ADC3564 [TI]

具有 SLVDS 接口的单通道、14 位、125MSPS、高 SNR、低功耗 ADC;
ADC3564
型号: ADC3564
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SLVDS 接口的单通道、14 位、125MSPS、高 SNR、低功耗 ADC

文件: 总72页 (文件大小:4484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC3564  
ZHCSR25 AUGUST 2022  
ADC3564 14 位、125MSPS、低噪声、超低功ADC  
1 特性  
3 说明  
14 125MSPS ADC  
ADC3564 件是一款低噪声、超低功耗、14 、  
125MSPS 高速 ADC。该器件可实现低功耗噪声频  
谱密度为 –156dBFS/Hz还具有出色的线性度和动态  
范围。ADC3564 可提供中频采样支持使器件适合各  
种应用。高速控制环路可从低至一个时钟周期的低延迟  
中受益。该 ADC 125MSPS 的功耗仅为  
137mW功耗随采样率减小而迅速降低。  
• 本底噪声-156dBFS/Hz  
• 超低功耗125MSPS 137mW  
• 延迟2 个时钟周期  
• 指定14 无丢码  
INL±1.5LSBDNL±0.5LSB  
• 基准外部或内部  
• 输入带宽1200 MHz (3dB)  
• 工业温度范围-40°C +105°C  
• 片上数字滤波器可选)  
ADC3564 使用串行 LVDS (SLVDS) 接口输出数据可  
更大限度减少数字互连的次数。该器件提供双通道、单  
通道和半通道选项。该器件是具有不同速度等级的引脚  
对引脚兼容系列40 VQFN 封装。该器件支  
40C +105C 的工业级工作温度范围。  
2 倍、4 倍、8 倍、16 倍、32 倍抽取率  
32 NCO  
• 串LVDS 数字接口2 线、1 线1/2 线)  
• 小尺寸: 40 WQFN (5mm × 5mm) 封装  
• 频谱性(fIN = 10MHz):  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
ADC3564  
WQFN (40)  
5.00 × 5.00mm  
SNR77.5dBFS  
SFDR80dBc HD2HD3  
SFDR95dBFS 最严重毛刺  
• 频谱性(fIN = 70MHz):  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
3-1. 器件比较  
分辨率  
SNR75dBFS  
SFDR75dBc HD2HD3  
SFDR90dBFS 最严重毛刺  
器件型号  
ADC3561  
采样率  
10MSPS  
16 位  
16 位  
16 位  
14 位  
ADC3562  
ADC3563  
ADC3564  
25MSPS  
65MSPS  
125MSPS  
2 应用  
• 高速数据采集  
• 工业监控  
• 热成像  
• 成像与声纳  
软件定义无线电  
电能质量分析仪  
通信基础设施  
• 控制环路  
• 仪表  
• 智能电网  
光谱分析  
雷达  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS887  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................41  
8.5 Programming............................................................ 42  
8.6 Register Maps...........................................................44  
9 Application Information Disclaimer.............................58  
9.1 Typical Application.................................................... 58  
9.2 Initialization Set Up................................................... 61  
9.3 Power Supply Recommendations.............................62  
9.4 Layout....................................................................... 63  
10 Device and Documentation Support..........................65  
10.1 Device Support....................................................... 65  
10.2 Documentation Support.......................................... 65  
10.3 接收文档更新通知................................................... 65  
10.4 支持资源..................................................................65  
10.5 商标.........................................................................65  
10.6 Electrostatic Discharge Caution..............................65  
10.7 术语表..................................................................... 65  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics - Power Consumption.........6  
6.6 Electrical Characteristics - DC Specifications.............7  
6.7 Electrical Characteristics - AC Specifications............. 9  
6.8 Timing Requirements................................................10  
6.9 Typical Characteristics..............................................12  
7 Parameter Measurement Information..........................17  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
Information.................................................................... 65  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
August 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PDN/SYNC  
VREF  
IOVDD  
FCLKM  
FCLKP  
3
REFGND  
REFBUF  
AVDD  
CLKP  
4
NC  
5
IOGND  
DCLKINP  
DCLKINM  
DCLKP  
DCLKM  
IOVDD  
6
7
CLKM  
8
VCM  
9
RESET  
SDIO  
GND PAD (backside)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5-1. RSB (WQFN) Package, 40-Pin  
(Top View)  
5-1. Pin Descriptions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
INPUT/REFERENCE  
AINP  
12  
13  
8
I
I
Positive analog input  
Negative analog input  
AINM  
VCM  
O
I
Common-mode voltage output for the analog inputs  
External voltage reference input  
VREF  
2
REFBUF  
REFGND  
CLOCK  
4
I
1.2 V external voltage reference input for use with internal reference buffer  
Reference ground input, 0 V  
3
I
CLKM  
7
6
I
I
Negative differential sampling clock input for the ADC  
Positive differential sampling clock input for the ADC  
CLKP  
CONFIGURATION  
Power down/Synchronization input. This pin can be configured via the SPI interface. Active  
high. This pin has an internal 21 kΩpull-down resistor.  
PDN/SYNC  
1
I
RESET  
SEN  
9
I
I
Hardware reset. Active high. This pin has an internal 21 kΩpull-down resistor.  
16  
Serial interface enable. Active low. This pin has an internal 21 kΩpull-up resistor to AVDD.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
5-1. Pin Descriptions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
SCLK  
SDIO  
NC  
NO.  
35  
I
I
-
Serial interface clock input. This pin has an internal 21 kΩpull-down resistor.  
10  
Serial interface data input and output. This pin has an internal 21 kΩpull-down resistor.  
27,38,39  
Do not connect  
DIGITAL INTERFACE  
DA0P  
DA0M  
DA1P  
DA1M  
20  
O
O
O
O
Positive differential serial LVDS output for lane 0, channel A  
Negative differential serial LVDS output for lane 0, channel A  
Positive differential serial LVDS output for lane 1, channel A  
Negative differential serial LVDS output for lane 1, channel A  
19  
18  
17  
Positive differential serial LVDS output for lane 0, channel B. Used only in dual band  
complex decimation. Default is powered down.  
DB0P  
DB0M  
DB1P  
DB1M  
31  
32  
33  
34  
O
O
O
O
Negative differential serial LVDS output for lane 0, channel B. Used only in dual band  
complex decimation. Default is powered down.  
Positive differential serial LVDS output for lane 1, channel B. Used only in dual band  
complex decimation. Default is powered down.  
Negative differential serial LVDS output for lane 1, channel B. Used only in dual band  
complex decimation. Default is powered down.  
DCLKP  
23  
22  
28  
29  
25  
24  
O
O
O
O
I
Positive differential serial LVDS bit clock output.  
Negative differential serial LVDS bit clock output.  
Positive differential serial LVDS frame clock output.  
Negative differential serial LVDS frame clock output.  
Positive differential serial LVDS bit clock input.  
Negative differential serial LVDS bit clock input.  
DCLKM  
FCLKP  
FCLKM  
DCLKINP  
DCLKINM  
POWER SUPPLY  
AVDD  
I
5,15,36  
I
I
Analog 1.8 V power supply  
Ground, 0 V  
11,14,37,40,  
PowerPad  
GND  
IOGND  
IOVDD  
26  
I
I
Ground, 0 V for digital interface  
21,30  
1.8 V power supply for digital interface  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.3  
0.3  
MAX  
2.1  
UNIT  
V
Supply voltage range, AVDD, IOVDD  
Supply voltage range, GND, IOGND, REFGND  
0.3  
V
MIN(2.1,  
AVDD+0.3)  
AINP/M, CLKP/M, DCLKINP/M, VREF, REFBUF  
PDN/SYNC, RESET, SCLK, SEN, SDIO  
0.3  
0.3  
Voltage applied to  
input pins  
V
MIN(2.1,  
AVDD+0.3)  
Junction temperature, TJ  
Storage temperature, Tstg  
105  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
2500  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.75  
1.75  
40  
NOM  
1.8  
MAX UNIT  
AVDD(1)  
1.85  
1.85  
V
V
Supply  
voltage range  
IOVDD(1)  
1.8  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
105  
°C  
°C  
105(2)  
(1) Measured to GND.  
(2) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
6.4 Thermal Information  
ADC3564  
RSB (QFN)  
40 Pins  
30.7  
THERMAL METRIC(1)  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
16.4  
10.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
10.5  
ΨJB  
RΘJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC3564  
 
 
 
 
 
 
 
 
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics - Power Consumption  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6V reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ADC3564: 125 MSPS  
IAVDD  
IIOVDD  
PDIS  
Analog supply current  
I/O supply current  
Power dissipation  
External reference  
41  
35  
137  
27  
41  
36  
48  
45  
41  
40  
62  
mA  
57  
SLVDS 2-wire  
External reference, SLVDS 2-wire  
SLVDS 2-wire, 1/2-swing  
mW  
4x real decimation, SLVDS 1-wire  
16x real decimation, SLVDS 1-wire  
4x complex decimation, SLVDS 1-wire  
8x complex decimation, SLVDS 1-wire  
16x complex decimation, SLVDS 1-wire  
32x complex decimation, SLVDS 1-wire  
IIOVDD  
I/O supply current  
mA  
MISCELLANOUS  
Internal reference, additional analog  
4
0.5  
1
supply current  
External 1.2V reference (REFBUF),  
additional analog supply current  
IAVDD  
Enabled via SPI  
mA  
Single ended clock input, reduces  
analog supply current by  
Power consumption in global power  
down mode  
PDIS  
Default mask settings  
12  
mW  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.6 Electrical Characteristics - DC Specifications  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
No missing codes  
PSRR  
14  
bits  
dB  
FIN = 1 MHz  
35  
± 0.9  
± 2.6  
± 30  
± 0.06  
± 2  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
FIN = 5 MHz  
FIN = 5 MHz  
-0.97  
-7.5  
-55  
0.97  
7.5  
55  
LSB  
INL  
LSB  
VOS_ERR  
VOS_DRIFT  
GAINERR  
GAINDRIFT  
GAINERR  
GAINDRIFT  
LSB  
Offset drift over temperature  
Gain error  
LSB/ºC  
%FSR  
ppm/ºC  
%FSR  
ppm/ºC  
LSB  
External 1.6V Reference  
External 1.6V Reference  
Internal Reference  
Gain drift over temperature  
Gain error  
± 57  
± 3  
Gain drift over temperature  
Internal Reference  
106  
Transition Noise  
0.7  
ADC ANALOG INPUT (AINP/M)  
FS  
Input full scale  
Differential  
3.2  
0.95  
8
Vpp  
V
VCM  
RIN  
Input common model voltage  
Input resistance  
0.9  
1.0  
Differential at DC  
Differential at DC  
kΩ  
pF  
CIN  
Input Capacitance  
5.4  
0.95  
1.4  
VOCM  
BW  
Output common mode voltage  
Analog Input Bandwidth (-3dB)  
V
GHz  
Internal Voltage Reference  
VREF  
Internal reference voltage  
1.6  
8
V
VREF Output Impedance  
Reference Input Buffer (REFBUF)  
External reference voltage  
External voltage reference (VREF)  
Ω
1.2  
V
VREF  
External voltage reference  
1.6  
1
V
Input Current  
mA  
kΩ  
Input impedance  
5.3  
Clock Input (CLKP/M)  
External reference  
Internal reference  
10  
125  
125  
3.6  
MHz  
MHz  
Vpp  
V
Input clock frequency  
100  
VID  
VCM  
RIN  
CIN  
Differential input voltage  
Input common mode voltage  
1
0.9  
5
Single ended input resistance to common mode  
Single ended input capacitance  
kΩ  
pF  
1.5  
50  
Clock duty cycle  
45  
60  
%
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.6 Electrical Characteristics - DC Specifications (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Inputs (RESET, PDN, SCLK, SEN, SDIO)  
VIH  
VIL  
IIH  
IIL  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Input capacitance  
1.4  
V
0.4  
90  
-90  
1.5  
150  
uA  
uA  
pF  
-150  
CI  
Digital Output (SDOUT)  
IOVDD  
0.1  
VOH  
VOL  
High level output voltage  
Low level output voltage  
ILOAD = -400 uA  
IOVDD  
V
ILOAD = 400 uA  
0.1  
SLVDS Interface  
VID  
Differential input voltage  
Input common mode voltage  
200  
1
350  
1.2  
650  
1.3  
1
mVpp  
V
DCLKIN  
VCM  
Output data rate  
per differential SLVDS output  
Gbps  
mVpp  
V
VOD  
VCM  
Differential output voltage  
Output common mode voltage  
500  
700  
1.0  
850  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
fIN = 5 MHz, AIN = -20 dBFS  
fIN = 5 MHz  
MIN  
TYP  
-156.9  
77.5  
78.9  
77.6  
76.9  
75.5  
74.1  
75.7  
74.2  
72.6  
71.3  
72.4  
12.6  
12.6  
12.5  
12.3  
12.0  
80  
MAX  
UNIT  
dBFS/Hz  
dBFS  
NSD  
Noise Spectral Density  
72  
fIN = 5 MHz, AIN = -20 dBFS  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
SNR  
Signal to noise ratio  
dBFS  
dBFS  
bit  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
SINAD  
ENOB  
THD  
Signal to noise and distortion ratio  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
Effective number of bits  
71.5  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
76  
Total Harmonic Distortion (First five  
harmonics)  
74  
dBc  
dBc  
dBc  
72  
76  
77  
84  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
78  
HD2  
Second Harmonic Distortion  
Third Harmonic Distortion  
75  
77  
79  
73.5  
84  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 5 MHz  
81  
HD3  
88  
76  
81  
84  
92  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
93  
Spur free dynamic range (excluding  
HD2 and HD3)  
Non HD2,3  
IMD3  
89  
dBFS  
dBc  
84  
86  
f1 = 10 MHz, f2 = 12 MHz, AIN = -7  
dBFS/tone  
Two tone inter-modulation distortion  
88  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.8 Timing Requirements  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN NOM MAX  
UNIT  
ADC Timing Specifications  
tAD  
tA  
Aperture Delay  
Aperture Jitter  
Jitter on DCLKIN  
0.85  
250  
ns  
fs  
square wave clock with fast edges  
SNR within 1 dB of expected value  
tJ  
± 50 ps pk-pk  
Clock  
cycle  
Recory time from +6 dB overload condition  
1
Sampling  
clock  
period  
tACQ  
Signal acquisition period  
Signal conversion period  
-TS/4  
referenced to sampling clock falling edge  
tCONV  
6
13  
ns  
Bandgap reference enabled, single ended clock  
Bandgap reference enabled, differential clock  
Bandgap reference disabled, single ended clock  
Bandgap reference disabled, differential clock  
Bandgap reference enabled, single ended clock  
Bandgap reference enabled, differential clock  
Bandgap reference disabled, single ended clock  
Bandgap reference disabled, differential clock  
us  
15  
Time to valid data after coming out of  
power down. Internal reference.  
2.4  
2.3  
13  
ms  
us  
Wake up  
time  
Time to valid data after coming out of  
power down.  
External 1.6V reference.  
14  
2.0  
2.2  
ms  
ps  
tS,SYNC  
tH,SYNC  
Setup time for SYNC input signal  
Hold time for SYNC input signal  
500  
600  
Referenced to sampling clock rising edge  
1/2-wire SLVDS  
1-wire SLVDS  
2-wire SLVDS  
1
1
ADC  
Latency  
Clock  
cycles  
Signal input to data output  
2
Real decimation by 2  
21  
22  
Output  
clock  
cycles  
Add.  
Latency  
Complex decimation by 2  
Real or complex decimation by 4, 8,  
16, 32  
23  
Interface Timing: Serial LVDS Interface  
Delay between sampling clock falling edge to  
DCLKIN falling edge < 2.5ns.  
TDCLK = DCLK period  
tCDCLK = Sampling clock falling edge to DCLKIN  
falling edge  
2 +  
3 +  
4 +  
TDCLK TDCLK TDCLK  
+
+
+
tCDCLK tCDCLK tCDCLK  
Propagation delay: sampling clock  
falling edge to DCLK rising edge  
tPD  
ns  
Delay between sampling clock falling edge to  
DCLKIN falling edge >= 2.5ns.  
TDCLK = DCLK period  
tCDCLK = Sampling clock falling edge to DCLKIN  
falling edge  
2 +  
3 +  
4 +  
tCDCLK tCDCLK tCDCLK  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.8 Timing Requirements (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, 1.6 V external reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
Fout = 65 MSPS, DA/B0,1 = 455 MBPS  
Fout = 80 MSPS, DA/B0,1 = 560 MBPS  
Fout = 125 MSPS, DA/B0,1 = 875 MBPS  
MIN NOM MAX  
UNIT  
0
0
0.1  
0.1  
0.1  
DCLK rising edge to output data  
delay,  
2-wire SLVDS, 14-bit  
-0.2  
DCLK rising edge to output data  
delay,  
Fout = 65 MSPS, DA/B0 = 910 MBPS  
0
0.1  
1-wire SLVDS, 14-bit  
tCD  
ns  
Fout = 10 MSPS, DA/B0 = 160 MBPS  
Fout = 25 MSPS, DA/B0 = 400 MBPS  
Fout = 62.5 MSPS, DA/B0= 1000 MBPS  
Fout = 5 MSPS, DA0 = 160 MBPS  
Fout = 10 MSPS, DA0 = 320 MBPS  
Fout = 25 MSPS, DA0 = 800 MBPS  
Fout = 65 MSPS, DA/B0,1 = 455 MBPS  
Fout = 80 MSPS, DA/B0,1 = 560 MBPS  
Fout = 125 MSPS, DA/B0,1 = 875 MBPS  
Fout = 65 MSPS, DA/B0 = 910 MBPS  
Fout = 10 MSPS, DA/B0 = 160 MBPS  
Fout = 25 MSPS, DA/B0 = 400 MBPS  
Fout = 62.5 MSPS, DA/B0= 1000 MBPS  
Fout = 5 MSPS, DA0 = 160 MBPS  
Fout = 10 MSPS, DA0 = 320 MBPS  
Fout = 25 MSPS, DA0 = 800 MBPS  
0
0
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
1.9  
1.5  
0.8  
0.8  
5.8  
2.1  
0.6  
5.8  
2.8  
0.9  
DCLK rising edge to output data  
delay,  
1-wire SLVDS, 16-bit  
-0.6  
0
DCLK rising edge to output data  
delay,  
1/2-wire SLVDS, 16-bit  
0
0
1.8  
1.4  
0.6  
0.6  
5.7  
2.0  
0.5  
5.7  
2.7  
0.8  
Data valid, 2-wire SLVDS, 14-bit  
Data valid, 1-wire SLVDS, 14-bit  
Data valid, 1-wire SLVDS, 16-bit  
tDV  
ns  
Data valid, 1/2-wire SLVDS, 16-bit  
SERIAL PROGRAMMING INTERFACE (SCLK, SEN, SDIO) - Input  
fCLK,SCLK Serial clock frequency  
20  
MHz  
ns  
tS,SEN  
tH,SEN  
tS,SDIO  
tH,SDIO  
SEN falling edge to SCLK rising edge  
SCLK rising edge to SEN rising edge  
SDIO setup time from rising edge of SCLK  
SDIO hold time from rising edge of SCLK  
10  
9
17  
9
SERIAL PROGRAMMING INTERFACE (SDIO) - Output  
Delay from falling edge of 16th SCLK cycle during read operation for SDIO transition from  
tri-state to valid data  
tOZD  
3.9  
10.8  
ns  
tODZ  
tOD  
Delay from SEN rising edge for SDIO transition from valid data to tri-state  
Delay from falling edge of 16th SCLK cycle during read operation to SDIO valid  
3.4  
3.9  
14  
10.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
Typical values at TA = 25 °C, ADC sampling rate = 125 MSPS, AIN = 1 dBFS differential input, AVDD = IOVDD  
= 1.8 V, external voltage reference, unless otherwise noted.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
10  
20  
30  
40  
50  
60  
Input Frequency (MHz)  
SNR = 77.0 dBFS  
SNR = 77.5 dBFS  
6-1. Single Tone FFT at FIN = 5 MHz  
6-2. Single Tone FFT at FIN = 10 MHz  
AIN = -20 dBFS, SNR = 78.5 dBFS  
SNR = 76.5 dBFS  
6-3. Single Tone FFT at FIN = 10 MHz  
6-4. Single Tone FFT at FIN = 40 MHz  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
SNR = 75.2 dBFS  
AIN = -20 dBFS, SNR = 77.0 dBFS  
6-5. Single Tone FFT at FIN = 70 MHz  
6-6. Single Tone FFT at FIN = 70 MHz  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
10  
20  
30  
40  
50  
60  
Input Frequency (MHz)  
SNR = 74.0 dBFS  
AIN= -7 dBFS/tone  
6-7. Single Tone FFT at FIN = 100 MHz  
6-8. Two Tone FFT at FIN = 10/12 MHz  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
10  
20  
30  
40  
50  
60  
Input Frequency (MHz)  
6-10. AC Performance vs Input Frequency  
AIN= -20 dBFS/tone  
6-9. Two Tone FFT at FIN = 10/12 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
FIN = 5 MHz  
AIN = -1 dBFS  
6-12. AC Performance vs Input Amplitude  
6-11. ENOB vs Input Frequency  
80  
FIN = 10 MHz  
FIN = 30 MHz  
FIN = 70 MHz  
79  
78  
77  
76  
75  
74  
73  
72  
0.5  
1
1.5 2  
Clock Amplitude (Vpp)  
2.5  
3
D016  
AIN = -1 dBFS  
FIN = 5 MHz  
6-14. SNR vs Clock Amplitude  
6-13. AC Performance vs Sampling Rate  
FIN = 5 MHz  
FIN = 5 MHz  
6-15. AC Performance vs AVDD  
6-16. AC Performance vs VCM vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
FIN = 5 MHz  
FIN = 5 MHz  
6-17. INL vs Code  
6-18. DNL vs Code  
300000  
250000  
200000  
150000  
100000  
50000  
0
External VREF  
Internal VREF  
8186  
8187  
8188  
8189  
Output Code  
8190  
8191  
8192  
D033  
Internal vs external reference, inputs shorted to VCM  
Pulse Input = 1 MHz  
6-19. DC Histogram  
6-20. Pulse Response  
45  
42.5  
40  
IAVDD, ext REF  
IAVDD, int REF  
IIOVDD, 2-w  
IIOVDD, 1-w  
IIOVDD, 2-w, 1/2-swing  
IIOVDD, 1-w, 1/2-swing  
37.5  
35  
32.5  
30  
27.5  
25  
22.5  
20  
65 70 75 80 85 90 95 100 105 110 115 120 125  
Sampling Rate (MSPS)  
FIN = 5 MHz  
FIN = 5 MHz  
6-22. Current vs Decimation  
6-21. Current vs Sampling Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
FIN = 5 MHz  
6-23. Current vs Interface  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
Sample N  
Sample N+1  
Input Signal  
tAD  
tPD  
Sampling  
Clock  
tACQ  
tConv  
tCDCLK  
DCLKIN  
DCLK  
tCD  
TDCLK  
FCLK  
tDV  
D13 D11  
D12 D10  
D9  
D8  
D7  
D5  
D4  
D3  
D2  
D1  
D0  
D13 D11  
D12 D10  
D9  
D8  
D7  
D5  
D4  
D3  
D2  
D1  
D0  
DA/DB1  
DA/DB0  
D6  
D6  
Sample N-2  
Sample N-1  
7-1. Timing diagram: 2-wire SLVDS  
Sample N  
Sample N+1  
Input Signal  
tAD  
tPD  
Sampling  
Clock  
tACQ  
tConv  
tCDCLK  
DCLKIN  
DCLK  
FCLK  
TDCLK  
tCD  
tDV  
D2  
D2  
D1  
D1  
D0  
D0  
D13 D12 D11 D10  
D13 D12 D11 D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
DA0  
DB0  
D0  
Sample N-1  
7-2. Timing diagram: 1-wire SLVDS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
Sample N  
tAD  
Input Signal  
Sample N+1  
tPD  
Sampling  
Clock  
tACQ  
tConv  
tCDCLK  
DCLKIN  
DCLK  
FCLK  
tCD  
TDCLK  
tDV  
Channel A  
Channel B  
D
5
D
4
D D  
D
1
D
D
D
D
D
D
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D D  
0 13 12 11 10 9  
D
D
D
D
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
DA0  
3
2
0 13 12 11 10 9  
Sample N-2  
Sample N-1  
7-3. Timing diagram: 1/2-wire SLVDS  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADC3564 is a low noise, ultra-low power 14-bit 125 MSPS high-speed ADC. It offers DC precision together  
with IF sampling support which makes it suited for a wide range of applications. The ADC3564 is equipped with  
an on-chip internal reference option but it also supports the use of an external, high precision 1.6 V voltage  
reference or an external 1.2 V reference which is buffered and gained up internally. Because of the inherent low  
latency architecture, the digital output result is available after only one clock cycle. Single ended as well as  
differential input signaling is supported.  
备注  
The ADC3564 supports the following sampling rates:  
External Reference: 10 to 125 MSPS  
Internal Reference: 100 to 125 MSPS  
An optional, programmable digital down converter enables external anti-alias filter relaxation as well as output  
data rate reduction. The digital filter provides a 32-bit programmable NCO and supports both real or complex  
decimation.  
The ADC3564 uses a serial LVDS (SLVDS) interface to output the data which minimizes the number of digital  
interconnects. The device supports a two-lane (2-wire), a one-lane (1-wire) and a half-lane (1/2-wire) option. The  
ADC3564 includes a digital output formatter which supports output resolutions from 14 to 20-bit.  
The device features and control options can be set up either through pin configurations or via SPI register writes.  
8.2 Functional Block Diagram  
REFBUF  
1.2V REF  
Digital Downconverter  
Crosspoint  
Switch  
VREF  
NCO  
N
AIN  
ADC  
DCLKIN  
DCLK  
Dig I/F  
SLVDS  
FCLK  
0.95V  
VCM  
DA0/1  
DB0/1  
CLK  
Control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Input  
The analog inputs of ADC3564 are intended to be driven differentially. Both AC coupling and DC coupling of the  
analog inputs is supported. The analog inputs are designed for an input common mode voltage of 0.95 V which  
must be provided externally on each input pin. DC-coupled input signals must have a common mode voltage that  
meets the device input common mode voltage range.  
The equivalent input network diagram is shown in 8-1. All four sampling switches, on-resistance shown in red,  
are in same position (open or closed) simultaneously.  
AVDD  
Sampling Switch  
0.32 pF  
1  
125 ꢀ  
2 nH  
xINP/  
xINM  
24 ꢀ  
1.4 pF  
0.15 pF  
0.6 pF  
GND  
0.6 pF  
GND  
GND  
GND  
GND  
2.6 pF  
7 ꢀ  
GND  
5 ꢀ  
0.7 pF  
1.6 pF  
GND  
GND  
GND  
8-1. Equivalent Input Network  
8.3.1.1 Analog Input Bandwidth  
8-2 shows the analog full power input bandwidth of the ADC3664 with a 50 Ω differential termination. The -3  
dB bandwidth is approximately 1.4 GHz and the useful input bandwidth with good AC performance is  
approximately 200 MHz.  
The equivalent differential input resistance RIN and input capacitance CIN vs frequency are shown in 8-3.  
8-3. Equivalent RIN/CIN vs Input Frequency  
8-2. ADC Analog Input bandwidth response  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.1.2 Analog Front End Design  
The ADC3564 is an unbuffered ADC and thus a passive kick-back filter is recommended to absorb the glitch  
from the sampling operation. Depending on if the input is driven by a balun or a differential amplifier with low  
output impedance, a termination network may be needed. Additionally a passive DC bias circuit is needed in AC-  
coupled applications which can be combined with the termination network.  
8.3.1.2.1 Sampling Glitch Filter Design  
The front end sampling glitch filter is designed to optimize the SNR and HD3 performance of the ADC. The filter  
performance is dependent on input frequency and therefore the following filter designs are recommended for  
different input frequency ranges as shown in 8-4 and 8-5.  
33  
10 ꢀ  
82 nH  
33 pF  
Termination  
33 ꢀ  
82 nH  
10 ꢀ  
8-4. Sampling glitch filter example for input frequencies from DC to 60 MHz  
33  
10 ꢀ  
33 pF  
91 nH  
75 pF  
43 nH  
Termination  
33 ꢀ  
33 pF  
91 nH  
10 ꢀ  
8-5. Sampling glitch filter example for input frequencies from 60 to 120 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.1.2.2 Analog Input Termination and DC Bias  
Depending on the input drive circuitry, a termination network and/or DC biasing needs to be provided.  
8.3.1.2.2.1 AC-Coupling  
The ADC3564 requires external DC bias using the common mode output voltage (VCM) of the ADC together  
with the termination network as shown in 8-6. The termination is located within the glitch filter network. When  
using a balun on the input, the termination impedance has to be adjusted to account for the turns ratio of the  
transformer. When using an amplifier, the termination impedance can be adjusted to optimize the amplifier  
performance.  
Glitch Filter  
Termination  
33  
1 uF  
10 ꢀ  
82 nH  
25 ꢀ  
33 pF  
VCM  
0.1 F  
25 ꢀ  
33 ꢀ  
1 uF  
VCM  
82 nH  
10 ꢀ  
8-6. AC-Coupling: termination network provides DC bias (glitch filter example for up to 60 MHz)  
8.3.1.2.2.2 DC-Coupling  
In DC coupled applications the DC bias needs to be provided from the fully differential amplifier (FDA) using  
VCM output of the ADC as shown in 8-7. The glitch filter in this case is located between the anti-alias filter  
and the ADC. No termination may be needed if amplifier is located close to the ADC or if the termination is part  
of the anti-alias filter.  
Glitch Filter  
33  
10 ꢀ  
82 nH  
33 pF  
AAF (Anti  
Alias Filter)  
33 ꢀ  
VCM  
82 nH  
10 ꢀ  
8-7. DC-Coupling: DC bias provided by FDA (glitch filter example for DC - 60 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.2 Clock Input  
In order to maximize the ADC SNR performance, the external sampling clock should be low jitter and differential  
signaling with a high slew rate. This is especially important in IF sampling applications. For less jitter sensitive  
applications, the ADC3564 provides the option to operate with single ended signaling which saves additional  
power consumption.  
8.3.2.1 Single Ended vs Differential Clock Input  
The ADC3564 can be operated using a differential or a single ended clock input where the single ended clock  
consumes less power consumption. However clock amplitude impacts the ADC aperture jitter and consequently  
the SNR. For maximum SNR performance, a large clock signal with fast slew rates needs to be provided.  
Differential Clock Input: The clock input can be AC coupled externally. The ADC3564 provides internal  
biasing for that use case.  
Single Ended Clock Input: This mode needs to be configured using SPI register (0x0E, D2 and D0) or with  
the REFBUF pin. In this mode there is no internal clock biasing and thus the clock input needs to be DC  
coupled around a 0.9V center. The unused input needs to be AC coupled to ground.  
1.8V  
CLKP  
CLKP  
0.9V  
0V  
+
-
5kO  
VCM  
0.9V  
5kO  
CLKM  
CLKM  
8-8. External and internal connection using differential (left) and single ended (right) clock input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.3 Voltage Reference  
The ADC3564 provides three different options for supplying the voltage reference to the ADC. An external 1.6 V  
reference can be directly connected to the VREF input; a voltage 1.2 V reference can be connected to the  
REFBUF input using the internal gain buffer or the internal 1.2V reference can be enabled to generate a 1.6 V  
reference voltage. For best performance, the reference noise should be filtered by connecting a 10 uF and a 0.1  
uF ceramic bypass capacitor to the VREF pin. The internal reference circuitry of the ADC3564 is shown in 图  
8-9.  
备注  
The voltage reference mode can be selected using SPI writes or by using the REFBUF pin (default) as  
a control pin (8.5.1). If the REFBUF pin is not used for configuration, the REFBUF pin should be  
connected to AVDD (even though the REFBUF pin has a weak internal pullup to AVDD) and the  
voltage reference option has to be selected using the SPI interface.  
AINP  
AINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
REFBUF  
(1.2V)  
VREF1.2  
REFGND  
8-9. Different voltage reference options for ADC3564  
8.3.3.1 Internal voltage reference  
The 1.6V reference for the ADC can be generated internal using the on-chip 1.2 V reference along with the  
internal gain buffer. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF) should be connected between the  
VREF and REFGND pins as close to the pins as possible.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
CVREF  
REFBUF  
(1.6V)  
VREF1.2  
REFGND  
8-10. Internal reference  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.3.2 External voltage reference (VREF)  
For highest accuracy and lowest temperature drift, the VREF input can be directly connected to an external 1.6 V  
reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF) connected between the VREF and REFGND  
pins and placed as close to the pins as possible is recommended. The load current from the external reference  
is about 1 mA.  
备注  
The internal reference is also used for other functions inside the device, therefore the reference  
amplifier should only be powered down in power down state but not during normal operation.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
Reference  
1.6V  
REFBUF  
(1.2V)  
x1.33  
CVREF  
VREF1.2  
REFGND  
8-11. External 1.6V reference  
8.3.3.3 External voltage reference with internal buffer (REFBUF)  
The ADC3564 is equipped with an on-chip reference buffer that also includes gain to generate the 1.6 V  
reference voltage from an external 1.2V reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF  
)
between the VREF and REFGND pins and a 10 uF and a 0.1 uF ceramic bypass capacitor between the  
REFBUF and REFGND pins are recommended. Both capacitors should be placed as close to the pins as  
possible. The load current from the external reference is less than 100 uA.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
REFBUF  
(1.2V)  
Reference  
1.2V  
VREF1.2  
CREFBUF  
CVREF  
REFGND  
8-12. External 1.2V reference using internal reference buffer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.4 Digital Down Converter  
The ADC3564 includes an optional on-chip digital down conversion (DDC) decimation filter that can be enabled  
via SPI register setting. It supports complex decimation by 2, 4, 8, 16 and 32 using a digital mixer and a 32-bit  
numerically controlled oscillator (NCO) as shown in 8-13. Furthermore it supports a mode with real decimation  
where the complex mixer is bypassed (NCO should be set to 0 for lowest power consumption) and the digital  
filter acts as a low pass filter.  
Internally the decimation filter calculations are performed with a 20-bit resolution in order to avoid any SNR  
degradation due to quantization noise. The 8.3.5.1 truncates to the selected resolution prior to outputting the  
data on the digital interface.  
NCO  
32bit  
Filter  
I
Q
I
Q
Digital  
Interface  
N
ADC  
SYNC  
8-13. Internal Digital Decimation Filter  
8.3.4.1 DDC MUX for Dual Band Decimation  
The ADC3564 includes a MUX in front of the digital decimation filter which allows the ADC to be connected to  
two digital down converters (see 8-14). This enables dual band complex decimation. The NCO of each digital  
down converter can be tuned to an independent frequency across the Nyquist zone as illustrated in the example  
in 8-15. The second DDC is output using the DB0/1 SLVDS interface.  
Digital Downconverter  
NCO  
DDC MUX  
ADC  
14bit  
N
NCO  
N
8-14. DDC MUX  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
Decimation  
by 8  
Input Signal B  
Input Signal A  
Shifted Input Signal A  
Negative Image  
Shifted Input Signal B  
Negative Image  
0
0
-FS/16  
FS/16  
-FS/16  
FS/16  
FNCO B  
FNCO A  
0
FS/2  
8-15. Complex Decimation (by 8) with dual band illustration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.4.2 Digital Filter Operation  
The complex decimation operation is illustrated with an example in 8-16. First the input signal (and the  
negative image) are frequency shifted by the NCO frequency as shown on the left. Next a digital filter is applied  
(centered around 0 Hz) and the output data rate is decimated - in this example the output data rate FS,OUT = FS/8  
with a Nyquist zone of FS/16. During the complex mixing the spectrum (signal and noise) is split into real and  
complex parts and thus the amplitude is reduced by 6-dB. In order to compensate this loss, there is a 6-dB  
digital gain option in the decimation filter block that can be enabled via SPI write.  
Input Signal  
(Alias)  
Shifted Input  
Signal (Alias)  
-FIN + FNCO  
Shifted Input Signal  
Negative Image  
Input Signal  
Negative Image  
Decimation  
by 8  
FIN + FNCO  
0
0
-FS/16  
FS/16  
FS/2  
-FS/2  
-FS/2  
FS/2  
FNCO  
NCO Tuning Range  
8-16. Complex decimation illustration  
The real decimation operation is illustrated with an example in 8-17. There is no frequency shift happening  
and only the real portion of the complex digital filter is exercised. The output data rate is decimated - a  
decimation of 8 would result in an output data rate FS,OUT = FS/8 with a Nyquist zone of FS/16.  
During the real mixing the spectrum (signal and noise) amplitude is reduced by 3-dB. In order to compensate this  
loss, there is a 3-dB digital gain option in the decimation filter block that can be enabled via SPI write.  
Input Signal  
Decimation by  
32  
Decimation by  
16  
Decimation by 2  
Decimation by 4  
Decimation by 8  
FS/2  
FS/16  
FS/8  
FS/4  
FS/32  
FS/64  
8-17. Real decimation illustration  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.4.3 FS/4 Mixing with Real Output  
In this mode, the output after complex decimation gets mixed with FS/4 (FS = output data rate in this case).  
Instead of a complex output with the input signal centered around 0 Hz, the output is transmitted as a real output  
at twice the data rate and the signal is centered around FS/4 (Fout/4) as illustrated in 8-18.  
In this example, complex decimation by 8 is used. The output data is transmitted as a real output with an output  
rate of Fout = FS'/4 (FS' = ADC sampling rate). The input signal is now centered around FS/4 (Fout/4) or FS'/16.  
FIN  
FNCO  
- FIN + FNCO  
-FIN + FNCO + FS/4  
/8  
FS/4 mix  
Fout/4 mix  
Complex  
Decimation /8  
0
0
FS‘/2  
FS/16  
FS‘/2  
FS/8  
0
FS/2  
8-18. FS/4 Mixing with real output  
8.3.4.4 Numerically Controlled Oscillator (NCO) and Digital Mixer  
The decimation block is equipped with a 32-bit NCO and a digital mixer to fine tune the frequency placement  
prior to the digital filtering. The oscillator generates a complex exponential sequence of:  
ejωn (default) or ejωn  
where: frequency (ω) is specified as a signed number by the 32-bit register setting  
The complex exponential sequence is multiplied with the real input from the ADC to mix the desired carrier to a  
frequency equal to fIN + fNCO. The NCO frequency can be tuned from FS/2 to +FS/2 and is processed as a  
signed, 2s complement number. After programming a new NCO frequency, the MIXER RESTART register bit or  
SYNC pin has to be toggled for the new frequency to get active. Additionally the ADC3564 provides the option  
via SPI to invert the mixer phase.  
The NCO frequency setting is set by the 32-bit register value given and calculated as:  
NCO frequency = 0 to + FS/2: NCO = fNCO × 232 / FS  
NCO frequency = -FS/2 to 0: NCO = (fNCO + FS) × 232 / FS  
where:  
NCO = NCO register setting (decimal value)  
fNCO = Desired NCO frequency (MHz)  
FS = ADC sampling rate (MSPS)  
The NCO programming is further illustrated with this example:  
ADC sampling rate FS = 125 MSPS  
Input signal fIN = 10 MHz  
Desired output frequency fOUT = 0 MHz  
For this example there are actually four ways to program the NCO and achieve the desired output frequency as  
shown in 8-1.  
8-1. NCO value calculations example  
Alias or negative image  
fIN = 10 MHz  
fNCO  
NCO Value  
343597384  
373475417  
Mixer Phase  
Frequency translation for fOUT  
fNCO = 10 MHz  
fNCO = 10 MHz  
fOUT = fIN + fNCO = 10 MHz +10 MHz = 0 MHz  
fOUT = fIN + fNCO = 10 MHz + (10 MHz) = 0 MHz  
as is  
fIN = 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-1. NCO value calculations example (continued)  
Alias or negative image  
fNCO  
NCO Value  
Mixer Phase  
Frequency translation for fOUT  
fIN = 10 MHz  
fNCO = 10 MHz  
343597384  
fOUT = fIN fNCO = 10 MHz 10 MHz = 0 MHz  
inverted  
fOUT = fIN fNCO = 10 MHz (10 MHz) = 0  
373475417  
fIN = 10 MHz  
fNCO = 10 MHz  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.4.5 Decimation Filter  
The ADC3564 supports complex decimation by 2, 4, 8, 16 and 32 with a pass-band bandwidth of ~ 80% and a  
stopband rejection of at least 85 dB. 8-2 gives an overview of the pass-band bandwidth of the different  
decimation settings with respect to ADC sampling rate FS. In real decimation mode the output bandwidth is half  
of the complex bandwidth.  
8-2. Decimation Filter Summary and Maximum Available Output Bandwidth  
REAL/COMPLEX  
DECIMATION  
DECIMATION  
SETTING N  
OUTPUT  
BANDWIDTH  
OUTPUT RATE  
(FS = 125 MSPS)  
OUTPUT BANDWIDTH  
(FS = 125 MSPS)  
OUTPUT RATE  
2
4
FS / 2 complex  
FS / 4 complex  
FS / 8 complex  
FS / 16 complex  
FS / 32 complex  
FS / 2 real  
0.8 × FS / 2  
0.8 × FS / 4  
0.8 × FS / 8  
0.8 × FS / 16  
0.8 × FS / 32  
0.4 × FS / 2  
0.4 × FS / 4  
0.4 × FS / 8  
0.4 × FS / 16  
0.4 × FS / 32  
62.5 MSPS complex  
31.25 MSPS complex  
15.625 MSPS complex  
7.8125 MSPS complex  
3.90625 MSPS complex  
62.5 MSPS  
50 MHz  
25 MHz  
Complex  
8
12.5 MHz  
6.25 MHz  
3.125 MHz  
25 MHz  
16  
32  
2
4
FS / 4 real  
31.25 MSPS  
12.5 MHz  
6.25 MHz  
3.125 MHz  
1.5625 MHz  
Real  
8
FS / 8 real  
15.625 MSPS  
16  
32  
FS / 16 real  
7.8125 MSPS  
FS / 32 real  
3.90625 MSPS  
The decimation filter responses normalized to the ADC sampling clock frequency are illustrated in 8-20 to 图  
8-29. They are interpreted as follows:  
Each figure contains the filter pass-band, transition band(s) and alias or stop-band(s) as shown in 8-19. The  
x-axis shows the offset frequency (after the NCO frequency shift) normalized to the ADC sampling rate FS.  
For example, in the divide-by-4 complex setup, the output data rate is FS / 4 complex with a Nyquist zone of FS /  
8 or 0.125 × FS. The transition band (colored in blue) is centered around 0.125 × FS and the alias transition band  
is centered at 0.375 × FS. The stop-bands (colored in red), which alias on top of the pass-band, are centered at  
0.25 × FS and 0.5 × FS. The stop-band attenuation is greater than 85 dB.  
0
Passband  
Transition Band  
-20  
Alias Band  
Attn Spec  
Filter  
-40  
-60  
Transition  
Bands  
Bands that alias on top  
of signal band  
Pass Band  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (Fs)  
8-19. Interpretation of the Decimation Filter Plots  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
0
-20  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-40  
-60  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.1  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.025 0.05 0.075  
0.1  
0.125 0.15 0.175  
0.2  
0.225 0.25  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-20. Decimation by 2 complex frequency  
8-21. Decimation by 2 complex passband ripple  
response  
response  
0
0
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.01  
-0.02  
-20  
-40  
Attn Spec  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.1  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-22. Decimation by 4 complex frequency  
8-23. Decimation by 4 complex passband ripple  
response  
response  
0
-0.08  
Passband  
Transition Band  
Alias Band  
Passband  
-0.081  
-0.082  
-0.083  
-0.084  
-0.085  
-0.086  
-0.087  
-0.088  
-0.089  
-0.09  
Transition Band  
Alias Band  
Attn Spec  
-20  
-40  
Attn Spec  
-60  
-0.091  
-0.092  
-0.093  
-0.094  
-0.095  
-0.096  
-0.097  
-0.098  
-0.099  
-0.1  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.006 0.012 0.018 0.024 0.03 0.036 0.042 0.048 0.054 0.06  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-24. Decimation by 8 complex frequency  
8-25. Decimation by 8 complex passband ripple  
response  
response  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
0
-0.1  
-0.11  
-0.12  
-0.13  
-0.14  
-0.15  
-0.16  
-0.17  
-0.18  
-0.19  
-0.2  
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-20  
-40  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-26. Decimation by 16 complex frequency  
8-27. Decimation by 16 complex passband  
response  
ripple response  
0
-0.2  
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.205  
-0.21  
-20  
-40  
Attn Spec  
-0.215  
-0.22  
-60  
-0.225  
-0.23  
-80  
-0.235  
-0.24  
-100  
-120  
-0.245  
-0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-28. Decimation by 32 complex frequency  
8-29. Decimation by 32 complex passband  
response  
ripple response  
8.3.4.6 SYNC  
The PDN/SYNC pin can be used to synchronize multiple devices using an external SYNC signal. The PDN/  
SYNC pin can be configured via SPI (SYNC EN bit) from power down to synchronization functionality and is  
latched in by the rising edge of the sampling clock as shown in 8-30.  
CLK  
tS,SYNC  
tH,SYNC  
SYNC  
8-30. External SYNC timing diagram  
The synchronization signal is only required when using the decimation filter - either using the SPI SYNC register  
or the PDN/SYNC pin. It resets internal clock dividers used in the decimation filter and aligns the internal clocks  
as well as I and Q data within the same sample. If no SYNC signal is given, the internal clock dividers is not be  
synchronized, which can lead to a fractional delay across different devices. The SYNC signal also resets the  
NCO phase and loads the new NCO frequency (same as the MIXER RESTART bit).  
When trying to resynchronize during operation, the SYNC toggle should occur at 64*K clock cycles, where K is  
an integer. This provids the phase continuity of the clock divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.4.7 Output Formatting with Decimation  
When using decimation, the digital output data is formatted as shown in 8-31 (complex decimation) and 图  
8-32 (real decimation). The output format is illustrated for 16-bit output resolution.  
FCLK  
AI  
AI  
AI  
D15 D13 D11  
AI  
D9  
AI  
D7  
AI  
D5  
AI  
D3  
AI  
D1  
AQ  
AQ  
AQ  
D15 D13 D11  
AQ  
D9  
AQ  
D7  
AQ  
D5  
AQ  
D3  
AQ  
D1  
DA1  
DA0  
DB1  
Used in  
Single  
Band  
AI AI  
D14 D12 D10  
AI  
AI  
D8  
AI  
D6  
AI  
D4  
AI  
D2  
AI  
D0  
AQ AQ  
D14 D12 D10  
AQ  
AQ  
D8  
AQ  
D6  
AQ  
D4  
AQ  
D2  
AQ  
D0  
Serial LVDS  
2-Wire  
(8x Serialization)  
BI BI  
D15 D13 D11  
BI  
BI  
D9  
BI  
D7  
BI  
D5  
BI  
D3  
BI  
D1  
BQ BQ  
D15 D13 D11  
BQ  
BQ  
D9  
BQ  
D7  
BQ  
D5  
BQ  
D3  
BQ  
D1  
Only used for  
Dual Band  
BI  
BI  
BI  
D14 D12 D10  
BI  
D8  
BI  
D6  
BI  
D4  
BI  
D2  
BI  
D0  
BQ  
BQ  
BQ  
D14 D12 D10  
BQ  
D8  
BQ  
D6  
BQ  
D4  
BQ  
D2  
BQ  
D0  
DB0  
DCLK  
FCLK  
DA0  
DB0  
Used in  
Single Band  
AI <15:0>  
BI <15:0>  
AQ <15:0>  
BQ <15:0>  
Serial LVDS  
1-Wire  
(16x Serialization) Only used for  
Dual Band  
DCLK  
FCLK  
Serial LVDS  
1/2-Wire  
(32x Serialization)  
Only used for  
Dual Band  
AI <15:0>  
BI <15:0>  
AQ <15:0>  
BQ <15:0>  
DA0  
DCLK  
8-31. Output Data Format in Complex Decimation  
8-3 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK  
frequencies based on output resolution (R), number of SLVDS lanes (L) and complex decimation setting (N).  
Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output  
resolution and complex decimation by 4.  
8-3. Serial LVDS Lane Rate Examples with Complex Decimation and 16-bit Output Resolution  
DECIMATION  
SETTING  
ADC SAMPLING  
RATE  
OUTPUT  
RESOLUTION  
# of WIRES  
FCLK  
DCLKIN, DCLK  
DA/B0,1  
N
FS  
R
L
2
FS / N  
[DA/B0,1] / 2  
250 MHz  
FS x 2 x R / L / N  
500 MHz  
125 MSPS  
55 MSPS  
31.25 MHz  
4
16  
1
500 MHz  
1000 MHz  
1/2  
15.625 MHz  
500 MHz  
1000 MHz  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
FCLK  
DA1  
DA0  
DCLK  
A0  
A0  
A0  
A0  
D9  
A0  
D7  
A0  
D5  
A0  
D3  
A0  
D1  
A1  
A1  
A1  
D11  
A1  
D9  
A1  
D7  
A1  
D5  
A1  
D3  
A1  
D1  
D15 D13 D11  
D15 D13  
2-Wire  
8x Serialization  
A0 A0  
D14 D12 D10  
A0  
A0  
D8  
A0  
D6  
A0  
D4  
A0  
D2  
A0  
D0  
A1 A1  
D14 D12 D10  
A1  
A1  
D8  
A1  
D6  
A1  
D4  
A1  
D2  
A1  
D0  
FCLK  
DA0  
1-Wire  
16x Serialization  
A0 <15:0>  
A1 <15:0>  
DCLK  
8-32. Output Data Format in Real Decimation  
8-4 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK  
frequencies based on output resolution (R), number of SLVDS lanes (L) and real decimation setting (M).  
Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output  
resolution and real decimation by 4.  
8-4. Serial LVDS Lane Rate Examples with Real Decimation and 16-bit Output Resolution  
DECIMATION  
SETTING  
ADC SAMPLING  
RATE  
OUTPUT  
RESOLUTION  
# of WIRES  
FCLK  
DCLKIN, DCLK  
DA/B0,1  
FS / M / 2 (L = 2)  
FS / M (L = 1, 1/2)  
M
FS  
R
L
[DA/B0,1] / 2  
FS x R / L / M  
2
1
15.625 MHz  
125 MHz  
250 MHz  
500 MHz  
250 MHz  
500 MHz  
1000 MHz  
4
125 MSPS  
16  
31.25 MHz  
1/2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.5 Digital Interface  
The serial LVDS interface supports the data output with 2-wire, 1-wire and 1/2-wire operation. The actual data  
output rate depends on the output resolution and number of lanes used.  
The ADC3564 requires an external serial LVDS clock input (DCLKIN), which is used to transmit the data out of  
the ADC along with the data clock (DCLK). The phase relationship between DCLKIN and the sampling clock is  
irrelevant but both clocks need to be frequency locked. The SLVDS interface is configured using SPI register  
writes.  
8.3.5.1 Output Formatter  
The digital output interface utilizes a flexible output bit mapper as shown in 8-33. The bit mapper takes the 14-  
bit output directly from the ADC or from digital filter block and reformats it to a resolution of 14, 16, 18 or 20-bit.  
The output serialization factor gets adjusted accordingly for 2-, 1- and 1/2-wire interface modes. The maximum  
SLVDS interface output data rate can not be exceeded independent of output resolution or serialization factor.  
When using a higher resolution like 16-bit output for example in non-decimation mode, the 2 LSBs are set to 0.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
Output  
Bit Mapper  
PATTERN  
N
8-33. Interface output bit mapper  
8-5 provides an overview for the resulting serialization factor depending on output resolution and output  
modes. Note that the DCLKIN frequency needs to be adjusted accordingly as well. Changing the output  
resolution to 16-bit, 2-wire mode for example would result in DCLKIN = FS * 4 instead of * 3.5.  
The output bit mapper can be used for bypass and decimation filter.  
8-5. Serialization factor vs output resolution for different output modes  
OUTPUT  
RESOLUTION  
Interface SERIALIZATION  
FCLK  
DCLKIN  
DCLK  
D0/D1  
2-Wire  
1-Wire  
7x  
FS/2  
FS  
FS* 3.5  
FS* 7  
FS* 3.5  
FS* 7  
FS* 7  
FS* 14  
FS* 28  
FS* 8  
14-bit (default)  
14x  
28x  
8x  
1/2-Wire  
2-Wire  
FS  
FS* 14  
FS* 4  
FS* 14  
FS* 4  
FS/2  
FS  
16-bit  
18-bit  
20-bit  
1-Wire  
16x  
32x  
9x  
FS* 8  
FS* 8  
FS* 16  
FS* 32  
FS* 9  
1/2-Wire  
2-Wire  
FS  
FS* 16  
FS* 4.5  
FS* 9  
FS* 16  
FS* 4.5  
FS* 9  
FS/2  
FS  
1-Wire  
18x  
36x  
10x  
20x  
40x  
FS* 18  
FS* 36  
FS* 10  
FS* 20  
FS* 40  
1/2-Wire  
2-Wire  
FS  
FS* 18  
FS* 5  
FS* 18  
FS* 5  
FS/2  
FS  
1-Wire  
FS* 10  
FS* 20  
FS* 10  
FS* 20  
1/2-Wire  
FS  
The programming sequence to change the output interface and/or resolution from default settings is shown in 节  
8.3.5.3.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.5.2 Output Bit Mapper  
The output bit mapper allows to change the output bit order for any selected interface mode.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
PATTERN  
Output  
Bit Mapper  
N
8-34. Output Bit Mapper  
It is a two step process to change the output bit mapping and assemble the output data bus:  
1. Both channel A and B can have up to 20-bit output. Each output bit of either channel has a unique identifier  
bit as shown in 8-6. The MSB starts with bit D19 depending on output resolution chosen the LSB would  
be D6 (14-bit) to D0 (20-bit). The previous sample is only needed in 2-w mode.  
2. The bit mapper is then used to assemble the output sample. The following sections detail how to remap the  
serial output format.  
8-6. Unique identifier of each data bit  
Bit  
Channel A  
Channel B  
Previous sample (2w only)  
Current sample  
0x6D  
0x6C  
0x67  
Previous sample (2w only)  
Current sample  
0x69  
D19 (MSB)  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
0x2D  
0x2C  
0x27  
0x26  
0x25  
0x24  
0x1F  
0x1E  
0x1D  
0x1C  
0x17  
0x16  
0x15  
0x14  
0x0F  
0x0E  
0x0D  
0x0C  
0x07  
0x06  
0x29  
0x28  
0x23  
0x22  
0x21  
0x20  
0x1B  
0x1A  
0x19  
0x18  
0x13  
0x12  
0x11  
0x10  
0x0B  
0x0A  
0x09  
0x08  
0x03  
0x02  
0x68  
0x63  
0x66  
0x62  
0x65  
0x61  
0x64  
0x60  
0x5F  
0x5B  
0x5A  
0x59  
0x5E  
0x5D  
0x5C  
0x57  
0x58  
0x53  
D8  
0x56  
0x52  
D7  
0x55  
0x51  
D6  
0x54  
0x50  
D5  
0x4F  
0x4B  
0x4A  
0x49  
D4  
0x4E  
0x4D  
0x4C  
0x47  
D3  
D2  
0x48  
D1  
0x43  
D0 (LSB)  
0x46  
0x42  
In the serial output mode, a data bit (with unique identifier) needs to be assigned to each location within the  
serial output stream. There are a total of 40 addresses available per channel. Channel A spans from address  
0x39 to 0x60 and channel B from address 0x61 to 0x88. When using complex decimation, the output bit mapper  
is applied to both the Iand the Qsample.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
2-wire mode: in this mode both the current and the previous sample have to be used in the address space as  
shown in 8-35. The address order is different for 14/18-bit and 16/20-bit. Note: there are unused addresses  
between samples for resolution less than 20-bit (grey back ground), which can be skipped if not used.  
14-bit  
16-bit 18-bit 20-bit  
14-bit  
16-bit 18-bit 20-bit  
0x55 0x56 0x53 0x54 0x51 0x52 0x4F 0x50 0x4D 0x4E  
0x56 0x55 0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
14/18-bit 0x5F 0x60 0x5D 0x5E 0x5B 0x5C 0x59 0x5A 0x57 0x58  
0x60 0x5F 0x5E 0x5D 0x5C 0x5B 0x5A 0x59 0x58 0x57  
DA1  
DA0  
16/20-bit  
14/18-bit 0x4B 0x4C 0x49 0x4A 0x47 0x48 0x45 0x46 0x43 0x44 0x41 0x42 0x3F 0x40 0x3D 0x3E 0x3B 0x3C 0x39 0x3A  
16/20-bit 0x4C 0x4B 0x4A 0x49 0x48 0x47 0x46 0x45 0x44 0x43 0x42 0x41 0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39  
14/18-bit 0x87 0x88 0x85 0x85 0x83 0x83 0x81 0x81 0x7F 0x7F 0x7D 0x7E 0x7B 0x7C 0x79 0x7A 0x77 0x78 0x75 0x76  
16/20-bit 0x88 0x87 0x86 0x86 0x84 0x84 0x82 0x82 0x80 0x80 0x7E 0x7D 0x7C 0x7B 0x7A 0x79 0x78 0x77 0x76 0x75  
DB1  
DB0  
0x73 0x74 0x71 0x72 0x6F 0x70 0x6D 0x6E 0x6B 0x6C 0x69 0x6A 0x67 0x68 0x65 0x66 0x63 0x64 0x61 0x62  
0x74 0x73 0x72 0x71 0x70 0x6F 0x6E 0x6D 0x6C 0x6B 0x6A 0x69 0x68 0x67 0x66 0x65 0x64 0x63 0x62 0x61  
14/18-bit  
16/20-bit  
Previous Sample  
Current Sample  
8-35. 2-wire output bit mapper  
In the following example (8-36), the 16-bit 2-wire serial output is reordered to where lane DA1/DB1 carries the  
8 MSB and lane DA0/DB0 carries 8 LSBs.  
Previous Sample  
Current Sample  
D19A  
(0x60  
0x2D)  
D18A  
(0x5F  
0x2C)  
D17A  
(0x5E  
0x27)  
D16A  
(0x5D  
0x26)  
D15A  
(0x5C  
0x25)  
D14A  
(0x5B  
0x24)  
D13A  
(0x5A  
0x1F)  
D12A  
(0x59  
0x1E)  
D19A  
(0x56  
0x6D)  
D18A  
(0x55  
0x6C)  
D17A  
(0x54  
0x67)  
D16A  
(0x53  
0x66)  
D15A  
(0x52  
0x65)  
D14A  
(0x51  
0x64)  
D13A  
(0x50  
0x5F)  
D12A  
(0x4F  
0x5E)  
DA1  
DA0  
D11A  
(0x4C  
0x1D)  
D10A  
(0x4B  
0x1C)  
D9A  
(0x4A  
0x17)  
D8A  
(0x49  
0x16)  
D7A  
(0x48  
0x15)  
D6A  
(0x47  
0x14)  
D5A  
(0x46  
0x0F)  
D4A  
(0x45  
0x0E)  
D11A  
(0x42  
0x5D)  
D10A  
(0x41  
0x5C)  
D9A  
(0x40  
0x57)  
D8A  
(0x39  
0x56)  
D7A  
(0x38  
0x55)  
D6A  
(0x37  
0x54)  
D5A  
(0x36  
0x4F)  
D4A  
(0x35  
0x4E)  
D19B  
(0x88  
0x29)  
D18B  
(0x87  
0x28)  
D17B  
(0x86  
0x23)  
D16B  
(0x85  
0x22)  
D15B  
(0x84  
0x21)  
D14B  
(0x83  
0x20)  
D13B  
(0x82  
0x1B)  
D12B  
(0x81  
0x1A)  
D19B  
(0x7E  
0x69)  
D18B  
(0x7D  
0x68)  
D17B  
(0x7C  
0x63)  
D16B  
(0x7B  
0x62)  
D15B  
(0x7A  
0x61)  
D14B  
(0x79  
0x60)  
D13B  
(0x78  
0x5B)  
D12B  
(0x77  
0x5A)  
DB1  
DB0  
D11B  
(0x74  
0x19)  
D10B  
(0x73  
0x18)  
D9B  
(0x72  
0x13)  
D8B  
(0x71  
0x12)  
D7B  
(0x70  
0x11)  
D6B  
(0x6F  
0x10)  
D5B  
(0x6E  
0x0B)  
D4B  
(0x6D  
0x0A)  
D11B  
(0x6A  
0x59)  
D10B  
(0x69  
0x58)  
D9B  
(0x68  
0x53)  
D8B  
(0x67  
0x52)  
D7B  
(0x66  
0x51)  
D6B  
(0x65  
0x50)  
D5B  
(0x64  
0x4B)  
D4B  
(0x63  
0x4A)  
8-36. Example: 2-wire output bit mapping  
1-wire mode: Only the current sample needs to programmed in the address space. If desired, it can be  
duplicated on DA1/DB1 as well (using addresses shown below) in order to have a redundant output. Lane  
DA1/DB1 needs to be powered up in that case.  
14-bit  
16-bit  
18-bit  
20-bit  
DA0  
(default)  
0x4C 0x4B 0x4A 0x49 0x48 0x47 0x46 0x45 0x44 0x43 0x42 0x41 0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39  
0x60 0x5F 0x5E 0x5D 0x5C 0x5B 0x5A 0x59 0x58 0x57 0x56 0x55 0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
DA1  
DB0  
(default)  
0x74 0x73 0x72 0x71 0x70 0x6F 0x6E 0x6D 0x6C 0x6B 0x6A 0x69 0x68 0x67 0x66 0x65 0x64 0x63 0x62 0x61  
0x88 0x87 0x86 0x85 0x84 0x83 0x82 0x81 0x80 0x7F 0x7E 0x7D 0x7C 0x7B 0x7A 0x79 0x78 0x77 0x76 0x75  
DB1  
8-37. 1-wire output bit mapping  
½-wire mode: The output is only lane DA0 and the sample order is programmed into the 40 addresses of chA  
(from 0x39 to 0x60). It covers 2 samples (one for chA, one for chB) as shown below. If desired it can be  
duplicated on DB0 as well (using addresses shown 8-38) in order to have a redundant output. Lane DB0  
needs to be powered up in that case.  
14-bit  
16-bit  
18-bit  
20-bit  
16-bit  
18-bit  
20-bit  
14-bit  
DA0  
(default)  
...  
...  
0x4C 0x4B  
0x88 0x87  
0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39 0x60 0x5F  
0x7C 0x7B 0x7A 0x79 0x78 0x77 0x76 0x75 0x74 0x73  
0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
0x68 0x67 0x66 0x65 0x64 0x63 0x62 0x61  
...  
...  
DB0  
8-38. 1/2-wire output bit mapping  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.5.3 Output Interface/Mode Configuration  
The following sequence summarizes all the relevant registers for changing the output interface and/or enabling  
the decimation filter. Steps 1 and 2 must come first since the E-Fuse load reset the SPI writes, the remaining  
steps can come in any order.  
8-7. Configuration steps for changing interface or decimation  
STEP  
FEATURE  
ADDRESS  
DESCRIPTION  
Select the output interface bit mapping depending on resolution and output interface.  
Output Resolution  
14-bit  
2-wire  
0x2B  
0x4B  
0x2B  
0x4B  
1-wire  
1/2-wire  
0x8D  
1
0x07  
16-bit  
0x6C  
18-bit  
20-bit  
Load the output interface bit mapping using the E-fuse loader (0x13, D0). Program register 0x13 to  
0x01, wait ~ 1ms so that bit mapping is loaded properly followed by 0x13 0x00.  
2
0x13  
Configure the FCLK frequency based on bypass/decimation and number of lanes used.  
FCLK SRC  
(D7)  
FCLK DIV  
(D4)  
TOG FCLK  
(D0)  
Bypass/Dec  
SLVDS  
2-wire  
1-wire  
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
Bypass/ Real  
Decimation  
3
4
0x19  
0x1B  
1/2-wire  
2-wire  
Output  
Interface  
Complex  
Decimation  
1-wire  
1/2-wire  
Select the output interface resolution using the bit mapper (D5-D3).  
Select the FCLK pattern for decimation for proper duty cycle output of the frame clock.  
Output Resolution  
14-bit  
2-wire  
1-wire  
1/2-wire  
0xFE000  
0xFF000  
0xFF800  
0xFFC00  
16-bit  
Real Decimation  
use default  
0x20  
0x21  
0x22  
18-bit  
5
20-bit  
use default  
14-bit  
16-bit  
Complex  
Decimation  
0xFFFFF  
0xFFFFF  
18-bit  
20-bit  
0x39..0x60 Change output bit mapping for chA and chB if desired. This works also with the default interface  
0x61..0x88 selection.  
6
7
8
0x24  
0x25  
Enable the decimation filter  
Configure the decimation filter  
0x2A/B/C/D  
0x31/2/3/4  
9
Program the NCO frequency for complex decimation (can be skipped for real decimation)  
Configure the complex output data stream (set both bits to 0 for real decimation)  
Decimation  
Filter  
SLVDS  
2-wire  
OP-Order (D4)  
Q-Delay (D3)  
0x27  
0x2E  
10  
11  
1
0
1
0
1
1
1-wire  
1/2-wire  
0x26  
Set the mixer gain and toggle the mixer reset bit to update the NCO frequency.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.3.5.3.1 Configuration Example  
The following is a step by step programming example to configure the ADC3564 to complex decimation by 8 with  
1-wire SLVDS and 16-bit output.  
1. 0x07 (address) 0x6C (load bit mapper configuration for 16-bit output with 1-wire SLVDS)  
2. 0x13 0x01 (load e-fuse), wait 1 ms, 0x13 0x00  
3. 0x19 0x80 (configure FCLK)  
4. 0x1B 0x88 (select 16-bit output resolution)  
5. 0x20 0xFF, 0x21 0xFF, 0x22 0x0F (configure FCLK pattern)  
6. 0x24 0x06 (enable decimation filter)  
7. 0x25 0x30 (configure complex decimation by 8)  
8. 0x2A/B/C/D and 0x31/32/33/34 (program NCO frequency)  
9. 0x27/0x2E 0x08 (configure Q-delay register bit)  
10. 0x26 0xAA, 0x26 0x88 (set digital mixer gain to 6-dB and toggle the mixer update)  
8.3.5.4 Output Data Format  
The output data can be configured to two's complement (default) or offset binary formatting using SPI register  
writes (register 0x8F and 0x92). 8-8 provides an overview for minimum and maximum output codes for the  
two formatting options. The actual output resolution is set by the output bit mapper.  
8-8. Overview of minimum and maximum output codes vs output resolution for different formatting  
Two's Complement (default)  
Offset Binary  
RESOLUTION (BIT)  
14  
16  
14  
16  
VIN,MAX  
0
0x1FFF  
0x7FFF  
0x3FFF  
0x2000  
0xFFFF  
0x8000  
0x0000  
VIN,MIN  
0x2000  
0x8000  
0x0000  
8.3.6 Test Pattern  
In order to enable in-circuit testing of the digital interface, the following test patterns are supported and enabled  
via SPI register writes (0x14/0x15/0x16). The test pattern generator is located after the decimation filter as  
shown in 8-39. In decimation mode (real and complex), the test patterns replace the output data of the DDC -  
however channel A controls the test patterns for both channels.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
Output  
Bit Mapper  
PATTERN  
N
8-39. Test Pattern Generator  
RAMP Pattern: The step size needs to be configured in the CUSTOM PAT register according to the native  
resolution of the ADC. When selecting a higher output resolution then the additional LSBs will still be 0 in  
RAMP pattern mode.  
00001: 18-bit output resolution  
00100: 16-bit output resolution  
10000: 14-bit output resolution  
Custom Pattern: Configured in the CUSTOM PAT register  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Normal operation  
In normal operating mode, the entire ADC full scale range gets converted to a digital output with 14-bit  
resolution. The output is available in as little as 1 clock cycle with 1-wire SLVDS interface.  
8.4.2 Power Down Options  
A global power down mode can be enabled via SPI as well as using the power down pin (PDN/SYNC). There is  
an internal pull-down 21 kΩ resistor on the PDN/SYNC input pin and the pin is active high - so the pin needs to  
be pulled high externally to enter global power down mode.  
The SPI register map provides the capability to enable/disable individual blocks directly or via PDN pin mask in  
order to trade off power consumption vs wake up time as shown in 8-9.  
REFBUF  
VREF  
AIN  
1.2V REF  
Digital Downconverter  
Crosspoint  
Switch  
NCO  
N
ADC  
Dig I/F  
CLK  
8-40. Power Down Configurations  
8-9. Overview of Power Down Options  
PDN  
via SPI  
Mask for  
Global PDN  
Feature -  
Default  
Power  
Impact  
Wake-up  
time  
Function/ Register  
ADC  
Comment  
ADC is included in Global PDN  
automatically  
Yes  
-
Enabled  
Enabled  
Should only be powered down in power  
down state.  
Reference gain amplifier  
Internal 1.2V reference  
Yes  
Yes  
~ 0.4 mA  
~3 us  
Internal/external reference selection is  
available through SPI and REFBUF pin.  
External ref  
~ 1-3.5 mA  
~3 ms  
Yes  
Single ended clock input saves ~ 1mA  
compared to differential.  
Some programmability is available  
through the REFBUF pin.  
Differential  
clock  
Clock buffer  
Yes  
~ 1 mA  
varies  
n/a  
Depending on output interface mode,  
unused output drivers can be powered  
down for maximum power savings  
Output interface drivers  
Decimation filter  
Yes  
Yes  
-
-
Enabled  
Disabled  
n/a  
n/a  
see electrical  
table  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.5 Programming  
The device is primarily configured and controlled using the serial programming interface (SPI) however it can  
operate in a default configuration without requiring the SPI interface. Furthermore the power down function as  
well as internal/external reference configuration is possible via pin control (PDN/SYNC and REFBUF pin).  
备注  
The power down command (via PIN or SPI) only goes in effect with the ADC sampling clock present.  
After initial power up, the default operating configuration is shown in 8-10.  
8-10. Default device configuration after power up  
FEATURE  
Signal Input  
Clock Input  
Reference  
DEFAULT  
Differential  
Differential  
External  
Decimation  
Interface  
DDC bypass  
2-wire  
Output Format  
2s complement  
8.5.1 Configuration using PINs only  
The ADC voltage reference can be selected using the REFBUF pin. Even though there is an internal 100 kΩ  
pull-up resistor to AVDD, the REFBUF pin should be set to a voltage externally and not left floating.  
When using a voltage divider to set the REFBUF voltage (R1 and R2 in 8-11), resistor values < 5 kΩ should  
be used.  
AVDD  
R1  
AVDD  
100 k  
REFBUF  
R2  
8-41. Configuration of external voltage on REFBUF pin  
8-11. REFBUF voltage levels control voltage reference selection  
REFBUF VOLTAGE  
VOLTAGE REFERENCE OPTION  
CLOCKING OPTION  
> 1.7 V (Default)  
1.2 V (1.15-1.25V)  
0.5 - 0.7V  
External reference  
Differential clock input  
Differential clock input  
Differential clock input  
Single ended clock input  
External 1.2V input on REFBUF pin using internal gain buffer  
Internal reference  
< 0.1V  
Internal reference  
8.5.2 Configuration using the SPI interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock) and SDIO (serial interface data input/output) pins. Serially shifting  
bits into the device is enabled when SEN is low. Serial data input are latched at every SCLK rising edge when  
SEN is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when SEN is low.  
When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples  
of 24-bit words within a single active SEN pulse. The interface can function with SCLK frequencies from 12 MHz  
down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.5.2.1 Register Write  
The internal registers can be programmed following these steps:  
1. Drive the SEN pin low  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address) and bits A[14:12] in address field to 0.  
3. Initiate a serial interface cycle by specifying the address of the register (A[11:0]) whose content is written and  
4. Write the 8-bit data that are latched in on the SCLK rising edges  
8-42 shows the timing requirements for the serial register write operation.  
Register Address <11:0>  
A7 A6 A5 A4  
Register Data <7:0>  
R/W  
0
SDIO  
0
0
0
A11 A10  
A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tH,SDIO  
tSCLK  
tS,SDIO  
SCLK  
SEN  
tS,SEN  
tH,SEN  
RESET  
8-42. Serial Register Write Timing Diagram  
8.5.2.2 Register Read  
The device includes a mode where the contents of the internal registers can be read back using the SDIO pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers. Set A[14:12] in address  
field to 0.  
3. Initiate a serial interface cycle specifying the address of the register (A[11:0]) whose content must be read  
4. The device launches the contents (D[7:0]) of the selected register on the SDIO pin on SCLK falling edge  
5. The external controller can capture the contents on the SCLK rising edge  
Register Address <11:0>  
Register Data <7:0>  
R/W  
1
tOZD  
A0  
tOD  
SDIO  
0
0
0
A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
D7  
D6  
D5 D4 D3  
D2  
D1  
D0  
SCLK  
SEN  
tODZ  
8-43. Serial Register Read Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.6 Register Maps  
8-12. Register Map Summary  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0]  
0x00  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
0
0
0
0
0
0
RESET  
0x07  
OP IF MAPPER  
0
OP IF EN  
0
OP IF SEL  
PDN  
PDN  
GLOBAL  
0x08  
0x09  
0x0D  
0x0E  
0
0
0
PDN CLKBUF  
PDN A  
1
REFAMP  
PDN  
FCLKOUT  
PDN  
0
0
PDN DA1  
PDN DA0  
PDN DB1  
PDN DB0  
0
DCLKOUT  
MASK  
MASK  
REFAMP  
MASK BG  
DIS  
0
0
0
CLKBUF  
SYNC PIN  
EN  
SPI SYNC SPI SYNC EN  
REF CTRL  
REF SEL  
SE CLK EN  
0x11  
0x13  
0x14  
0x15  
0x16  
0x19  
0x1A  
0x1B  
0x1E  
0x20  
0x21  
0x22  
0x24  
0x25  
0x26  
0
0
0
0
SE A  
0
0
0
0
0
0
0
0
0
0
E-FUSE LD  
CUSTOM PAT [7:0]  
CUSTOM PAT [15:8]  
TEST PAT A  
TEST PAT B  
CUSTOM PAT [17:16]  
FCLK SRC  
0
0
0
FCLK DIV  
LVDS SWING HIGH  
BIT MAPPER RES  
0
0
0
0
0
TOG FCLK  
0
0
20B EN  
0
LVDS SWING LOW  
0
MAPPER EN  
0
0
LVDS DATA DEL  
LVDS DCLK DEL  
FCLK PAT [7:0]  
FCLK PAT [15:8]  
0
0
0
0
0
FCLK PAT [19:16]  
0
0
DDC MUX  
DIG BYP  
0
DDC EN  
0
0
DDC MUX EN  
DECIMATION  
MIX RES A  
REAL OUT  
MIX PHASE  
FS/4 MIX B  
MIX GAIN A  
FS/4 MIX A  
MIX GAIN B  
MIX RES B  
FS/4 MIX PH  
A
0x27  
0
0
0
0
0
OP ORDER A  
Q-DEL A  
0
0
0x2A  
0x2B  
0x2C  
0x2D  
NCO A [7:0]  
NCO A [15:8]  
NCO A [23:16]  
NCO A [31:24]  
FS/4 MIX PH  
B
0x2E  
0
OP ORDER B  
Q-DEL B  
0
0
0x31  
0x32  
NCO B [7:0]  
NCO B [15:8]  
0x33  
NCO B [23:16]  
0x34  
NCO B [31:24]  
0x39..0x60  
0x61..0x88  
0x8F  
OUTPUT BIT MAPPER CHA  
OUTPUT BIT MAPPER CHB  
0
0
0
0
0
0
0
0
0
0
0
0
FORMAT A  
FORMAT B  
0
0
0x92  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8.6.1 Detailed Register Description  
8-44. Register 0x00  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
RESET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-13. Register 0x00 Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
0
0
Must write 0  
RESET  
This bit resets all internal registers to the default values and self  
clears to 0.  
8-45. Register 0x07  
7
6
5
4
3
2
1
0
OP IF MAPPER  
R/W-0  
0
OP IF EN  
R/W-0  
OP IF SEL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-14. Register 0x07 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
OP IF MAPPER  
R/W  
000  
Output interface mapper. This register contains the proper  
output interface bit mapping for the different interfaces. The  
interface bit mapping is internally loaded from e-fuses and also  
requires a fuse load command to go into effect (0x13, D0).  
Register 0x07 along with the E-Fuse Load (0x13, D0) needs to  
be loaded first in the programming sequence since the E-Fuse  
load resets the SPI writes.  
After initial reset the default output interface variant is loaded  
automatically from fuse internally. However when reading back  
this register reads 000 until a value is written using SPI.  
001: 2-wire, 18 and 14-bit  
010: 2-wire, 16-bit  
011: 1-wire  
100: 0.5-wire  
others: not used  
4
3
0
R/W  
R/W  
R/W  
0
Must write 0  
OP IF EN  
OP IF SEL  
0
Enables changing the default output interface mode (D2-D0).  
2-0  
000  
Selection of the output interface mode. OP IF EN (D3) needs to  
be enabled also.  
After initial reset the default output interface is loaded  
automatically from fuse internally. However when reading back  
this register reads 000 until a value is written using SPI.  
011: 2-wire  
100: 1-wire  
101: 0.5-wire  
others: not used  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-46. Register 0x08  
7
0
6
0
5
4
3
2
1
1
0
PDN CLKBUF PDN REFAMP  
R/W-0 R/W-0  
0
PDN A  
R/W-0  
PDN GLOBAL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-15. Register 0x08 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
0
0
0
Must write 0  
PDN CLKBUF  
Powers down sampling clock buffer  
0: Clock buffer enabled  
1: Clock buffer powered down  
4
PDN REFAMP  
R/W  
0
Powers down internal reference gain amplifier  
0: REFAMP enabled  
1: REFAMP powered down  
3
2
0
R/W  
R/W  
0
0
Must write 0  
Powers down ADC channel A  
0: ADC channel A enabled  
PDN A  
1: ADC channel A powered down  
1
0
R/W  
R/W  
Must write 1  
1
1
0
PDN GLOBAL  
Global power down via SPI  
0: Global power disabled  
1: Global power down enabled. Power down mask (register  
0x0D) determines which internal blocks are powered down.  
8-47. Register 0x09  
7
0
6
0
5
4
3
2
1
0
PDN FCLKOUT PDN DCLKOUT  
R/W-0 R/W-0  
PDN DA1  
R/W-0  
PDN DA0  
R/W-0  
PDN DBA1  
R/W-0  
PDN DB0  
R/W-0  
R/W-0  
R/W-0  
8-16. Register 0x09 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
0
0
0
Must write 0  
PDN FCLKOUT  
Powers down frame clock (FCLK) LVDS output buffer  
0: FCLK output buffer enabled  
1: FCLK output buffer powered down  
4
3
PDN DCLKOUT  
PDN DA1  
R/W  
R/W  
0
1
Powers down DCLK LVDS output buffer  
0: DCLK output buffer enabled  
1: DCLK output buffer powered down  
Powers down LVDS output buffer for channel A, lane 1.  
Powered down automatically in 1-wire and 1/2-wire mode.  
0: DA1 LVDS output buffer enabled  
1: DA1 LVDS output buffer powered down  
2
1
PDN DA0  
PDN DB1  
R/W  
R/W  
1
0
Powers down LVDS output buffer for channel A, lane 0.  
0: DA0 LVDS output buffer enabled  
1: DA0 LVDS output buffer powered down  
Powers down LVDS output buffer for channel B, lane 1.  
Powered down automatically in 1-wire and 1/2-wire mode.  
Default is powered down.  
0: DB1 LVDS output buffer enabled  
1: DB1 LVDS output buffer powered down  
0
PDN DB0  
R/W  
0
Powers down LVDS output buffer for channel B, lane 0.  
Powered down automatically in 1/2-wire mode. Default is  
powered down.  
0: DB0 LVDS output buffer enabled  
1: DB0 LVDS output buffer powered down  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-48. Register 0x0D (PDN GLOBAL MASK)  
7
0
6
0
5
4
3
2
1
0
0
0
MASK CLKBUF MASK REFAMP MASK BG DIS  
R/W-0 R/W-0 R/W-0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-17. Register 0x0D Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
MASK CLKBUF  
MASK REFAMP  
MASK BG DIS  
Global power down mask control for sampling clock input buffer.  
0: Clock buffer will get powered down when global power down  
is exercised.  
1: Clock buffer will NOT get powered down when global power  
down is exercised.  
2
1
R/W  
R/W  
0
0
Global power down mask control for reference amplifier.  
0: Reference amplifier will get powered down when global power  
down is exercised.  
1: Reference amplifier will NOT get powered down when global  
power down is exercised.  
Global power down mask control for internal 1.2V bandgap  
voltage reference. Setting this bit reduces power consumption in  
global power down mode but increases the wake up time. See  
the power down option overview.  
0: Internal 1.2V bandgap voltage reference will NOT get  
powered down when global power down is exercised.  
1: Internal 1.2V bandgap voltage reference will get powered  
down when global power down is exercised.  
0
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-49. Register 0x0E  
7
6
5
4
3
2
1
0
SYNC PIN EN  
R/W-0  
SPI SYNC  
R/W-0  
SPI SYNC EN  
R/W-0  
0
REF CTL  
R/W-0  
REF SEL  
SE CLK EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-18. Register 0x0E Field Descriptions  
Bit  
Field  
SYNC PIN EN  
Type  
Reset  
Description  
7
R/W  
0
This bit controls the functionality of the SYNC/PDN pin.  
0: SYNC/PDN pin exercises global power down mode when pin  
is pulled high.  
1: SYNC/PDN pin issues the SYNC command when pin is  
pulled high.  
6
5
SPI SYNC  
R/W  
R/W  
0
0
Toggling this bit issues the SYNC command using the SPI  
register write. SYNC using SPI must be enabled as well (D5).  
This bit doesn't self reset to 0.  
0: Normal operation  
1: SYNC command issued.  
SPI SYNC EN  
This bit enables synchronization using SPI instead of the  
SYNC/PDN pin.  
0: Synchronization using SPI register bit disabled.  
1: Synchronization using SPI register bit enabled.  
4
3
0
R/W  
R/W  
0
0
Must write 0  
REF CTL  
This bit determines if the REFBUF pin controls the voltage  
reference selection or the SPI register (D2-D1).  
0: The REFBUF pin selects the voltage reference option.  
1: Voltage reference is selected using SPI (D2-D1) and single  
ended clock using D0.  
2-1  
REF SEL  
R/W  
R/W  
00  
Selects of the voltage reference option. REF CTRL (D3) must be  
set to 1.  
00: Internal reference  
01: External voltage reference (1.2V) using internal reference  
buffer (REFBUF)  
10: External voltage reference  
11: not used  
0
SE CLK EN  
0
Selects single ended clock input and powers down the  
differential sampling clock input buffer. REF CRTL (D3) must be  
set to 1.  
0: Differential clock input  
1: Single ended clock input  
8-50. Register 0x11  
7
0
6
0
5
4
3
2
0
1
0
0
0
SE A  
R/W-0  
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-19. Register 0x11 Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
0
0
Must write 0  
SE A  
This bit enables single ended analog input, channel A. This  
mode reduces the SNR by 3-dB.  
0: Differential input  
1: Single ended input  
4-0  
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-51. Register 0x13  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
E-FUSE LD  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-20. Register 0x13 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
E-FUSE LD  
This register bit loads the internal bit mapping for different  
interfaces. After setting the interface in register 0x07, this E-  
FUSE LD bit needs to be set to 1 and reset to 0 for loading to go  
into effect. Register 0x07 along with the E-Fuse Load (0x13, D0)  
needs to be loaded first in the programming sequence since the  
E-Fuse load resets the SPI writes.  
0: E-FUSE LOAD set  
1: E-FUSE LOAD reset  
8-52. Register 0x14/15/16  
7
6
5
4
3
2
1
0
CUSTOM PAT [7:0]  
CUSTOM PAT [15:8]  
TEST PAT B  
R/W-0  
TEST PAT A  
R/W-0  
CUSTOM PAT [17:16]  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-21. Register 0x14/15/16 Field Descriptions  
Bit  
Field  
CUSTOM PAT [17:0]  
Type  
Reset  
Description  
7-0  
R/W  
00000000 This register is used for two purposes:  
It sets the constant custom pattern starting from MSB  
It sets the RAMP pattern increment step size.  
00001: Ramp pattern for 18-bit ADC  
00100: Ramp pattern for 16-bit ADC  
10000: Ramp pattern for 14-bit ADC  
7-5  
TEST PAT B  
R/W  
000  
Enables test pattern output mode for channel B (NOTE: The test  
pattern is set prior to the bit mapper and is based on native  
resolution of the ADC starting from the MSB). These work in  
either output format.  
000: Normal output mode (test pattern output disabled)  
010: Ramp pattern: need to set proper increment using  
CUSTOM PAT register  
011: Constant Pattern using CUSTOM PAT [17:0] in register  
0x14/15/16.  
others: not used  
4-2  
TEST PAT A  
R/W  
000  
Enables test pattern output mode for channel A (NOTE: The test  
pattern is set prior to the bit mapper and is based on native  
resolution of the ADC starting from the MSB). These work in  
either output format.  
000: Normal output mode (test pattern output disabled)  
010: Ramp pattern: need to set proper increment using  
CUSTOM PAT register  
011: Constant Pattern using CUSTOM PAT [17:0] in register  
0x14/15/16.  
others: not used  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-53. Register 0x19  
7
6
0
5
0
4
3
2
0
1
0
0
FCLK SRC  
FCLK DIV  
R/W-0  
0
TOG FCLK  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-22. Register 0x19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FCLK SRC  
R/W  
0
User has to select if FCLK signal comes from ADC or from DDC  
block. Here real decimation is treated same as bypass mode  
0: FCLK generated from ADC. FCLK SRC set to 0 for DDC  
bypass, real decimation mode and 1/2-w complex decimation  
mode.  
1: FCLK generated from DDC block. In complex decimation  
mode only this bit needs to be set for 2-w and 1-w output  
interface mode but NOT for 1/2-w mode.  
6-5  
4
0
R/W  
R/W  
0
0
Must write 0  
FCLK DIV  
This bit needs to be set to 1 for 2-w output mode in bypass/real  
decimation mode only .  
0: All output interface modes except 2-w decimation bypass and  
real decimation mode.  
1: 2-w output interface mode for decimation bypass and real  
decimation.  
3-1  
0
0
R/W  
R/W  
0
0
Must write 0  
TOG FCLK  
This bit adjusts the FCLK signal appropriately for 1/2-wire mode  
where FCLK is stretched to cover channel A and channel B.  
This bit ONLY needs to be set in 1/2-wire mode with complex  
decimation mode.  
0: all other modes.  
1: FCLK for 1/2-wire complex decimation mode.  
8-23. Configuration of FCLK SRC and FCLK DIV Register Bits vs Serial Interface  
BYPASS/DECIMATION  
SERIAL INTERFACE  
FCLK SRC  
FCLK DIV  
TOG FCLK  
2-wire  
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
Decimation Bypass/ Real Decimation  
Complex Decimation  
1-wire  
1/2-wire  
2-wire  
1-wire  
1/2-wire  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-54. Register 0x1A  
7
0
6
0
5
4
3
2
1
0
LVDS SWING HIGH  
R/W-0  
LVDS SWING LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-24. Register 0x1A Field Descriptions  
Bit  
7-6  
5-3  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
LVDS SWING HIGH  
000  
These bits adjust the SLVDS interface output high side  
amplitude in 25mV steps. By using SLVDS SWING HIGH/LOW  
the differential amplitude and common mode can be adjusted.  
000: 1250 mV  
001: 1275 mV  
010: 1300 mV  
011: 1325 mV  
100: 1350 mV  
101: 1325 mV  
110: 1350 mV  
111: 1375 mV  
2-0  
LVDS SWING LOW  
R/W  
000  
These bits adjust the SLVDS interface output low side amplitude  
in 25mV steps. By using SLVDS SWING HIGH/LOW the  
differential amplitude and common mode can be adjusted.  
000: 575 mV  
001: 600 mV  
010: 625 mV  
011: 650 mV  
100: 675 mV  
101: 700 mV  
110: 725 mV  
111: 750 mV  
8-55. Register 0x1B  
7
6
5
4
3
2
0
1
0
0
0
MAPPER EN  
R/W-0  
20B EN  
R/W-0  
BIT MAPPER RES  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-25. Register 0x1B Field Descriptions  
Bit  
Field  
MAPPER EN  
Type  
Reset  
Description  
7
R/W  
0
This bit enables changing the resolution of the output (including  
output serialization factor) in bypass mode only. This bit is not  
needed for 20-bit resolution output.  
0: Output bit mapper disabled.  
1: Output bit mapper enabled.  
6
20B EN  
R/W  
R/W  
0
This bit enables 20-bit output resolution which can be useful for  
very high decimation settings so that quantization noise doesn't  
impact the ADC performance.  
0: 20-bit output resolution disabled.  
1: 20-bit output resolution enabled.  
5-3  
BIT MAPPER RES  
000  
Sets the output resolution using the bit mapper. MAPPER EN bit  
(D6) needs to be enabled when operating in bypass mode..  
000: 18 bit  
001: 16 bit  
010: 14 bit  
all others, n/a  
2-0  
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-26. Register Settings for Output Bit Mapper vs Operating Mode  
BYPASS/  
DECIMATION  
OUTPUT RESOLUTION  
MAPPER EN (D7)  
BIT MAPPER RES (D5-D3)  
Decimation Bypass  
Real Decimation  
Resolution Change  
1
0
0
000: 18-bit  
001: 16-bit  
010: 14-bit  
Resolution Change (default 18-bit)  
Complex Decimation  
8-56. Register 0x1E  
7
0
6
0
5
0
4
3
2
1
0
0
LVDS DATA DEL  
LVDS DCLK DEL  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-27. Register 0x1E Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-2  
0
0
Must write 0  
LVDS DATA DEL  
00  
These bits adjust the output timing of the SLVDS output data.  
00: no delay  
01: Data advanced by 50 ps  
10: Data delayed by 50 ps  
11: Data delayed by 100 ps  
1-0  
LVDS DCLK DEL  
R/W  
00  
These bits adjust the output timing of the SLVDS DCLK output.  
00: no delay  
01: DCLK advanced by 50 ps  
10: DCLK delayed by 50 ps  
11: DCLK delayed by 100 ps  
8-57. Register 0x20/21/22  
7
0
6
5
4
3
2
1
0
FCLK PAT [7:0]  
FCLK PAT [15:8]  
0
0
0
FCLK PAT [19:16]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-28. Register 0x20/21/22 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
FCLK PAT [19:0]  
R/W  
0xFFC00  
These bits can adjust the duty cycle of the FCLK. In decimation  
bypass mode the FCLK pattern gets adjusted automatically for  
the different output resolutions. 8-29 shows the proper FCLK  
pattern values for 1-wire and 1/2-wire in real/complex  
decimation.  
8-29. FCLK Pattern for different resolution based on interface  
DECIMATION  
OUTPUT RESOLUTION  
2-WIRE  
1-WIRE  
0xFE000  
0xFF000  
0xFF800  
0xFFC00  
1/2-WIRE  
14-bit  
16-bit  
18-bit  
20-bit  
14-bit  
16-bit  
18-bit  
20-bit  
REAL DECIMATION  
Use Default  
Use Default  
COMPLEX  
DECIMATION  
0xFFFFF  
0xFFFFF  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-58. Register 0x24  
7
0
6
0
5
0
4
3
2
1
0
DDC MUX  
DIG BYP  
R/W-0  
DDC EN  
R/W-0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-30. Register 0x24 Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
DDC MUX  
Configures DDC MUX in front of the decimation filter.  
00: ADC channel A connected to DDC A;  
01: ADC channel A connected to DDC A and DDC B.  
others: not used  
2
DIG BYP  
R/W  
0
This bit needs to be set to enable digital features block which  
includes decimation and scrambling.  
0: Digital feature block bypassed - lowest latency  
1: Data path includes digital features  
1
0
DDC EN  
0
R/W  
R/W  
0
0
Enables internal decimation filter for both channels  
0: DDC disabled.  
1: DDC enabled.  
Must write 0  
To output  
interface  
DDC  
N
N
DECIMATION  
DIG BYP  
DDC  
DDC MUX  
To output  
interface  
8-59. Register control for digital features  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-60. Register 0x25  
7
6
5
4
3
2
0
1
0
0
DDC MUX EN  
DECIMATION  
R/W-0  
REAL OUT  
R/W-0  
MIX PHASE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-31. Register 0x25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DDC MUX EN  
DECIMATION  
R/W  
0
Enables the digital mux between ADCs and decimation filters.  
This bit is required for DDC mux settings in register 0x024 (D4,  
D3) to go into effect.  
0: DDC mux disabled  
1: DDC mux enabled  
6-4  
R/W  
000  
Complex decimation setting. This applies to both channels.  
000: Bypass mode (no decimation)  
001: Decimation by 2  
010: Decimation by 4  
011: Decimation by 8  
100: Decimation by 16  
101: Decimation by 32  
others: not used  
3
REAL OUT  
R/W  
0
This bit selects real output decimation. This mode applies to  
both channels. In this mode, the decimation filter is a low pass  
filter and no complex mixing is performed to reduce power  
consumption. For maximum power savings the NCO in this case  
should be set to 0.  
0: Complex decimation  
1: Real decimation  
2-1  
0
0
R/W  
R/W  
0
0
Must write 0  
MIX PHASE  
This bit used to invert the NCO phase  
0: NCO phase as is.  
1: NCO phase inverted.  
8-61. Register 0x26  
7
6
5
4
3
2
1
0
MIX GAIN A  
MIX RES A  
R/W-0  
FS/4 MIX A  
R/W-0  
MIX GAIN B  
MIX RES B  
R/W-0  
FS/4 MIX B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-32. Register 0x26 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
MIX GAIN A  
R/W  
00  
This bit applies a 0, 3 or 6-dB digital gain to the output of digital  
mixer to compensate for the mixing loss for channel A.  
00: no digital gain added  
01: 3-dB digital gain added  
10: 6-dB digital gain added  
11: not used  
5
4
MIX RES A  
FS/4 MIX A  
R/W  
R/W  
0
0
Toggling this bit resets the NCO phase of channel A and loads  
the new NCO frequency. This bit does not self reset.  
Enables FS/4 mixing for DDC A (complex decimation only).  
0: FS/4 mixing disabled.  
1: FS/4 mixing enabled.  
3-2  
MIX GAIN B  
R/W  
00  
This bit applies a 0, 3 or 6-dB digital gain to the output of digital  
mixer to compensate for the mixing loss for channel B.  
00: no digital gain added  
01: 3-dB digital gain added  
10: 6-dB digital gain added  
11: not used  
1
MIX RES B  
R/W  
0
Toggling this bit resets the NCO phase of channel B and loads  
the new NCO frequency. This bit does not self reset.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-32. Register 0x26 Field Descriptions (continued)  
Bit  
Field  
FS/4 MIX B  
Type  
Reset  
Description  
0
R/W  
0
Enables FS/4 mixing for DDC B (complex decimation only).  
0: FS/4 mixing disabled.  
1: FS/4 mixing enabled.  
8-62. Register 0x27  
7
0
6
0
5
0
4
3
2
1
0
0
0
OP ORDER A  
R/W-0  
Q-DEL A  
R/W-0  
FS/4 MIX PH A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-33. Register 0x27 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
0
0
0
Must write 0  
OP ORDER A  
Swaps the I and Q output order for channel A  
0: Output order is I[n], Q[n]  
1: Output order is swapped: Q[n], I[n]  
3
2
Q-DEL A  
R/W  
R/W  
R/W  
0
0
0
This delays the Q-sample output of channel A by one.  
0: Output order is I[n], Q[n]  
1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]  
FS/4 MIX PH A  
0
Inverts the mixer phase for channel A when using FS/4 mixer  
0: Mixer phase is non-inverted  
1: Mixer phase is inverted  
1-0  
Must write 0  
8-63. Register 0x2A/B/C/D  
7
6
5
4
3
2
1
0
NCO A [7:0]  
NCO A [15:8]  
NCO A [23:16]  
NCO A [31:24]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-34. Register 0x2A/2B/2C/2D Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
NCO A [31:0]  
R/W  
0
Sets the 32 bit NCO value for decimation filter channel A. The  
NCO value is fNCO× 232/FS  
In real decimation mode these registers are automatically set to  
0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-64. Register 0x2E  
7
0
6
0
5
0
4
3
2
1
0
0
0
OP ORDER B  
R/W-0  
Q-DEL B  
R/W-0  
FS/4 MIX PH B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-35. Register 0x2E/2F/30 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
0
0
0
Must write 0  
OP ORDER B  
Swaps the I and Q output order for channel B  
0: Output order is I[n], Q[n]  
1: Output order is swapped: Q[n], I[n]  
3
2
Q-DEL B  
R/W  
R/W  
R/W  
0
0
0
This delays the Q-sample output of channel B by one.  
0: Output order is I[n], Q[n]  
1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]  
FS/4 MIX PH B  
0
Inverts the mixer phase for channel B when using FS/4 mixer  
0: Mixer phase is non-inverted  
1: Mixer phase is inverted  
1-0  
Must write 0  
8-65. Register 0x31/32/33/34  
7
6
5
4
3
2
1
0
NCO B [7:0]  
NCO B [15:8]  
NCO B [23:16]  
NCO B [31:24]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-36. Register 0x31/32/33/34 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
NCO B [31:0]  
R/W  
0
Sets the 32 bit NCO value for decimation filter channel B. The  
NCO value is fNCO× 232/FS  
In real decimation mode these registers are automatically set to  
0.  
8-66. Register 0x39..0x60  
7
6
5
4
3
2
1
0
OUTPUT BIT MAPPER CHA  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-37. Register 0x39..0x60 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
OUTPUT BIT MAPPER CHA  
R/W  
0
These registers are used to reorder the output data bus. See the  
8.3.5.2 on how to program it.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
8-67. Register 0x61..0x88  
7
6
5
4
3
2
1
0
OUTPUT BIT MAPPER CHB  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-38. Register 0x61..0x88 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OUTPUT BIT MAPPER CHB  
R/W  
0
These registers are used to reorder the output data bus. See the  
8.3.5.2 on how to program it.  
8-68. Register 0x8F  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-39. Register 0x8F Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
0
0
0
Must write 0  
FORMAT A  
This bit sets the output data format for channel A. Digital bypass  
register bit (0x24, D2) needs to be enabled as well.  
0: 2s complement  
1: Offset binary  
0
0
R/W  
0
Must write 0  
8-69. Register 0x92  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-40. Register 0x92 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
0
0
0
Must write 0  
FORMAT B  
This bit sets the output data format for channel B. Digital bypass  
register bit (0x24, D2) needs to be enabled as well.  
0: 2s complement  
1: Offset binary  
0
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
9 Application Information Disclaimer  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Typical Application  
A spectrum analyzer is a typical frequency domain application for the ADC3564 and its front end circuitry is very  
similar to several other systems such as software defined radio (SDR), radar or communications. Some  
applications require frequency coverage including DC or near DC so its included in this example.  
0.6V  
10 uF  
VREF  
10 k  
REFBUF  
1.2V REF  
NCO  
NCO  
Glitch Filter  
100 pF  
33 ꢀ  
N
N
Low Pass Filter  
10 ꢀ  
10 ꢀ  
180nH  
DCLKIN  
AMP  
AIN  
ADC  
33 ꢀ  
DCLK  
FCLK  
Dig I/F  
FPGA  
180nH  
VCM  
DA0/1  
DB0/1  
0.95V  
CVCM  
Device Clock  
CLK  
Control  
9-1. Typical configuration for a spectrum analyzer with DC support  
9.1.1 Design Requirements  
Frequency domain applications cover a wide range of frequencies from low input frequencies at or near DC in  
the 1st Nyquist zone to undersampling in higher Nyquist zones. If very low input frequency is supported then the  
input has to be DC coupled and the ADC driven by a fully differential amplifier (FDA). If low frequency support is  
not needed then AC coupling and use of a balun may be more suitable.  
The internal reference is used since DC precision is not needed. However the ADC AC performance is highly  
dependent on the quality of the external clock source. If in-band interferers can be present then the ADC SFDR  
performance will be a key care about as well. A higher ADC sampling rate is desirable in order to relax the  
external anti-aliasing filter an internal decimation filter can be used to reduce the digital output rate afterwards.  
9-1. Design key care-abouts  
FEATURE  
DESCRIPTION  
Signal Bandwidth  
Input Driver  
DC to 30 MHz  
Single ended to differential signal conversion and DC coupling  
External clock with low jitter  
Clock Source  
When designing the amplifier/filter driving circuit, the ADC input full-scale voltage needs to be taken into  
consideration. For example, the ADC3564 input full-scale is 3.2Vpp. When factoring in ~ 1 dB for insertion loss  
of the filter, then the amplifier needs to deliver close to 3.6Vpp. The amplifier distortion performance will degrade  
with a larger output swing and considering the ADC common mode input voltage the amplifier may not be able to  
deliver the full swing. The ADC3564 provides an output common mode voltage of 0.95V and the THS4541 for  
example can only swing within 250 mV of its negative supply. A unipolar 3.3 V amplifier power supply will thus  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
limit the maximum voltage swing to ~ 2.8Vpp. Hence if a larger output swing is required (factoring in filter  
insertion loss) then a negative supply for the amplifier is needed in order to eliminate that limitation. Additionally  
input voltage protection diodes may be needed to protect the ADC from over-voltage events.  
9-2. Output voltage swing of THS4541 vs power supply  
DEVICE  
MIN OUTPUT VOLTAGE  
MAX SWING WITH 3.3 V/ 0 V SUPPLY  
MAX SWING WITH 3.3 V/ -1.0 V SUPPLY  
THS4541  
VS- + 250 mV  
2.8 Vpp  
6.8 Vpp  
9.1.2 Detailed Design Procedure  
9.1.2.1 Input Signal Path  
The THS4541 provides a very good low power option to drive the ADC inputs. 9-3  
provides an overview of the THS4541 with power consumption and usable frequency.  
9-3. Fully Differential Amplifier Options  
DEVICE  
CURRENT (IQ) PER CHANNEL  
USABLE FREQUENCY RANGE  
THS4541  
10 mA  
< 70 MHz  
The low pass filter design (topology, filter order) is driven by the application itself. However, when designing the  
low pass filter, the optimum load impedance for the amplifier should be taken into consideration as well. Between  
the low pass filter and the ADC input the sampling glitch filter needs to added as well as shown in 8.3.1.2.1. In  
this example the DC - 30 MHz glitch filter is selected.  
9.1.2.2 Sampling Clock  
Applications operating with low input frequencies (such as DC to 30 MHz) typically are less sensitive to  
performance degradation due to clock jitter. The internal ADC aperture jitter improves with faster rise and fall  
times (i.e. square wave vs sine wave). 9-4 provides an overview of the estimated SNR performance of the  
ADC3564 based on different amounts of jitter of the external clock source. The SNR is estimated based on  
ADC3564 thermal noise of 77 dBFS and input signal at -1dBFS.  
9-4. ADC SNR performance across vs input frequency for different amounts of external clock jitter  
INPUT FREQUENCY  
TJ,EXT = 100 fs  
TJ,EXT = 250 fs  
TJ,EXT = 500 fs  
TJ,EXT = 1 ps  
10 MHz  
76.5  
76.3  
76.2  
76.4  
76.2  
75.9  
76.3  
75.8  
75.1  
75.9  
20 MHz  
74.5  
30 MHz  
72.8  
Termination of the clock input should be considered for long clock traces.  
9.1.2.3 Voltage Reference  
The ADC3564 is configured to internal reference operation by applying 0.6 V to the REFBUF pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
9.1.3 Application Curves  
The following FFT plots show the performance of THS4541 driving the ADC3564 operated at 125 MSPS with a  
full-scale input at -1 dBFS with input frequencies at 5, 10 and 20 MHz.  
SNR = 75.2 dBFS, HD23 = 80 dBc, Non HD23 = 88 dBFS  
SNR = 75.2 dBFS, HD23 = 81 dBc, Non HD23 = 91 dBFS  
9-2. Single Tone FFT at FIN = 5 MHz  
9-3. Single Tone FFT at FIN = 10 MHz  
SNR = 75.6 dBFS, HD23 = 74 dBc, Non HD23 = 94 dBFS  
AIN = -10 dBFS, SNR = 76.9 dBFS, HD23 = 83 dBc, Non  
HD23 = 93 dBFS  
9-4. Single Tone FFT at FIN = 20 MHz  
9-5. Single Tone FFT at FIN = 20 MHz  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
9.2 Initialization Set Up  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in 9-6.  
1. Apply AVDD and IOVDD (no specific sequence required). After AVDD is applied the internal bandgap  
reference will power up and settle out in ~ 2ms.  
2. Configure REFBUF pin (pull high or low even if configured via SPI later on) and apply the sampling clock.  
3. Apply hardware reset. After hardware reset is released, the default registers are loaded from internal fuses  
and the internal power up capacitor calibration is initiated. The calibration takes approximately 200000 clock  
cycles.  
4. Begin programming using SPI interface.  
t2  
AVDD  
IOVDD  
t1  
REFBUF  
Ext VREF  
CLK  
t4  
t3  
RESET  
SEN  
9-6. Initialization of serial registers after power up  
9-5. Power-up timing  
MIN  
TYP  
MAX  
UNIT  
t1  
t2  
t3  
t4  
Power-on delay: delay from power up to logic level of REFBUF pin  
Delay from REFBUF pin logic level to RESET rising edge  
RESET pulse width  
2
100  
ms  
ns  
us  
1
Delay from RESET disable to SEN active  
~ 200000  
clock cycles  
9.2.1 Register Initialization During Operation  
If required, the serial interface registers can be cleared and reset to default settings during operation either:  
through a hardware reset or  
by applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 0x00)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
After hardware or software reset the wait time is also ~ 200000 clock cycles before the SPI registers can be  
programmed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADC3564  
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The ADC3564 requires two different power-supplies. The AVDD rail provides power for the internal analog  
circuits and the ADC itself while the IOVDD rail powers the digital interface and the internal digital circuits like  
decimation filter or output interface mapper. Power sequencing is not required.  
The AVDD power supply must be low noise to achieve data sheet performance. In applications operating near  
DC, the 1/f noise contribution of the power supply must also be considered. The ADC is designed for good  
PSRR which aides with the power supply filter design.  
9-7. Power Supply Rejection Ratio (PSRR) vs Frequency  
There are two recommended power-supply architectures:  
1. Step down using high-efficiency switching converters, followed by a second stage of regulation using a low  
noise LDO to provide switching noise reduction and improved voltage accuracy.  
2. Directly step down the final ADC supply voltage using high-efficiency switching converters. This approach  
provides the best efficiency, but care must be taken to make sure the switching noise is minimized to prevent  
degraded ADC performance.  
TI WEBENCH® Power Designer can be used to select and design the individual power-supply elements  
needed: see the WEBENCH® Power Designer  
Recommended switching regulators for the first stage include the TPS62821, and similar devices.  
Recommended low dropout (LDO) linear regulators include the TPS7A4701, TPS7A90, LP5901, and similar  
devices.  
For the switch regulator only approach, the ripple filter must be designed with a notch frequency that aligns with  
the switching ripple frequency of the DC/DC converter. Note the switching frequency reported from WEBENCH®  
and design the EMI filter and capacitor combination to have the notch frequency centered as needed. 9-8 and  
9-9 illustrate the two approaches.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADC3564  
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
AVDD and IOVDD supply voltages should not be shared in order to prevent digital switching noise from coupling  
into the analog signal chain.  
FB  
FB  
2.1V  
1.8V  
DC/DC  
Regulator  
5V-12V  
LDO  
AVDD  
10uF 10uF 0.1uF  
47uF  
47uF  
GND  
GND  
GND  
FB  
IOVDD  
10uF 10uF 0.1uF  
FB = Ferrite bead filter  
GND  
9-8. Example: LDO Linear Regulator Approach  
EMI FILTER  
FB  
1.8V  
DC/DC  
Regulator  
5V-12V  
AVDD  
10uF 10uF 10uF  
10uF 10uF 0.1uF  
GND  
GND  
FB  
IOVDD  
10uF 10uF 0.1uF  
GND  
Ripple filter notch frequency to match switching frequency of the DC/DC regulator  
FB = Ferrite bead filter  
9-9. Example Switcher-Only Approach  
9.4 Layout  
9.4.1 Layout Guidelines  
There are several critical signals which require specific care during board design:  
1. Analog input and clock signals  
Traces should be as short as possible and vias should be avoided where possible to minimize impedance  
discontinuities.  
Traces should be routed using loosely coupled 100-Ωdifferential traces.  
Differential trace lengths should be matched as close as possible to minimize phase imbalance and HD2  
degradation.  
2. Digital output interface  
Traces should be routed using tightly coupled 100-Ωdifferential traces.  
3. Voltage reference  
The bypass capacitor should be placed as close to the device pins as possible and connected between  
VREF and REFGND on top layer avoiding vias.  
Depending on configuration an additional bypass capacitor between REFBUF and REFGND may be  
recommended and should also be placed as close to pins as possible on top layer.  
4. Power and ground connections  
Provide low resistance connection paths to all power and ground pins.  
Use power and ground planes instead of traces.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADC3564  
 
 
 
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
Avoid narrow, isolated paths which increase the connection resistance.  
Use a signal/ground/power circuit board stackup to maximize coupling between the ground and power  
plane.  
9.4.2 Layout Example  
The following screen shot shows the top layer of the ADC3564/3664 EVM.  
Signal and clock inputs are routed as differential signals on the top layer avoiding vias.  
SLVDS output interface lanes are routed differential and length matched  
Bypass caps are close to the VREF pin on the top layer avoiding vias.  
SLVDS routed tightly  
coupled and length matched  
Bypass caps on VREF close  
to the pins and no vias  
Clock routing  
without vias  
Analog inputs on  
top layer (no vias)  
9-10. Layout example: top layer of ADC3564 EVM  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADC3564  
ADC3564  
ZHCSR25 AUGUST 2022  
www.ti.com.cn  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 Device Support  
10.2 Documentation Support  
10.2.1 Related Documentation  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADC3564  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3564IRSBR  
ADC3564IRSBT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
AZ3564  
AZ3564  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
RSB0040E  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
(0.2) TYP  
EXPOSED  
11  
20  
THERMAL PAD  
36X 0.4  
10  
21  
2X  
41  
SYMM  
3.6  
3.15 0.1  
1
30  
0.25  
0.15  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
40X  
4219096/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
40  
31  
40X (0.6)  
40X (0.2)  
1
30  
36X (0.4)  
41  
SYMM  
(4.8)  
(1.325)  
(
0.2) TYP  
VIA  
10  
21  
(R0.05)  
TYP  
11  
20  
(1.325)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219096/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785)  
4X ( 1.37)  
40  
31  
40X (0.6)  
1
30  
40X (0.2)  
36X (0.4)  
SYMM  
(0.785)  
(4.8)  
41  
(R0.05) TYP  
10  
21  
METAL  
TYP  
20  
11  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219096/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADC3564IRSBR

具有 SLVDS 接口的单通道、14 位、125MSPS、高 SNR、低功耗 ADC | RSB | 40 | -40 to 105
TI

ADC3564IRSBT

具有 SLVDS 接口的单通道、14 位、125MSPS、高 SNR、低功耗 ADC | RSB | 40 | -40 to 105
TI

ADC356X

ADC356x 16-Bit, 0.5-MSPS to 65-MSPS, Low-Noise, Low Power ADC
TI

ADC3581

ADC358x 18-bit 0.5 MSPS to 65 MSPS Low Noise Ultra-low Power ADC
TI

ADC3581IRSBR

单通道、18 位、10MSPS、低噪声、超低功耗、低延迟 ADC | RSB | 40 | -40 to 105
TI

ADC3581IRSBT

单通道、18 位、10MSPS、低噪声、超低功耗、低延迟 ADC | RSB | 40 | -40 to 105
TI

ADC3582

ADC358x 18-bit 0.5 MSPS to 65 MSPS Low Noise Ultra-low Power ADC
TI

ADC3582IRSBR

单通道、18 位、25MSPS、低噪声、超低功耗、低延迟 ADC | RSB | 40 | -40 to 105
TI

ADC3582IRSBT

单通道、18 位、25MSPS、低噪声、超低功耗、低延迟 ADC | RSB | 40 | -40 to 105
TI

ADC3583

ADC358x 18-bit 0.5 MSPS to 65 MSPS Low Noise Ultra-low Power ADC
TI

ADC3583IRSBR

ADC358x 18-bit 0.5 MSPS to 65 MSPS Low Noise Ultra-low Power ADC
TI

ADC3583IRSBT

ADC358x 18-bit 0.5 MSPS to 65 MSPS Low Noise Ultra-low Power ADC
TI