ADC08351 [TI]

8 位、42MSPS 模数转换器 (ADC);
ADC08351
型号: ADC08351
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8 位、42MSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总27页 (文件大小:1185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
ADC08351 8-Bit, 42 MSPS, 40 mW A/D Converter  
Check for Samples: ADC08351  
1
FEATURES  
DESCRIPTION  
The ADC08351 is an easy to use low power, low  
cost, small size, 42 MSPS analog-to-digital converter  
that digitizes signals to 8 bits. The ADC08351 uses  
an unique architecture that achieves 7.2 Effective Bits  
with a 4.4 MHz input and 42 MHz clock frequency  
and 6.8 Effective Bits with a 21 MHz input and 42  
MHz clock frequency. Output formatting is straight  
binary coding.  
2
Low Input Capacitance  
Internal Sample-and-Hold Function  
Single +3V Operation  
Power Down Feature  
TRI-STATE Outputs  
KEY SPECIFICATIONS  
To minimize system cost and power consumption, the  
ADC08351 requires minimal external components  
and includes input biasing to allow optional a.c. input  
signal coupling. The user need only provide a +3V  
supply and a clock. Many applications require no  
separate reference or driver components.  
Resolution: 8 Bits  
Maximum Sampling Frequency: 42MSPS (min)  
ENOB @ fCLK = 42 MHz,  
fIN = 4.4 MHz: 7.2 Bits (typ)  
Ensured No Missing Codes  
The excellent dc and ac characteristics of this device,  
together with its low power consumption and +3V  
single supply operation, make it ideally suited for  
many video and imaging applications, including use in  
portable equipment. Total power consumption is  
reduced to less than 7 mW in the power-down mode.  
Furthermore, the ADC08351 is resistant to latch-up  
and the outputs are short-circuit proof.  
Power Consumption: 40 mW (typ); 48 mW  
(max) (Excluding Reference Current)  
APPLICATIONS  
Video Digitization  
Digital Still Cameras  
Set Top Boxes  
Fabricated on a 0.35 micron CMOS process, the  
ADC08351 is offered in TSSOP and WQFN (a  
molded lead frame-based chip-scale package), and is  
designed to operate over the industrial temperature  
range of 40°C to +85°C.  
Digital Camcorders  
Communications  
Medical Imaging  
Personal Computer Video  
CCD Imaging  
Electro-Optics  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2000–2013, Texas Instruments Incorporated  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
ADC08351 Block Diagram  
Pin Configuration  
Figure 1. 20-Pin TSSOP - Top View  
Figure 2. 24-Pin WQFN (CSP) - Bottom View  
2
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
PIN DESCRIPTIONS AND EQUIVALENT CIRCUITS(1)  
Pin  
No.  
Symbol  
Equivalent Circuit  
Description  
17  
(17)  
VIN  
Analog signal input. Conversion range is 0.5 VP-P to 0.68 VA.  
Positive reference voltage input. Operating range of this  
voltage is 0.75V to VA. This pin should be bypassed with a 10  
µF tantalum or aluminum electrolytic capacitor and a 0.1 µF  
ceramic chip capacitor.  
14  
(14)  
VREF  
CMOS/TTL compatible digital input that, when low, enables  
the digital outputs of the ADC08351. When high, the outputs  
are in a high impedance state.  
1
(22)  
OE  
12  
(11)  
CMOS/TTL compatible digital clock input. VIN is sampled on  
the falling edge of CLK input.  
CLK  
CMOS/TTL compatible digital input that, when high, puts the  
ADC08351 into the power down mode, where it consumes  
minimal power. When this pin is low, the ADC08351 is in the  
normal operating mode.  
15  
(15)  
PD  
3 thru  
10  
(1 thru  
8)  
Conversion data digital output pins. D0 is the LSB, D7 is the  
MSB. Valid data is output just after the rising edge of the CLK  
input. These pins are enabled by bringing the OE pin low.  
D0–D7  
Positive digital supply pin. Connect to a clean, quiet voltage  
source of +3V. VA and VD should have a common supply and  
be separately bypassed with a 10 µF tantalum or aluminum  
electrolytic capacitor and a 0.1 µF ceramic chip capacitor.  
See Layout and Grounding for more information.  
11, 13  
(10, 12)  
VD  
DGND  
VA  
2, 20  
(21, 23)  
The ground return for the digital supply. AGND and DGND  
should be connected together close to the ADC08351.  
Positive analog supply pin. Connected to a clean, quiet  
voltage source of +3V. VA and VD should have a common  
supply and be separately bypassed with a 10 µF tantalum or  
aluminum electrolytic capacitor and a 0.1 µF ceramic chip  
capacitor. See Layout and Grounding for more information.  
16  
(16)  
The ground return for the analog supply. AGND and DGND  
should be connected together close to the ADC08351  
package.  
18, 19  
(18, 19)  
AGND  
(1) WQFN pins in parentheses  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADC08351  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
Absolute Maximum Ratings(1)(2)(3)  
Supply Voltage (VA, VD)  
4.2V  
0.3V to 4.2V  
±100 mV  
Voltage on Any Input or Output Pin  
Ground Difference (AGND–DGND)  
CLK, OE Voltage Range  
0.5 to (VA + 0.5V)  
VD to DGND  
±25 mA  
Digital Output Voltage (VOH, VOL  
Input Current at Any Pin(4)  
Package Input Current(4)  
)
±50 mA  
Package Dissipation at TA = 25°C  
ESD Susceptibility(6)  
See(5)  
Human Body Model  
Machine Model  
4000V  
200V  
Soldering Temp., Infrared, 10 sec.(7)  
Storage Temperature  
235°C  
65°C to +150°C  
(1) All voltages are measured with respect to GND = AGND = DGND = 0V, unless otherwise specified.  
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions.  
(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.  
(4) When the input voltage at any pin exceeds the power supplies (that is, less than AGND or DGND, or greater than VA or VD), the current  
at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can safely  
exceed the power supplies with an input current of 25 mA to two.  
(5) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by  
TJmax, the junction-to-ambient thermal resistance (θJA), and the ambient temperature (TA), and can be calculated using the formula  
PDMAX = (TJmax - TA)/θJA. For the 20-pin TSSOP, θJA is 135°C/W, so PDMAX = 926 mW at 25°C and 481 mW at the maximum  
operating ambient temperature of 85°C. Note that the power dissipation of this device under normal operation will typically be about 68  
mW (40 mW quiescent power + 23 mW reference ladder power + 5 mW due to 1 TTL loan on each digital output). The values for  
maximum power dissipation listed above will be reached only when the ADC08351 is operated in a severe fault condition (e.g., when  
input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Obviously, such conditions  
should always be avoided.  
(6) Human body model is 100 pF capacitor discharged through a 1.5 kΩ resistor. Machine model is 220 pF discharged through ZERO  
Ohms.  
(7) See AN-450, “Surface Mounting Methods and Their Effect on Product Reliability”, or the section entitled “Surface Mount” found in any  
post 1986 Texas Instruments Linear Data Book, for other methods of soldering surface mount devices.  
Operating Ratings(1)(2)  
Operating Temperature Range  
40°C TA +85°C  
+2.7V to +3.6V  
0V to 100 mV  
Supply Voltage (VA, VD)  
Ground Difference |DGND–AGND|  
VIN Voltage Range (VP-P  
)
0.5V to 0.68 VA  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions.  
(2) All voltages are measured with respect to GND = AGND = DGND = 0V, unless otherwise specified.  
4
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
Converter Electrical Characteristics  
The following specifications apply for VA = VD = +3.0 VDC, VREF = 2.4V, VIN = 1.63 VP-P, OE = 0V, CL = 20 pF, fCLK = 42 MHz,  
50% duty cycle, unless otherwise specified.  
Boldface limits apply for TA = TMIN to TMAX: all other limits TA = 25°C(1)(2)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(3) Limits(3)  
DC Accuracy  
INL  
Integral Non Linearity Error  
Differential Non Linearity  
±0.7  
±0.6  
±1.4  
+1.3  
1.0  
0
LSB (max)  
LSB (max)  
LSB (min)  
(max)  
DNL  
Missing Codes  
EZ  
Zero Scale Offset Error  
Full Scale Offset Error  
17  
7  
mV  
EFS  
mV  
Video Accuracy  
DP  
DG  
Differential Phase Error  
Differential Gain Error  
fCLK = 20 MHz, Video Ramp Input  
fCLK = 20 MHz, Video Ramp Input  
1.0  
1.5  
Degree  
%
Analog Input and Reference Characteristics  
(CLK LOW)  
(CLK HIGH)  
4
11  
pF  
pF  
kΩ  
MHz  
V
CIN  
VIN Input Capacitance  
VIN = 1.5V + 0.7 Vrms  
RIN  
RIN Input Resistance  
Full-Power Bandwidth  
7.2  
FPBW  
120  
0.735  
VA  
VREF  
IREF  
Reference Input Voltage  
Reference Input Current  
At pin 14  
V
7.7  
mA  
Power Supply Characteristics  
PD = Low  
10.5  
1
mA  
mA  
IA  
Analog Supply Current  
Digital Supply Current  
PD = High  
PD = Low, No Digital Output Load  
PD = High  
2.9  
0.5  
13.4  
40.2  
<7  
mA  
ID  
mA  
Total Operating Current  
Excluding Reference Current, VIN = 0 VDC  
PD = Low (excluding reference current)  
16  
48  
mA (max)  
mW (max)  
mW  
Power Consumption (active)  
Power Consumption (power down) PD = High (excluding reference current)  
(1) All inputs are protected as shown below. Input voltage magnitudes up to 500 mV above the supply voltage or 500 mV below GND will  
not damage this device. However, errors in the A/D conversion can occur if the input goes above VA or below AGND by more than 300  
mV. As an example, if VA is 3.0 VDC, the full-scale input voltage must be 3.3 VDC to ensure accurate conversions.  
(2) To ensure accuracy, it is required that VA and VD be well bypassed. Each VA and VD pin must be decoupled with separate bypass  
capacitors.  
(3) Typical figures are at TJ = 25°C, and represent most likely parametric norms. Test limits are ensured to TI's AOQL (Average Outgoing  
Quality Level).  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADC08351  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
Converter Electrical Characteristics (continued)  
The following specifications apply for VA = VD = +3.0 VDC, VREF = 2.4V, VIN = 1.63 VP-P, OE = 0V, CL = 20 pF, fCLK = 42 MHz,  
50% duty cycle, unless otherwise specified.  
Boldface limits apply for TA = TMIN to TMAX: all other limits TA = 25°C(1)(2)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(3) Limits(3)  
CLK, OE Digital Input Characteristics  
VIH  
VIL  
IIH  
Logical High Input Voltage  
Logical Low Input Voltage  
Logical High Input Current  
Logic Low Input Current  
Logic Input Capacitance  
VD = VA = 3V  
VD = VA = 3V  
2.0  
V (min)  
V (max)  
µA  
1.0  
VIH = VD = VA = 3.3V  
10  
10  
10  
IIL  
VIL = 0V, VD = VA = 3.3V  
µA  
CIN  
pF  
Digital Output Characteristics  
IOH High Level Output Current  
IOL  
VD = 2.7V, VOH = VD 0.5V  
VD = 2.7V, OE = DGND, VOL = 0.4V  
VD = 2.7V, IOH = 360 µA  
1.1  
mA (min)  
Low Level Output Current  
High Level Output Voltage  
Low Level Output Voltage  
1.8  
mA (min)  
VOH  
VOL  
2.65  
0.2  
V
V
VD = 2.7V, IOL = 1.6 mA  
IOZH  
IOZL  
,
TRI-STATE Output Current  
OE = VD = 3.3V, VOH = 3.3V or VOL = 0V  
±10  
µA  
AC Electrical Characteristics  
fC1  
fC2  
tOD  
Maximum Conversion Rate  
42  
MHz (min)  
MHz  
Minimum Conversion Rate  
Output Delay  
2
CLK High to Data Valid  
14  
2.5  
2
19  
ns (max)  
Clock Cycles  
ns  
Pipline Delay (Latency)  
Sampling (Aperture) Delay  
Output Hold Time  
tDS  
tOH  
tEN  
tDIS  
CLK Low to Acquisition of Data  
CLK High to Data Invalid  
9
ns  
OE Low to Data Valid  
OE High to High Z State  
Loaded as in Figure 20  
14  
10  
7.2  
7.2  
6.8  
45  
45  
43  
44  
45  
44  
57  
51  
46  
57  
54  
49  
ns  
Loaded as in Figure 20  
ns  
fCLK = 30 MHz, fIN = 1 MHz  
fCLK = 42 MHz, fIN = 4.4 MHz  
fCLK = 42 MHz, fIN = 21 MHz  
fCLK = 30 MHz, fIN = 1 MHz  
fCLK = 42 MHz, fIN = 4.4 MHz  
fCLK = 42 MHz, fIN = 21 MHz  
fCLK = 30 MHz, fIN = 1 MHz  
fCLK = 42 MHz, fIN = 4.4 MHz  
fCLK = 42 MHz, fIN = 21 MHz  
fCLK = 30 MHz, fIN = 1 MHz  
fCLK = 42 MHz, fIN = 4.4 MHz  
fCLK = 42 MHz, fIN = 21 MHz  
fCLK = 30 MHz, fIN = 1 MHz  
fCLK = 42 MHz, fIN = 4.4 MHz  
fCLK = 42 MHz, fIN = 21 MHz  
Bits  
ENOB  
SINAD  
SNR  
Effective Number of Bits  
Signal-to-Noise & Distortion  
Signal-to-Noise Ratio  
Bits  
6.1  
38.5  
41  
Bits (min)  
dB  
dB  
dB (min)  
dB  
dB  
dB (min)  
dB  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
dB  
41  
41  
dB (min)  
dB  
SFDR  
dB  
dB (min)  
6
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
 
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
Typical Performance Characteristics  
VA = VD = VD I/O = 3V, fCLK = 42 MHz, unless otherwise specified  
DNL @ 42 MSPS  
DNL vs Sample Rate  
Figure 3.  
Figure 4.  
DNL vs VA  
DNL vs Temperature  
Figure 5.  
Figure 6.  
INL @ 42 MSPS  
INL vs Sample Rate  
Figure 7.  
Figure 8.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADC08351  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
VA = VD = VD I/O = 3V, fCLK = 42 MHz, unless otherwise specified  
INL vs VA  
INL vs Temperature  
Figure 9.  
Figure 10.  
SINAD and ENOB vs fIN  
SINAD and ENOB vs fCLK  
Figure 11.  
Figure 12.  
SNR vs fIN  
SINAD and ENOB vs  
Clock Duty Cycle  
Figure 13.  
Figure 14.  
8
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
VA = VD = VD I/O = 3V, fCLK = 42 MHz, unless otherwise specified  
THD vs fIN  
(ID) + (IA) vs fCLK  
Figure 15.  
tOD vs VD  
Figure 16.  
Spectral Response @ 42 MSPS  
Figure 17.  
Figure 18.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADC08351  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
Specification Definitions  
ANALOG INPUT BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental  
drops 3 dB below its low frequency value for a full scale input. The test is performed with fIN equal to 100 kHz  
plus integer multiples of fCLK. The input frequency at which the output is 3 dB relative to the low frequency input  
signal is the full power bandwidth.  
DIFFERENTIAL GAIN ERROR is the percentage difference between the output amplitudes of a high frequency  
reconstructed sine wave at two different dc input levels.  
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1  
LSB.  
DIFFERENTIAL PHASE ERROR is the difference in the output phase of a reconstructed small signal sine wave  
at two different dc input levels.  
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise  
and Distortion Ratio, or SINAD. ENOB is defined as (SINAD - 1.76)/6.02 and says that the converter is  
equivalent to a perfect ADC of this (ENOB) number of bits.  
FULL POWER BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental  
drops 3 dB below its low frequency value for a full scale input. The test is performed with fIN equal to 100KHz  
plus integer multiples of fCLK The input frequency at which the output is —3 dB relative to the low frequency input  
signal is the full power bandwidth.  
FULL SCALE OFFSET ERROR is the difference between the analog input voltage that just causes the output  
code to transition to the full scale code (all 1's in the case of the ADC08351) and the ideal value of 1½ LSB  
below the value of VREF  
.
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from  
zero scale (½ LSB below the first code transition) through positive full scale (½ LSB above the last code  
transition). The deviation of any given code from this straight line is measured from the center of that code value.  
The end point test method is used.  
OUTPUT DELAY is the time delay after the rising edge of the input clock before the data update is present at the  
output pins.  
OUTPUT HOLD TIME is the length of time that the output data is valid after the rise of the input clock.  
PIPELINE DELAY (LATENCY) is the number of clock cycles between initiation of conversion and the availability  
of that conversion result at the output. New data is available at every clock cycle, but the data lags the  
conversion by the pipeline delay.  
SAMPLING (APERTURE) DELAY is that time required after the fall of the clock input for the sampling switch to  
open. The sample is effectively taken this amount of time after the fall of the clock input.  
SIGNAL TO NOISE RATIO (SNR) is the ratio of the rms value of the input signal to the rms value of the other  
spectral components below one-half the sampling frequency, not including harmonics or dc.  
SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or SINAD) is the ratio of the rms value of the input signal to  
the rms value of all of the other spectral components below half the clock frequency, including harmonics but  
excluding dc.  
SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB, between the rms values of the  
input signal and the peak spurious signal, where a spurious signal is any signal present in the output spectrum  
that is not present at the input.  
TOTAL HARMONIC DISTORTION (THD) is the ratio of the rms total of the first six harmonic components to the  
rms value of the input signal.  
ZERO SCALE OFFSET ERROR is the difference between the analog input voltage that just causes the output  
code to transition to the first code and the ideal value of ½ LSB for that transition.  
10  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
Timing Diagram  
Figure 19. ADC08351 Timing Diagram  
Figure 20. tEN, tDIS Test Circuit  
FUNCTIONAL DESCRIPTION  
The ADC08351 achieves 6.8 effective bits at 21 MHz input frequency with 42 MHz clock frequency digitizing to  
eight bits the analog signal at VIN that is within the nominal voltage range of 0.5 VP-P to 0.68 VA.  
Input voltages below 0.0665 times the reference voltage will cause the output word to consist of all zeroes, while  
input voltages above ¾ of the reference voltage will cause the output word to consist of all ones. For example,  
with a VREF of 2.4V, input voltages below 160 mV will result in an output word of all zeroes, while input voltages  
above 1.79V will result in an output word of all ones.  
The output word rate is the same as the clock frequency. Data is acquired at the falling edge of the clock and the  
digital equivalent of that data is available at the digital outputs 2.5 clock cycles plus tOD later. The ADC08351 will  
convert as long as the clock signal is present at the CLK pin, but the data will not appear at the outputs unless  
the OE pin is low. The digital outputs are in the high impedance state when the OE pin or when the PD pin is  
high.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADC08351  
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
APPLICATIONS INFORMATION  
(All schematic pin numbers refer to the TSSOP.)  
THE ADC REFERENCE AND THE ANALOG INPUT  
The capacitance seen at the input changes with the clock level, appearing as 4 pF when the clock is low, and 11  
pF when the clock is high. Since a dynamic capacitance is more difficult to drive than is a fixed capacitance,  
choose an amplifier that can drive this type of load. The CLC409, CLC440, LM6152, LM6154, LM6181 and  
LM6182 are good devices for driving analog input of the ADC08351. Do not drive the input beyond the supply  
rails.  
The maximum peak-to-peak input level without clipping of the reconstructed output is determined by the values  
of the resistor string between VREF and AGND. The bottom of the reference ladder has a voltage of 0.0665 times  
VREF, while the top of the reference ladder has a voltage of 0.7468 times VREF. The maximum peak-to-peak input  
level works out to be about 68% of the value of VREF. The relationship between the input peak-to-peak voltage  
and VREF is  
(1)  
We do not recommend opertaing with input levels below 1 VP-P because the signal-to-noise ratio will degrade  
considerably due to the quantization noise. However, the ADC08351 will give adequate results in many  
applications with signal levels down to about 0.5 VP-P (VREF = 0.735V). Very good performance can be obtained  
with reference voltages up to the supply voltage (VA = VREF = 3V, 2.04 VP-P).  
As with all sampling ADCs, the opening and closing of the switches associated with the sampling causes an  
output of energy from the analog input, VIN. The reference ladder also has switches associated with it, so the  
reference source must be able to supply sufficient current to hold VREF steady.  
The analog input of the ADC08351 is self-biased with an 18 kpull-up resistor to VREF and a 12 kpull-down  
resistor to AGND. This allows for either a.c. or d.c. coupling of the input signal. These two resistors provide a  
convenient way to ensure a signal that is less than full scale will be centered within the input common mode  
range of the converter. However, the high values of these resistors and the energy coming from this input means  
that performance will be improved with d.c. coupling.  
The driving circuit at the signal input must be able to sink and source sufficient current at the signal frequency to  
prevent distortion from being introduced at the input.  
POWER SUPPLY CONSIDERATIONS  
A tantalum or aluminum electrolytic capacitor of 5 µF to 10 µF should be placed within a centimeter of each of  
the A/D power pins, with a 0.1 µF ceramic chip capacitor placed within ½ centimeter of each of the power pins.  
Leadless chip capacitors are preferred because they provide lower lead inductance than do their leaded  
counterparts.  
While a single voltage source should be used for the analog and digital supplies of the ADC08351, these supply  
pins should be decoupled from each other to prevent any digital noise from being coupled to the analog power  
pins. A ferrite bead between the analog and digital supply pins would help to isolate the two supplies.  
The converter digital supply should not be the supply that is used for other digital circuitry on the board. It should  
be the same supply used for the A/D analog supply, decoupled from the A/D analog supply pin, as described  
above. A common analog supply should be used for both VA and VD, and each of these pins should be  
separately bypassed with a 0.1 µF ceramic capacitor and with low ESR a 10 µF capacitor.  
As is the case with all high speed converters, the ADC08351 is sensitive to power supply noise. Accordingly, the  
noise on the analog supply pin should be minimized, keeping it below 200 mVP-P at 100 kHz. Of course, higher  
frequency noise on the power supply should be even more severely limited.  
No pin should ever have a voltage on it that is in excess of the supply voltages. This can be a problem upon  
application of power to a circuit. Be sure that the supplies to circuits driving the CLK, OE, analog input and  
reference pins do not come up any faster than does the voltage at the ADC08351 power pins.  
12  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
 
 
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
LAYOUT AND GROUNDING  
Proper grounding and proper routing of all signals is essential to ensure accurate conversion. Separate analog  
and digital ground planes that are connected beneath the ADC08351 are required to meet data sheet limits. The  
analog and digital grounds may be in the same layer, but should be separated from each other and should never  
overlap each other.  
Capacitive coupling between the typically noisy digital ground plane and the sensitive analog circuitry can lead to  
poor performance that may seem impossible to isolate and remedy. The solution is to keep the analog circuitry  
well separated from the digital circuitry and from the digital ground plane.  
The back of the WQFN package has a large metal area inside the area bounded by the pins. This metal area is  
connected to the die substrate (ground). This pad may be left floating if desired. If it is connected to anything, it  
should be to ground near the connection between analog and digital ground planes. Soldering this metal pad to  
ground will help keep the die cooler and could yield improved performance because of the lower impedance  
between die and board grounds. However, a poor layout could compromise performance.  
Figure 21. Layout examples showing separate analog and digital ground planes connected below the  
ADC08351.  
Generally, analog and digital lines should cross each other at 90 degrees to avoid getting digital noise into the  
analog path. To maximize accuracy in video (high frequency) systems, however, avoid crossing analog and  
digital lines altogether. Furthermore, it is important to keep any clock lines isolated from ALL other lines, including  
other digital lines. Even the generally accepted 90 degree crossing should be avoided as even a little coupling  
can cause problems at high frequencies.  
Best performance at high frequencies and at high resolution is obtained with a straight signal path. That is, the  
signal path through all components should form a straight line wherever possible.  
Be especially careful with the layout of inductors. Mutual inductance can change the characteristics of the circuit  
in which they are used. Inductors should not be placed side by side, even with just a small part of their bodies  
beside each other.  
The analog input should be isolated from noisy signal traces to avoid coupling of spurious signals into the input.  
Any external component (e.g., a filter capacitor) connected between the converter's input and ground should be  
connected to a very clean point in the analog ground plane.  
Figure 21 gives an example of a suitable layout. All analog circuitry (input amplifiers, filters, reference  
components, etc.) should be placed on or over the analog ground plane. All digital circuitry and I/O lines should  
be placed over the digital ground plane.  
All ground connections should have a low inductance path to ground.  
DYNAMIC PERFORMANCE  
The ADC08351 is ac tested and its dynamic performance is ensured. To meet the published specifications, the  
clock source driving the CLK input must be free of jitter. For best ac performance, isolating the ADC clock from  
any digital circuitry should be done with adequate buffers, as with a clock tree. See Figure 22.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADC08351  
 
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
It is good practice to keep the ADC clock line as short as possible and to keep it well away from any other  
signals. Other signals can introduce jitter into the clock signal. Even lines with 90° crossings have capacitive  
coupling, so try to avoid even these 90° crossings of the clock line.  
Figure 22. Isolating the ADC Clock from Digital Circuitry  
Digital circuits create substantial supply and ground current transients. The logic noise thus generated could  
have significant impact upon system noise performance. The best logic family to use in systems with A/D  
converters is one which employs non-saturating transistor designs, or has low noise characteristics, such as the  
74HC(T) and 74AC(T)Q families. The worst noise generators are logic families that draw the largest supply  
current transients during clock or signal edges, like the 74F and the 74AC(T) families. In general, slower logic  
families, such as 74LS and 74HC(T) will produce less high frequency noise than do high speed logic families,  
such as the 74F and 74AC(T) families.  
Since digital switching transients are composed largely of high frequency components, total ground plane copper  
weight will have little effect upon the logic-generated noise. This is because of the skin effect. Total surface area  
is more important than is total ground plane volume.  
An effective way to control ground noise is by connecting the analog and digital ground planes together beneath  
the ADC with a copper trace that is narrow compared with the rest of the ground plane. This narrowing beneath  
the converter provides a fairly high impedance to the high frequency components of the digital switching currents,  
directing them away from the analog pins. The relatively lower frequency analog ground currents do not create a  
significant variation across the impedance of this relatively narrow ground connection.  
TYPICAL APPLICATION CIRCUITS  
Figure 23 shows a simple interface for a low impedance source located close to the converter. As discussed in  
The ADC Reference and The Analog Input, the series capacitor is optional. Notice the isolation of the ADC clock  
signal from the clock signals going elsewhere in the system. The reference input of this circuit is shown  
connected to the 3V supply.  
Video ADCs tend to have input current transients that can upset a driving source, causing distortion of the driving  
signal. The resistor at the ADC08351 input isolates the amplifier's output from the current transients at the input  
to the converter.  
When the signal source is not located close to the converter, the signal should be buffered. Figure 24 shows an  
example of an appropriate buffer. The amplifier provides a gain of two to compensate for transmission losses.  
Operational amplifiers have better linearity when they operate with gain, so the input is attenuated with the 68Ω  
and 30resistors at the non-inverting input. The 330resistor in parallel with these two resistors provides for a  
75cable termination. Replacing this 330resistor with one of 100will provide a 50termination.  
The circuit shown has a nominal gain of two. You can provide a gain adjustment by changing the 110feedback  
resistor to a 100resistor in series with a 20potentiometer.  
The offset adjustment is used to bring the input signal within the common mode range of the converter. If a fixed  
offset is desired, the potentiometer and the 3.3k resistor may be replaced with a single resistor of 3k to 4k to the  
appropriate supply. The resistor value and the supply polarity used will depend upon the amount and polarity of  
offset needed.  
The CLC409 shown in Figure 24 was chosen for a low cost solution with good overall performance.  
14  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
Figure 25 shows an inverting DC coupled circuit. The above comments regarding Figure 24 generally apply to  
this circuit as well.  
Figure 23. AC Coupled Circuit for a Low Impedance Source Located Near the Converter  
Figure 24. Non-inverting Input Circuit for Remote Signal Source  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADC08351  
 
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
Figure 25. Inverting Circuit with Bias Adjust  
ACCURATELY EVALUATING THE ADC  
If a signal that is spectrally impure is presented to the ADC, the output from the ADC cannot be pure. Nearly all  
signal generators in use today produce signals that are not spectrally pure enough to adequately evaluate  
present-day ADCs. This is especially true at higher frequencies and at high resolutions.  
To ensure that the signal you are presenting to the ADC being evaluated is spectrally pure, use a bandpass filter  
between the signal generator and the ADC input. One such possible filter is the elliptic filter shown in Figure 26.  
This elliptic filter has a cutoff frequency of about 11MHz and is suitable for input frequencies of 5MHz to 10MHz. It  
should be driven by a generator of 75source impedance and teminated with 75. This termination may be provided  
by the ADC evaluation circuit.  
Figure 26. Elliptic Filter  
In addition to being used to eliminate undesired frequencies from a desired signal, this filter can be used to filter  
a square wave, reducing 3rd and higher harmonics to negligible levels.  
When evaluating dynamic performance of an ADC, repeatability of measurements could be a problem unless  
coherent sampling is used.  
and ADC08351 evaluation system is available that can simplify evaluation of this product.  
16  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
 
ADC08351  
www.ti.com  
SNAS026E JUNE 2000REVISED MARCH 2013  
COMMON APPLICATION PITFALLS  
Driving the inputs (analog or digital) beyond the power supply rails. For proper operation, all inputs should  
not go more than 300 mV beyond the supply rails. That is, more than 300 mV below the ground pins or 300 mV  
above the supply pins. Exceeding these limits on even a transient basis may cause faulty or erratic operation. It  
is not uncommon for high speed digital circuits (e.g., 74F and 74AC devices) to exhibit undershoot that goes  
more than a volt below ground or above the power supply. Since these conditions are of very short duration with  
very fast rise and fall times, they can inject noise into the system and may be difficult to detect with an  
oscilloscope. A resistor of about 50Ω to 100Ω in series with the offending digital input will usually eliminate the  
problem.  
Care should be taken not to overdrive the inputs of the ADC08351 (or any device) with a device that is powered  
from supplies outside the range of the ADC08351 supply. Such practice may lead to conversion inaccuracies and  
even to device damage.  
Attempting to drive a high capacitance digital data bus. The more capacitance the output drivers have to  
charge for each conversion, the more instantaneous digital current is required from VD and DGND. These large  
charging current spikes can couple into the analog section, degrading dynamic performance. While adequate  
bypassing and maintaining separate analog and digital ground planes will reduce this problem on the board, this  
coupling can still occur on the ADC08351 die. Buffering the digital data outputs (with a 74ACQ541, for example)  
may be necessary if the data bus to be driven is heavily loaded.  
Dynamic performance can also be improved by adding series resistors at each digital output, reducing the  
energy coupled back into the converter output pins by limiting the output slew rate. A reasonable value for these  
resistors is about 47Ω.  
Using an inadequate amplifier to drive the analog input. As explained in Power Supply Considerations, the  
capacitance seen at the input alternates between 4 pF and 11 pF with the clock. This dynamic capacitance is  
more difficult to drive than a fixed capacitance, so care should be taken in choosing a driving device. The  
CLC409, CLC440, LM6152, LM6154, LM6181 and LM6182 are good devices for driving the ADC08351. Also, an  
amplifier with insufficient gain-bandwidth may limit the overall frequency response of the overall circuit.  
Using an operational amplifier in an insufficient gain configuration to drive the analog input. Operational  
amplifiers, while some may be unity gain stable, generally exhibit more distortion at low in-circuit gains than at  
higher gains.  
Using a clock source with excessive jitter, using excessively long clock signal trace, or having other  
signals coupled to the clock signal trace. This will cause the sampling interval to vary, causing excessive  
output noise and a reduction in SNR performance. Simple gates with RC timing is generally inadequate.  
Not considering the timing relationships, especially tOD. Timing is always important and gets more critical  
with higher speeds. If the output data is latched or looked at when that data is in transition, you may see  
excessive noise and distortion of the output signal.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADC08351  
 
ADC08351  
SNAS026E JUNE 2000REVISED MARCH 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision D (March 2013) to Revision E  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 17  
18  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: ADC08351  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC08351CILQX/NOPB  
ADC08351CIMTCX/NOPB  
ACTIVE  
ACTIVE  
WQFN  
NHW  
PW  
24  
20  
4500 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
08351  
TSSOP  
SN  
ADC08351  
CIMTC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC08351CILQX/NOPB WQFN  
ADC08351CIMTCX/NOPB TSSOP  
NHW  
PW  
24  
20  
4500  
2500  
330.0  
330.0  
12.4  
16.4  
4.3  
5.3  
7.1  
1.3  
1.6  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC08351CILQX/NOPB  
ADC08351CIMTCX/NOPB  
WQFN  
NHW  
PW  
24  
20  
4500  
2500  
356.0  
367.0  
356.0  
367.0  
35.0  
35.0  
TSSOP  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
NHW0024B  
LQA24A (Rev B)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

ADC08351CILQ

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CILQ/NOPB

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,LLCC,24PIN
TI

ADC08351CILQX

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CILQX/NOPB

8 位、42MSPS 模数转换器 (ADC) | NHW | 24 | -40 to 85
TI

ADC08351CIMTC

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CIMTC/NOPB

1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PDSO20, TSSOP-20
TI

ADC08351CIMTCX

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CIMTCX/NOPB

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PDSO20, TSSOP-20, Analog to Digital Converter
NSC

ADC08351CIMTCX/NOPB

8 位、42MSPS 模数转换器 (ADC) | PW | 20 | -40 to 85
TI

ADC08351MDC

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,DIE
TI

ADC08351MDC

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,DIE
NSC

ADC08351MWC

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,DIE
NSC