ADC3244E [TI]

具有扩展温度范围的双通道 14 位 125MSPS 模数转换器 (DAC);
ADC3244E
型号: ADC3244E
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有扩展温度范围的双通道 14 位 125MSPS 模数转换器 (DAC)

转换器 模数转换器
文件: 总53页 (文件大小:2799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
ADC3244E 双通道、14 位、125MSPS 模数转换器  
1 特性  
3 说明  
1
双通道  
ADC3244E 是一款高线性度、超低功耗、双通道、14  
位、25MSPS 125MSPS 模数转换器 (ADC)。该器  
件专门用于支持严苛的、高输入频率信号(具有较大动  
态范围的要求)。输入时钟分频器使得系统时钟架构设  
计更加灵活,SYSREF 输入可实现系统完全同步。  
14 位分辨率  
单电源:1.8V  
串行 LVDS 接口 (SLVDS)  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
ADC3244E 支持串行、低压、差分信令 (LVDS),从而  
减少接口线路的数量,实现高系统集成密度。串行  
LVDS 接口为双线制,可对每个 ADC 的数据进行串行  
并通过两对 LVDS 输出。内部锁相环 (PLL) 会将传入  
ADC 采样时钟加倍,以获得串行输出各通道的 14  
位输出数据时所使用的位时钟。除了串行数据流之外,  
数据帧和位时钟也作为 LVDS 输出进行传送。  
fIN = 70MHz 时,信噪比 (SNR) = 72.4dBFS,无杂  
散动态范围 (SFDR) = 87dBc  
超低功耗:  
125MSPS 时为每通道 116mW  
通道隔离:105dB  
内部抖动和斩波  
器件信息(1)  
支持多芯片同步  
12 位版本之间具有引脚到引脚兼容性  
封装:VQFN-48 (7mm × 7mm)  
扩展温度范围:-50°C +105°C  
器件型号  
ADC3244E  
封装  
VQFN (48)  
封装尺寸(标称值)  
7.00mm × 7.00mm  
(1) 要了解所有可用封装,请见数据表末尾的封装选项附录。  
2 应用  
多载波、多模式蜂窝基站  
雷达和智能天线阵列  
军需品指导  
电机控制反馈  
网络和矢量分析器  
通信测试设备  
无损检测  
微波接收器  
软件定义的无线电 (SDR)  
正交和多样性无线电接收器  
手持式无线电和仪表  
fS = 125MSPSfIN = 10MHz 时的性能  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D101  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS716  
 
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Detailed Description ............................................ 20  
9.1 Overview ................................................................. 20  
9.2 Functional Block Diagram ....................................... 20  
9.3 Feature Description................................................. 21  
9.4 Device Functional Modes........................................ 25  
9.5 Programming........................................................... 26  
9.6 Register Maps......................................................... 30  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics: General............................ 6  
7.6 Electrical Characteristics: AC Performance.............. 7  
7.7 Digital Characteristics ............................................... 9  
7.8 Timing Requirements: General ................................. 9  
7.9 Timing Requirements: LVDS Output....................... 10  
7.10 Typical Characteristics.......................................... 11  
7.11 Typical Characteristics: Contour ........................... 17  
Parameter Measurement Information ................ 18  
8.1 Timing Diagrams..................................................... 18  
10 Applications and Implementation...................... 42  
10.1 Application Information.......................................... 42  
10.2 Typical Applications .............................................. 43  
11 Power Supply Recommendations ..................... 45  
12 Layout................................................................... 46  
12.1 Layout Guidelines ................................................. 46  
12.2 Layout Example .................................................... 46  
13 器件和文档支持 ..................................................... 47  
13.1 接收文档更新通知 ................................................. 47  
13.2 社区资源................................................................ 47  
13.3 ....................................................................... 47  
13.4 静电放电警告......................................................... 47  
13.5 术语表 ................................................................... 47  
14 机械、封装和可订购信息....................................... 47  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 2 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3221  
ADC3241  
50 MSPS  
ADC3222  
ADC3242  
80 MSPS  
ADC3223  
ADC3243  
125 MSPS  
160 MSPS  
12  
ADC3224  
ADC3244  
ADC3244E(1)  
ADC32J24  
ADC32J44  
Serial LVDS  
14  
12  
14  
ADC32J22  
ADC32J42  
ADC32J23  
ADC32J43  
ADC32J25  
ADC32J45  
JESD204B  
(1) The ADC3244E is specified at extended temperature range of –50°C to +105°C. Other devices in the table are specified at standard  
industrial temperature range of –40°C to +85°C.  
6 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
GND  
DVDD  
GND  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
2
DVDD  
GND  
3
DVDD  
GND  
4
DVDD  
GND  
5
AVDD  
AVDD  
AVDD  
AVDD  
INAP  
6
PDN  
Thermal Pad  
7
AVDD  
AVDD  
AVDD  
INBP  
INBM  
AVDD  
8
9
10  
11  
12  
INAM  
AVDD  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
3
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
6-9, 12, 17, 20, 25,  
28-30  
AVDD  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
DA0M  
DA0P  
DA1M  
DA1P  
DB0M  
DB0P  
DB1M  
DB1P  
DCLKM  
DCLKP  
DVDD  
FCLKM  
FCLKP  
GND  
18  
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial LVDS output for channel A0  
Positive serial LVDS output for channel A0  
Negative serial LVDS output for channel A1  
Positive serial LVDS output for channel A1  
Negative serial LVDS output for channel B0  
Positive serial LVDS output for channel B0  
Negative serial LVDS output for channel B1  
Positive serial LVDS output for channel B1  
Negative bit clock output  
19  
I
48  
O
O
O
O
O
O
O
O
O
O
I
47  
46  
45  
40  
39  
38  
37  
44  
43  
Positive bit clock output  
2, 4, 33, 35  
Digital 1.8-V power supply  
42  
O
O
I
Negative frame clock output  
41  
Positive frame clock output  
1, 3, 5, 32, 34, 36  
Ground, 0 V  
INAM  
11  
10  
26  
27  
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
INAP  
I
INBM  
I
INBP  
I
Power-down control. This pin can be configured using the SPI.  
This pin has an internal 150-kΩ pulldown resistor.  
PDN  
31  
I
RESET  
SCLK  
21  
13  
14  
16  
I
I
Hardware reset; active high. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data output  
SDATA  
SDOUT  
I
O
Serial interface enable; active low.  
This pin has an internal 150-kΩ pullup resistor to AVDD.  
SEN  
15  
I
SYSREFM  
SYSREFP  
VCM  
23  
22  
24  
I
I
Negative external SYSREF input  
Positive external SYSREF input  
Common-mode voltage for analog inputs  
Thermal pad. Connect to ground.  
O
I
Thermal Pad  
4
Copyright © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Analog supply voltage, AVDD  
Digital supply voltage, DVDD  
INAP, INBP, INAM, INBM  
2.1  
2.1  
V
min (1.9, AVDD + 0.3)  
CLKP, CLKM  
AVDD + 0.3  
AVDD + 0.3  
3.9  
Voltage applied to input  
pins  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDATA, RESET, PDN  
TJ  
Operating junction temperature  
Storage temperature  
125  
ºC  
ºC  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
Digital supply voltage  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VID  
VIC  
Differential input voltage  
Input common-mode voltage  
VPP  
V
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency(2)  
Sampling clock frequency  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
10  
125  
MSPS  
VPP  
0.2  
1.5  
1.6  
Input clock amplitude (differential)  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
CLOAD  
RLOAD  
Maximum external load capacitance from each output pin to GND  
Differential load resistance placed externally  
3.3  
pF  
100  
Ω
TEMPERATURE  
TA Operating free-air temperature  
–50  
105  
°C  
(1) After power-up, to reset the device for the first time, only use the RESET pin; see the Register Initialization section.  
(2) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 500 MSPS.  
Copyright © 2019, Texas Instruments Incorporated  
5
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
7.4 Thermal Information  
ADC3244E  
THERMAL METRIC(1)  
RGZ (VQFN)  
UNIT  
48 PINS  
25.7  
18.9  
3.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semicinductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics: General  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS  
differential input (unless otherwise noted); minimum and maximum values at full temperature range of –50°C to +105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
125  
106  
95  
UNIT  
MSPS  
mA  
ADC clock frequency  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
65  
64  
mA  
233  
5
325  
17  
mW  
Global power-down dissipation  
Standby power-down dissipation  
mW  
78  
103  
mW  
RESOLUTION  
Resolution  
ANALOG INPUT  
14  
Bits  
Differential input full-scale  
Input resistance  
2.0  
6.6  
3.7  
0.95  
10  
VPP  
kΩ  
RIN  
Differential at dc  
CIN  
Input capacitance  
Differential at dc  
pF  
VOC(VCM)  
VCM common-mode voltage output  
VCM output current capability  
Input common-mode current  
V
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving 50-Ω  
termination across INP and INM  
Analog input bandwidth (3 dB)  
540  
MHz  
DC ACCURACY  
EO  
Offset error  
–25  
–2  
25  
2
mV  
°C  
Temperature coefficient of offset  
error  
αEO  
±0.024  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
%FS  
EG(CHAN)  
Gain error of channel alone  
–2  
%FS  
α(EGCHAN)  
Temperature coefficient of EG(CHAN)  
±0.008  
Δ%FS/°C  
CHANNEL-TO-CHANNEL ISOLATION  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 200 MHz  
fIN = 230 MHz  
fIN = 300 MHz  
105  
105  
105  
105  
105  
Crosstalk(1)  
dB  
(1) Crosstalk is measured with a –1-dBFS input signal on one channel and no input on the other channel.  
6
Copyright © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
7.6 Electrical Characteristics: AC Performance  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS  
differential input (unless otherwise noted); minimum and maximum values at full temperature range of –50°C to +105°C  
fS = 125 MSPS  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
72.9  
72.6  
72.4  
71.7  
71  
73.3  
73  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
71  
Signal-to-noise ratio  
(from 1-MHz offset)  
72.8  
72.2  
71.6  
72.9  
72.6  
72.5  
71.9  
71.3  
–151.1  
–150.9  
–150.7  
–150.1  
–149.5  
73  
SNR  
dBFS  
72.5  
72.2  
72.1  
71.4  
70.7  
–150.8  
Signal-to-noise ratio  
(full Nyquist band)  
–150.5 –148.9  
–150.3  
–149.6  
–148.9  
72.8  
Noise spectral density  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
(averaged across Nyquist zone)  
69.6  
11.3  
82  
72.6  
72.9  
72.5  
71.9  
71.1  
11.8  
11.8  
11.8  
11.6  
11.5  
86  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
72.3  
71.5  
70.7  
11.8  
11.8  
Effective number of bits  
11.7  
11.6  
11.5  
93  
94  
89  
Spurious-free dynamic range  
89  
85  
dBc  
85  
85  
83  
82  
(1) Reported from a 1-MHz offset.  
Copyright © 2019, Texas Instruments Incorporated  
7
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: AC Performance (continued)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS  
differential input (unless otherwise noted); minimum and maximum values at full temperature range of –50°C to +105°C  
fS = 125 MSPS  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
95  
96  
91  
85  
83  
94  
94  
91  
97  
87  
100  
99  
99  
100  
96  
91  
91  
87  
84  
81  
MAX  
TYP  
96  
95  
90  
85  
83  
86  
89  
85  
89  
85  
95  
95  
95  
91  
92  
85  
86  
83  
82  
80  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
82  
83  
86  
76  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–97  
–91  
–95  
–90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
8
Copyright © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
7.7 Digital Characteristics  
dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level of  
0 or 1, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise noted)  
)PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, PDN)  
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
0.4  
RESET, SDATA, SCLK, PDN  
SEN(1)  
VHIGH = 1.8 V  
VHIGH = 1.8 V  
VLOW = 0 V  
10  
0
High-level input  
current  
IIH  
µA  
µA  
RESET, SDATA, SCLK, PDN  
SEN  
0
Low-level input  
current  
IIL  
VLOW = 0 V  
10  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
1.3  
0.5  
0.9  
V
V
V
Low-level input voltage  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS, CMOS INTERFACE (SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD – 0.1  
DVDD  
0
V
V
0.1  
DIGITAL OUTPUTS, LVDS INTERFACE  
VODH  
VODL  
VOCM  
High-level output differential voltage  
Low-level output differential voltage  
Output common-mode voltage  
With an external 100-Ω termination  
With an external 100-Ω termination  
280  
410  
–410  
1.05  
460  
mV  
mV  
V
–460  
–280  
(1) SEN has an internal 150-kΩ pull-up resistor to AVDD. Because the pull-up resistor is weak, SEN can also be driven by 1.8-V or 3.3-V  
CMOS buffers.  
7.8 Timing Requirements: General  
typical values at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise noted); minimum and  
maximum values at full temperature range of –50°C to +105°C  
MIN  
TYP  
1.44  
±70  
±150  
130  
35  
MAX  
UNIT  
tA  
Aperture delay  
1.24  
1.64  
ns  
Aperture delay matching between two channels of the same device  
Variation of aperture delay between two devices at the same temperature and supply voltage  
Aperture jitter  
ps  
ps  
tJ  
fS rms  
Time to valid data after exiting standby power-down mode  
65  
Wake-up time  
µs  
Time to valid data after exiting global power-down mode  
(in this mode, both channels power down)  
85  
140  
2-wire mode (default)  
9
8
Clock  
cycles  
ADC latency(1)  
1-wire mode  
tSU_SYSREF  
tH_SYSREF  
SYSREF reference setup time Setup time for SYSREF referenced to input clock rising edge  
1000  
100  
ps  
SYSREF reference hold time  
Hold time for SYSREF referenced to input clock rising edge  
(1) Overall latency = ADC latency + tPDI  
.
Copyright © 2019, Texas Instruments Incorporated  
9
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
7.9 Timing Requirements: LVDS Output  
typical values at 25°C, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 7x serialization, CLOAD = 3.3 pF(1), and RLOAD = 100  
Ω
(2) (unless otherwise noted); minimum and maximum values at full temperature range of –50°C to +105°C(3)(4)  
MIN  
TYP  
MAX  
UNIT  
Data setup time: data valid to zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM)(5)  
tSU  
0.36  
0.42  
ns  
Data hold time: zero-crossing of differential output clock (CLKOUTP – CLKOUTM) to data  
becoming invalid(5)  
tHO  
0.36  
0.47  
ns  
LVDS bit clock duty cycle: duty cycle of differential clock (CLKOUTP – CLKOUTM)  
49%  
4.5  
Clock propagation delay: input clock falling edge cross-over to frame 1-wire mode  
clock rising edge cross-over 10 MSPS < sampling frequency <  
2.7  
6.5  
tPDI  
ns  
2-wire mode  
125 MSPS  
0.44 × tS + tDELAY  
tDELAY  
Delay time  
3
4.5  
5.9  
ns  
ns  
tFALL  
tRISE  
,
Data fall time, data rise time: rise time measured from –100 mV to 100 mV,  
10 MSPS Sampling frequency 125 MSPS  
0.11  
tCLKRISE  
tCLKFALL  
,
Output clock rise time, output clock fall time: rise time measured from –100 mV to 100 mV,  
10 MSPS Sampling frequency 125 MSPS  
0.11  
ns  
(1) CLOAD is the effective external single-ended load capacitance between each output pin and ground  
(2) RLOAD is the differential load resistance between the LVDS output pair.  
(3) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(4) Timing parameters are specified by design and characterization and are not tested in production.  
(5) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.  
Table 1. LVDS Timings at Lower Sampling Frequencies: 7x Serialization (2-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
2.27  
1.44  
1.2  
TYP  
MAX  
MIN  
2.41  
1.51  
1.24  
0.97  
0.72  
0.53  
TYP  
MAX  
25  
40  
2.6  
1.6  
2.6  
1.7  
50  
1.32  
1.04  
0.75  
0.57  
1.4  
60  
0.95  
0.68  
0.5  
1.09  
0.81  
0.62  
80  
100  
Table 2. LVDS Timings at Lower Sampling Frequencies: 14x Serialization (1-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
1.1  
TYP  
MAX  
MIN  
1.19  
0.74  
0.54  
0.42  
0.3  
TYP  
MAX  
25  
40  
50  
60  
80  
1.24  
0.72  
0.55  
0.41  
0.24  
1.34  
0.82  
0.64  
0.51  
0.38  
0.66  
0.48  
0.35  
0.17  
10  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
7.10 Typical Characteristics  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D101  
D102  
SFDR = 102.6 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 99.8 dBc, HD2 = –108.6 dBc, HD3 = –104.0 dBc  
SFDR = 91.8 dBc, SNR = 73.5 dBFS, SINAD = 73.4 dBFS,  
THD = 87.3 dBc, HD2 = –93.8 dBc, HD3 = –91.8 dBc  
1. FFT for 10-MHz Input Signal  
2. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
SFDR = 95.9 dBc, SNR = 72.7 dBFS, SINAD = 72.7 dBFS,  
THD = 93.6 dBc, HD2 = –100.6 dBc, HD3 = –95.9 dBc  
SFDR = 90.9 dBc, SNR = 73.3 dBFS, SINAD = 73.1 dBFS,  
THD = 87 dBc, HD2 = –90.9 dBc, HD3 = –94.9 dBc  
3. FFT for 70-MHz Input Signal (Dither On)  
4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D105  
D106  
SFDR = 96.4 dBc, SNR = 72.1 dBFS, SINAD = 72.0 dBFS,  
THD = 92.6 dBc, HD2 = –96.4 dBc, HD3 = –98.8 dBc  
SFDR = 89.9 dBc, SNR = 72.8 dBFS, SINAD = 72.6 dBFS,  
THD = 87.1 dBc, HD2 = –97.2 dBc, HD3 = –89.9 dBc  
5. FFT for 170-MHz Input Signal (Dither On)  
6. FFT for 170-MHz Input Signal (Dither Off)  
版权 © 2019, Texas Instruments Incorporated  
11  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D107  
D108  
SFDR = 76.1 dBc, SNR = 70.8 dBFS, SINAD = 69.8 dBFS,  
THD = 74.8 dBc, HD2 = –76.1 dBc, HD3 = –80.9 dBc  
SFDR = 76.1 dBc, SNR = 71.2 dBFS, SINAD = 70.2 dBFS,  
THD = 74.9 dBc, HD2 = –76.1 dBc, HD3 = –81.6 dBc  
7. FFT for 270-MHz Input Signal (Dither On)  
8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D109  
D110  
SFDR = 76.2 dBc, SNR = 68.3 dBFS, SINAD = 67.5 dBFS,  
THD = 74.3 dBc, HD2 = –76.2 dBc, HD3 = –79.2 dBc  
SFDR = 75.3 dBc, SNR = 69.1 dBFS, SINAD = 67.8 dBFS,  
THD = 72.7 dBc, HD2 = –76.7 dBc, HD3 = –75.3 dBc  
9. FFT for 450-MHz Input Signal (Dither On)  
10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D111  
D112  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 88.3 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 90.8 dBFS,  
each tone at –36 dBFS  
11. FFT for Two-Tone Input Signal  
12. FFT for Two-Tone Input Signal  
12  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
Typical Characteristics (接下页)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D113  
D114  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 86.4 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 87.28 dBFS,  
each tone at –36 dBFS  
13. FFT for Two-Tone Input Signal  
14. FFT for Two-Tone Input Signal  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D115  
D116  
fIN1 = 46 MHz, fIN2 = 50 MHz  
fIN1 = 185 MHz, fIN2 = 190 MHz  
15. Intermodulation Distortion vs Input Amplitude  
16. Intermodulation Distortion vs Input Amplitude  
74  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
73  
95  
72  
71  
70  
69  
68  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D117  
D118  
17. Signal-to-Noise Ratio vs Input Frequency  
18. Spurious-Free Dynamic Range vs  
Input Frequency  
版权 © 2019, Texas Instruments Incorporated  
13  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
74.5  
180  
160  
140  
120  
100  
80  
74  
73.5  
73  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
60  
60  
40  
70.5  
70  
40  
70.5  
20  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D119  
D120  
fIN = 30 MHz  
fIN = 170 MHz  
19. Performance vs Input Amplitude  
20. Performance vs Input Amplitude  
78  
76  
74  
72  
70  
68  
96  
94  
92  
90  
88  
86  
78  
76  
74  
72  
70  
68  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D121  
fIN = 170 MHz  
fIN = 30 MHz  
22. Performance vs Input Common-Mode Voltage  
21. Performance vs Input Common-Mode Voltage  
92  
90  
88  
86  
84  
82  
73  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
72.5  
72  
71.5  
71  
70.5  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D123  
D124  
fIN = 170 MHz  
fIN = 170 MHz  
23. Spurious-Free Dynamic Range vs  
24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
AVDD Supply and Temperature  
14  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
Typical Characteristics (接下页)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
92  
90  
88  
86  
84  
82  
73  
72.6  
72.2  
71.8  
71.4  
71  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D125  
D126  
fIN = 170 MHz  
fIN = 170 MHz  
25. Spurious-Free Dynamic Range vs  
26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
DVDD Supply and Temperature  
74.5  
94  
93  
92  
91  
90  
89  
88  
77  
95  
SNR  
SFDR  
SNR  
SFDR  
74  
73.5  
73  
75  
73  
71  
69  
67  
65  
90  
85  
80  
75  
70  
72.5  
72  
71.5  
65  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D127  
D128  
fIN = 40 MHz  
fIN = 150 MHz  
27. Performance vs Clock Amplitude  
28. Performance vs Clock Amplitude  
74.2  
73.8  
73.4  
73  
95  
94  
93  
92  
91  
90  
72.4  
72.2  
72  
90  
SNR  
SFDR  
SNR  
SFDR  
87.5  
85  
71.8  
71.6  
71.4  
82.5  
80  
72.6  
72.2  
77.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D129  
D130  
fIN = 30 MHz  
fIN = 150 MHz  
29. Performance vs Clock Duty Cycle  
30. Performance vs Clock Duty Cycle  
版权 © 2019, Texas Instruments Incorporated  
15  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled (unless otherwise noted)  
0
20  
-5  
-10  
16  
-15  
-20  
12  
-25  
-30  
-35  
-40  
-45  
-50  
8
4
0
0
50  
100  
150  
200  
250  
300  
Frequency of Signal on Supply (MHz)  
D001  
D131  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
Output Code (LSB)  
RMS Noise = 1.4 LSBs  
32. Power-Supply Rejection Ratio vs  
31. Idle Channel Histogram  
Test Signal Frequency  
0
0
-10  
-20  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
50  
100  
150  
200  
250  
300  
Frequency (MHz)  
Frequency of Input Common-Mode Signal (MHz)  
D003  
D0021  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 30.1 MHz, fPSRR = 3 MHz, APSRR = 50 mVPP  
SNR = 58.51 dBFS, SINAD = 58.51 dBFS, SFDR = 60.53 dBc,  
THD = –90.71 dBc, SFDR = 60.53 dBc (non 23)  
,
33. Power-Supply Rejection Ratio Spectrum  
34. Common-Mode Rejection Ratio vs  
Test Signal Frequency  
240  
200  
160  
120  
80  
0
-10  
Analog Power  
Digital Power  
Total Power  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
40  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Sampling Speed (MSPS)  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D004  
fIN = 170.1 MHz, fCMRR = 5 MHz, ACMRR = 50 mVPP  
,
SNR = 69.72 dBFS, SINAD = 69.66 dBFS, SFDR = 75.66 dBc,  
THD = –86.98 dBc, SFDR = 75.66 dBc (non 23)  
36. Power vs Sampling Frequency (1-Wire Mode)  
版权 © 2019, Texas Instruments Incorporated  
35. Common-Mode Rejection Ratio Spectrum  
16  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
7.11 Typical Characteristics: Contour  
typical values at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when is chopper enabled (unless otherwise noted)  
80  
85  
120  
110  
100  
90  
90  
80  
90  
75  
90  
85  
80  
75  
80  
70  
70  
60  
90  
50  
85  
40  
70  
75  
90  
80  
30  
50  
100  
150  
200  
250  
300  
350  
400  
450  
90  
Input Frequency, MHz  
70  
75  
80  
85  
37. Spurious-Free Dynamic Range (SFDR)  
120  
110  
100  
90  
72.5  
73  
72  
71.5  
71  
70.5  
69.5  
69  
70  
80  
72.5  
73  
71.5  
70  
72  
71  
70.5  
69.5  
69  
70  
60  
50  
40  
68.5  
72.5  
70.5  
71.5  
70  
71  
73  
72  
69.5  
69  
30  
68  
67.5  
50  
100  
150  
200  
250  
300  
350  
400  
450  
73  
Input Frequency, MHz  
70  
67  
68  
69  
71  
72  
38. Signal-to-Noise Ratio (SNR)  
版权 © 2019, Texas Instruments Incorporated  
17  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
DAn_P  
DBn_P  
Logic 0  
ODL = -410 mV(1)  
Logic 1  
VODH = +410 mV(1)  
V
DAn_M  
DBn_M  
VOCM  
GND  
(1) With an external 100-Ω termination.  
39. Serial LVDS Output Voltage Levels  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
Dx0M  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
40. Output Timing Diagram  
18  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
Timing Diagrams (接下页)  
DCLK  
t HO  
Dx0P  
Dx0M  
t SU  
41. Setup and Hold Time  
N+10  
N+1  
N+9  
Sample N  
TA  
Input Signal  
on INxP, INxM pins  
Data Latency(1) = 9 Input Clock Cycles  
Sample N  
CLKINP,  
CLKINM  
tPDI  
FCLKP,  
FCLKM  
DCLKP,  
DCLKM  
DCLK edges are centered within the data valid  
window.  
DA0P, DA0M,  
DB0P, DB0M  
5
6
0
7
1
8
2
9
3
4
5
6
0
7
1
8
2
9
3
4
12 13  
10 11 12 13  
Sample N  
10 11  
DA1P, DA1M,  
DB1P, DB1M  
Sample N+1  
th  
tsu  
(1) Overall latency = data latency + tPDI  
.
42. Latency Diagram  
版权 © 2019, Texas Instruments Incorporated  
19  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADC3244E is a high-performance, 14-bit, 125-MSPS, dual channel analog-to-digital converter (ADC) with  
ultra-low power consumption. The ADC3244E supports the extended ambient temperature range of –50°C to  
+105°C, making this device a great choice for extreme temperature conditions while delivering excellent noise  
and linearity performance.  
The LVDS output interface reduces number of connections between the ADC and receiving device, such as an  
FPGA, which results in power saving and higher system integration. The device supports an input dynamic range  
of 2 VPP, and is equipped with digital features such as chopper function and dither algorithm. The chopper  
function helps in shifting the ADC 1/f noise spectrum to the Nyquist frequency, while preserving the signal  
spectrum, thus making this device useful for dc-coupling applications. The internal dither algorithms help clean  
higher-order harmonic spurs from the ADC output spectrum. See the Chopper Functionality and Internal Dither  
Algorithm sections for more details on chopper and dither functions, respectively.  
9.2 Functional Block Diagram  
DA0P  
INAP  
Digital Encoder  
and Serializer  
14-Bit  
ADC  
DA0M  
DA1P  
INAM  
DA1M  
CLKP  
CLKM  
DCLKP  
Divide by  
1,2,4  
Bit Clock  
DCLKM  
FCLKP  
PLL  
Frame Clock  
SYSREFP  
SYSREFM  
FCLKM  
DB0P  
INBP  
INBM  
14-Bit  
ADC  
Digital Encoder  
and Serializer  
DB0M  
DB1P  
DB1M  
Common  
Mode  
VCM  
Configuration Registers  
20  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC3244E analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must  
swing symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input  
swing. The input sampling circuit has a 3-dB bandwidth that extends up to 540 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
9.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
0.95 V using internal 5-kΩ resistors. The self-bias clock inputs of the ADC3244E are driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in 43, 图  
44, and 45. See 46 for details regarding the internal clock buffer.  
0.1 F  
0.1 F  
ZO  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
Typical LVDS  
Clock Input  
RT  
TI Device  
100 Ω  
0.1 F  
TI Device  
0.1 F  
ZO  
CLKM  
CLKM  
NOTE: RT = termination resistor, if necessary.  
43. Differential Sine-Wave Clock Driving Circuit  
44. LVDS Clock Driving Circuit  
0 F  
ZO  
CLKP  
150 Ω  
Typical LVPECL  
Clock Input  
100 Ω  
TI Device  
CLKM  
0 F  
ZO  
150 Ω  
45. LVPECL Clock Driving Circuit  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Clock Buffer  
LPKG  
2 nH  
20 W  
CLKP  
CBOND  
1 pF  
CEQ  
CEQ  
5 kW  
RESR  
100 W  
1.4 V  
LPKG  
2 nH  
5 kW  
20 W  
CLKM  
CBOND  
1 pF  
RESR  
100 W  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
46. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in 47. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 F  
CMOS  
Clock Input  
CLKP  
TI Device  
0.1 F  
CLKM  
47. Single-Ended Clock Driving Circuit  
9.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in 公式 1. Quantization noise  
(typically 86 dB for a 14-bit ADC) and thermal noise limit SNR at low input frequencies while the clock jitter sets  
SNR for higher input frequencies.  
2
2
2
SNRQuantization_Noise  
SNRThermal_Noise  
SNRJitter  
20  
÷
÷
÷
÷
÷
-
-
-
20  
20  
SNRADC[dBc] = -20 log 10  
+ 10  
+ 10  
«
«
«
÷
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with 公式 2.  
SNRJitter [dBc] = -20 log 2pf t  
(
)
in Jitter  
The total clock jitter (tJitter) has two components: the internal aperture jitter (130 fs for the device) that is set by  
the noise of the clock input buffer and the external clock. tJitter can be calculated with 公式 3.  
2
2
tJitter  
=
t
+ t  
(
)
(
)
Aperture _ ADC  
Jitter,Ext.Clock _Input  
(3)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as bandpass  
filters at the clock input while a faster clock slew rate improves the ADC aperture jitter. The ADC3244E has a  
typical thermal noise of 73.5 dBFS and internal aperture jitter of 130 fs. 48 shows SNR (from 1 MHz offset  
leaving the 1/f flicker noise) for different jitter of clock driver.  
73.0  
Ext Clock Jitter  
72.5  
35 fs  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
67.5  
67.0  
50 fs  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Input Frequency (MHz)  
D03061  
48. SNR vs Frequency for Different Clock Jitter  
9.3.3 Digital Output Interface  
The devices offer two different output format options, thus making interfacing to a field-programmable gate array  
(FPGA) or an application-specific integrated circuit (ASIC) easy. Each option can be easily programmed using  
the serial interface, as shown in 3. The output interface options are:  
One-wire, 1x frame clock, 14x serialization with the DDR bit clock and  
Two-wire, 0.5x frame clock, 7x serialization with the DDR bit clock.  
3. Interface Rates  
RECOMMENDED SAMPLING  
FREQUENCY (MSPS)  
BIT CLOCK  
FREQUENCY  
(MHz)  
FRAME CLOCK  
FREQUENCY  
(MHz)  
INTERFACE  
OPTIONS  
SERIAL DATA  
RATE (Mbps)  
SERIALIZATION  
MINIMUM  
15(1)  
MAXIMUM  
80  
105  
560  
15  
80  
210  
1120  
140  
1-wire  
14x  
7x  
20(1)  
70  
10  
2-wire (default  
after reset)  
125  
437.5  
62.5  
875  
(1) Use the LOW SPEED ENABLE register bits for low speed operation; see 22.  
9.3.3.1 One-Wire Interface: 14x Serialization  
In this interface option, the device outputs the data of each ADC serially on a single LVDS pair (one-wire). The  
data are available at the rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at  
the rising edge of every frame clock, starting with the MSB. The data rate is 14x sample frequency (14x  
serialization).  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.3.3.2 Two-Wire Interface: 7x Serialization  
The two-wire interface is recommended for sampling frequencies above 65 MSPS. The output data rate is 7x  
sample frequency because seven data bits are output every clock cycle on each differential pair. Each ADC  
sample is sent over the two wires with the seven MSBs on Dx1P, Dx1M and the seven LSBs on Dx0P, Dx0M, as  
shown in 49. Note that in two-wire mode, the frame clock (FCLK) frequency is half of sampling clock (CLKIN)  
frequency.  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
Dx0M  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
49. Output Timing Diagram  
24  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.4 Device Functional Modes  
9.4.1 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The clock divider allows operation with a  
faster input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed for  
operation with a 125-MHz clock while the divide-by-2 option supports a maximum input clock of 250 MHz and the  
divide-by-4 option provides a maximum input clock frequency of 500 MHz.  
9.4.2 Chopper Functionality  
The devices are equipped with an internal chopper front-end. Enabling the chopper function swaps the ADC  
noise spectrum by shifting the 1/f noise from dc to fS / 2. 50 shows the noise spectrum with the chopper off  
and 51 shows the noise spectrum with the chopper on. This function is especially useful in applications  
requiring good ac performance at low input frequencies or in dc-coupled applications. The chopper can be  
enabled via SPI register writes and is recommended for input frequencies below 30 MHz. The chopper function  
creates a spur at fS / 2 that must be filtered out digitally.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D052  
D051  
fIN = 10 MHz, fS = 125 MHz  
50. ADC Output Spectrum With Chopper Off  
fIN = 10 MHz, fS = 125 MHz  
51. ADC Output Spectrum With Chopper On  
9.4.3 Power-Down Control  
The power-down functions of the ADC3244E can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register 15h). The PDN pin can also be configured using the SPI to a global  
power-down or standby functionality, as shown in 4.  
4. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
81  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.4.3.1 Improving Wake-Up Time From Global Power-Down  
The device has an internal low-pass filter in the sampling clock path. This low-pass filter helps improve the  
aperture jitter of the device. However, in applications where input frequencies are < 200 MHz, noise from the  
aperture jitter does not dominate the overall SNR of the device. In such applications, the wake-up time from a  
global power-down can be reduced by bypassing the low-pass filter using the DIS CLK FILT register bit (write  
80h to register address 70Ah). As shown in 5, setting the DIS CLK FILT bit improves the wake-up time from a  
global power-down from 85 µs to 55 µs.  
5. Wake-Up Time From Global Power-Down  
WAKE-UP TIME  
DIS CLK FILT  
REGISTER BIT  
GLOBAL PDN  
REGISTER BIT  
TYP  
85  
MAX  
140  
81  
UNIT  
µs  
0
1
010  
010  
55  
µs  
9.4.4 Internal Dither Algorithm  
The ADC3244E uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the  
dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither  
algorithm can be turned off by using the DIS DITH CHx registers bits. 52 and 53 show the effect of using  
dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
SFDR = 95.9 dBc, SNR = 72.7 dBFS, SINAD = 72.7 dBFS,  
THD = 93.6 dBc, HD2 = –100.6 dBc, HD3 = –95.9 dBc  
SFDR = 90.9 dBc, SNR = 73.3 dBFS, SINAD = 73.1 dBFS,  
THD = 87 dBc, HD2 = –90.9 dBc, HD3 = –94.9 dBc  
52. FFT with Dither On  
53. FFT with Dither Off  
9.5 Programming  
The ADC3244E can be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
Programming (接下页)  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in 54. If required, the  
serial interface registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
54 and 6 show the timing requirements for the serial register write operation.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
54. Serial Register Write Timing Diagram  
6. Serial Interface Timing(1)  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
> dc  
25  
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Full temperature range is from –50°C to +105°C, and AVDD = DVDD = 1.8 V.  
版权 © 2019, Texas Instruments Incorporated  
27  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. Given below is the procedure to read contents of serial registers:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. 55 shows a timing diagram of the serial register read operation. Data appear on the  
SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in 56.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: Don‘t Care  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
55. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
56. SDOUT Timing Diagram  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in 57 and 7.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
SEN  
57. Initialization of Serial Registers after Power-Up  
7. Power-Up Timing  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay: delay from power up to active high RESET pulse  
1
10  
Reset pulse duration: active high RESET pulse duration  
1000  
Register write delay: delay from RESET disable to SEN active  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6 Register Maps  
8. Register Map Summary  
REGISTER  
ADDRESS  
REGISTER DATA  
A[13:0] (Hex)  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
0
D0  
0
01  
03  
04  
05  
DIS DITH CHA  
DIS DITH CHB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ODD EVEN  
FLIP WIRE  
1W-2W  
0
0
0
0
0
0
TEST PATTERN  
EN  
06  
07  
09  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
OVR ON LSB  
DATA FORMAT  
ALIGN TEST  
PATTERN  
0A  
0B  
0
0
0
CHA TEST PATTERN  
CHB TEST PATTERN  
0
0
0
0
0
0
0
0E  
CUSTOM PATTERN[13:6]  
CUSTOM PATTERN[5:0]  
0F  
13  
0
0
0
0
0
0
0
0
LOW SPEED ENABLE  
15  
CHA PDN  
CHB PDN  
STANDBY  
GLOBAL PDN  
CONFIG PDN PIN  
25  
LVDS SWING  
27  
CLK DIV  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
41D  
422  
434  
439  
51D  
522  
534  
539  
608  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HIGH IF MODE0  
0
0
0
DIS CHOP CHA  
0
DIS DITH CHA  
DIS DITH CHA  
0
0
0
SP1 CHA  
0
0
0
0
HIGH IF MODE1  
0
0
0
DIS CHOP CHB  
0
DIS DITH CHB  
DIS DITH CHB  
0
0
0
0
0
0
0
0
SP1 CHB  
0
HIGH IF MODE[3:2]  
DIS CLK FILT  
0
0
0
70A  
0
PDN SYSREF  
30  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.1 Summary of Special Mode Registers  
9 lists the location, value, and functions of special mode registers in the device.  
9. Special Modes Summary  
MODE  
REGISTER SETTINGS  
DESCRIPTION  
Special modes  
Registers 439h (bit 3) and 539h (bit 3)  
Always set these bits high for best performance  
Registers 1h (bits 5-2), 434h (bits 5 and 3), and  
534h (bits 5 and 3)  
Disable dither  
Disable chopper  
High IF modes  
Disable dither to improve SNR  
Registers 422h (bit 1) and 522h (bit 1)  
Disable chopper to shift 1/f noise floor at dc  
Improves HD3 for IF > 100 MHz  
Registers 41Dh (bit 1), 51Dh (bit 1), and  
608h (bits 7-6)  
9.6.2 Serial Register Description  
9.6.2.1 Register 01h  
58. Register 01h  
7
0
6
0
5
4
3
2
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
10. Register 01h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
These bits enable or disable the on-chip dither. Control this bit  
with bits 5 and 3 of register 434h.  
5-4  
DIS DITH CHA  
R/W  
0h  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
with bits 5 and 3 of register 434h.  
3-2  
1-0  
DIS DITH CHB  
0
R/W  
W
0h  
0h  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
Must write 0  
9.6.2.2 Register 03h  
59. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ODD EVEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
11. Register 03h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit selects the bit sequence on the output lanes  
(in 2-wire mode only).  
0 = Bits 0, 1, and 2 appear on lane 0; bits 7, 8, and 9 appear on lane 1  
1 = Bits 0, 2, and 4 appear on lane 0; bits 1, 3, and 5 appear on lane 1  
0
ODD EVEN  
R/W  
0h  
版权 © 2019, Texas Instruments Incorporated  
31  
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6.2.3 Register 04h  
60. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FLIP WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
12. Register 04h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit flips the data on the output wires. Valid only in two wire  
configuration.  
0
FLIP WIRE  
R/W  
0h  
0 = Default  
1 = Data on output wires is flipped. Pin D0x becomes D1x, and  
vice versa.  
9.6.2.4 Register 05h  
61. Register 05h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1W-2W  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
13. Register 05h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit transmits output data on either one or two wires.  
0 = Output data are transmitted on two wires (Dx0P, Dx0M and  
Dx1P, Dx1M)  
0
1W-2W  
R/W  
0h  
1 = Output data are transmitted on one wire (Dx0P, Dx0M). In this  
mode, the recommended fS is less than 62.5 MSPS.  
9.6.2.5 Register 06h  
62. Register 06h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
TEST PATTERN EN  
R/W-0h  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
14. Register 06h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit enables test pattern selection for the digital outputs.  
0 = Normal output  
1 = Test pattern output enabled  
1
0
TEST PATTERN EN  
RESET  
R/W  
W
0h  
0h  
This bit applies a software reset.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
32  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.2.6 Register 07h  
63. Register 07h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
15. Register 07h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit provides the overrange (OVR) information on the LSB bits.  
0 = Output data bit 0 functions as the LSB of the 14-bit data  
1 = Output data bit 0 carries the OVR information.  
0
OVR ON LSB  
R/W  
0h  
9.6.2.7 Register 09h  
64. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST  
PATTERN  
DATA FORMAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
16. Register 09h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit aligns the test patterns across the outputs of both channels.  
0 = Test patterns of both channels are free running  
1 = Test patterns of both channels are aligned  
1
0
ALIGN TEST PATTERN  
DATA FORMAT  
R/W  
R/W  
0h  
0h  
This bit programs the digital output data format.  
0 = Twos complement  
1 = Offset binary  
版权 © 2019, Texas Instruments Incorporated  
33  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6.2.8 Register 0Ah  
65. Register 0Ah  
7
0
6
0
5
0
4
0
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
17. Register 0Ah Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and  
01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from  
code 0 to 16383  
3-0  
CHA TEST PATTERN  
R/W  
0h  
0101 = Custom pattern: output data are the same as programmed by  
the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192, 13984,  
16383, 13984, 8192, 2399.  
Others = Do not use  
9.6.2.9 Register 0Bh  
66. Register 0Bh  
7
6
5
4
3
0
2
0
1
0
0
0
CHB TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
18. Register 0Bh Description  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
W
Reset  
Description  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and  
01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from  
code 0 to 16383  
0101 = Custom pattern: output data are the same as programmed by  
the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192, 13984,  
16383, 13984, 8192, 2399.  
CHB TEST PATTERN  
0h  
Others = Do not use  
0
0h  
Must write 0  
34  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.2.10 Register 0Eh  
67. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[13:6]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. Register 0Eh Description  
Bit  
Field  
Type  
Reset  
Description  
These bits set the 14-bit custom pattern (bits 13-6) for all channels.  
7-0  
CUSTOM PATTERN[13:6]  
R/W  
0h  
9.6.2.11 Register 0Fh  
68. Register 0Fh  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN[5:0]  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
20. Register 0Fh Description  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
W
Reset  
0h  
Description  
CUSTOM PATTERN[5:0]  
0
These bits set the 14-bit custom pattern (bits 5-0) for all channels.  
Must write 0  
0h  
版权 © 2019, Texas Instruments Incorporated  
35  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6.2.12 Register 13h (address = 13h)  
69. Register 13h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LOW SPEED ENABLE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
21. Register 13h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
LOW SPEED ENABLE  
R/W  
0h  
Enables low speed operation in 1-wire and 2-wire mode.  
Depending upon sampling frequency, write this bit as per 22.  
22. LOW SPEED ENABLE Register Bit Settings Across fS  
fS (MSPS)  
REGISTER BIT LOW SPEED ENABLE  
MIN  
25  
MAX  
125  
25  
1-WIRE MODE  
2-WIRE MODE  
00  
00  
10  
00  
10  
20  
15  
20  
Not supported  
9.6.2.13 Register 15h  
70. Register 15h  
7
0
6
5
4
0
3
2
1
0
0
CHA PDN  
R/W-0h  
CHB PDN  
R/W-0h  
STANDBY  
R/W-0h  
GLOBAL PDN  
R/W-0h  
CONFIG PDN PIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
23. Register 15h Description  
Bit  
Field  
Type  
Reset  
Description  
7
0
W
0h  
Must write 0  
0 = Normal operation  
1 = Power-down channel A  
6
CHA PDN  
R/W  
0h  
0 = Normal operation  
1 = Power-down channel B  
5
4
CHB PDN  
0
R/W  
W
0h  
0h  
Must write 0  
The ADCs of both channels enter standby.  
0 = Normal operation  
3
STANDBY  
R/W  
0h  
1 = Standby  
0 = Normal operation  
1 = Global power-down  
2
1
GLOBAL PDN  
0
R/W  
W
0h  
0h  
Must write 0  
This bit configures the PDN pin as either a global power-down or  
standby pin.  
0
CONFIG PDN PIN  
R/W  
0h  
0 = Logic high voltage on the PDN pin sends the device into global  
power-down  
1 = Logic high voltage on the PDN pin sends the device into standby  
36  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.2.14 Register 25h  
71. Register 25h  
7
6
5
4
3
2
1
0
LVDS SWING  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. Register 25h Description  
Bit  
Field  
Type  
Reset  
Description  
These bits control the swing of the LVDS outputs (including the  
data output, bit clock, and frame clock). For details see 25.  
7-0  
LVDS SWING  
R/W  
0h  
25. LVDS Output Swing  
BITS 7-4  
0h  
BITS 3-0  
0h  
LVDS OUTPUT SWING  
Default (±425 mV)  
Dh  
9h  
Swing reduces by 50 mV  
Swing reduces by 100 mV  
Swing reduces by 300 mV  
Swing increases by 100 mV  
Do not use  
Eh  
Ah  
Fh  
Dh  
Ch  
Eh  
Others  
Others  
9.6.2.15 Register 27h  
72. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
26. Register 27h Description  
Bit  
7-6  
5-0  
Field  
CLK DIV  
0
Type  
R/W  
W
Reset  
Description  
These bits set the internal clock divider for the input sampling clock.  
00 = Divide-by-1  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
0h  
0h  
Must write 0  
版权 © 2019, Texas Instruments Incorporated  
37  
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6.2.16 Register 41Dh  
73. Register 41Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
27. Register 41Dh Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
1
0
HIGH IF MODE0  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.17 Register 422h  
74. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
28. Register 422h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
Disable chopper.  
Set this bit to shift a 1/f noise floor at dc.  
1
DIS CHOP CHA  
R/W  
W
0h  
0h  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at  
dc  
0
0
Must write 0  
9.6.2.18 Register 434h  
75. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
29. Register 434h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHA  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHA  
0
R/W  
W
2-0  
Must write 0  
38  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.2.19 Register 439h  
76. Register 439h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
SP1 CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
30. Register 439h Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
Special mode for best performance on channel A.  
Always write 1 after reset.  
3
SP1 CHA  
0
R/W  
W
0h  
0h  
2-0  
Must write 0  
9.6.2.20 Register 51Dh  
77. Register 51Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
31. Register 51Dh Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
1
0
HIGH IF MODE1  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.21 Register 522h  
78. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
32. Register 522h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
Disable chopper.  
Set this bit to shift a 1/f noise floor at dc.  
1
0
DIS CHOP CHB  
0
R/W  
W
0h  
0h  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
Must write 0  
版权 © 2019, Texas Instruments Incorporated  
39  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
9.6.2.22 Register 534h  
79. Register 534h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
33. Register 534h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHA  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHA  
0
R/W  
W
2-0  
Must write 0  
9.6.2.23 Register 539h  
80. Register 539h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
34. Register 539h Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
Special mode for best performance on channel B.  
Always write 1 after reset.  
3
0
SP1 CHB  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.24 Register 608h  
81. Register 608h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE[3:2]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
35. Register 608h Description  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
W
Reset  
Description  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
HIGH IF MODE[3:2]  
0
0h  
0h  
Must write 0  
40  
版权 © 2019, Texas Instruments Incorporated  
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
9.6.2.25 Register 70Ah  
82. Register 70Ah  
7
6
0
5
0
4
0
3
0
2
0
1
0
DIS CLK FILT  
R/W-0h  
0
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
36. Register 70Ah Description  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
Set this bit to improve wake-up time from global power-down  
mode; see the Improving Wake-Up Time From Global Power-  
Down section for details.  
DIS CLK FILT  
0
0h  
6-1  
0h  
Must write 0  
If the SYSREF pins are not used in the system, the SYSREF  
buffer must be powered down by setting this bit.  
0 = Normal operation  
0
PDN SYSREF  
R/W  
0h  
1 = Powers down the SYSREF buffer  
版权 © 2019, Texas Instruments Incorporated  
41  
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
10 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. While designing the dc driving circuits, the ADC input impedance must be considered. 83 and 84  
show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D00215  
83. Differential Input Resistance (RIN  
)
84. Differential Input Capacitance (CIN)  
42  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
0.1 µF  
0.1 µF  
INP  
50  
0.1 µF  
50 Ω  
22 pF  
50 Ω  
25 Ω  
25 Ω  
TI Device  
50 ꢀ  
1:1  
1:1  
INM  
0.1 µF  
VCM  
85. Driving Circuit for Low Input Frequencies  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitic. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as providing low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application involving using two back-to-back coupled transformers is shown in 85. The circuit is  
optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used  
with the series inductor (39 nH), this combination helps absorb the sampling glitches.  
10.2.1.3 Application Curve  
86 shows the performance obtained by using circuit shown in 85.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D101  
SFDR = 102.6 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 99.8 dBc, HD2 = –108.6 dBc, HD3 = –104.0 dBc  
86. Performance FFT at 10 MHz (Low Input Frequency)  
版权 © 2019, Texas Instruments Incorporated  
43  
 
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 µF  
10  
0.1 µF  
INP  
15 Ω  
25 Ω  
0.1 pF  
TI Device  
10 pF  
56 nH  
25 Ω  
15 Ω  
1:1  
1:1  
INM  
10 ꢀ  
0.1 µF  
VCM  
87. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the previous Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in 87.  
10.2.2.3 Application Curve  
88 shows the performance obtained by using circuit shown in 87.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D105  
SFDR = 96.4 dBc, SNR = 72.1 dBFS, SINAD = 72.0 dBFS,  
THD = 92.6 dBc, HD2 = –96.4 dBc, HD3 = –98.8 dBc  
88. Performance FFT at 170 MHz (Mid Input Frequency)  
44  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
Typical Applications (接下页)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 µF  
0.1 µF  
10 Ω  
INP  
0.1 µF  
25  
25 ꢀ  
TI Device  
10 Ω  
INM  
1:1  
1:1  
0.1 µF  
VCM  
89. Driving Circuit for High input Frequencies ( fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the first Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used as shown in 89.  
10.2.3.3 Application Curve  
90 shows the performance obtained by using circuit shown in 89.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D109  
SFDR = 76.2 dBc, SNR = 68.3 dBFS, SINAD = 67.5 dBFS,  
THD = 74.3 dBc, HD2 = –76.2 dBc, HD3 = –79.2 dBc  
90. Performance FFT at 450 MHz (High Input Frequency)  
11 Power Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
版权 © 2019, Texas Instruments Incorporated  
45  
 
 
ADC3244E  
ZHCSJF0 FEBRUARY 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The ADC3244E EVM layout can be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in 91. Some important points to remember during laying out the board are:  
1. Place the analog inputs on opposite sides of the device pin out to provide minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions, as shown  
in the reference layout of 91 as much as possible.  
2. In the device pin out, place the sampling clock on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 91 as  
much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, do not keep the  
digital output traces parallel to the analog input traces because this configuration can result in coupling from  
digital outputs to analog inputs and degrade performance. All digital output traces to the receiver [such as a  
field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be matched  
in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
12.2 Layout Example  
Sampling  
Clock  
Analog  
Input  
Routing  
Routing  
ADC32xx  
Digital  
Output  
Routing  
91. Typical Layout of the ADC3244E Board  
46  
版权 © 2019, Texas Instruments Incorporated  
 
ADC3244E  
www.ti.com.cn  
ZHCSJF0 FEBRUARY 2019  
13 器件和文档支持  
13.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
47  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3244EIRGZT  
ACTIVE  
VQFN  
RGZ  
48  
250  
RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
-50 to 105  
AZ3244E  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADC3244EIRGZT

具有扩展温度范围的双通道 14 位 125MSPS 模数转换器 (DAC) | RGZ | 48 | -50 to 105
TI

ADC3244IRGZR

双通道 14 位 125MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85
TI

ADC3244IRGZT

双通道 14 位 125MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85
TI

ADC325

2W, Miniature SIP, Single & Dual Output DC/DC Converters
MPSIND

ADC326

2W, Miniature SIP, Single & Dual Output DC/DC Converters
MPSIND

ADC327

2W, Miniature SIP, Single & Dual Output DC/DC Converters
MPSIND

ADC32J22

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI

ADC32J22IRGZR

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI

ADC32J22IRGZT

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI

ADC32J22_15

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI

ADC32J23

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI

ADC32J23IRGZ25

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface
TI