AD3421QRWETQ1 [TI]

汽车类、四通道、12 位、25MSPS 模数转换器 (ADC) | RWE | 56 | -40 to 125;
AD3421QRWETQ1
型号: AD3421QRWETQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、四通道、12 位、25MSPS 模数转换器 (ADC) | RWE | 56 | -40 to 125

转换器 模数转换器
文件: 总64页 (文件大小:3115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
ADC3421-Q1 车用、四通道、12 位、25MSPS 模数转换器  
1 特性  
3 说明  
1
符合面向汽车 标准  
ADC3421-Q1 是一款汽车级、高线性度、超低功耗、  
四通道、12 位、25MSPS 模数转换器 (ADC)。该器件  
专门用于支持具有宽动态范围需求且要求苛刻的高输入  
频率信号。输入时钟分频器使得系统时钟架构设计更加  
灵活,SYSREF 输入可实现系统完全同步。ADC3421-  
Q1 支持串行低压差分信令 (LVDS),从而减少接口线  
路的数量,实现高系统集成密度。串行 LVDS 接口为  
双线制,通过两个 LVDS 对串行输出每个 ADC 数据。  
内部锁相环 (PLL) 会将传入的 ADC 采样时钟加倍,以  
获得串行输出各通道的 12 位输出数据时所使用的位时  
钟。除了串行数据流之外,数据帧和位时钟也作为  
LVDS 输出进行传送。  
温度等级 1–40°C 125°C TA  
四通道  
12 位分辨率  
单电源:1.8V  
串行 LVDS 接口  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 10MHz 时,SNR = 71.1dBFS,  
SFDR = 90dBc  
超低功耗:  
25MSPS 时为每通道 44mW  
通道隔离:105dB  
内部抖动和斩波  
支持多芯片同步  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
ADC3421-Q1  
VQFNP (56)  
8.00mm x 8.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
固态激光雷达  
电机控制反馈  
无损检测  
雷达和智能天线阵列  
军需品指导  
10MHz IF 时的频谱  
SFDR = 90dBcSNR = 71.2dBFS,  
SINAD = 71.1dBFSTHD = 89dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D802  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS958  
 
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 23  
8.5 Programming........................................................... 26  
8.6 Register Maps......................................................... 31  
Applications and Implementation ...................... 53  
9.1 Application Information............................................ 53  
9.2 Typical Applications ................................................ 54  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics: General............................ 6  
6.6 Electrical Characteristics: AC Performance.............. 7  
6.7 Digital Characteristics ............................................... 9  
6.8 Timing Requirements: General ................................. 9  
6.9 Timing Requirements: LVDS Output....................... 10  
6.10 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 16  
7.1 Timing Diagrams..................................................... 16  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
9
10 Power Supply Recommendations ..................... 56  
11 Layout................................................................... 57  
11.1 Layout Guidelines ................................................. 57  
11.2 Layout Example .................................................... 57  
12 器件和文档支持 ..................................................... 58  
12.1 接收文档更新通知 ................................................. 58  
12.2 支持资源................................................................ 58  
12.3 ....................................................................... 58  
12.4 静电放电警告......................................................... 58  
12.5 Glossary................................................................ 58  
13 机械、封装和可订购信息....................................... 58  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 12 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
5 Pin Configuration and Functions  
RWE Package  
VQFNP-56  
Top View  
DA1P  
DA1M  
DA0P  
DA0M  
DVDD  
AVDD  
AVDD  
INAM  
INAP  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD0M  
DD0P  
DD1M  
DD1P  
DVDD  
PDN  
2
3
4
5
6
7
AVDD  
INDM  
INDP  
Thermal Pad  
8
9
AVDD  
AVDD  
INBP  
10  
11  
12  
13  
14  
AVDD  
AVDD  
INCP  
INBM  
AVDD  
INCM  
AVDD  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
3
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
6, 7, 10, 11, 14,  
15, 20, 23, 28, 29,  
32, 33, 36  
AVDD  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
DA0M  
DA0P  
DA1M  
DA1P  
DB0M  
DB0P  
DB1M  
DB1P  
DC0M  
DC0P  
DC1M  
DC1P  
DD0M  
DD0P  
DD1M  
DD1P  
DCLKM  
DCLKP  
DVDD  
FCLKM  
FCLKP  
INAM  
INAP  
21  
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial LVDS output for wire-0 of channel A  
Positive serial LVDS output for wire-0 of channel A  
Negative serial LVDS output for wire-1 of channel A  
Positive serial LVDS output for wire-1 of channel A  
Negative serial LVDS output for wire-0 of channel B  
Positive serial LVDS output for wire-0 of channel B  
Negative serial LVDS output for wire-1 of channel B  
Positive serial LVDS output for wire-1 of channel B  
Negative serial LVDS output for wire-0 of channel C  
Positive serial LVDS output for wire-0 of channel C  
Negative serial LVDS output for wire-1 of channel C  
Positive serial LVDS output for wire-1 of channel C  
Negative serial LVDS output for wire-0 of channel D  
Positive serial LVDS output for wire-0 of channel D  
Negative serial LVDS output for wire-1 of channel D  
Positive serial LVDS output for wire-1 of channel D  
Negative bit clock output  
22  
I
4
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
3
2
1
56  
55  
54  
53  
46  
45  
44  
43  
42  
41  
40  
39  
51  
50  
Positive bit clock output  
5, 38, 47, 52  
Digital 1.8-V power supply  
49  
48  
8
O
O
I
Negative frame clock output  
Positive frame clock output  
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Negative differential analog input for channel C  
Positive differential analog input for channel C  
Negative differential analog input for channel D  
Positive differential analog input for channel D  
9
I
INBM  
INBP  
13  
12  
30  
31  
35  
34  
I
I
INCM  
INCP  
I
I
INDM  
INDP  
I
I
Power-down control. This pin can be configured using the SPI. This pin has an internal  
150-kΩ pulldown resistor.  
PDN  
37  
I
RESET  
SCLK  
24  
16  
17  
19  
I
I
Hardware reset; active high. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data output  
SDATA  
SDOUT  
I
O
Serial interface enable; active low.  
This pin has an internal 150-kΩ pullup resistor to AVDD.  
SEN  
18  
I
SYSREFM  
SYSREFP  
VCM  
26  
25  
27  
I
I
Negative external SYSREF input  
Positive external SYSREF input  
Common-mode voltage for analog inputs  
Connect thermal pad to ground.  
O
Thermal Pad  
4
Copyright © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Analog supply voltage range, AVDD  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
2.1  
Digital supply voltage range, DVDD  
2.1  
V
INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM  
min (1.9, AVDD + 0.3)  
CLKP, CLKM  
AVDD + 0.3  
AVDD + 0.3  
3.9  
Voltage applied to  
input pins  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDATA, RESET, PDN  
Operating junction, TJ  
Storage, Tstg  
150  
Temperature  
ºC  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supplies  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
Analog Input  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VID  
Differential input voltage  
VPP  
V
VIC  
Input common-mode voltage  
Input clock frequency  
VCM ± 0.025  
Clock Input  
Sampling clock frequency  
Sine wave, ac-coupled  
LPECL, ac-coupled  
15(2)  
25  
MSPS  
VPP  
0.2  
1.5  
1.6  
Input clock amplitude (differential)  
LVDS, ac-coupled  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
Digital Outputs  
Maximum external load capacitance  
CLOAD  
3.3  
pF  
from each output pin to GND  
RLOAD  
Temperature  
TJ Operating Junction Temperature  
Single-ended load resistance  
100  
Ω
–40  
125  
°C  
(1) After power-up, use only the RESET pin to reset the device for the first time; see the Register Initialization section for details.  
(2) See 1 for details.  
Copyright © 2019, Texas Instruments Incorporated  
5
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
6.4 Thermal Information  
ADC3421-Q1  
THERMAL METRIC(1)  
RWE (VQFNP)  
UNIT  
56 PINS  
20.3  
8.8  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
5.6  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics: General  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 125°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MSPS  
Bits  
ADC clock frequency  
25  
Resolution  
12  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
Global power-down dissipation  
Standby power-down dissipation  
54  
45  
71  
71  
mA  
mA  
177  
5
240  
17  
mW  
mW  
mW  
34  
75  
Analog Input  
Differential input full-scale  
Input resistance  
2.0  
6.6  
3.7  
0.95  
10  
VPP  
kΩ  
ri  
Differential at dc  
Differential at dc  
ci  
Input capacitance  
pF  
VOC(VCM)  
VCM common-mode voltage output  
VCM output current capability  
Input common-mode current  
V
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving 50-Ω termination  
across INP and INM  
Analog input bandwidth (3 dB)  
540  
MHz  
DC accuracy  
EO  
Offset error  
–25  
–2  
25  
2
mV  
αEO  
Temperature coefficient of offset error  
± 0.024  
mV/°C  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
%FS  
EG(CHAN)  
Gain error of channel alone  
–2  
%FS  
α(EGCHAN)  
Temperature coefficient of EG(CHAN)  
±0.008  
Δ%FS/Ch  
Channel-to-channel Isolation  
Near channel  
fIN = 10 MHz  
105  
105  
95  
Far channel  
Near channel  
fIN = 100 MHz  
Far channel  
105  
94  
Near channel  
fIN = 200 MHz  
Crosstalk(1)  
dB  
Far channel  
105  
92  
Near channel  
fIN = 230 MHz  
Far channel  
105  
85  
Near channel  
fIN = 300 MHz  
Far channel  
105  
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.  
6
Copyright © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
6.6 Electrical Characteristics: AC Performance  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 125°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
DITHER ON  
MIN  
DITHER OFF  
MIN MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
70.9  
70.7  
70.4  
70.3  
69.7  
68.9  
70.2  
70.1  
69.8  
69.6  
69.2  
68.3  
–141.5  
MAX  
TYP  
71.1  
70.9  
70.6  
70.5  
69.9  
69.1  
70.5  
70.3  
70.0  
69.8  
69.3  
68.5  
–141.7  
–141.5  
–141.2  
–141.1  
–140.5  
–139.7  
71.1  
70.9  
70  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
68.9  
Signal-to-noise ratio  
(from 1-MHz offset)  
dBFS  
SNR  
Signal-to-noise ratio  
(full Nyquist band)  
dBFS  
dBFS/Hz  
dBFS  
Bits  
–141.3 –139.5  
–141.0  
–140.9  
–140.3  
–139.5  
71  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
67.9  
70.8  
69.5  
70.5  
69.6  
68.7  
11.5  
11.4  
11.4  
11.4  
11.3  
11.1  
93  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
70.7  
69.8  
68.7  
11.5  
11.4  
11.4  
11.4  
11.3  
11.1  
90  
11  
Effective number of bits  
84  
91  
85  
93  
88  
Spurious-free dynamic range  
dBc  
85  
82  
86  
85  
82  
82  
(1) Reported from a 1-MHz offset.  
Copyright © 2019, Texas Instruments Incorporated  
7
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics: AC Performance (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 125°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
DITHER ON  
MIN  
DITHER OFF  
MIN MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
93  
100  
93  
94  
86  
86  
96  
91  
93  
85  
89  
82  
99  
98  
96  
95  
92  
97  
90  
90  
89  
84  
84  
80  
MAX  
TYP  
92  
94  
92  
93  
85  
82  
90  
85  
88  
82  
89  
82  
92  
91  
92  
93  
90  
91  
86  
83  
85  
80  
83  
79  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
83  
82  
86  
78  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–98  
–91  
–98  
–91  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
8
Copyright © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
6.7 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Inputs (RESET, SCLK, SDATA, SEN, PDN)  
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
0.4  
RESET, SDATA, SCLK,  
PDN  
SEN(1)  
VHIGH = 1.8 V  
VHIGH = 1.8 V  
VLOW = 0 V  
10  
0
µA  
µA  
µA  
µA  
High-level input  
current  
IIH  
RESET, SDATA, SCLK,  
PDN  
0
Low-level input  
current  
IIL  
SEN  
VLOW = 0 V  
10  
DigitaL Inputs (SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
1.3  
0.5  
0.9  
V
V
V
Low-level input voltage  
Common-mode voltage for SYSREF  
Digital Outputs (CMOS Interface, SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD – 0.1  
DVDD  
0
V
V
0.1  
Digital Outputs (LVDS Interface)  
VODH  
VODL  
VOCM  
High-level output differential voltage  
With an external 100-Ω termination  
With an external 100-Ω termination  
280  
350  
–350  
1.05  
460  
mV  
mV  
V
Low-level output differential voltage  
Output common-mode voltage  
–460  
–280  
(1) SEN has an internal 150-kΩ pullup resistor to AVDD. SPI pins (SEN, SCLK, SDATA) can be driven by 1.8 V or 3.3 V CMOS buffers.  
6.8 Timing Requirements: General  
Typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum  
and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 125°C.  
MIN  
TYP  
1.44  
±70  
±150  
130  
35  
MAX  
UNIT  
ns  
tA  
Aperture delay  
1.24  
1.64  
Aperture delay matching between two channels of the same device  
Aperture delay variation between two devices at same temperature and supply voltage  
Aperture jitter  
ps  
ps  
tJ  
fS rms  
µs  
Time to valid data after exiting standby power-down mode  
200  
450  
Wake-up time:  
ADC latency(1)  
Time to valid data after exiting global power-down mode  
(in this mode, both channels power down)  
85  
9
µs  
Clock  
cycles  
2-wire mode (default)  
1-wire mode  
:
Clock  
cycles  
8
tSU_SYSREF  
Setup time for SYSREF referenced to input clock rising edge  
Hold time for SYSREF referenced to input clock rising edge  
1000  
100  
ps  
ps  
SYSREF reference time:  
tH_SYSREF  
(1) Overall latency = ADC latency + tPDI  
.
Copyright © 2019, Texas Instruments Incorporated  
9
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
6.9 Timing Requirements: LVDS Output(1)(2)  
Typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, 6x Serialization (2-Wire Mode),  
CLOAD = 3.3 pF(3), and RLOAD = 100 Ω(4), unless otherwise noted.. Minimum and maximum values are across the full  
temperature range: TMIN = –40°C to TMAX = 125°C.  
MIN  
1.3  
TYP  
1.48  
3.06  
1.57  
3.12  
MAX  
UNIT  
1-wire mode  
2-wire mode  
1-wire mode  
2-wire mode  
Data setup time: data valid to zero-crossing of differential  
output clock (CLKOUTP – CLKOUTM)(5)(6)  
tSU  
ns  
2.61  
1.32  
2.75  
Data hold time: zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM) to data becoming invalid(5)(6)  
tHO  
ns  
Clock propagation delay: input clock falling edge cross-over to 1-wire mode  
frame clock rising edge cross-over  
(15 MSPS < sampling frequency < 25 MSPS)  
0.1 × tS + tDELAY  
0.61 × tS + tDELAY  
ns  
ns  
ns  
tPDI  
2-wire mode  
tDELAY  
Delay time  
3
4.5  
5.9  
LVDS bit clock duty cycle: duty cycle of differential clock  
(CLKOUTP – CLKOUTM)  
49%  
tFALL  
tRISE  
,
Data fall time, data rise time: rise time measured from –100 mV to 100 mV,  
15 MSPS Sampling frequency 25 MSPS  
0.11  
0.11  
ns  
ns  
tCLKRISE  
tCLKFALL  
,
Output clock rise time, output clock fall time: rise time measured from  
–100 mV to 100 mV, 15 MSPS Sampling frequency 25 MSPS  
(1) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(2) Timing parameters are ensured by design and characterization and are not tested in production.  
(3) CLOAD is the effective external single-ended load capacitance between each output pin and ground.  
(4) RLOAD is the differential load resistance between the LVDS output pair.  
(5) Data valid refers to a logic high of 100 mV and a logic low of –100 mV.  
(6) Write relevant register settings as mentioned in 22.  
10  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
6.10 Typical Characteristics  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D801  
D802  
SFDR = 95 dBc, SNR = 71 dBFS, SINAD = 71 dBFS,  
THD = 94 dBc, HD2 = 106 dBc, HD3 = 95 dBc  
SFDR = 90 dBc, SNR = 71.2 dBFS, SINAD = 71.1 dBFS,  
THD = 89 dBc, HD2 = 90 dBc, HD3 = 106 dBc  
1. FFT for 10-MHz Input Signal (Dither On)  
2. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D803  
D804  
SFDR = 92 dBc, SNR = 70.5 dBFS, SINAD = 70.3 dBFS,  
THD = 91 dBc, HD2 = 105 dBc, HD3 = 92 dBc  
SFDR = 91 dBc, SNR = 70.7 dBFS, SINAD = 70.6 dBFS,  
THD = 88 dBc, HD2 = 91 dBc, HD3 = 101 dBc  
3. FFT for 70-MHz Input Signal (Dither On)  
4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D805  
D806  
SFDR = 87 dBc, SNR = 69.8 dBFS, SINAD = 69.7 dBFS,  
THD = 85 dBc, HD2 = 90 dBc, HD3 = 87 dBc  
SFDR = 85 dBc, SNR = 70 dBFS, SINAD = 69.8 dBFS,  
THD = 86 dBc, HD2 = 85 dBc, HD3 = 92 dBc  
5. FFT for 170-MHz Input Signal (Dither On)  
6. FFT for 170-MHz Input Signal (Dither Off)  
版权 © 2019, Texas Instruments Incorporated  
11  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D807  
D808  
SFDR = 77 dBc, SNR = 68.2 dBFS, SINAD = 67.7 dBFS,  
THD = 75 dBc, HD2 = 77 dBc, HD3 = 83 dBc  
SFDR = 75 dBc, SNR = 68.4 dBFS, SINAD = 67.5 dBFS,  
THD = 74 dBc, HD2 = 75 dBc, HD3 = 80 dBc  
7. FFT for 270-MHz Input Signal (Dither On)  
8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D809  
D810  
SFDR = 67 dBc, SNR = 66.4 dBFS, SINAD = 66.4 dBFS,  
THD = 93 dBc, HD2 = 67 dBc, HD3 = 88 dBc  
SFDR = 66 dBc, SNR = 66.5 dBFS, SINAD = 66.5 dBFS,  
THD = 87 dBc, HD2 = 66 dBc, HD3 = 93 dBc  
9. FFT for 450-MHz Input Signal (Dither On)  
10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D811  
D812  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 90,  
each tone at = –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 105,  
each tone at = –36 dBFS  
11. FFT for Two-Tone Input Signal  
12. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
(–36 dBFS at 46 MHz and 50 MHz)  
12  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
Typical Characteristics (接下页)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D813  
D814  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 91,  
each tone at = –7 dBFS  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 98 dBFS,  
each tone at –36 dBFS  
13. FFT for Two-Tone Input Signal  
14. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
D815  
D816  
15. Intermodulation Distortion vs Input Amplitude  
16. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
(185 MHz and 190 MHz)  
72  
100  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
90  
85  
80  
75  
70  
65  
60  
71  
70  
69  
68  
67  
66  
0
50  
100  
150  
Frequency (MHz)  
200  
250  
300  
350  
400  
0
50  
100  
150  
Frequency (MHz)  
200  
250  
300  
350  
400  
D80117  
D818  
17. Signal-to-Noise Ratio vs Input Frequency  
18. Spurious-Free Dynamic Range vs  
Input Frequency  
版权 © 2019, Texas Instruments Incorporated  
13  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
73  
72  
71  
70  
69  
68  
250  
200  
150  
100  
50  
72.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
72  
71.5  
71  
70.5  
70  
69.5  
69  
40  
0
0
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
D819  
D820  
19. Performance vs Input Amplitude (30 MHz)  
20. Performance vs Input Amplitude (170 MHz)  
78  
76  
74  
72  
70  
68  
105  
SNR  
SFDR  
76  
88  
SNR  
SFDR  
100  
95  
74  
72  
70  
68  
66  
86  
84  
82  
80  
78  
90  
85  
80  
0.85  
0.9  
0.95  
1
Input Common-Mode Voltage (V)  
1.05  
1.1  
0.85  
0.9  
0.95  
1
Input Common-Mode Voltage (V)  
1.05  
1.1  
D821  
D822  
21. Performance vs Input Common-Mode Voltage  
22. Performance vs Input Common-Mode Voltage (170  
MHz)  
(30 MHz)  
105  
72  
AVDD=1.7 V  
AVDD=1.75 V  
AVDD=1.8 V  
AVDD=1.85 V  
AVDD=1.9 V  
AVDD=1.7 V  
AVDD=1.75 V  
AVDD=1.8 V  
AVDD=1.85 V  
AVDD=1.9 V  
101  
97  
93  
89  
85  
71.6  
71.2  
70.8  
70.4  
70  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D900  
D901  
23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
14  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
Typical Characteristics (接下页)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
99  
97  
95  
93  
91  
89  
87  
71.1  
71.05  
71  
DVDD=1.7 V  
DVDD=1.75 V  
DVDD=1.8 V  
DVDD=1.85 V  
DVDD=1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
70.95  
70.9  
70.85  
70.8  
70.75  
70.7  
70.65  
70.6  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D902  
D904  
25. Spurious-Free Dynamic Range vs  
26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
DVDD Supply and Temperature (30 MHz)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
100  
96  
92  
88  
84  
80  
76  
72  
68  
76  
100  
SNR  
SFDR  
SNR  
SFDR  
73  
70  
67  
64  
61  
58  
90  
80  
70  
60  
50  
40  
0.2 0.4 0.6 0.8  
1
Differential Clock Amplitude (Vpp)  
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
Differential Clock Amplitude (Vpp)  
1.2 1.4 1.6 1.8  
2
2.2  
D827  
D828  
27. Performance vs Clock Amplitude (40 MHz)  
28. Performance vs Clock Amplitude (150 MHz)  
70.6  
70.4  
70.2  
70  
90  
71.5  
71.3  
71.1  
70.9  
70.7  
70.5  
100  
SNR  
SFDR  
SNR  
SFDR  
88  
98  
96  
94  
92  
90  
86  
84  
82  
80  
78  
69.8  
69.6  
69.4  
30  
35  
40  
45  
Input Clock Duty Cycle (%)  
50  
55  
60  
65  
70  
30  
35  
40  
45  
Input Clock Duty Cycle (%)  
50  
55  
60  
65  
70  
D829  
D830  
29. Performance vs Clock Duty Cycle (30 MHz)  
30. Performance vs Clock Duty Cycle (150 MHz)  
版权 © 2019, Texas Instruments Incorporated  
15  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted).  
0.15  
0.15  
0.1  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
0
512 1024 1536 2048 2560 3072 3584 4096  
Output Code (LSB)  
0
512 1024 1536 2048 2560 3072 3584 4096  
Output Code (LSB)  
D001  
D1002  
31. Integral Nonlinearity for a 20-MHz Input  
32. Differential Nonlinearity for a 20-MHz Input  
7 Parameter Measurement Information  
7.1 Timing Diagrams  
DAn_P  
DBn_P  
Logic 0  
VODL = -350 mV(1)  
Logic 1  
VODH = +350 mV(1)  
DAn_M  
DBn_M  
VOCM  
GND  
(1) With an external 100-Ω termination.  
33. Serial LVDS Output Voltage Levels  
16  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
Timing Diagrams (接下页)  
CLKIN  
FCLK  
DCLK  
Dx0P  
1-Wire (12x Serialization)  
D
9
D D  
10 11  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D D  
10 11  
D
0
Dx0M  
DCLK  
Dx0P  
Dx0M  
D
5
D
0
D
1
D
2
D
3
D
4
D
5
D
0
2-Wire (6x Serialization)  
Dx1P  
Dx1M  
D
11  
D
6
D
7
D
8
D
9
D
10  
D
11  
D
6
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
34. Output Timing Diagram  
DCLK  
t HO  
Dx0P  
Dx0M  
t SU  
35. Setup and Hold Time  
版权 © 2019, Texas Instruments Incorporated  
17  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADC3421-Q1 is an automotive-grade, high-linearity, ultra-low power, quad-channel, 12-bit, 25-MSPS analog-  
to-digital converter (ADC). The device is designed specifically to support demanding, high input frequency signals  
with large dynamic range requirements. An input clock divider gives more flexibility for system clock architecture  
design, and the SYSREF input enables complete system synchronization. The ADC3421-Q1 supports a serial  
low-voltage differential signaling (LVDS) interface in order to reduce the number of interface lines, thus allowing  
for high system integration density. The serial LVDS interface is two-wire, where each ADC data are serialized  
and output over two LVDS pairs. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling  
clock to derive the bit clock that is used to serialize the 12-bit output data from each channel. In addition to the  
serial data streams, the frame and bit clocks are also transmitted as LVDS outputs.  
8.2 Functional Block Diagram  
DA0P  
DA0M  
INAP  
INAM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DA1P  
DA1M  
DB0P  
DB0M  
Digital Encoder  
and Serializer  
INBP  
INBM  
12-Bit  
ADC  
DB1P  
DB1M  
Bit Clock  
CLKP  
CLKM  
Divide  
by 1,2,4  
DCLKP  
DCLKM  
PLL  
Frame Clock  
FCLKP  
FCLKM  
SYSREFP  
SYSREFM  
DC0P  
DC0M  
INCP  
INCM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DC1P  
DC1M  
DD0P  
DD0M  
INDP  
INDM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DD1P  
DD1M  
Common  
Mode  
Configuration  
Registers  
VCM  
18  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADC3421-Q1 analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must  
swing symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input  
swing. The input sampling circuit has a 3-dB bandwidth that extends up to 540 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
8.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
0.95 V using internal 5-kΩ resistors. The self-bias clock inputs of the ADC3421-Q1 can be driven by the  
transformer-coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown  
in 36, 37, and 38. See 39 for details regarding the internal clock buffer.  
0.1 F  
0.1 F  
ZO  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
Typical LVDS  
Clock Input  
RT  
TI Device  
100 Ω  
0.1 F  
TI Device  
0.1 F  
ZO  
CLKM  
CLKM  
NOTE: RT = termination resistor, if necessary.  
36. Differential Sine-Wave Clock Driving Circuit  
37. LVDS Clock Driving Circuit  
0 F  
ZO  
CLKP  
150 Ω  
Typical LVPECL  
Clock Input  
100 Ω  
TI Device  
CLKM  
0 F  
ZO  
150 Ω  
38. LVPECL Clock Driving Circuit  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Clock Buffer  
LPKG  
2 nH  
20  
CLKP  
CBOND  
1 pF  
5 kΩ  
CEQ  
CEQ  
RESR  
100 Ω  
0.95 V  
CEQ  
LPKG  
2 nH  
5 kΩ  
20 Ω  
CLKM  
CBOND  
1 pF  
RESR  
100 Ω  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
39. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in 40. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 F  
CMOS  
Clock Input  
CLKP  
TI Device  
0.1 F  
CLKM  
40. Single-Ended Clock Driving Circuit  
8.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in 公式 1. Quantization noise  
(typically 74 dB for a 12-bit ADC) and thermal noise limit SNR at low input frequencies, and the clock jitter sets  
SNR for higher input frequencies.  
2
2
2
SNRQuantization_Noise  
SNRThermal_Noise  
SNRJitter  
20  
÷
÷
÷
÷
÷
-
-
-
20  
20  
SNRADC[dBc] = -20 log 10  
+ 10  
+ 10  
«
«
«
÷
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with 公式 2.  
SNRJitter [dBc] = -20 log 2pf t  
(
)
in Jitter  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs for the device) which is set by  
the noise of the clock input buffer and the external clock. TJitter can be calculated with 公式 3.  
2
2
tJitter  
=
t
+ t  
(
)
(
)
Aperture _ ADC  
Jitter,Ext.Clock _Input  
(3)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input; a faster clock slew rate improves the ADC aperture jitter. The devices have a typical  
thermal noise of 70.6 dBFS and internal aperture jitter of 130 fs. The SNR, depending on the amount of external  
jitter for different input frequencies, is shown in 41.  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
Ext Clock Jitter  
35 fs  
50 fs  
68.0  
67.5  
67.0  
66.5  
66.0  
65.5  
65.0  
100 fs  
150 fs  
200 fs  
10  
100  
Input Frequency (MHz)  
1000  
D00316  
41. SNR vs Frequency for Different Clock Jitter  
8.3.3 Digital Output Interface  
The devices offer two different output format options, thus making interfacing to a field-programmable gate array  
(FPGA) or an application-specific integrated circuit (ASIC) easy. Each option can be easily programmed using  
the serial interface, as shown in 1. The output interface options are:  
One-wire, 1x frame clock, 12x serialization with the DDR bit clock and  
Two-wire, 1x frame clock, 6x serialization with the DDR bit clock.  
1. Interface Rates  
RECOMMENDED SAMPLING  
FREQUENCY (MSPS)  
BIT CLOCK  
FREQUENCY  
(MHz)  
FRAME CLOCK  
FREQUENCY  
(MHz)  
SERIAL DATA  
RATE PER  
WIRE (Mbps)  
INTERFACE  
OPTIONS  
SERIALIZATION  
MINIMUM  
MAXIMUM  
15  
90  
150  
60  
15  
25  
20  
180  
300  
120  
One-wire  
12x  
6x  
25  
Two-wire  
(Default after  
Reset)  
20(1)  
25  
75  
25  
150  
(1) Use the LOW SPEED ENABLE register bits for low speed operation; see .  
8.3.3.1 One-Wire Interface: 12x Serialization  
In this interface option, the device outputs the data of each ADC serially on a single LVDS pair (one-wire). The  
data are available at the rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at  
the rising edge of every frame clock, starting with the LSB. The data rate is 12x sample frequency (12x  
serialization).  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.3.3.2 Two-Wire Interface: 6x Serialization  
In two-wire interface ,the output data rate is 6x sample frequency because six data bits are output every clock  
cycle on each differential pair. Each ADC sample is sent over the two wires with the six MSBs on Dx1P, Dx1M  
and the six LSBs on Dx0P, Dx0M, as shown in 42.  
CLKIN  
FCLK  
DCLK  
1-Wire (12x Serialization)  
Dx0P  
Dx0M  
D
9
D D  
10 11  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D D  
10 11  
D
0
DCLK  
Dx0P  
Dx0M  
D
5
D
0
D
1
D
2
D
3
D
4
D
5
D
0
2-Wire (6x Serialization)  
Dx1P  
Dx1M  
D
11  
D
6
D
7
D
8
D
9
D
10  
D
11  
D
6
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
42. Output Timing Diagram  
22  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.4 Device Functional Modes  
8.4.1 Input Clock Divider  
The devices are equipped with an optional internal divider on the clock input. The clock divider allows operation  
with a faster input clock (divide by 2 and divide by 4 options programmable using SPI), thus simplifying the  
system clock distribution design.  
8.4.2 Chopper Functionality  
The devices are equipped with an internal chopper front-end. Enabling the chopper function swaps the ADC  
noise spectrum by shifting the 1/f noise from dc to fS / 2. 43 shows the noise spectrum with the chopper off  
and 44 shows the noise spectrum with the chopper on. This function is especially useful in applications  
requiring good ac performance at low input frequencies or in dc-coupled applications. The chopper can be  
enabled via SPI register writes and is recommended for input frequencies below 30 MHz. The chopper function  
creates a spur at fS / 2 that must be filtered out digitally.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D905  
D906  
SNR = 71.1 dBFS, SINAD = 71.1 dBFS  
SFDR = 97 dBc ,THD = 95 dBc  
SNR = 71 dBFS, SINAD = 71 dBFS  
SFDR = 96 dBc, THD = 97 dBc  
43. Chopper Off  
44. Chopper On  
8.4.3 Power-Down Control  
The power-down functions of the ADC3421-Q1 can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register 15h). The PDN pin can also be configured via SPI to a global power-  
down or standby functionality, as shown in 2.  
2. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
34  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.4.4 Internal Dither Algorithm  
The ADC3421-Q1 uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the  
dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither  
algorithm can be turned off by using the DIS DITH CHx registers bits. 45 and 46 show the effect of using  
dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D801  
D802  
SFDR = 95 dBc, SNR = 71 dBFS, SINAD = 71 dBFS,  
THD = 94 dBc, HD2 = 106 dBc, HD3 = 95 dBc  
SFDR = 90 dBc, SNR = 71.2 dBFS, SINAD = 71.1 dBFS,  
THD = 89 dBc, HD2 = 90 dBc, HD3 = 106 dBc  
45. FFT for 10-MHz Input Signal  
46. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
(Chopper On, Dither Off)  
8.4.5 Summary of Performance Mode Registers  
3 lists the location, value, and functions of performance mode registers in the device.  
3. Performance Modes  
MODE  
REGISTER SETTINGS  
DESCRIPTION  
Special modes  
Registers 139 (bit 3), 239 (bit 3), 439 (bit 3), and 539 (bit 3)  
Always write 1 for best performance  
Registers 1 (bits 7:0), 134 (bits 5 and 3), 234 (bits 5 and 3),  
434 (bits 5 and 3), and 534 (bits 5 and 3)  
Disable dither  
Disable dither to improve SNR  
Disable chopper Registers 122 (bit 1), 222 (bit 1), 422 (bit 1), and 522 (bit 1)  
Disable chopper (shifts 1/f noise floor at dc)  
Registers 11Dh (bit 1), 21Dh (bit 1), 31Dh (bit 7 and bit 1), 41Dh  
High IF modes  
(bit 1), 51Dh (bit 1), 308h (bits 7-6), 608h (bits 7-6) and 61Dh  
(bit 7 and bit 1)  
Improves HD3 by a couple of dB for IF > 100 MHz  
8.4.6 Device Diagnostic Modes  
The device offers various diagnostic modes to check proper device operation at system level. These modes can  
be enabled using the SPI. Outputs of these modes are stored in diagnostic read-only registers.  
8.4.6.1 Internal Reference and Clock Status Check  
Device is equipped with a mode to verify presence of a valid input clock, as well as status of on-chip ADC  
reference. When a valid clock input clock is absent at input clock pins (CLKP,CLKM) of ADC, device sets register  
bit CLK STATUS to ‘1’. Similarly, if internal reference block is malfunctioning for a channel, device sets register  
bits REF STATUS CHx to ‘1’. To read the status of internal reference from these pins:  
1. First enable reference status check by setting register bit EN REF STATUS CHECK to ‘1’.  
2. Read back register bits REF STATUS CHx on SDATA pin for desired channel (x = A, B, C or D).  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.4.6.2 DC Input check  
In this mode, an internally generated DC voltage can be forced by device to its analog inputs. Before forcing  
internal DC voltage, analog inputs must float. To enable forcing internal DC voltage, register bit EN DC FORCE  
must be set HIGH. Forced voltage is programmable by register bits DC FORCE[2:0], applied to all four channels  
together. In terms of output code, typical value of programmed DC voltage is given by equation mentioned below:  
Output code= 368 × DC FORCE[2:0] + 745.  
Output code is available on LVDS data outputs.  
8.4.6.3 Mean and Variance Measurement  
Mean and variance values of the ADC output can be analyzed using the on-chip statistical module available for  
individual channel for a programmable length of samples. These values are stored in register bits MEAN[11:0]  
and VAR[11:0] in 2s complement format. Equation for computing mean and variance values respectively are  
given below:  
0
5(J)  
/A=J = T = Í  
0
J=1  
0
: ;  
|5 J F T|  
8=NE=J?A = Í  
0
J=1  
Where S(n) is nth sample, N is total number of samples used for computation, programmed by register bits  
SAMPLES FOR STATS[1:0].  
Follow steps mentioned below to read the mean and variance:  
1. Enable Statistical Module by setting bit EN STATS to ‘1’.  
2. Select desired channel through bits STATS CH SEL[1:0].  
3. Program number of samples, N, using register bits SAMPLES FOR STATS[1:0].  
4. Wait for at least 4N samples for module to compute and update the results.  
5. Disable Statistical Module by resetting EN STATS bit to ‘0’.  
6. Read back mean and variance values from register bits MEAN[11:0] and VAR[11:0]. These values are in 2s  
complement format.  
8.4.6.4 Temperature Sensor  
The device is equipped with a temperature sensor to measure internal junction temperature.  
The temperature sensor output is a 9-bit digital data available in 2s complement format directly representing  
temperature in degree Celsius units. Temperature data is internally updated every 1024×TCLK× 16 seconds  
where TCLK period of sampling clock in seconds. Follow the steps mentioned below to read temperature sensor’s  
output:  
1. Enable temperature sensor by setting bits EN TEMP SENSE and EN TEMP SENSE CONV to ‘1’.  
2. Wait for at least 1024 × TCLK× 16 seconds for temperature sensor to update the data.  
3. Disable temperature sensor by resetting the bit EN TEMP SENSE to ‘0’.  
4. Load temperature sensor's data to register bits TEMPDATA[8:0] by setting register bit EN TEMP DATA  
READOUT to '1'.  
5. Readout 9-bit temperature data from register bits TEMPDATA[8:0] located in register addresses 10h and  
11h.  
版权 © 2019, Texas Instruments Incorporated  
25  
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.5 Programming  
The ADC3421-Q1 can be configured using a serial programming interface, as described in this section.  
8.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
26  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
Programming (接下页)  
8.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in 47. Notice that when  
hardware reset is applied for "first time after powering up the device", the SEN pin must be in low logic state.  
However, this requirement is applicable only for first hardware reset after power-up. Any subsequent hardware  
reset does not require SEN to be in low logic state and works independent to it. If required, the serial interface  
registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
8.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
47 and 4 show the timing requirements for the serial register write operation.  
AVDD, DVDD  
Register Address [13:0]  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A13 A12 A11  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADH  
tSLOADS  
RESET  
First Hardware Reset after power-up needs SEN to be in low logic state  
47. Serial Register Write Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
27  
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Programming (接下页)  
4. Serial Interface Timing(1)  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
)
> dc  
25  
20  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 125°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
28  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. 48 shows a timing diagram of the serial register read operation. Data appear on the  
SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in 49.  
Register Address [13:0]  
Register Data: Don‘t Care  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A13 A12 A11  
A1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
48. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
49. SDOUT Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in 50 and 5.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
Start of  
SPI cyles  
SEN  
SEN has to be  
LOW when first  
Hardware Reset  
is being applied.  
50. Initialization of Serial Registers after Power-Up  
5. Power-Up Timing  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay from power-up to active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
1
10  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6 Register Maps  
6. Register Map Summary  
REGISTER  
REGISTER DATA  
ADDRESS,  
A[13:0] (Hex)  
7
6
5
4
3
2
1
0
Register 01h  
Register 02h  
Register 03h  
Register 04h  
Register 05h  
DIS DITH CHA  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
STATS CH SEL[1:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ODD EVEN  
FLIP WIRE  
1W-2W  
TEST  
PATTERN EN  
Register 06h  
Register 07h  
Register 09h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
OVR ON LSB  
ALIGN TEST  
PATTERN  
DATA  
FORMAT  
Register 0Ah  
Register 0Bh  
Register 0Eh  
Register 0Fh  
CHA TEST PATTERN  
CHB TEST PATTERN  
CHD TEST PATTERN  
CHC TEST PATTERN 0  
CUSTOM PATTERN[11:4]  
0
CUSTOM PATTERN[3:0]  
0
0
0
REF STATUS  
CHB OR  
TEMPDATA [2] TEMPDATA [1] TEMPDATA [0]  
REF STATUS  
CHD OR  
REF STATUS  
CHA OR  
REF STATUS  
CHC OR  
TEMPDATA [3]  
Register 10h  
Register 11h  
Register 13h  
CLK STATUS  
TEMPDATA[6:4]  
0
0
0
TEMPDATA [8:7]  
0
0
0
0
0
0
EN REF  
STATUS  
CHECK  
EN DC FORCE  
EN STATS  
LOW SPEED ENABLE  
EN TEMP  
DATA  
READOUT  
EN TEMP  
SENS CONV  
EN TEMP  
SENSE  
Register 14h  
Register 15h  
0
0
0
0
0
CONFIG PDN  
PIN  
CHA PDN  
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
GLOBAL PDN  
0
0
Register 16h  
Register 17h  
Register 18h  
Register 19h  
Register 25h  
Register 27h  
Register 4Bh  
MEAN[5:0]  
0
0
0
0
0
MEAN[11:6]  
VAR[5:0]  
0
0
0
VAR[11:6]  
LVDS SWING  
CLK DIV  
0
0
0
0
0
0
0
0
0
0
0
0
0
SAMPLES FOR STATS[1:0]  
HIGH IF  
0
Register 11Dh  
Register 122h  
0
0
0
0
0
0
0
0
MODE0  
DIS CHOP  
CHA  
0
0
0
Register 134h  
Register 139h  
0
0
0
0
DIS DITH CHA  
0
0
0
DIS DITH CHA  
SP1 CHA  
0
0
0
0
0
0
HIGH IF  
MODE1  
Register 21Dh  
Register 222h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHD  
Register 234h  
Register 239h  
Register 308h  
0
0
0
0
DIS DITH CHD  
0
0
0
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
SP1 CHD  
0
HIGH IF MODE <5:4>  
HIGH IF  
MODE4  
HIGH IF  
MODE4  
Register 31Dh  
Register 41Dh  
0
0
0
0
0
0
0
0
0
0
0
0
HIGH IF  
MODE2  
0
DIS CHOP  
CHB  
Register 422h  
Register 434h  
0
0
0
0
0
0
0
0
0
0
0
0
DIS DITH CHB  
DIS DITH CHB  
0
版权 © 2019, Texas Instruments Incorporated  
31  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Register Maps (接下页)  
6. Register Map Summary (接下页)  
REGISTER  
REGISTER DATA  
ADDRESS,  
A[13:0] (Hex)  
7
6
0
0
5
0
0
4
0
0
3
SP1 CHB  
0
2
0
0
1
0
0
0
Register 439h  
Register 51Dh  
0
0
0
HIGH IF  
MODE3  
DIS CHOP  
CHC  
Register 522h  
0
0
0
0
0
0
0
Register 534h  
Register 539h  
Register 608h  
0
0
0
0
DIS DITH CHC  
0
0
0
DIS DITH CHC  
0
0
0
0
0
0
0
0
0
0
0
SP1 CHC  
0
HIGH IF MODE <7:6>  
HIGH IF  
MODE5  
HIGH IF  
MODE5  
Register 61Dh  
0
0
0
0
0
0
0
Register 70Ah  
Register 71Ah  
0
0
0
0
0
0
0
0
0
0
PDN SYSREF  
0
DC FORCE[2:0]  
32  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1 Serial Register Description  
8.6.1.1 Register 01h (address = 01h)  
51. Register 01h  
7
6
5
4
3
2
1
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHB  
R/W-0h  
DIS DITH CHC  
R/W-0h  
DIS DITH CHD  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
7. Register 01h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIS DITH CHA  
R/W  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 134h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
5-4  
3-2  
1-0  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 434h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 534h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 234h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
8.6.1.2 Register 02h (address = 02h)  
52. Register 02h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
STATS CH SEL[1:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
8. Register 02h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
STATS CH SEL[1:0]  
R/W  
0h  
These bits select desired channel for statistical data computation  
00 = Channel A,  
01 = Channel B,  
10 = Channel C,  
11 = Channel D  
5-0  
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
33  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.3 Register 03h (address = 03h)  
53. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ODD EVEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
9. Register 03h Field Descriptions  
Bit  
7-6  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ODD EVEN  
R/W  
0h  
This bit selects the bit sequence on the output wires (in 2-wire  
mode only).  
0 = Bits 0, 1, 2, and so forth appear on wire-0; bits 7, 8, 9, and  
so forth appear on wire-1.  
1 = Bits 0, 2, 4, and so forth appear on wire-0; bits 1, 3, 5, and  
so forth appear on wire-1.  
34  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.4 Register 04h (address = 04h)  
54. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FLIP WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
10. Register 04h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
FLIP WIRE  
R/W  
0h  
This bit flips the data on the output wires. Valid only in two wire  
configuration.  
0 = Default  
1 = Data on output wires is flipped. Pin D0x becomes D1x, and  
vice versa.  
8.6.1.5 Register 05h (address = 05h)  
55. Register 05h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1W-2W  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
11. Register 05h Field Descriptions  
Bit  
7-1  
0
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
1W-2W  
R/W  
0h  
This bit transmits output data on either one or two wires.  
0 = Output data are transmitted on two wires (Dx0P, Dx0M and  
Dx1P, Dx1M)  
1 = Output data are transmitted on one wire (Dx0P, Dx0M).  
8.6.1.6 Register 06h (address = 06h)  
56. Register 06h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST PATTERN EN  
R/W-0h  
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
12. Register 06h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
TEST PATTERN EN  
R/W  
0h  
This bit enables test pattern selection for the digital outputs.  
0 = Normal output  
1 = Test pattern output enabled  
0
RESET  
R/W  
0h  
This bit applies a software reset.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
版权 © 2019, Texas Instruments Incorporated  
35  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.7 Register 07h (address = 07h)  
57. Register 07h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
13. Register 07h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
OVR ON LSB  
R/W  
0h  
This bit provides OVR information on the LSB bits.  
0 = Output data bit 0 functions as the LSB of the 12-bit data  
1 = Output data bit 0 carries the overrange (OVR) information  
8.6.1.8 Register 09h (address = 09h)  
58. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST PATTERN  
R/W-0h  
DATA FORMAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
14. Register 09h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ALIGN TEST PATTERN  
R/W  
0h  
This bit aligns the test patterns across the outputs of both  
channels.  
0 = Test patterns of both channels are free running  
1 = Test patterns of both channels are aligned  
0
DATA FORMAT  
R/W  
0h  
This bit selects th digital output data format.  
0 = Twos complement  
1 = Offset binary  
36  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.9 Register 0Ah (address = 0Ah)  
59. Register 0Ah  
7
6
5
4
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
CHB TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
15. Register 0Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHA TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, and 599  
Others = Do not use  
3-0  
CHB TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, and 599  
Others = Do not use  
版权 © 2019, Texas Instruments Incorporated  
37  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.10 Register 0Bh (address = 0Bh)  
60. Register 0Bh  
7
6
5
4
3
2
1
0
CHC TEST PATTERN  
R/W-0h  
CHD TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
16. Register 0Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHC TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel C after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095.  
0110 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
1000 = Deskew pattern: data are AAAh.  
1010 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1011 = 8-point sine wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, 599.  
Others = Do not use  
3-0  
CHD TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel D after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095.  
0110 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
1000 = Deskew pattern: data are AAAh.  
1010 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1011 = 8-point sine wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, 599.  
Others = Do not use  
8.6.1.11 Register 0Eh (address = 0Eh)  
61. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[11:4]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
17. Register 0Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CUSTOM PATTERN[11:4]  
R/W  
0h  
These bits set the 12-bit custom pattern (bits 11-4) for all  
channels.  
38  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.12 Register 0Fh (address = 0Fh)  
62. Register 0Fh  
7
6
5
4
3
0
2
0
1
0
0
CUSTOM PATTERN[3:0]  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
18. Register 0Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CUSTOM PATTERN[3:0]  
R/W  
0h  
These bits set the 12-bit custom pattern (bits 3-0) for all  
channels.  
3-0  
0
W
0h  
Must write 0.  
8.6.1.13 Register 10h (address = 10h)  
63. Register 10h  
7
6
5
4
3
2
1
0
REF STATUS  
CHB OR  
REF STATUS  
CHD OR  
REF STATUS  
CHA OR  
CLK STATUS  
TEMPDATA [6:4]  
REF STATUS  
CHC OR  
TEMPDATA [2] TEMPDATA [1] TEMPDATA [0]  
TEMPDATA [3]  
Read Only Read Only Read Only  
Read Only  
Read Only  
Read Only  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
19. Register 10h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5, 0  
REF STATUS CHB, REF STATUS  
CHD, REF STATUS CHA, REF  
STATUS CHC  
Read  
Only  
0h  
When internal reference diagnostic is enabled by setting EN  
REF STATUS CHECK bit to ‘1’, these bits carry status of  
internal reference for corresponding channel.  
See Internal Reference and Clock Status Check for details.  
Note that these bits are multiplexed with temperature sensor’s  
data and carry TEMPDATA[3:0] if temperature sensor’s is  
enabled.  
4
CLK STATUS  
Read  
Only  
0h  
0h  
This bit indicates presence of input clock. By default, device sets  
this bit 0. If input clock is absent, this bit becomes '1'  
7-5, 3-1, 0 TEMPDATA [6:0]  
Read  
Only  
When temperature sensor’s data is being read, these bits carry  
seven MSBs of temperature sensor’s 9-bit data. Remaining two  
LSBs are available on address 11h bit 5:4.  
See Temperature Sensor for details of operation.  
8.6.1.14 Register 11h (address = 11h)  
64. Register 11h  
7
0
6
0
5
4
3
0
2
0
1
0
0
0
TEMPDATA [8:7]  
Read Only  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
20. Register 11h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
0h  
Description  
0
W
Must write 0.  
TEMPDATA [8:7]  
Read  
Only  
0h  
These bits represent digital equivalent of temperature in 2s  
complement format.  
3-0  
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
39  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.15 Register 13h (address = 13h)  
65. Register 13h  
7
0
6
5
4
3
0
2
0
1
0
EN REF  
STATUS  
CHECK  
LOW SPEED ENABLE  
EN DC FORCE  
R/W-0h  
EN STATS  
R/W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
21. Register 13h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
6
EN REF STATUS CHECK  
R/W  
0h  
This Bit Enables reference diagnostic check. Must be set to '1'  
before reading reference status from REF STATUS CHECK CHx  
bits.  
5
4
EN DC FORCE  
EN STATS  
R/W  
R/W  
0h  
0h  
This Bit Enables internal DC voltage force diagnostic check  
together for all channels. Must be set to '1' before forcing  
internal DC voltage through DC FORCE[2:0] bits.  
This bit enables inter Statistics Module for mean and variance  
computation. After this bit is set to '1', statistical module for  
desired channel can be selected by using bits STATS CH  
SEL[1:0]  
3-2  
1-0  
0
W
0h  
0h  
Must write 0.  
LOW SPEED ENABLE  
R/W  
Enables low speed operation in 1-wire and 2-wire mode.  
Depending upon sampling frequency, write this bit as per 22  
22. LOW SPEED ENABLE Register Settings across fS  
fS, MSPS  
REGISTER BIT LOW SPEED ENABLE  
1- Wire Mode 2-Wire Mode  
10 11  
10 Not supported  
MIN  
20  
MAX  
25  
15  
20  
8.6.1.16 Register 14h (address = 14h)  
66. Register 14h  
7
0
6
5
4
0
3
0
2
1
0
0
0
EN TEMP  
SENS CONV  
EN TEMP  
SENSE  
EN TEMP  
DATA  
READOUT  
W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
23. Register 14h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
6
EN TEMP SENS CONV  
R/W  
0h  
This bit enables the temperature-to-digital conversion process of  
temperature sensor. This bit can be set to '1' after temperature  
sensor is enabled by setting EN TEMP SENSE bit to '1'.  
5
4-3  
2
EN TEMP SENSE  
R/W  
W
0h  
0h  
0h  
This bit enables temperature sensor present inside device  
Must write 0.  
0
EN TEMP DATA READOUT  
R/W  
This bit places the 9-bit digital equivalent of temperature on  
register bits TEMPDATA[8:0].  
1-0  
0
W
0h  
Must write 0.  
40  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.17 Register 15h (address = 15h)  
67. Register 15h  
7
6
5
4
3
2
1
0
CONFIG PDN  
PIN  
CHA PDN  
W-0h  
CHB PDN  
R/W-0h  
CHC PDN  
R/W-0h  
CHD PDN  
W-0h  
STANDBY  
R/W-0h  
GLOBAL PDN  
R/W-0h  
0
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
24. Register 15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHA PDN  
W
0h  
0 = Normal operation  
1 = Power-down channel A  
6
5
4
3
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
R/W  
R/W  
W
0h  
0h  
0h  
0h  
0 = Normal operation  
1 = Power-down channel B  
0 = Normal operation  
1 = Power-down channel C  
0 = Normal operation  
1 = Power-down channel D  
R/W  
The ADCs of both channels enter standby.  
0 = Normal operation  
1 = Standby  
2
GLOBAL PDN  
R/W  
0h  
0 = Normal operation  
1 = Global power-down  
1
0
0
W
0h  
0h  
Must write 0.  
CONFIG PDN PIN  
R/W  
This bit configures the PDN pin as either a global power-down or  
standby pin.  
0 = Logic high voltage on the PDN pin sends the device into  
global power-down  
1 = Logic high voltage on the PDN pin sends the device into  
standby  
8.6.1.18 Register 16h (address = 16h)  
68. Register 16h  
7
6
5
4
3
2
1
0
0
0
MEAN[5:0]  
Read Only  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
25. Register 16h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
MEAN[5:0]  
Read  
Only  
0h  
These bits represent mean value in 2s complement format  
computed over programmed number of samples by statistical  
module.  
1-0  
0
W
0h  
Must write 0.  
8.6.1.19 Register 17h (address = 17h)  
69. Register 17h  
7
0
6
0
5
4
3
2
1
0
MEAN[11:6]  
Read Only  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
版权 © 2019, Texas Instruments Incorporated  
41  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
26. Register 17h Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
0h  
Description  
0
W
Must write 0.  
MEAN[11:6]  
Read  
Only  
0h  
These bits represent mean value in 2s complement format  
computed over programmed number of samples by statistical  
module.  
8.6.1.20 Register 18h (address = 18h)  
70. Register 18h  
7
6
5
4
3
2
1
0
0
0
VAR[5:0]  
Read Only  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
27. Register 18h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
VAR[5:0]  
Read  
Only  
0h  
These bits represent variance value in 2s complement format  
computed over programmed number of samples by statistical  
module  
1-0  
0
W
0h  
Must write 0.  
8.6.1.21 Register 19h (address = 19h)  
71. Register 19h  
7
0
6
0
5
4
3
2
1
0
VAR[11:6]  
Read Only  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
28. Register 19h Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
0h  
Description  
0
W
Must write 0.  
VAR[11:6]  
Read  
Only  
0h  
These bits represent variance value in 2s complement format  
computed over programmed number of samples by statistical  
module  
8.6.1.22 Register 25h (address = 25h)  
72. Register 25h  
7
6
5
4
3
2
1
0
LVDS SWING  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
29. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LVDS SWING  
R/W  
0h  
These bits control the swing of the LVDS outputs (including the  
data output, bit clock, and frame clock).  
42  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.23 Register 27h (address = 27h)  
73. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
CLK DIV  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
30. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CLK DIV  
R/W  
0h  
These bits select the internal clock divider for the input sampling  
clock.  
00 = Divide-by-1  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
5-0  
0
W
0h  
Must write 0.  
8.6.1.24 Register 4Bh (address = 4Bh)  
74. Register 4Bh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SAMPLES FOR STATS[1:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
31. Register 4Bh Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
SAMPLES FOR STATS[1:0]  
R/W  
0h  
These bits program number of samples to be used by statistical  
module for computation of mean and variance.  
00=256,  
01=1024,  
10=4096,  
11=16384  
8.6.1.25 Register 11Dh (address = 11Dh)  
75. Register 11Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
32. Register 11Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE0  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
43  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.26 Register 122h (address = 122h)  
76. Register 122h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
33. Register 122h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHA  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
44  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.27 Register 134h (address = 134h)  
77. Register 134h  
7
0
6
0
5
4
0
3
2
0
1
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
34. Register 134h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHA  
R/W  
0h  
Set this bit along with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHA  
R/W  
Set this bit along with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.28 Register 139h (address = 139h)  
78. Register 139h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
35. Register 139h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHA  
R/W  
0h  
This bit sets the special mode for best performance on channel  
A.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.29 Register 21Dh (address = 21Dh)  
79. Register 21Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
36. Register 21Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE1  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
45  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.30 Register 222h (address = 222h)  
80. Register 222h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
37. Register 222h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHD  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
8.6.1.31 Register 234h (address = 234h)  
81. Register 234h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHD  
R/W-0h  
DIS DITH CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
38. Register 234h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHD  
R/W  
0h  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHD  
R/W  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
46  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.32 Register 239h (address = 239h)  
82. Register 239h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
SP1 CHD  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
39. Register 239h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHD  
R/W  
0h  
This bit sets the special mode for best performance on channel  
D.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.33 Register 308h (address = 308h)  
83. Register 308h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<5:4>  
W-0h W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
40. Register 308h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<5:4>  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
8.6.1.34 Register 31Dh (address = 31Dh)  
84. Register 31Dh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF  
MODE4  
HIGH IF  
MODE4  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
41. Register 31Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HIGH IF MODE4  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
6-2  
1
0
W
0h  
0h  
Must write 0.  
HIGH IF MODE4  
R/W  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
8.6.1.35 Register 41Dh (address = 41Dh)  
版权 © 2019, Texas Instruments Incorporated  
47  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
85. Register 41Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE2  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
42. Register 41Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE2  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
48  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.36 Register 422h (address = 422h)  
86. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
DIS CHOP CHB  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
43. Register 422h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHB  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
8.6.1.37 Register 434h (address = 434h)  
87. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHB  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
44. Register 434h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHB  
R/W  
0h  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHB  
R/W  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
49  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.38 Register 439h (address = 439h)  
88. Register 439h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
45. Register 439h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHB  
R/W  
0h  
This bit sets the special mode for best performance on channel  
B.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.39 Register 51Dh (address = 51Dh)  
89. Register 51Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE3  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
46. Register 51Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE3  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
8.6.1.40 Register 522h (address = 522h)  
90. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
47. Register 522h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHC  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
50  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
8.6.1.41 Register 534h (address = 534h)  
91. Register 534h  
7
0
6
0
5
4
0
3
2
0
1
0
0
DIS DITH CHC  
R/W-0h  
DIS DITH CHC  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
48. Register 534h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHC  
R/W  
0h  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHC  
R/W  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.42 Register 539h (address = 539h)  
92. Register 539h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
49. Register 539h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHC  
R/W  
0h  
This bit sets the special mode for best performance on channel  
C.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
8.6.1.43 Register 608h (address = 608h)  
93. Register 608h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<7:6>  
W-0h W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
50. Register 608h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<7:6>  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
版权 © 2019, Texas Instruments Incorporated  
51  
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
8.6.1.44 Register 61Dh (address = 61Dh)  
94. Register 61Dh  
7
6
0
5
0
4
0
3
0
2
0
1
0
HIGH IF  
MODE5  
HIGH IF  
MODE5  
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
51. Register 61Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HIGH IF MODE5  
R/W  
0h  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
6-2  
1
0
W
0h  
0h  
Must write 0.  
HIGH IF MODE5  
R/W  
Set all register bits belonging to HIGH IF MODE as logic HIGH  
to improve HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
8.6.1.45 Register 70Ah (address = 70Ah)  
95. Register 70Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
52. Register 70Ah Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
PDN SYSREF  
R/W  
0h  
If the SYSREF pins are not used in the system, the SYSREF  
buffer must be powered down by setting this bit.  
0 = Normal operation  
1 = Powers down the SYSREF buffer  
8.6.1.46 Register 71Ah (address = 71Ah)  
96. Register 71Ah  
7
0
6
0
5
0
4
0
3
2
1
0
0
DC FORCE[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
53. Register 71Ah Field Descriptions  
Bit  
7-4  
3-1  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DC FORCE[2:0]  
R/W  
0h  
These Bits force internal DC voltage to ADC's analog inputs  
together for all channels. Minimum DC voltage corresponds to  
output code 745 and max DC voltage to output code 3332  
typically following the equation:  
Output Code = 368 × DC FORCE[2:0] + 745  
0
0
W
0h  
Must write 0.  
52  
版权 © 2019, Texas Instruments Incorporated  
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
9 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. When designing the dc driving circuits, the ADC input impedance must be considered. 97 and 98  
show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D00215  
97. Differential Input Resistance, RIN  
98. Differential Input Capacitance, CIN  
版权 © 2019, Texas Instruments Incorporated  
53  
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Driving Circuit Design: Low Input Frequencies  
0.1 µF  
0.1 µF  
INP  
50  
0.1 µF  
50 Ω  
22 pF  
50 Ω  
25 Ω  
25 Ω  
TI Device  
50 ꢀ  
1:1  
1:1  
INM  
0.1 µF  
VCM  
99. Driving Circuit for Low Input Frequencies  
9.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitic. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
9.2.1.2 Detailed Design Procedure  
A typical application involving using two back-to-back coupled transformers is illustrated in 99. The circuit is  
optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used  
with the series inductor (39 nH), this combination helps absorb the sampling glitches.  
9.2.1.3 Application Curve  
100 shows the performance obtained by using the circuit shown in 99.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D801  
SFDR = 95 dBc, SNR = 71 dBFS, SINAD = 71 dBFS,  
THD = 94 dBc, HD2 = 106 dBc, HD3 = 95 dBc  
100. Performance FFT at 10 MHz (Low Input Frequency)  
54  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
Typical Applications (接下页)  
9.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 µF  
10  
0.1 µF  
INP  
15 Ω  
25 Ω  
0.1 pF  
TI Device  
10 pF  
56 nH  
25 Ω  
15 Ω  
1:1  
1:1  
INM  
10 ꢀ  
0.1 µF  
VCM  
101. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
9.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
9.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in 101.  
9.2.2.3 Application Curve  
102 shows the performance obtained by using the circuit shown in 101.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D805  
SFDR = 87 dBc, SNR = 69.8 dBFS, SINAD = 69.7 dBFS,  
THD = 85 dBc, HD2 = 90 dBc, HD3 = 87 dBc  
102. Performance FFT at 170 MHz (Mid Input Frequency)  
版权 © 2019, Texas Instruments Incorporated  
55  
 
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 µF  
0.1 µF  
10 Ω  
INP  
0.1 µF  
25  
25 ꢀ  
TI Device  
10 Ω  
INM  
1:1  
1:1  
0.1 µF  
VCM  
103. Driving Circuit for High Input Frequencies (fIN > 230 MHz)  
9.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
9.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used as shown in 103.  
9.2.3.3 Application Curve  
104 shows the performance obtained by using the circuit shown in 103.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
2.5  
5 7.5  
Frequency (MHz)  
10  
12.5  
D809  
SFDR = 67 dBc, SNR = 66.4 dBFS, SINAD = 66.4 dBFS,  
THD = 93 dBc, HD2 = 67 dBc, HD3 = 88 dBc  
104. Performance FFT at 450 MHz (High Input Frequency)  
10 Power Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
56  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADC3421-Q1  
www.ti.com.cn  
ZHCSKL4 DECEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
The ADC3421-Q1 EVM layout can be used as a reference layout to obtain the best performance. A layout  
diagram of the EVM top layer is provided in 105. Some important points to remember during laying out the  
board are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions,  
as shown in the reference layout of 105 as much as possible.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 105 as  
much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, the digital  
output traces must not be kept parallel to the analog input traces because this configuration can result in  
coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the  
receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)]  
must be matched in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
11.2 Layout Example  
Sampling  
Clock  
Routing  
Analog  
Input  
Routing  
ADC34xx  
Digital  
Output  
Routing  
105. Typical Layout of the ADC3421-Q1 Board  
版权 © 2019, Texas Instruments Incorporated  
57  
 
ADC3421-Q1  
ZHCSKL4 DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
58  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AD3421QRWERQ1  
AD3421QRWETQ1  
ACTIVE  
ACTIVE  
VQFNP  
VQFNP  
RWE  
RWE  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AZ3421Q  
AZ3421Q  
Samples  
Samples  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
OTHER QUALIFIED VERSIONS OF ADC3421-Q1 :  
Catalog : ADC3421  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AD3421QRWERQ1  
VQFNP  
RWE  
56  
2000  
330.0  
16.4  
8.3  
8.3  
2.25  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFNP RWE 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AD3421QRWERQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RWE 56  
8 x 8, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224587/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AD345KY

Pin ATE Driver
ETC

AD346

High Speed Sample-and-Hold Amplifier
ADI

AD346JD

IC SAMPLE AND HOLD AMPLIFIER, 1.6 us ACQUISITION TIME, CDIP14, BOTTOM BRAZED, CERAMIC, DIP-14, Sample and Hold Circuit
ADI

AD346SD

High Speed Sample-and-Hold Amplifier
ADI

AD3554

WIDEBAND FST-SETTLING OPERATIONAL AMPLIFIER
MAXIM

AD3554

FAST-SETTLING, WIDEBAND, FET-INPUT OP AMP
ADI

AD3554AM

WIDEBAND FST-SETTLING OPERATIONAL AMPLIFIER
MAXIM

AD3554AM

FAST-SETTLING, WIDEBAND, FET-INPUT OP AMP
ADI

AD3554BM

WIDEBAND FST-SETTLING OPERATIONAL AMPLIFIER
MAXIM

AD3554BM

FAST-SETTLING, WIDEBAND, FET-INPUT OP AMP
ADI

AD3554SM

WIDEBAND FST-SETTLING OPERATIONAL AMPLIFIER
MAXIM

AD3554SM

FAST-SETTLING, WIDEBAND, FET-INPUT OP AMP
ADI