. Register 68 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_1 Output Routing Control  
R/W  
0h  
DAC_1 output routing control.  
0: DAC_1 is not routed to HPCOM  
1: DAC_1 is routed to HPCOM  
6:0  
DAC_1 to HPCOM Analog Volume  
Control  
R/W  
0h  
DAC_1 to HPCOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.57 Register 69: Reserved (address = 45h) [reset = 0000 0000], Page 0  
Figure 87. Register 69  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 65. Register 69 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
69  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.58 Register 70: PGA_AUX to HPCOM Volume Control Register (address = 46h) [reset = 0000 0000],  
Page 0  
Figure 88. Register 70  
7
6
5
4
3
2
1
0
PGA_AUX Output Routing  
Control  
PGA_AUX to HPCOM Analog Volume Control  
R/W-0h  
R/W-0h  
Table 66. Register 70 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA_AUX Output Routing Control  
R/W  
0h  
PGA_AUX output routing control.  
0: PGA_AUX is not routed to HPCOM  
1: PGA_AUX is routed to HPCOM  
6:0  
PGA_AUX to HPCOM Analog  
Volume Control  
R/W  
0h  
PGA_AUX to HPCOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.59 Register 71: Reserved (address = 47h) [reset = 0000 0000], Page 0  
Figure 89. Register 71  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 67. Register 71 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
70  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.60 Register 72: HPCOM Output Level Control Register (address = 48h) [reset = 0000 0100], Page 0  
Figure 90. Register 72  
7
6
5
4
3
2
1
0
HPCOM Power-Down  
Drive Control  
HPCOM Volume  
Control Status  
HPCOM Power  
Control  
HPCOM Output Level Control  
R/W-0h  
HPCOM Mute  
R/W-0h  
R/W-1h  
R/0h  
R/W-0h  
Table 68. Register 72 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
HPCOM Output Level Control  
R/W  
0h  
HPCOM output level control.  
0000: Output level control = 0 dB  
0001: Output level control = 1 dB  
0010: Output level control = 2 dB  
...  
1000: Output level control = 8 dB  
1001: Output level control = 9 dB  
1010–1111: Reserved; do not write these sequences to these  
register bits  
3
2
HPCOM Mute  
R/W  
0h  
1h  
HPCOM mute.  
0: HPCOM is muted  
1: HPCOM is not muted  
HPCOM Power-Down Drive Control R/W  
HPCOM power-down drive control.  
0: HPCOM is weakly driven to a common mode when powered  
down  
1: HPCOM is high-impedance when powered down  
1
0
HPCOM Volume Control Status  
HPCOM Power Control  
R
0h  
0h  
HPCOM volume control status.  
0: All programmed gains to HPCOM are applied  
1: Not all programmed gains to HPCOM are applied yet  
R/W  
HPCOM power control.  
0: HPCOM is not fully powered up  
1: HPCOM is fully powered up  
7.6.2.61 Registers 73–80: Reserved (address = 49h–50h) [reset = 0000 0000], Page 0  
Figure 91. Registers 73–80  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 69. Registers 73–80 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
71  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.62 Register 81: PGA to LEFT_LOP/M Volume Control Register (address = 51h) [reset = 0000 0000],  
Page 0  
Figure 92. Register 81  
7
6
5
4
3
2
1
0
PGA Output Routing Control  
R/W-0h  
PGA to LEFT_LOP/M Analog Volume Control  
R/W-0h  
Table 70. Register 81 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA Output Routing Control  
R/W  
0h  
PGA output routing control.  
0: PGA is not routed to LEFT_LOP, LEFT_LOM  
1: PGA is routed to LEFT_LOP, LEFT_LOM  
6:0  
PGA to LEFT_LOP/M Analog  
Volume Control  
R/W  
0h  
PGA to LEFT_LOP, LEFT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.63 Register 82: DAC_1 to LEFT_LOP/M Volume Control Register (address = 52h) [reset = 0000  
0000], Page 0  
Figure 93. Register 82  
7
6
5
4
3
2
1
0
DAC_1 Output Routing  
Control  
DAC_1 to LEFT_LOP/M Analog Volume Control  
R/W-0h  
R/W-0h  
Table 71. Register 82 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_1 Output Routing Control  
R/W  
0h  
DAC_1 output routing control.  
0: DAC_1 is not routed to LEFT_LOP, LEFT_LOM  
1: DAC_1 is routed to LEFT_LOP, LEFT_LOM  
6:0  
DAC_1 to LEFT_LOP/M Analog  
Volume Control  
R/W  
0h  
DAC_1 to LEFT_LOP, LEFT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.64 Register 83: Reserved (address = 53h) [reset = 0000 0000], Page 0  
Figure 94. Register 83  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 72. Register 83 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
72  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.65 Register 84: PGA_AUX to LEFT_LOP/M Volume Control Register (address = 54h) [reset = 0000  
0000], Page 0  
Figure 95. Register 84  
7
6
5
4
3
2
1
0
PGA_AUX Output Routing  
Control  
PGA_AUX to LEFT_LOP/M Analog Volume Control  
R/W-0h  
R/W-0h  
Table 73. Register 84 Field Descriptions  
Bit  
Field  
PGA_AUX Output Routing Control  
Type  
Reset  
Description  
7
R/W  
0h  
PGA_AUX output routing control.  
0: PGA_AUX is not routed to LEFT_LOP, LEFT_LOM  
1: PGA_AUX is routed to LEFT_LOP, LEFT_LOM  
6:0  
PGA_AUX to LEFT_LOP/M Analog R/W  
Volume Control  
0h  
PGA_AUX to LEFT_LOP, LEFT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.66 Register 85: Reserved (address = 55h) [reset = 0000 0000], Page 0  
Figure 96. Register 85  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 74. Register 85 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
73  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.67 Register 86: LEFT_LOP/M Output Level Control Register (address = 56h) [reset = 0000 0000],  
Page 0  
Figure 97. Register 86  
7
6
5
4
3
2
0
1
0
LEFT_LOP/M Volume  
Control Status  
LEFT_LOP/M Power  
Status  
LEFT_LOP/M Output Level Control  
R/W-0h  
LEFT_LOP/M Mute  
R/W-0h  
R-0h  
R-0h  
R-0h  
Table 75. Register 86 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
LEFT_LOP/M Output Level Control R/W  
0h  
LEFT_LOP, LEFT_LOM output level control.  
0000: Output level control = 0 dB  
0001: Output level control = 1 dB  
0010: Output level control = 2 dB  
...  
1000: Output level control = 8 dB  
1001: Output level control = 9 dB  
1010–1111: Reserved; do not write these sequences to these  
register bits  
3
LEFT_LOP/M Mute  
Reserved  
R/W  
0h  
LEFT_LOP, LEFT_LOM mute.  
0: LEFT_LOP, LEFT_LOM are muted  
1: LEFT_LOP, LEFT_LOM are not muted  
2
1
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
LEFT_LOP/M Volume Control  
Status  
LEFT_LOP, LEFT_LOM volume control status.  
0: All programmed gains to LEFT_LOP, LEFT_LOM are applied  
1: Not all programmed gains to LEFT_LOP, LEFT_LOM are  
applied yet  
0
LEFT_LOP/M Power Status  
R
0h  
LEFT_LOP, LEFT_LOM power status.  
0: LEFT_LOP, LEFT_LOM is not fully powered up  
1: LEFT_LOP, LEFT_LOM is fully powered up  
7.6.2.68 Register 87: Reserved (address = 57h) [reset = 0000 0000], Page 0  
Figure 98. Register 87  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 76. Register 87 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
74  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.69 Register 88: PGA to RIGHT_LOP/M Volume Control (address = 58h) [reset = 0000 0000], Page 0  
Figure 99. Register 88  
7
6
5
4
3
2
1
0
PGA Output Routing Control  
R/W-0h  
PGA to RIGHT_LOP/M Analog Volume Control  
R/W-0h  
Table 77. Register 88 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA Output Routing Control  
R/W  
0h  
PGA output routing control.  
0: PGA is not routed to RIGHT_LOP, RIGHT_LOM  
1: PGA is routed to RIGHT_LOP, RIGHT_LOM  
6:0  
PGA to RIGHT_LOP/M Analog  
Volume Control  
R/W  
0h  
PGA to RIGHT_LOP, RIGHT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.70 Register 89: DAC_1 to RIGHT_LOP/M Volume Control (address = 59h) [reset = 0000 0000],  
Page 0  
Figure 100. Register 89  
7
6
5
4
3
2
1
0
DAC_1 Output Routing  
Control  
DAC_1 to RIGHT_LOP/M Analog Volume Control  
R/W-0h  
R/W-0h  
Table 78. Register 89 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_1 Output Routing Control  
R/W  
0h  
DAC_1 output routing control.  
0: DAC_1 is not routed to RIGHT_LOP, RIGHT_LOM  
1: DAC_1 is routed to RIGHT_LOP, RIGHT_LOM  
6:0  
DAC_1 to RIGHT_LOP/M Analog  
Volume Control  
R/W  
0h  
DAC_1 to RIGHT_LOP, RIGHT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.71 Register 90: Reserved (address = 5A) [reset = 0000 0000], Page 0  
Figure 101. Register 90  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 79. Register 90 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
75  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.72 Register 91: PGA_AUX to RIGHT_LOP/M Volume Control (address = 5Bh) [reset = 0000 0000],  
Page 0  
Figure 102. Register 91  
7
6
5
4
3
2
1
0
PGA_AUX Output Routing  
Control  
PGA_AUX to RIGHT_LOP/M Analog Volume Control  
R/W-0h  
R/W-0h  
Table 80. Register 91 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGA_AUX Output Routing Control  
R/W  
0h  
PGA_AUX output routing control.  
0: PGA_AUX is not routed to RIGHT_LOP, RIGHT_LOM  
1: PGA_AUX is routed to RIGHT_LOP, RIGHT_LOM  
6:0  
PGA_AUX to RIGHT_LOP/M  
Analog Volume Control  
R/W  
0h  
PGA_AUX to RIGHT_LOP, RIGHT_LOM analog volume control.  
For 7-bit register settings versus analog gain values, see 6.  
7.6.2.73 Register 92: Reserved (address = 5Ch) [reset = 0000 0000], Page 0  
Figure 103. Register 92  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 81. Register 92 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
76  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.74 Register 93: RIGHT_LOP/M Output Level Control (address = 5Dh) [reset = 0000 0000], Page 0  
Figure 104. Register 93  
7
6
5
4
3
2
0
1
0
RIGHT_LOP/M Volume RIGHT_LOP/M Power  
RIGHT_LOP/M Output Level Control  
R/W-0h  
RIGHT_LOP/M Mute  
R/W-0h  
Control Status  
Status  
R-0h  
R-0h  
R-0h  
Table 82. Register 93 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
RIGHT_LOP/M Output Level  
Control  
R/W  
0h  
RIGHT_LOP, RIGHT_LOM output level control.  
0000: Output level control = 0 dB  
0001: Output level control = 1 dB  
0010: Output level control = 2 dB  
...  
1000: Output level control = 8 dB  
1001: Output level control = 9 dB  
1010–1111: Reserved; do not write these sequences to these  
bits  
3
RIGHT_LOP/M Mute  
Reserved  
R/W  
0h  
RIGHT_LOP, RIGHT_LOM mute.  
0: RIGHT_LOP, RIGHT_LOM are muted  
1: RIGHT_LOP, RIGHT_LOM are not muted  
2
1
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
RIGHT_LOP/M Volume Control  
Status  
RIGHT_LOP, RIGHT_LOM volume control status.  
0: All programmed gains to RIGHT_LOP, RIGHT_LOM are  
applied  
1: Not all programmed gains to RIGHT_LOP, RIGHT_LOM are  
applied yet  
0
RIGHT_LOP/M Power Status  
R
0h  
RIGHT_LOP, RIGHT_LOM power status/  
0: RIGHT_LOP, RIGHT_LOM are not fully powered up  
1: RIGHT_LOP, RIGHT_LOM are fully powered up  
7.6.2.75 Register 94: Module Power Status Register (address = 5Eh) [reset = 0000 0000], Page 0  
Figure 105. Register 94  
7
6
0
5
0
4
3
2
0
1
0
0
LEFT_LOP/M Power RIGHT_LOP/M Power  
HPOUT Driver Power  
Status  
DAC Power Status  
R-0h  
Status  
Status  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 83. Register 94 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC Power Status  
R
0h  
DAC power status.  
0: DAC is not fully powered up  
1: DAC is fully powered up  
6:5  
4
Reserved  
R
R
0h  
0h  
Reserved. Always write zeros to these bits.  
LEFT_LOP/M Power Status  
RIGHT_LOP/M Power Status  
LEFT_LOP, LEFT_LOM power status.  
0: LEFT_LOP, LEFT_LOM output driver is powered down  
1: LEFT_LOP, LEFT_LOM output driver is powered up  
3
R
0h  
RIGHT_LOP, RIGHT_LOM power status.  
0: RIGHT_LOP, RIGHT_LOM is not fully powered up  
1: RIGHT_LOP, RIGHT_LOM is fully powered up  
2
1
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
HPOUT Driver Power Status  
HPOUT driver power status.  
0: HPOUT driver is not fully powered up  
1: HPOUT driver is fully powered up  
0
Reserved  
R
0h  
Reserved. Always write zero to this bit.  
Copyright © 2017, Texas Instruments Incorporated  
77  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.76 Register 95: Output Driver Short-Circuit Detection Status Register (address = 5Fh) [reset = 0000  
0000], Page 0  
Figure 106. Register 95  
7
0
6
5
0
4
3
0
2
1
0
0
0
HPOUT Short-Circuit  
Detection Status  
HPCOM Short-Circuit  
Detection Status  
HPCOM Power Status  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 84. Register 95 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Always write zero to this bit.  
6
HPOUT Short-Circuit Detection  
Status  
R
0h  
HPOUT short-circuit detection status.  
0: No short circuit detected at HPOUT  
1: Short circuit detected at HPOUT  
5
4
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
HPCOM Short-Circuit Detection  
Status  
HPCOM short-circuit detection status.  
0: No short circuit detected at HPCOM  
1: Short circuit detected at HPCOM  
3
2
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
HPCOM Power Status  
HPCOM power status.  
0: HPCOM is not fully powered up  
1: HPCOM is fully powered up  
1:0  
Reserved  
R
0h  
Reserved. Always write zeros to these bits.  
7.6.2.77 Register 96: Sticky Interrupt Flags Register (address = 60h) [reset = 0000 0000], Page 0  
Figure 107. Register 96  
7
0
6
5
0
4
3
0
2
1
0
0
HPOUT Short-Circuit  
Detection Status  
HPCOM Short-Circuit  
Detection Status  
Headset Detection  
Status  
ADC AGC Noise Gate  
Status  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 85. Register 96 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Always write zero to this bit.  
6
HPOUT Short-Circuit Detection  
Status  
R
0h  
HPOUT short-circuit detection status.  
0: No short circuit detected at HPOUT driver  
1: Short circuit detected at HPOUT driver  
5
4
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
HPCOM Short-Circuit Detection  
Status  
HPCOM short-circuit detection status.  
0: No short circuit detected at HPCOM driver  
1: Short circuit detected at HPCOM driver  
3
2
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
Headset Detection Status  
Headset detection status.  
0: No headset insertion or removal is detected  
1: Headset insertion or removal is detected  
1
0
ADC AGC Noise Gate Status  
Reserved  
R
R
0h  
0h  
ADC AGC noise gate status.  
0: DC signal power is greater than or equal to noise threshold  
for AGC  
1: ADC signal power is less than noise threshold for AGC  
Reserved. Always write zero to this bit.  
78  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.78 Register 97: Real-Time Interrupt Flags Register (address = 61h) [reset = 0000 0000], Page 0  
Figure 108. Register 97  
7
0
6
5
0
4
3
0
2
1
0
0
HPOUT Short-Circuit  
Detection Status  
HPCOM Short-Circuit  
Detection Status  
Headset Detection  
Status  
ADC AGC Noise Gate  
Status  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 86. Register 97 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Always write zero to this bit.  
6
HPOUT Short-Circuit Detection  
Status  
R
0h  
HPOUT short-circuit detection status.  
0: No short circuit detected at HPOUT driver  
1: Short circuit detected at HPOUT driver  
5
4
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
HPCOM Short-Circuit Detection  
Status  
HPCOM short-circuit detection status.  
0: No short circuit detected at HPCOM driver  
1: Short circuit detected at HPCOM driver  
3
2
Reserved  
R
R
0h  
0h  
Reserved. Always write zero to this bit.  
Headset Detection Status  
Headset Detection Status  
0: No headset insertion/removal is detected.  
1: Headset insertion/removal is detected.  
1
0
ADC AGC Noise Gate Status  
Reserved  
R
R
0h  
0h  
ADC AGC Noise Gate Status  
0: ADC signal power is greater than noise threshold for lAGC.  
1: ADC signal power lower than noise threshold for AGC.  
Reserved. Always write zero to this bit.  
7.6.2.79 Registers 98–100: Reserved (address = 62h–64h) [reset = 0000 0000], Page 0  
Figure 109. Registers 98–100  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 87. Registers 98–100 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
Reserved  
R
0h  
7.6.2.80 Register 101: Clock Register (address = 65h) [reset = 0000 0000], Page 0  
Figure 110. Register 101  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CODEC_CLKIN Source  
Selection  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R/W-0h  
Table 88. Register 101 Field Descriptions  
Bit  
7:1  
0
Field  
Reserved  
CODEC_CLKIN Source Selection  
Type  
R
Reset  
0h  
Description  
Reserved. Always write zeros to these bits.  
R/W  
0h  
CODEC_CLKIN source selection.  
0: CODEC_CLKIN uses PLLDIV_OUT  
1: CODEC_CLKIN uses CLKDIV_OUT  
Copyright © 2017, Texas Instruments Incorporated  
79  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.81 Register 102: Clock Generation Control Register (address = 66h) [reset = 0000 0000], Page 0  
Figure 111. Register 102  
7
6
5
4
3
0
2
0
1
1
0
0
CLKDIV_IN Source Selection  
R/W-0h  
PLLCLK_IN Source Selection  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 89. Register 102 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
CLKDIV_IN Source Selection  
R/W  
0h  
CLKDIV_IN source selection.  
00: CLKDIV_IN uses MCLK  
01: CLKDIV_IN uses GPIO2  
10: CLKDIV_IN uses BCLK  
11: Reserved; do not use  
5:4  
PLLCLK_IN Source Selection  
R/W  
0h  
PLLCLK_IN source selection.  
00: PLLCLK_IN uses MCLK  
01: PLLCLK_IN uses GPIO2  
10: PLLCLK _IN uses BCLK  
11: Reserved; do not use  
3:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
7.6.2.82 Register 103: AGC New Programmable Attack Time Register (address = 67h) [reset = 0000  
0000], Page 0  
Figure 112. Register 103  
7
6
5
4
3
2
1
0
0
0
Attack Time Register  
Selection  
Baseline AGC Attack Time  
R/W-0h  
Multiplication Factor for Baseline AGC  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 90. Register 103 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Attack Time Register Selection  
R/W  
0h  
Attack time register selection.  
0: Attack time for the AGC is generated from register 26, page 0  
1: Attack time for the AGC is generated from this register  
6:5  
4:2  
Baseline AGC Attack Time  
R/W  
R/W  
0h  
0h  
Baseline AGC attack time.  
00: AGC attack time = 7 ms  
01: AGC attack time = 8 ms  
10: AGC attack time = 10 ms  
11: AGC attack time = 11 ms  
Multiplication Factor for Baseline  
AGC  
Multiplication factor for baseline AGC.  
000: Multiplication factor for the baseline AGC attack time = 1  
001: Multiplication factor for the baseline AGC attack time = 2  
010: Multiplication factor for the baseline AGC attack time = 4  
011: Multiplication factor for the baseline AGC attack time = 8  
100: Multiplication factor for the baseline AGC attack time = 16  
101: Multiplication factor for the baseline AGC attack time = 32  
110: Multiplication factor for the baseline AGC attack time = 64  
111: Multiplication factor for the baseline AGC attack time = 128  
1:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
80  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.83 Register 104: AGC New Programmable Decay Time Register (address = 68h) [reset = 0000  
0000], Page 0  
Figure 113. Register 104  
7
6
5
4
3
2
1
0
0
0
Decay Time Register  
Selection  
Baseline AGC Decay Time  
R/W-0h  
Multiplication Factor for Baseline AGC  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 91. Register 104 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Decay Time Register Selection(1)  
R/W  
0h  
Decay time register selection.  
0: Decay time for the AGC is generated from register 26, page 0  
1: Decay time for the AGC is generated from this register  
6:5  
4:2  
Baseline AGC Decay Time  
R/W  
R/W  
0h  
0h  
Baseline AGC decay time.  
00: AGC decay time = 50 ms  
01: AGC decay time = 150 ms  
10: AGC decay time = 250 ms  
11: -AGC decay time = 350 ms  
Multiplication Factor for Baseline  
AGC  
Multiplication factor for baseline AGC.  
000: Multiplication factor for the baseline AGC decay time = 1  
001: Multiplication factor for the baseline AGC decay time = 2  
010: Multiplication factor for the baseline AGC decay time = 4  
011: Multiplication factor for the baseline AGC decay time = 8  
100: Multiplication factor for the baseline AGC decay time = 16  
101: Multiplication factor for the baseline AGC decay time = 32  
110: Multiplication factor for the baseline AGC decay time = 64  
111: Multiplication factor for the baseline AGC decay time = 128  
1:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
(1) Decay time is limited based on the NCODEC ratio that is selected. For NCODEC = 1, maximum decay time = 4 s; NCODEC = 1.5,  
maximum decay time = 5.6 s; NCODEC = 2, maximum decay time = 8 s; NCODEC = 2.5, maximum decay time = 9.6 s; NCODEC = 3  
or 3.5, maximum decay time = 11.2 s; NCODEC = 4 or 4.5, maximum decay time = 16 s; NCODEC = 5, maximum decay time = 19.2 s;  
and NCODEC = 5.5 or 6, maximum decay time = 22.4 s.  
7.6.2.84 Registers 105–106: Reserved (address = 69h–6Ah) [reset = 0000 0000], Page 0  
Figure 114. Register 105  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 92. Register 105 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
7:0  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
81  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.85 Register 107: New Programmable ADC Digital Path and I2C Bus Condition Register (address =  
6Bh) [reset = 0000 0000], Page 0  
Figure 115. Register 107  
7
6
0
5
0
4
0
3
2
1
0
0
Channel High-Pass  
Filter Coefficient  
Selection  
ADC Digital Output to  
Programmable Filter  
Path Selection  
I2C Bus Condition  
Detector  
I2C Bus Error  
Detection Status  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
Table 93. Register 107 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Channel High-Pass Filter Coefficient R/W  
Selection  
0h  
Channel high-pass filter coefficient selection.  
0: Default coefficients are used when ADC high pass is enabled  
1: Programmable coefficients are used when ADC high pass is  
enabled  
6:4  
3
Reserved  
R/W  
R/W  
0h  
0h  
Reserved. Always write zeros to these bits.  
ADC Digital Output to  
Programmable Filter Path Selection  
ADC digital output to programmable filter path selection.  
0: No additional programmable filters other than the HPF are  
used for the ADC  
1: The programmable filter is connected to the ADC output if  
both DACs are powered down  
2
I2C Bus Condition Detector  
R/W  
0h  
I2C bus condition detector.  
0: Internal logic is enabled to detect an I2C bus error and clears  
the bus error condition  
1: Internal logic is disabled to detect an I2C bus error  
1
0
Reserved  
I2C Bus Error Detection Status  
R
R
0h  
0h  
Reserved. Always write zero to this bit  
I2C bus error detection status.  
0: I2C bus error is not detected  
1: I2C bus error is detected; this bit is cleared by reading this  
register  
82  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.2.86 Register 108: Passive Analog Signal Bypass Selection During Power Down Register (address =  
6Ch) [reset = 0000 0000], Page 0  
Figure 116. Register 108  
7
0
6
0
5
4
3
0
2
0
1
0
LINE1RM Path  
Selection  
LINE1RP Path  
Selection  
LINE1LM Path  
Selection  
LINE1LP Path  
Selection  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 94. Register 108 Field Descriptions(1)  
Bit  
7:6  
5
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved. Always write zeros to these bits.  
LINE1RM Path Selection  
0h  
LINE1RM path selection.  
0: Normal signal path  
1: Signal is routed by a switch to RIGHT_LOM  
4
LINE1RP Path Selection  
R/W  
0h  
LINE1RP path selection.  
0: Normal signal path  
1: Signal is routed by a switch to RIGHT_LOP  
3:2  
1
Reserved  
R/W  
R/W  
0h  
0h  
Reserved. Always write zeros to these bits  
LINE1LM Path Selection  
LINE1LM path selection.  
0: Normal signal path  
1: Signal is routed by a switch to LEFT_LOM  
0
LINE1LP Path Selection  
R/W  
0h  
LINE1LP path selection.  
0: Normal signal path  
1: Signal is routed by a switch to LEFT_LOP  
(1) Based on the register 108 settings, if both LINE1 and LINE2 inputs are routed to the output at the same time, then the two switches  
used for the connection short the two input signals together on the output pins. The shorting resistance between the two input pins is  
two times the bypass switch resistance (Rdson). In general, avoid this shorting condition because higher drive currents are likely to occur  
on the circuitry that feeds these two input pins of this device.  
7.6.2.87 Register 109: DAC Quiescent Current Adjustment Register (address = 6Dh) [reset = 0000 0000],  
Page 0  
Figure 117. Register 109  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
DAC Current Adjustment  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 95. Register 109 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:8  
DAC Current Adjustment  
R/W  
0h  
DAC current adjustment.  
00: Default  
01: 50% increase in DAC reference current  
10: Reserved  
11: 100% increase in DAC reference current  
5:0  
Reserved  
R/W  
0h  
Reserved. Always write zeros to these bits.  
Copyright © 2017, Texas Instruments Incorporated  
83  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.2.88 Registers 110–127: Reserved (address = 6Eh–7Fh) [reset = 0000 0000], Page 0  
Figure 118. Registers 110–127  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 96. Registers 110–127 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
Reserved  
R
0h  
7.6.3 Page 1 Register Descriptions  
These registers are held within page 1.  
7.6.3.1 Register 0: Page Select Register (address = 0h) [reset = 0000 0000], Page 1  
Figure 119. Register 0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Page Select Bit  
R/W-0h  
X-0h  
X-0h  
X-0h  
X-0h  
X-0h  
X-0h  
X-0h  
Table 97. Register 0 Field Descriptions  
Bit  
7:1  
0
Field  
Type  
X
Reset  
0h  
Description  
Reserved  
Reserved. Always write zeros to these bits.  
Page Select Bit  
R/W  
0h  
Page select bit.  
Writing zero to this bit sets page 0 as the active page for  
following register accesses. Writing a one to this bit sets page 1  
as the active page for following register accesses. This register  
bit is recommended to be read back after each write to ensure  
that the proper page is being accessed for future register  
read/writes. This register has the same functionality on page 0  
and page 1.  
7.6.3.2 Register 1: Audio Effects Filter N0 Coefficient MSB Register (address = 1h) [reset = 0110 1011],  
Page 1  
Figure 120. Register 1  
7
6
5
4
3
2
1
0
Audio Effects Filter N0 Coefficient MSB  
R/W-0h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 98. Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N0 Coefficient R/W  
MSB(1)  
0110 1011h  
Audio effects filter N0 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
(1) When programming any coefficient value in page 1, always write the MSB register first, immediately followed by the LSB register. Even  
if only the MSB or LSB of the coefficient changes, write both registers in this sequence.  
84  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.3 Register 2: Audio Effects Filter N0 Coefficient LSB Register (address = 2h) [reset = 1110 0011],  
Page 1  
Figure 121. Register 2  
7
6
5
4
3
2
1
0
Audio Effects Filter N0 Coefficient LSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 99. Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N0 Coefficient R/W  
LSB  
1110 0011h  
Audio effects filter N0 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.4 Register 3: Audio Effects Filter N1 Coefficient MSB Register (address = 3h) [reset = 1001 0110],  
Page 1  
Figure 122. Register 3  
7
6
5
4
3
2
1
0
Audio Effects Filter N1 Coefficient MSB  
R/W-0h R/W-1h R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 100. Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N1 Coefficient R/W  
MSB  
1001 0110h  
Audio effects filter N1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.5 Register 4: Audio Effects Filter N1 Coefficient LSB Register (address = 4h) [reset = 0110 0110],  
Page 1  
Figure 123. Register 4  
7
6
5
4
3
2
1
0
Audio Effects Filter N1 Coefficient LSB  
R/W-0h R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 101. Register 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N1 Coefficient R/W  
LSB  
0110 0110h  
Audio effects filter N1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
Copyright © 2017, Texas Instruments Incorporated  
85  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.6 Register 5: Audio Effects Filter N2 Coefficient MSB Register (address = 5h) [reset = 0110 0111],  
Page 1  
Figure 124. Register 5  
7
6
5
4
3
2
1
0
Audio Effects Filter N2 Coefficient MSB  
R/W-1h R/W-0h R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 102. Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N2 Coefficient R/W  
MSB  
0110 0111h  
Audio effects filter N2 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.7 Register 6: Audio Effects Filter N2 Coefficient LSB Register (address = 6h) [reset = 0101 1101],  
Page 1  
Figure 125. Register 6  
7
6
5
4
3
2
1
0
Audio Effects Filter N2 Coefficient LSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 103. Register 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N2 Coefficient R/W  
LSB  
0101 1101h  
Audio effects filter N2 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.8 Register 7: Audio Effects Filter N3 Coefficient MSB Register (address = 7h) [reset = 0110 1011],  
Page 1  
Figure 126. Register 7  
7
6
5
4
3
2
1
0
Audio Effects Filter N3 Coefficient MSB  
R/W-0h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 104. Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N3 Coefficient R/W  
MSB  
0110 1011h  
Audio effects filter N3 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
86  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.9 Register 8: Audio Effects Filter N3 Coefficient LSB Register (address = 8h) [reset = 1110 0011],  
Page 1  
Figure 127. Register 8  
7
6
5
4
3
2
1
0
Audio Effects Filter N3 Coefficient LSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 105. Register 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N3 Coefficient R/W  
LSB  
1110 0011h  
Audio effects filter N3 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.10 Register 9: Audio Effects Filter N4 Coefficient MSB Register (address = 9h) [reset = 1001 0110],  
Page 1  
Figure 128. Register 9  
7
6
5
4
3
2
1
0
Audio Effects Filter N4 Coefficient MSB  
R/W-1h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 106. Register 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N4 Coefficient R/W  
MSB  
1001 0110h  
Audio effects filter N4 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.11 Register 10: Audio Effects Filter N4 Coefficient LSB Register (address = Ah) [reset = 0110 0110],  
Page 1  
Figure 129. Register 10  
7
6
5
4
3
2
1
0
Audio Effects Filter N4 Coefficient LSB  
R/W-0h R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 107. Register 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N4 Coefficient R/W  
LSB  
0110 0110h  
Audio effects filter N4 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
Copyright © 2017, Texas Instruments Incorporated  
87  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.12 Register 11: Audio Effects Filter N5 Coefficient MSB Register (address = Bh) [reset =  
0110 0111], Page 1  
Figure 130. Register 11  
7
6
5
4
3
2
1
0
Audio Effects Filter N5 Coefficient MSB  
R/W-0h R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 108. Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N5 Coefficient R/W  
MSB  
0110 0111h  
Audio effects filter N5 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.13 Register 12: Audio Effects Filter N5 Coefficient LSB Register (address = Ch) [reset = 0101 1101],  
Page 1  
Figure 131. Register 12  
7
6
5
4
3
2
1
0
Audio Effects Filter N5 Coefficient LSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 109. Register 12 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter N5 Coefficient R/W  
LSB  
0101 1101h  
Audio effects filter N5 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.14 Register 13: Audio Effects Filter D1 Coefficient MSB Register (address = Dh) [reset =  
0111 1101], Page 1  
Figure 132. Register 13  
7
6
5
4
3
2
1
0
Audio Effects Filter D1 Coefficient MSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 110. Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D1 Coefficient R/W  
MSB  
0111 1101h  
Audio effects filter D1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
88  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.15 Register 14: Audio Effects Filter D1 Coefficient LSB Register (address = Eh) [reset =  
1000 0011h], Page 1  
Figure 133. Register 14  
7
6
5
4
3
2
1
0
Audio Effects Filter D1 Coefficient LSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 111. Register 14 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D1 Coefficient R/W  
LSB  
1000 0011h  
Audio effects filter D1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.16 Register 15: Audio Effects Filter D2 Coefficient MSB Register (address = Fh) [reset = 1000 0100],  
Page 1  
Figure 134. Register 15  
7
6
5
4
3
2
1
0
Audio Effects Filter D2 Coefficient MSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 112. Register 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D2 Coefficient R/W  
MSB  
1000 0100h  
Audio effects filter D2 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.17 Register 16: Audio Effects Filter D2 Coefficient LSB Register (address = 10h) [reset =  
1110 1110], Page 1  
Figure 135. Register 16  
7
6
5
4
3
2
1
0
Audio Effects Filter D2 Coefficient LSB  
R/W-0h R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 113. Register 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D2 Coefficient R/W  
LSB  
1110 1110h  
Audio effects filter D2 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
Copyright © 2017, Texas Instruments Incorporated  
89  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.18 Register 17: Audio Effects Filter D4 Coefficient MSB Register (address = 11h) [reset =  
0111 1101], Page 1  
Figure 136. Register 17  
7
6
5
4
3
2
1
0
Audio Effects Filter D4 Coefficient MSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 114. Register 17 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D4 Coefficient R/W  
MSB  
0111 1101h  
Audio effects filter D4 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.19 Register 18: Audio Effects Filter D4 Coefficient LSB Register (address = 12h) [reset =  
1000 0011], Page 1  
Figure 137. Register 18  
7
6
5
4
3
2
1
0
Audio Effects Filter D4 Coefficient LSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 115. Register 18 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D4 Coefficient R/W  
LSB  
1000 0011h  
Audio effects filter D4 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.20 Register 19: Audio Effects Filter D5 Coefficient MSB Register (address = 13h) [reset =  
1000 0100], Page 1  
Figure 138. Register 19  
7
6
5
4
3
2
1
0
Audio Effects Filter D5 Coefficient MSB  
R/W-0h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 116. Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D5 Coefficient R/W  
MSB  
1000 0100h  
Audio effects filter D5 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
90  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.21 Register 20: Audio Effects Filter D5 Coefficient LSB Register (address = 14h) [reset =  
1110 1110], Page 1  
Figure 139. Register 20  
7
6
5
4
3
2
1
0
Audio Effects Filter D5 Coefficient LSB  
R/W-0h R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 117. Register 20 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Audio Effects Filter D5 Coefficient R/W  
LSB  
1110 1110h  
Audio effects filter D5 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.22 Register 21: De-Emphasis Filter N0 Coefficient MSB Register (address = 15h) [reset =  
0011 1001], Page 1  
Figure 140. Register 21  
7
6
5
4
3
2
1
0
De-Emphasis Filter N0 Coefficient MSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 118. Register 21 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter N0 Coefficient R/W  
MSB  
0011 1001h  
De-emphasis filter N0 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.23 Register 22: De-Emphasis Filter N0 Coefficient LSB Register (address = 16h) [reset =  
0101 0101], Page 1  
Figure 141. Register 22  
7
6
5
4
3
2
1
0
De-Emphasis Filter N0 Coefficient LSB  
R/W-1h R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 119. Register 22 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter N0 Coefficient R/W  
LSB  
0101 0101h  
De-emphasis filter N0 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
Copyright © 2017, Texas Instruments Incorporated  
91  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.24 Register 23: De-Emphasis Filter N1 Coefficient MSB Register (address = 17h) [reset =  
1111 0011], Page 1  
Figure 142. Register 23  
7
6
5
4
3
2
1
0
De-Emphasis Filter N1 Coefficient MSB  
R/W-1h R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 120. Register 23 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter N1 Coefficient R/W  
MSB  
1111 0011h  
De-emphasis filter N1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.25 Register 24: De-Emphasis Filter N1 Coefficient LSB Register (address = 18h) [reset =  
0010 1101], Page 1  
Figure 143. Register 24  
7
6
5
4
3
2
1
0
De-Emphasis Filter N1 Coefficient LSB  
R/W-0h R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 121. Register 24 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter N1 Coefficient R/W  
LSB  
0010 1101h  
De-emphasis filter N1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.26 Register 25: De-Emphasis Filter D1 Coefficient MSB Register (address = 19h) [reset =  
0101 0011], Page 1  
Figure 144. Register 25  
7
6
5
4
3
2
1
0
De-Emphasis Filter D1 Coefficient MSB  
R/W-1h R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 122. Register 25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter D1 Coefficient R/W  
MSB  
0101 0011h  
De-emphasis filter D1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
92  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.27 Register 26: De-Emphasis Filter D1 Coefficient LSB Register (address = 1Ah) [reset =  
0111 1110], Page 1  
Figure 145. Register 26  
7
6
5
4
3
2
1
0
De-Emphasis Filter D1 Coefficient LSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 123. Register 26 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
De-Emphasis Filter D1 Coefficient R/W  
LSB  
0111 1110h  
De-emphasis filter D1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.28 Register 27: Reserved (address = 1Bh) [reset = 0110 1011], Page 1  
Figure 146. Register 27  
7
0
6
1
5
1
4
0
3
1
2
0
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 124. Register 27 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 1011 to these bits.  
Reserved  
R/W  
0110 1011h  
7.6.3.29 Register 28: Reserved (address = 1Ch) [reset = 1110 0011], Page 1  
Figure 147. Register 28  
7
1
6
1
5
1
4
0
3
0
2
0
1
1
0
1
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 125. Register 28 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1110 0011 to these bits.  
Reserved  
R/W  
1110 0011h  
7.6.3.30 Register 29: Reserved (address = 1Dh) [reset = 1001 0110], Page 1  
Figure 148. Register 29  
7
1
6
0
5
0
4
1
3
0
2
1
1
1
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 126. Register 29 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1001 0110 to these bits.  
Reserved  
R/W  
1001 0110h  
Copyright © 2017, Texas Instruments Incorporated  
93  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.31 Register 30: Reserved (address = 1Eh) [reset = 0110 0110], Page 1  
Figure 149. Register 30  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
0
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 127. Register 30 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 0110 to these bits.  
Reserved  
R/W  
0110 0110h  
7.6.3.32 Register 31: Reserved (address = 1Fh) [reset = 0110 0111], Page 1  
Figure 150. Register 31  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 128. Register 31 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 0111 to these bits.  
Reserved  
R/W  
0110 0111h  
7.6.3.33 Register 32: Reserved (address = 20h) [reset = 0101 1101], Page 1  
Figure 151. Register 32  
7
0
6
1
5
0
4
1
3
1
2
1
1
0
0
1
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 129. Register 32 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0101 1101 to these bits.  
Reserved  
R/W  
0101 1101h  
7.6.3.34 Register 33: Reserved (address = 21h) [reset = 0110 1011], Page 1  
Figure 152. Register 33  
7
0
6
1
5
1
4
0
3
1
2
0
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 130. Register 33 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 1011 to these bits.  
Reserved  
R/W  
0110 1011h  
94  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.35 Register 34: Reserved (address = 22h) [reset = 1110 0011], Page 1  
Figure 153. Register 34  
7
1
6
1
5
1
4
0
3
0
2
0
1
1
0
1
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 131. Register 34 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1110 0011 to these bits.  
Reserved  
R/W  
1110 0011h  
7.6.3.36 Register 35: Reserved (address = 23h) [reset = 1001 0110], Page 1  
Figure 154. Register 35  
7
1
6
0
5
0
4
1
3
0
2
1
1
1
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 132. Register 35 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1001 0110 to these bits.  
Reserved  
R/W  
1001 0110h  
7.6.3.37 Register 36: Reserved (address = 24h) [reset = 0110 0110], Page 1  
Figure 155. Register 36  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
0
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 133. Register 36 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 0110 to these bits.  
Reserved  
R/W  
0110 0110h  
7.6.3.38 Register 37: Reserved (address = 25h) [reset = 0110 0111], Page 1  
Figure 156. Register 37  
7
0
6
1
5
1
4
0
3
0
2
1
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 134. Register 37 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0110 0111 to these bits.  
Reserved  
R/W  
0110 0111h  
Copyright © 2017, Texas Instruments Incorporated  
95  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.39 Register 38: Reserved (address = 26h) [reset = 0101 1101], Page 1  
Figure 157. Register 38  
7
0
6
1
5
0
4
1
3
1
2
1
1
0
0
1
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 135. Register 38 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0101 1101 to these bits.  
Reserved  
R/W  
0101 1101h  
7.6.3.40 Register 39: Reserved (address = 27h) [reset = 0111 1101], Page 1  
Figure 158. Register 39  
7
0
6
1
5
1
4
1
3
1
2
1
1
0
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 136. Register 39 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1101 to these bits.  
Reserved  
R/W  
0111 1101h  
7.6.3.41 Register 40: Reserved (address = 28h) [reset = 1000 0011], Page 1  
Figure 159. Register 40  
7
1
6
0
5
0
4
0
3
0
2
0
1
1
0
1
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 137. Register 40 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0011 to these bits.  
Reserved  
R/W  
1000 0011h  
7.6.3.42 Register 41: Reserved (address = 29h) [reset = 1000 0100], Page 1  
Figure 160. Register 41  
7
1
6
0
5
0
4
0
3
0
2
1
1
0
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 138. Register 41 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0100 to these bits.  
Reserved  
R/W  
1000 0100h  
96  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.43 Register 42: Reserved (address = 2Ah) [reset = 1110 1110], Page 1  
Figure 161. Register 42  
7
1
6
1
5
1
4
0
3
1
2
1
1
1
0
0
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 139. Register 42 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1110 1110 to these bits.  
Reserved  
R/W  
1110 1110h  
7.6.3.44 Register 43: Reserved (address = 2Bh) [reset = 0111 1101], Page 1  
Figure 162. Register 43  
7
0
6
1
5
1
4
1
3
1
2
1
1
0
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 140. Register 43 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1101 to these bits.  
Reserved  
R/W  
0111 1101h  
7.6.3.45 Register 44: Reserved (address = 2Ch) [reset = 1000 0011], Page 1  
Figure 163. Register 44  
7
1
6
0
5
0
4
0
3
0
2
0
1
1
0
1
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 141. Register 44 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0011 to these bits.  
Reserved  
R/W  
1000 0011h  
7.6.3.46 Register 45: Reserved (address = 2Dh) [reset = 1000 0100], Page 1  
Figure 164. Register 45  
7
1
6
0
5
0
4
0
3
0
2
1
1
0
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 142. Register 45 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0100 to these bits.  
Reserved  
R/W  
1000 0100h  
Copyright © 2017, Texas Instruments Incorporated  
97  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.47 Register 46: Reserved (address = 2Eh) [reset = 1110 1110], Page 1  
Figure 165. Register 46  
7
1
6
1
5
1
4
0
3
1
2
1
1
1
0
0
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 143. Register 46 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1110 1110 to these bits.  
Reserved  
R/W  
1110 1110h  
7.6.3.48 Register 47: Reserved (address = 2Fh) [reset = 0011 1001], Page 1  
Figure 166. Register 47  
7
0
6
0
5
1
4
1
3
1
2
0
1
0
0
1
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 144. Register 47 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0011 1001 to these bits.  
Reserved  
R/W  
0011 1001h  
7.6.3.49 Register 48: Reserved (address = 30h) [reset = 0101 0101], Page 1  
Figure 167. Register 48  
7
0
6
1
5
0
4
1
3
0
2
1
1
0
0
1
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 145. Register 48 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0101 0101 to these bits.  
Reserved  
R/W  
0101 0101h  
7.6.3.50 Register 49: Reserved (address = 31h) [reset = 1111 0011], Page 1  
Figure 168. Register 49  
7
1
6
1
5
1
4
1
3
0
2
0
1
1
0
1
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 146. Register 49 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1111 0011 to these bits.  
Reserved  
R/W  
1111 0011h  
98  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.51 Register 50: Reserved (address = 32h) [reset = 0010 1101], Page 1  
Figure 169. Register 50  
7
0
6
0
5
1
4
0
3
1
2
1
1
0
0
1
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 147. Register 50 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0010 1101 to these bits.  
Reserved  
R/W  
0010 1101h  
7.6.3.52 Register 51: Reserved (address = 33h) [reset = 0101 0011], Page 1  
Figure 170. Register 51  
7
0
6
1
5
0
4
1
3
0
2
0
1
1
0
1
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 148. Register 51 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0101 0011 to these bits.  
Reserved  
R/W  
0101 0011h  
7.6.3.53 Register 52: Reserved (address = 34h) [reset = 0111 1110], Page 1  
Figure 171. Register 52  
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
0
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 149. Register 52 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1110 to these bits.  
Reserved  
R/W  
0111 1110h  
7.6.3.54 Register 53: Reserved (address = 35h) [reset = 0111 1111], Page 1  
Figure 172. Register 53  
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 150. Register 53 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1111 to these bits.  
Reserved  
R/W  
0111 1111h  
Copyright © 2017, Texas Instruments Incorporated  
99  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.55 Register 54: Reserved (address = 36h) [reset = 1111 1111], Page 1  
Figure 173. Register 54  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 151. Register 54 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write ones to these bits.  
Reserved  
R/W  
1h  
7.6.3.56 Registers 55–64: Reserved (address = 37h–40h) [reset = 0000 0000], Page 1  
Figure 174. Registers 55–64  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 152. Registers 55–64 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
Reserved  
R/W  
0h  
7.6.3.57 Register 65: ADC High-Pass Filter N0 Coefficient MSB Register (address = 41h) [reset =  
0011 1001], Page 1  
Figure 175. Register 65  
7
6
5
4
3
2
1
0
ADC High-Pass Filter N0 Coefficient MSB  
R/W-1h R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 153. Register 65 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
ADC High-Pass Filter N0  
Coefficient MSB  
R/W  
0011 1001h  
ADC high-pass filter N0 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.58 Register 66: ADC High-Pass Filter N0 Coefficient LSB Register (address = 42h) [reset = 1110  
1010], Page 1  
Figure 176. Register 66  
7
6
5
4
3
2
1
0
Channel ADC High-Pass Filter N0 Coefficient LSB  
R/W-1h R/W-0h R/W-1h R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 154. Register 66 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel ADC High-Pass Filter N0 R/W  
Coefficient LSB  
1110 1010h  
Channel ADC high-pass filter N0 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
100  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.59 Register 67: Channel ADC High-Pass Filter N1 Coefficient MSB Register (address = 43h) [reset  
= 1000 0000 , Page 1  
Figure 177. Register 67  
7
6
5
4
3
2
1
0
Channel ADC High-Pass Filter N1 Coefficient MSB  
R/W-0h R/W-0h R/W-0h R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 155. Register 67 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel ADC High-Pass Filter N1 R/W  
Coefficient MSB  
1000 0000h  
Channel ADC high-pass filter N1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.60 Register 68: Channel ADC High-Pass Filter N1 Coefficient LSB Register (address = 44h) [reset =  
0001 0110], Page 1  
Figure 178. Register 68  
7
6
5
4
3
2
1
0
Channel ADC High-Pass Filter N1 Coefficient LSB  
R/W-0h R/W-1h R/W-0h R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
Table 156. Register 68 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel ADC High-Pass Filter N1 R/W  
Coefficient LSB  
0001 0110h  
Channel ADC high-pass filter N1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.61 Register 69: Channel ADC High-Pass Filter D1 Coefficient MSB Register (address = 45h) [reset  
= 0111 1111], Page 1  
Figure 179. Register 69  
7
6
5
4
3
2
1
0
Channel ADC High-Pass Filter D1 Coefficient MSB  
R/W-1h R/W-1h R/W-1h R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 157. Register 69 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel ADC High-Pass Filter D1 R/W  
Coefficient MSB  
0111 1111h  
Channel ADC high-pass filter D1 coefficient MSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
Copyright © 2017, Texas Instruments Incorporated  
101  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
7.6.3.62 Register 70: Channel ADC High-Pass Filter D1 Coefficient LSB Register (address = 46h) [reset =  
1101 0101], Page 1  
Figure 180. Register 70  
7
6
5
4
3
2
1
0
Channel ADC High-Pass Filter D1 Coefficient LSB  
R/W-0h R/W-1h R/W-0h R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 158. Register 70 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Channel ADC High-Pass Filter D1 R/W  
Coefficient LSB  
1101 0101h  
Channel ADC high-pass filter D1 coefficient LSB.  
The 16-bit integer contained in the MSB and LSB registers  
for this coefficient are interpreted as a 2's-complement  
integer with possible values ranging from –32,768 to 32,767.  
7.6.3.63 Register 71: Reserved (address = 47h) [reset = 0111 1111], Page 1  
Figure 181. Register 71  
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 159. Register 71 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1111 to these bits.  
Reserved  
R/W  
0111 1111h  
7.6.3.64 Register 72: Reserved (address = 48h) [reset = 1110 1010], Page 1  
Figure 182. Register 72  
7
1
6
1
5
1
4
0
3
1
2
0
1
1
0
0
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
Table 160. Register 72 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1110 1010 to these bits.  
Reserved  
R/W  
1110 1010h  
7.6.3.65 Register 73: Reserved (address = 49h) [reset = 1000 0000], Page 1  
Figure 183. Register 73  
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 161. Register 73 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1000 0000 to these bits.  
Reserved  
R/W  
1000 0000h  
102  
Copyright © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
7.6.3.66 Register 74: Reserved (address = 4Ah) [reset = 0001 0110], Page 1  
Figure 184. Register 74  
7
0
6
0
5
0
4
1
3
0
2
1
1
1
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 162. Register 74 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0001 0110 to these bits.  
Reserved  
R/W  
0001 0110h  
7.6.3.67 Register 75: Reserved (address = 4Bh) [reset = 0111 1111], Page 1  
Figure 185. Register 75  
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 163. Register 75 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 0111 1111 to these bits.  
Reserved  
R/W  
0111 1111h  
7.6.3.68 Register 76: Reserved (address = 4Ch) [reset = 1101 0101], Page 1  
Figure 186. Register 76  
7
1
6
1
5
0
4
1
3
0
2
1
1
0
0
1
R/W-1h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 164. Register 76 Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
Reserved. Always write 1101 0101 to these bits.  
Reserved  
R/W  
1101 0101h  
7.6.3.69 Registers 77h–127h: Reserved (address = 4Dh) [reset = 0000 0000], Page 1  
Figure 187. Registers 77h–127h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 165. Registers 77h–127h Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Reserved. Always write zeros to these bits.  
Reserved  
R
0h  
版权 © 2017, Texas Instruments Incorporated  
103  
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV320AIC3109-Q1 is a highly integrated low-power mono audio codec with integrated headphone and line  
amplifiers. All features of the TLV320AIC3109-Q1 are accessed by programmable registers. An external  
processor with I2C protocol is required to control the device. Good practice is to perform a hardware reset after  
initial power-up to ensure that all registers are in default states. Extensive register-based power control is  
included, enabling mono 48-kHz DAC playback as low as 14-mW from a 3.3-V analog supply, making the device  
ideal for portable battery-powered audio applications.  
8.2 Typical Application  
Governing bodies around the world have implemented specific legislation to require automotive companies to  
install emergency call (E-Call) systems in order to reduce emergency response times and thereby save lives. E-  
Call systems are activated during a collision or emergency situation and automatically facilitate a call to  
emergency services. The state of a vehicle after a collision is difficult to predict and can include a disconnected  
battery, trapped passengers, and a noisy environment. For this reason, the E-Call module must have its own  
battery power source and be able to sustain a hands-free call for at least ten minutes (depending on specific  
regional legislation). The TLV320AIC3109-Q1 as an audio codec and the TAS5411-Q1 as an audio amplifier are  
optimal choices for an E-Call application because these devices offers low power consumption and still allow a  
loud and clear conversation with an emergency operator.  
104  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
Typical Application (接下页)  
IOVDD  
Wireless Module and  
I2C Control  
RP  
RP  
AVDD  
AVDD  
DRVDD  
DRVDD  
0.1 mF  
1 mF  
1 mF  
MICBIAS  
1 kW  
0.1µF  
1mF  
0.1µF  
0.1 mF  
0.1 mF  
MIC1P/LINE1P  
MIC1M/LINE1M  
IOVDD  
0.1µF  
ANALOG  
GROUND  
IOVDD  
DVDD  
1 mF  
DVDD  
TI Device  
1 kW  
0.1µF  
1µF  
DVSS  
MIC2P/LINE2P  
MIC2M/LINE2M  
DIGITAL  
GROUND  
(OPTIONAL  
MIC/LINE)  
AVSS  
AVSS  
DRVSS  
ANALOG  
GROUND  
(OPTIONAL HEADPHONE)  
TAS5411-Q1 OR SIMILAR  
TAS5411-Q1 OR SIMILAR  
Copyright © 2017, Texas Instruments Incorporated  
188. Typical Connections for Emergency Call System (E-Call)  
8.2.1 Design Requirements  
166 shows the parameters used for this application.  
166. Design Parameters  
PARAMETER  
AVDD, DRVDD  
VALUE  
3.3 V  
IOVDD, DVDD  
1.8 V  
MCLK frequency  
12.288 MHz  
3.072 MHz  
48 KHz  
BCLK frequency  
WCLK frequency (sample rate)  
Current consumption (AVDD + DRVDD)  
Current consumption (DVDD + IOVDD)  
Total power consumption  
4.31 mA  
2.45 mA  
20 mW  
版权 © 2017, Texas Instruments Incorporated  
105  
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The audio codec in an E-Call system must be able to support full duplex communication between the digital  
audio source from the wireless module, the microphone input, and the speaker output. The TLV320AIC3109-Q1  
is a mono audio codec that meets the low power requirements and has all the features necessary for an E-Call  
application.  
The wireless module communicates to the audio codec through I2S interface. The class-D amplifier must  
maintain sufficient output power to drive the speaker to the specified audio level with sufficient audio quality. The  
amplifier must also have high efficiency to optimize power consumption and good EMI, EMC performance. In  
addition, many E-Call systems require speaker diagnostics and device protection circuitry.  
The TLV320AIC3109-Q1 is a low-power mono audio codec that integrates a mono preamplifier and offers  
multiple inputs and outputs that are programmable in single-ended or fully differential configurations. The  
TLV320AIC3109-Q1 flexible configuration allows certain internal blocks to be enabled or bypassed. This flexibility  
allows for optimal power consumption, which is very important for E-Call systems.  
The TAS5411-Q1 is a mono digital class-D audio amplifier ideal for use in automotive emergency call, telematics,  
instrument cluster, and infotainment applications. The device provides up to 8 W into 4 Ω at less than 10%  
THD+N from a 14.4-Vdc automotive battery. The wide operating voltage range and excellent efficiency make the  
device ideal for start-stop support or running from a backup battery when required. The integrated load-dump  
protection reduces external voltage clamp cost and size, and the onboard load diagnostics report the status of  
the speaker through I2C interface.  
Following the recommended component placement (see the schematic layout and routing provided in the Layout  
section), integrate the TLV320AIC3109-Q1 and supporting components into the system PCB design.  
Determining sample rate and master clock frequency is required because all internal timing are derived from the  
master clock during power-up. See the Audio Clock Generation section for more information on how to configure  
the required clocks for the device.  
When powered up, the device has several features powered down because the audio codec device is designed  
for low-power applications. Correct routing of the signals internal to the TLV320AIC3109-Q1 is achieved by  
correctly setting the device registers, powering up the required stages of the device, and configuring the internal  
switches for desired performance.  
8.2.3 Application Curves  
As shown in 189, the TAS5411-Q1 can reach up to 83% into a 4-Ω load. Output power can be up to 8 W at  
10% THD+N into a 4-Ω load.  
The TLV320AIC3109-Q1 features a configurable MICBIAS level (that is, 2 V, 2.5 V, or AVDD). As shown in 图  
190, 2-V and 2.5-V MICBIAS levels remain stable with changes in the AVDD supply voltage. When the MICBIAS  
output voltage is configured as AVDD, the MICBIAS output voltage follows AVDD.  
3.6  
3.4  
3.2  
MICBIAS = AVDD  
3.0  
2.8  
MICBIAS = 2.5 V  
2.6  
2.4  
2.2  
2.0  
1.8  
MICBIAS = 2 V  
TAS5411-Q1 Efficiency  
2.7  
2.8  
2.9  
3.0 3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD - Supply Voltage - V  
G007  
189. Efficiency Curve for the TAS5411-Q1  
190. MICBIAS Output Voltage vs AVDD for the  
TLV320AIC3109-Q1  
106  
版权 © 2017, Texas Instruments Incorporated  
 
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
9 Power Supply Recommendations  
The TLV320AIC3109-Q1 is designed to be extremely tolerant of power-supply sequencing. However, in some  
rare instances, unexpected conditions can be attributed to power-supply sequencing. The following sequence  
provides the most robust operation.  
Power-up IOVDD first. Power-up the analog supplies, which includes AVDD and DRVDD, second. Power-up the  
digital supply DVDD last. Keep RESET low until all supplies are stable. The analog supplies must be greater  
than or equal to DVDD at all times. 191 and 167 detail the preferred power-supply sequence.  
IOVDD  
t1  
AVDD, DRVDD  
t2  
DVDD  
t3  
191. TLV320AIC3109-Q1 Power-Supply Sequencing  
167. TLV320AIC3109-Q1 Power-Supply Sequencing  
MIN  
0
MAX UNIT  
t1  
t2  
t3  
IOVDD to AVDD, DRVDD  
AVDD to DVDD  
ms  
0
5
ms  
ms  
IOVDD, to DVDD  
0
10 Layout  
10.1 Layout Guidelines  
Printed circuit board (PCB) design is made considering the application, and the review is specific for each system  
requirements. However, general considerations can optimize the system performance:  
Connect the TLV320AIC3109-Q1 thermal pad to the analog output driver ground  
Separate the analog and digital grounds to prevent possible digital noise from affecting the analog  
performance of the board  
The TLV320AIC3109-Q1 requires the decoupling capacitors to be placed as close as possible to the device  
power-supply terminals  
If possible, route the differential audio signals differentially on the PCB to obtain better noise immunity  
版权 © 2017, Texas Instruments Incorporated  
107  
 
 
TLV320AIC3109-Q1  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
www.ti.com.cn  
10.2 Layout Example  
Analog Ground Plane  
Digital Ground Plane  
2.7 k  
2.7 kꢁ  
System  
Processor  
Thermal Pad Connected to  
Analog Ground Plane  
16  
15  
14  
13  
12  
11  
10  
9
17  
8
7
6
5
4
3
2
1
AVSS  
0.1 F  
18  
DRVDD  
IOVDD  
19  
NC  
DVSS  
20  
NC  
10 F  
Thermal Pad  
21  
DRVSS  
22  
23  
24  
HPCOM  
HPOUT  
0.1 F  
25  
26  
27  
28  
29  
30  
31  
32  
10 F  
TLV320AIC3109  
0.1 F  
0.1 F  
10 F  
10 F  
Decoupling Capacitors  
Close to Supply Pins  
System  
Processor  
10 kꢁ  
If Possible, Route Differential  
Audio Signals Differently  
IOVDD  
Via To Analog Ground Layer  
Via To Digital Ground Layer  
Top Layer Signal Traces  
Ground Layer  
192. Layout Example  
108  
版权 © 2017, Texas Instruments Incorporated  
TLV320AIC3109-Q1  
www.ti.com.cn  
ZHCSGM5A AUGUST 2017REVISED NOVEMBER 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《具有负载突降和 I2C 诊断功能的 TAS5411-Q1 8W 单声道汽车 D 类音频放大器》  
11.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
109  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
6PAIC3109TRHBRQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHM  
32  
32  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
3109T  
3109TW  
Samples  
Samples  
6PAIC3109TWRHMRQ1  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
6PAIC3109TRHBRQ1  
VQFN  
RHB  
RHM  
32  
32  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
6PAIC3109TWRHMRQ1 VQFN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
6PAIC3109TRHBRQ1  
VQFN  
VQFN  
RHB  
RHM  
32  
32  
3000  
3000  
367.0  
346.0  
367.0  
346.0  
35.0  
33.0  
6PAIC3109TWRHMRQ1  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHM0032A  
VQFNP - 0.9 mm max height  
SCALE 3.000  
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
0.05  
0.00  
(0.09)  
PIN 1 ID  
5.1  
4.9  
DETAIL A  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
4.75)  
(0.15)  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
(0.2)  
SEE DETAIL A  
3.7 0.1  
SYMM  
SEE DETAIL B  
4X (45 X 0.6)  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
SYMM  
33  
4X  
3.5  
1
24  
28X 0.5  
0.30  
0.18  
32X  
25  
PIN 1 ID  
(OPTIONAL)  
32  
0.1  
C B A  
C
0.5  
32X  
0.05  
0.3  
4219073/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHM0032A  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
4X (1.26)  
4X (0.97)  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
4X  
(0.97)  
33  
SYMM  
4X  
(4.8)  
(1.26)  
28X (0.5)  
17  
8
(
0.2) VIA  
TYP  
9
16  
SYMM  
(4.8)  
(R0.05)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219073/A 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHM0032A  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(1.26 TYP)  
32  
25  
32X (0.6)  
33  
1
24  
32X (0.25)  
(1.26)  
TYP  
SYMM  
(4.8)  
28X (0.5)  
17  
8
METAL  
TYP  
9
16  
(R0.05)  
TYP  
4X ( 1.06)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:18X  
4219073/A 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

6PAIC3254IRHBRQ1

Ultra Low Power Stereo Audio Codec With Embedded miniDSP
TI

6PB2EBB104KAF

Film Capacitor, Polypropylene, 10% +Tol, 10% -Tol, 0.1uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB153KAF

Film Capacitor, Polypropylene, 10% +Tol, 10% -Tol, 0.015uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB153KAN

Film Capacitor, Polypropylene, 10% +Tol, 10% -Tol, 0.015uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB153MAF

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.015uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB153MAN

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.015uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB153MCS

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.015uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB154KAF

Film Capacitor, Polypropylene, 10% +Tol, 10% -Tol, 0.15uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB154MAF

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.15uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB154MAN

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.15uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB154MCS

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.15uF, Through Hole Mount, RADIAL LEADED
SAMWHA

6PB2ERB473MCS

Film Capacitor, Polypropylene, 20% +Tol, 20% -Tol, 0.047uF, Through Hole Mount, RADIAL LEADED
SAMWHA