ADS1246_14 [TI]

24-Bit Analog-to-Digital Converters for Temperature Sensors;
ADS1246_14
型号: ADS1246_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24-Bit Analog-to-Digital Converters for Temperature Sensors

文件: 总66页 (文件大小:1112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
24-Bit Analog-to-Digital Converters for Temperature Sensors  
Check for Samples: ADS1246, ADS1247, ADS1248  
1
FEATURES  
DESCRIPTION  
23  
24 Bits, No Missing Codes  
The ADS1246, ADS1247, and ADS1248 are  
highly-integrated, precision, 24-bit analog-to-digital  
converters (ADCs). The ADS1246/7/8 feature an  
onboard, low-noise, programmable gain amplifier  
(PGA), a precision delta-sigma (ΔΣ) ADC with a  
single-cycle settling digital filter, and an internal  
oscillator. The ADS1247 and ADS1248 also provide a  
built-in, very low drift voltage reference with 10mA  
output capacity, and two matched programmable  
current digital-to-analog converters (DACs). The  
ADS1246/7/8 provide a complete front-end solution  
for temperature sensor applications including thermal  
couples, thermistors, and RTDs.  
Data Output Rates Up to 2kSPS  
Single-Cycle Settling for All Data Rates  
Simultaneous 50/60Hz Rejection at 20SPS  
4 Differential/7 Single-Ended Inputs (ADS1248)  
2 Differential/3 Single-Ended Inputs (ADS1247)  
Low-Noise PGA: 48nV at PGA = 128  
Matched Current Source DACs  
Very Low Drift Internal Voltage Reference:  
10ppm/°C (max)  
Sensor Burnout Detection  
An input multiplexer supports four differential inputs  
for the ADS1248, two for the ADS1247, and one for  
the ADS1246. In addition, the multiplexer has a  
4/8 General-Purpose I/Os (ADS1247/8)  
Internal Temperature Sensor  
sensor  
thermocouples,  
burnout  
detect,  
system  
voltage  
monitoring,  
bias  
for  
and  
Power Supply and VREF Monitoring  
(ADS1247/8)  
general-purpose digital I/Os (ADS1247 and  
ADS1248). The onboard, low-noise PGA provides  
selectable gains of 1 to 128. The ΔΣ modulator and  
adjustable digital filter settle in only one cycle, for fast  
channel cycling when using the input multiplexer, and  
support data rates up to 2kSPS. For data rates of  
20SPS or less, both 50Hz and 60Hz interference are  
rejected by the filter.  
Self and System Calibration  
SPI™-Compatible Serial Interface  
Analog Supply Unipolar (+2.7V to  
+5.25V)/Bipolar (±2.5V) Operation  
Digital Supply: +2.7V to +5.25V  
Operating Temperature –40°C to +125°C  
The ADS1246 is offered in a small TSSOP-16  
package, the ADS1247 is available in a TSSOP-20  
package, and the ADS1248 in a TSSOP-28 package.  
All three devices are rated over the extended  
specified temperature range of –40°C to +105°C.  
APPLICATIONS  
Temperature Measurement  
RTDs, Thermocouples, and Thermistors  
Pressure Measurement  
Industrial Process Control  
ADS1248 Only  
REFP0/ REFN0/  
AVDD  
REFP REFN  
DVDD  
AVDD  
GPIO0 GPIO1 REFP1 REFN1 VREFOUT VREFCOM  
DVDD  
Burnout  
Detect  
Burnout  
Detect  
ADS1247  
ADS1248  
ADS1246  
Voltage  
VREF Mux  
VBIAS  
VBIAS  
Reference  
GPIO  
SCLK  
SCLK  
AIN0/IEXC  
AIN1/IEXC  
System  
Monitor  
DIN  
DIN  
Serial  
Interface  
and  
Serial  
Interface  
and  
DRDY  
DOUT/DRDY  
CS  
DRDY  
DOUT/DRDY  
CS  
AIN2/IEXC/GPIO2  
AIN3/IEXC/GPIO3  
3rd Order  
DS  
Adjustable  
Digital  
Filter  
3rd Order  
DS  
Adjustable  
Digital  
Filter  
AIN0  
AIN1  
Input  
Mux  
Input  
Mux  
PGA  
PGA  
Modulator  
Modulator  
AIN4/IEXC/GPIO4  
AIN5/IEXC/GPIO5  
Control  
Control  
START  
RESET  
START  
RESET  
Dual  
Current  
DACs  
AIN6/IEXC/GPIO6  
AIN7/IEXC/GPIO7  
Internal Oscillator  
Internal Oscillator  
ADS1248 Only  
Burnout  
Detect  
Burnout  
Detect  
AVSS  
CLK  
DGND  
AVSS IEXC1 IEXC2  
CLK  
DGND  
ADS1248 Only  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2010, Texas Instruments Incorporated  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
DUAL SENSOR  
EXCITATION CURRENT  
SOURCES  
PACKAGE-  
LEAD  
PRODUCT  
NUMBER OF INPUTS  
VOLTAGE REFERENCE  
1 Differential  
or  
1 Single-Ended  
ADS1246  
External  
NO  
YES  
YES  
TSSOP-16  
TSSOP-20  
TSSOP-28  
2 Differential  
or  
3 Single-Ended  
ADS1247  
ADS1248  
Internal or External  
Internal or External  
4 Differential  
or  
7 Single-Ended  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI  
website at www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
ADS1246, ADS1247, ADS1248  
PARAMETER  
MIN  
–0.3  
–2.8  
–0.3  
MAX  
+5.5  
+0.3  
+5.5  
UNIT  
V
AVDD to AVSS  
AVSS to DGND  
DVDD to DGND  
V
V
100, momentary  
10, continuous  
mA  
mA  
V
Input current  
Analog input voltage to AVSS  
Digital input voltage to DGND  
Maximum junction temperature  
Operating temperature range  
Storage temperature range  
AVSS – 0.3  
–0.3  
AVDD + 0.3  
DVDD + 0.3  
+150  
V
°C  
°C  
°C  
–40  
–60  
+125  
+150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
THERMAL INFORMATION  
ADS1246,  
ADS1247,  
ADS1248  
THERMAL METRIC(1)  
UNITS  
TSSOP (IPW)  
28  
qJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case(top) thermal resistance  
54.6  
11.3  
(3)  
qJC(top)  
qJB  
(4)  
Junction-to-board thermal resistance  
13.0  
°C/W  
0.5  
(5)  
yJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
(6)  
(7)  
yJB  
12.7  
n/a  
qJC(bottom)  
Junction-to-case(bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, yJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining qJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, yJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining qJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Minimum/maximum specifications apply from –40°C to +105°C. Typical specifications are at +25°C. All specifications at  
AVDD = +5V, DVDD = +3.3V, AVSS = 0V, VREF = +2.048V, and oscillator frequency = 4.096MHz, unless otherwise noted.  
ADS1246, ADS1247, ADS1248  
PARAMETER  
ANALOG INPUTS  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Full-scale input voltage  
(VIN = ADCINP – ADCINN)  
±VREF/PGA  
2.7/PGA  
V
(VIN)(Gain)  
2
(VIN)(Gain)  
2
AVSS + 0.1V +  
AVDD - 0.1V -  
Common-mode input range  
V
Differential input current  
Absolute input current  
PGA gain settings  
Burnout current source  
Bias voltage  
100  
See Table 11  
pA  
1, 2, 4, 8, 16, 32, 64, 128  
0.5, 2, or 10  
mA  
V
(AVDD + AVSS)/2  
400  
Bias voltage output impedance  
SYSTEM PERFORMANCE  
Resolution  
No missing codes  
24  
Bits  
SPS  
ppm  
mV  
Data rate  
5, 10, 20, 40, 80, 160, 320, 640, 1000, 2000  
Integral nonlinearity (INL)  
Offset error  
Differential input, end point fit, PGA = 1  
After calibration(1)  
6
15  
15  
–15  
Offset drift  
See Figure 11 to Figure 14  
nV/°C  
T = +25°C, all PGAs,  
data rate = 40, 80, or 160SPS  
Gain error  
–0.02  
±0.005  
0.02  
%
Gain drift  
See Figure 19 to Figure 22  
Single-cycle settling  
See Table 5 to Table 8  
See Table 13  
ppm/°C  
ADC conversion time  
Noise  
Normal-mode rejection  
At dc, PGA = 1  
At dc, PGA = 32  
80  
90  
90  
dB  
dB  
Common-mode rejection  
Power-supply rejection  
125  
AVDD/DVDD at dc, PGA = 32,  
data rate = 80SPS  
100  
135  
dB  
VOLTAGE REFERENCE INPUT  
Voltage reference input  
0.5  
(AVDD – AVSS) – 1  
V
(VREF = VREFP – VREFN  
)
Negative reference input (REFN)  
Positive reference input (REFP)  
Reference input current  
ON-CHIP VOLTAGE REFERENCE  
Output voltage  
AVSS – 0.1  
REFN + 0.5  
REFP – 0.5  
AVDD + 0.1  
V
V
30  
nA  
2.038  
2.048  
2.058  
±10  
V
Output current(2)  
mA  
Load regulation  
50  
mV/mA  
ppm/°C  
ppm/°C  
ms  
TA = +25°C to +105°C  
TA = –40°C to +105°C  
2
6
10  
15  
Drift(3)  
Startup time  
See Table 14  
(1) Offset calibration on the order of noise.  
(2) Do not exceed this loading on the internal voltage reference.  
(3) Specified by the combination of design and final production test.  
4
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ELECTRICAL CHARACTERISTICS (continued)  
Minimum/maximum specifications apply from –40°C to +105°C. Typical specifications are at +25°C. All specifications at  
AVDD = +5V, DVDD = +3.3V, AVSS = 0V, VREF = +2.048V, and oscillator frequency = 4.096MHz, unless otherwise noted.  
ADS1246, ADS1247, ADS1248  
PARAMETER  
CURRENT SOURCES (IDACS)  
Output current  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
50, 100, 250, 500, 750, 1000, 1500  
AVDD – 0.7  
mA  
Voltage compliance  
Initial error  
All currents  
V
All currents, each IDAC  
All currents, between IDACs  
Each IDAC  
–6  
±1.0  
±0.15  
100  
6
% of FS  
% of FS  
ppm/°C  
ppm/°C  
Initial mismatch  
Temperature drift  
Temperature drift matching  
SYSTEM MONITORS  
Between IDACs  
10  
Voltage  
TA = +25°C  
118  
405  
mV  
Temperature  
sensor reading  
Drift  
mV/°C  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
VIH  
0.7AVDD  
AVSS  
AVDD  
V
V
V
V
VIL  
0.3AVDD  
Logic levels  
VOH  
VOL  
IOH = 1mA  
IOL = 1mA  
0.8AVDD  
0.2 AVDD  
DIGITAL INPUT/OUTPUT (other than GPIO)  
VIH  
0.7DVDD  
DGND  
DVDD  
V
V
VIL  
0.3DVDD  
Logic levels  
VOH  
VOL  
IOH = 1mA  
0.8DVDD  
DGND  
V
IOL = 1mA  
0.2 DVDD  
±10  
V
Input leakage  
DGND < VIN < DVDD  
mA  
MHz  
%
Frequency  
Duty cycle  
1
25  
4.5  
Clock input  
(CLK)  
75  
Internal oscillator frequency  
3.89  
4.096  
4.3  
MHz  
POWER SUPPLY  
DVDD  
2.7  
–2.5  
5.25  
0
V
V
V
AVSS  
AVDD  
AVSS + 2.7  
AVSS + 5.25  
Normal mode, DVDD = 5V,  
data rate = 20SPS, internal oscillator  
230  
mA  
DVDD current  
AVDD current  
Normal mode, DVDD = 3.3V,  
data rate = 20SPS, internal oscillator  
210  
0.2  
mA  
µA  
µA  
Sleep mode  
Converting, AVDD = 5V,  
data rate = 20SPS, external reference  
225  
Converting, AVDD = 3.3V,  
data rate = 20SPS, external reference  
200  
0.1  
µA  
µA  
mA  
Sleep mode  
Additional current with internal reference  
enabled  
180  
AVDD = DVDD = 5V,  
data rate = 20SPS, internal oscillator,  
external reference  
2.3  
1.4  
mW  
mW  
Power dissipation  
AVDD = DVDD = 3.3V,  
data rate = 20SPS, internal oscillator,  
external reference  
TEMPERATURE RANGE  
Specified  
–40  
–40  
–60  
+105  
+125  
+150  
°C  
°C  
°C  
Operating  
Storage  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
PIN CONFIGURATIONS  
PW PACKAGE  
TSSOP-28  
(TOP VIEW)  
DVDD  
1
2
3
4
5
6
7
8
9
28 SCLK  
DGND  
CLK  
27 DIN  
26 DOUT/DRDY  
25 DRDY  
RESET  
REFP0/GPIO0  
REFN0/GPIO1  
REFP1  
24 CS  
23 START  
22 AVDD  
ADS1248  
REFN1  
21 AVSS  
VREFOUT  
20 IEXC1  
VREFCOM 10  
AIN0/IEXC 11  
19 IEXC2  
18 AIN3/IEXC/GPIO3  
17 AIN2/IEXC/GPIO2  
16 AIN7/IEXC/GPIO7  
15 AIN6/IEXC/GPIO6  
AIN1/IEXC 12  
AIN4/IEXC/GPIO4 13  
AIN5/IEXC/GPIO5 14  
6
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1248 (TSSOP-28) PIN DESCRIPTIONS  
NAME  
PIN NO.  
FUNCTION  
DESCRIPTION  
DVDD  
DGND  
CLK  
1
2
3
4
Digital  
Digital power supply  
Digital ground  
Digital  
Digital input  
Digital input  
External clock input. Tie this pin to DGND to activate the internal oscillator.  
Chip reset (active low). Returns all register values to reset values.  
RESET  
Analog input  
Digital in/out  
REFP0/GPIO0  
REFN0/GPIO1  
5
6
Positive external reference input 0, or general-purpose digital input/output pin 0  
Negative external reference 0 input, or general-purpose digital input/output pin 1  
Analog input  
Digital in/out  
REFP1  
7
8
9
Analog input  
Analog input  
Analog output  
Positive external reference 1 input  
Negative external reference 1 input  
Positive internal reference voltage output  
REFN1  
VREFOUT  
Negative internal reference voltage output. Connect this pin to AVSS when using a unipolar  
supply, or to the midvoltage of the power supply when using a bipolar supply.  
VREFCOM  
10  
Analog output  
AIN0/IEXC  
AIN1/IEXC  
11  
12  
Analog input  
Analog input  
Analog input 0, optional excitation current output  
Analog input 1, optional excitation current output  
Analog input  
Digital in/out  
AIN4/IEXC/GPIO4  
AIN5/IEXC/GPIO5  
AIN6/IEXC/GPIO6  
AIN7/IEXC/GPIO7  
AIN2/IEXC/GPIO2  
AIN3/IEXC/GPIO3  
13  
14  
15  
16  
17  
18  
Analog input 4, optional excitation current output, or general-purpose digital input/output pin 4  
Analog input 5, optional excitation current output, or general-purpose digital input/output pin 5  
Analog input 6, optional excitation current output, or general-purpose digital input/output pin 6  
Analog input 7, optional excitation current output, or general-purpose digital input/output pin 7  
Analog input 2, optional excitation current output, or general-purpose digital input/output pin 2  
Analog input 3, optional excitation current output, or general-purpose digital input/output pin 3  
Analog input  
Digital in/out  
Analog input  
Digital in/out  
Analog input  
Digital in/out  
Analog input  
Digital in/out  
Analog input  
Digital in/out  
IOUT2  
IOUT1  
AVSS  
AVDD  
START  
CS  
19  
20  
21  
22  
23  
24  
25  
Analog output  
Analog output  
Analog  
Excitation current output 2  
Excitation current output 1  
Negative analog power supply  
Positive analog power supply  
Conversion start. See text for complete description.  
Chip select (active low)  
Analog  
Digital input  
Digital input  
Digital output  
DRDY  
Data ready (active low)  
Serial Data Out Output, or  
Data Out combined with Data Ready (active low when DRDY function enabled)  
DOUT/DRDY  
26  
Digital output  
DIN  
27  
28  
Digital input  
Digital input  
Serial data input  
Serial clock input  
SCLK  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
PW PACKAGE  
TSSOP-20  
(TOP VIEW)  
DVDD  
1
2
3
4
5
6
7
8
9
20 SCLK  
19 DIN  
DGND  
CLK  
18 DOUT/DRDY  
17 DRDY  
16 CS  
RESET  
REFP0/GPIO0  
REFN0/GPIO1  
VREFOUT  
VREFCOM  
AIN0/IEXC  
ADS1247  
15 START  
14  
AVDD  
13 AVSS  
12 AIN3/IEXC/GPIO3  
11 AIN2/IEXC/GPIO2  
AIN1/IEXC 10  
ADS1247 (TSSOP-20) PIN DESCRIPTIONS  
NAME  
PIN NO.  
FUNCTION  
DESCRIPTION  
DVDD  
DGND  
CLK  
1
2
3
4
Digital  
Digital power supply  
Digital  
Digital ground  
Digital input  
Digital input  
External clock input. Tie this pin to DGND to activate the internal oscillator.  
Chip reset (active low). Returns all register values to reset values.  
RESET  
Analog input  
Digital in/out  
REFP0/GPIO0  
5
Positive external reference input, or general-purpose digital input/output pin 0  
Analog input  
Digital in/out  
REFN0/GPIO1  
VREFOUT  
6
7
8
Negative external reference input, or general-purpose digital input/output pin 1  
Positive internal reference voltage output  
Analog output  
Analog output  
Negative internal reference voltage output. Connect this pin to AVSS when using a unipolar  
supply, or to the midvoltage of the power supply when using a bipolar supply.  
VREFCOM  
AIN0/IEXC  
AIN1/IEXC  
9
Analog input  
Analog input  
Analog input 0, optional excitation current output  
Analog input 1, optional excitation current output  
10  
Analog input  
Digital in/out  
AIN2/IEXC/GPIO2  
AIN3/IEXC/GPIO3  
11  
12  
Analog input 2, optional excitation current output, or general-purpose digital input/output pin 2  
Analog input  
Digital in/out  
Analog input 3, with or without excitation current output, or general-purpose digital input/output  
pin 3  
AVSS  
AVDD  
START  
CS  
13  
14  
15  
16  
17  
Analog  
Analog  
Negative analog power supply  
Positive analog power supply  
Conversion start. See text for description of use.  
Chip select (active low)  
Digital input  
Digital input  
Digital output  
DRDY  
Data ready (active low)  
Serial data out output, or  
Data out combined with Data Ready (active low when DRDY function enabled)  
DOUT/DRDY  
18  
Digital output  
DIN  
19  
20  
Digital input  
Digital input  
Serial data input  
Serial clock input  
SCLK  
8
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
PW PACKAGE  
TSSOP-16  
(TOP VIEW)  
DVDD  
DGND  
CLK  
1
2
3
4
5
6
7
8
16 SCLK  
15 DIN  
14 DOUT/DRDY  
13  
RESET  
REFP  
REFN  
AINP  
DRDY  
ADS1246  
12 CS  
11 START  
10  
9
AVDD  
AVSS  
AINN  
ADS1246 (TSSOP-16) PIN DESCRIPTIONS  
NAME  
PIN NO.  
FUNCTION  
DESCRIPTION  
DVDD  
DGND  
CLK  
1
2
Digital  
Digital power supply  
Digital  
Digital ground  
3
Digital input  
Digital input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog  
External clock input. Tie this pin to DGND to activate the internal oscillator.  
Chip reset (active low). Returns all register values to reset values.  
Positive external reference input  
Negative external reference input  
Positive analog input  
RESET  
REFP  
REFN  
AINP  
4
5
6
7
AINN  
AVSS  
AVDD  
START  
CS  
8
Negative analog input  
9
Negative analog power supply  
10  
11  
12  
13  
Analog  
Positive analog power supply  
Digital input  
Digital input  
Digital output  
Conversion start. See text for description of use.  
Chip select (active low)  
DRDY  
Data ready (active low)  
Serial data out output, or  
Data out combined with Data Ready (active low when DRDY function enabled)  
DOUT/DRDY  
14  
Digital output  
DIN  
15  
16  
Digital input  
Digital input  
Serial data input  
Serial clock input  
SCLK  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
TIMING DIAGRAMS  
CS  
tSPWH  
tSCCS  
tCSSC  
tSCLK  
SCLK  
tDIST tDIHD  
tSPWL  
DIN  
DIN[0]  
DIN[7]  
DIN[6]  
DIN[5]  
DIN[4]  
DIN[1]  
DIN[0]  
tDOPD  
tDOHD  
DOUT/DRDY(1)  
DOUT[7]  
DOUT[6]  
DOUT[5]  
DOUT[4]  
DOUT[1]  
DOUT[0]  
tCSDO  
Figure 1. Serial Interface Timing  
(1)  
Table 1. Timing Characteristics for Figure 1  
SYMBOL  
DESCRIPTION  
MIN  
10  
7
MAX  
UNIT  
tCSSC  
tSCCS  
tDIST  
CS low to first SCLK high (set up time)  
SCLK low to CS high (hold time)  
DIN set up time  
ns  
(2)  
tOSC  
5
ns  
ns  
ns  
ns  
ns  
tDIHD  
tDOPD  
tDOHD  
DIN hold time  
5
SCLK rising edge to new data valid  
DOUT hold time  
30  
0
500  
tSCLK  
SCLK period  
64  
0.75  
0.75  
10  
Conversions  
tSCLK  
tSPWH  
tSPWL  
tCSDO  
SCLK pulse width high  
0.25  
0.25  
SCLK pulse width low  
tSCLK  
CS high to DOUT high impedance  
ns  
(1) DRDY MODE bit = 0.  
(2) tOSC = 1/fCLK. The default clock frequency fCLK = 4.096MHz.  
tDTS  
tPWH  
DRDY  
tSTD  
1
2
3
4
5
6
7
8
SCLK(3)  
Figure 2. SPI Interface Timing to Allow Conversion Result Loading(3) (4)  
Table 2. Timing Characteristics for Figure 2  
SYMBOL  
DESCRIPTION  
MIN  
3
MAX  
UNIT  
tOSC  
tOSC  
ns  
tPWH  
tSTD  
tDTS  
DRDY pulse width high  
SCLK low prior to DRDY low  
5
DRDY falling edge to SCLK rising edge  
30  
(3) This timing diagram is applicable only when the CS pin is low. SCLK need not be low during tSTD when CS is high.  
(4) SCLK should only be sent in multiples of eight during partial retrieval of output data.  
10  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
tSTART  
START  
Figure 3. Minimum START Pulse Width  
Table 3. Timing Characteristics for Figure 3  
SYMBOL  
tSTART  
DESCRIPTION  
MIN  
MAX  
UNIT  
START pulse width high  
3
tOSC  
tRESET  
RESET  
CS  
SCLK  
tRHSC  
Figure 4. Reset Pulse Width and SPI Communication After Reset  
Table 4. Timing Characteristics for Figure 4  
SYMBOL  
t RESET  
tRHSC  
DESCRIPTION  
MIN  
MAX  
UNIT  
tOSC  
ms  
RESET pulse width low  
RESET high to SPI communication start  
4
0.6(1)  
(1) Applicable only when fOSC = 4.096MHz and scales proportionately with fOSC frequency.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
NOISE PERFORMANCE  
The ADS1246/7/8 noise performance can be optimized by adjusting the data rate and PGA setting. As the  
averaging is increased by reducing the data rate, the noise drops correspondingly. Increasing the PGA value  
reduces the input-referred noise, particularly useful when measuring low-level signals. Table 5 to Table 10  
summarize noise performance of the ADS1246/7/8. The data are representative of typical noise performance at  
T = +25°C. The data shown are the result of averaging the readings from multiple devices and were measured  
with the inputs shorted together. A minimum of 128 consecutive readings were used to calculate the RMS and  
peak-to-peak noise for each reading.  
Table 5, Table 7, and Table 9 list the input-referred noise in units of mVRMS and mVPP for the conditions shown.  
Table 6, Table 8, and Table 10 list the corresponding data in units of ENOB (effective number of bits) where:  
ENOB = ln(Full-Scale Range/Noise)/ln(2)  
(1)  
Table 7 to Table 10 use the internal reference available on the ADS1247 and ADS1248. The data though are  
also representative of the ADS1246 noise performance when using a low-noise external reference such as the  
REF5020.  
12  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
Table 5. Noise in mVRMS and (mVPP  
)
at AVDD = 5V, AVSS = 0V, and External Reference = 2.5V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
1.10 (4.99)  
1.53 (8.82)  
2.32 (13.37)  
2.72 (17.35)  
3.56 (22.67)  
5.26 (42.03)  
9.39 (74.91)  
13.21 (119.66)  
0.68 (3.80)  
0.82 (3.71)  
1.23 (6.69)  
1.33 (7.65)  
1.87 (12.30)  
2.52 (17.57)  
4.68 (39.48)  
6.93 (59.31)  
0.37 (1.90)  
0.50 (2.69)  
0.71 (3.83)  
0.68 (3.83)  
0.81 (5.27)  
1.32 (9.22)  
2.69 (18.95)  
3.59 (28.55)  
0.19 (0.98)  
0.27 (1.33)  
0.34 (1.90)  
0.38 (2.21)  
0.50 (3.49)  
0.67 (5.25)  
1.24 (9.94)  
1.53 (10.68)  
0.10 (0.44)  
0.15 (0.67)  
0.18 (1.01)  
0.22 (1.13)  
0.30 (1.99)  
0.41 (2.89)  
0.68 (5.25)  
0.95 (8.70)  
2.02 (23.14)  
2.19 (24.14)  
0.07 (0.31)  
0.08 (0.50)  
0.12 (0.71)  
0.14 (0.77)  
0.19 (1.24)  
0.26 (1.91)  
0.45 (3.08)  
0.63 (4.94)  
1.15 (12.29)  
1.36 (12.32)  
0.05 (0.27)  
0.06 (0.36)  
0.10 (0.51)  
0.15 (0.78)  
0.19 (1.16)  
0.27 (1.74)  
0.38 (2.71)  
0.53 (3.74)  
0.77 (7.42)  
1.08 (8.03)  
0.05 (0.21)  
0.07 (0.34)  
0.09 (0.54)  
0.14 (0.76)  
0.18 (1.04)  
0.26 (1.74)  
0.36 (2.46)  
0.50 (3.55)  
0.64 (4.98)  
1.00 (6.93)  
20  
40  
80  
160  
320  
640  
1000  
2000  
32.34 (443.91) 16.11 (185.67) 11.54 (92.23) 4.65 (37.55)  
32.29 (372.54) 15.99 (182.27) 8.02 (91.73) 4.08 (45.89)  
Table 6. Effective Number of Bits From RMS Noise and (Peak-to-Peak Noise)  
at AVDD = 5V, AVSS = 0V, and External Reference = 2.5V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
21.8 (19.6)  
21.4 (18.8)  
20.8 (18.2)  
20.5 (17.8)  
20.1 (17.5)  
19.6 (16.6)  
18.7 (15.7)  
18.2 (15.1)  
17.0 (13.2)  
17.0 (13.4)  
21.5 (19.0)  
21.3 (19.1)  
20.7 (18.2)  
20.6 (18.0)  
20.1 (17.3)  
19.6 (16.8)  
18.7 (15.7)  
18.2 (15.1)  
17.0 (13.4)  
17.0 (13.5)  
21.4 (19.0)  
21.0 (18.5)  
20.5 (18.0)  
20.5 (18.0)  
20.3 (17.6)  
19.6 (16.8)  
18.5 (15.7)  
18.1 (15.1)  
16.4 (13.4)  
17.0 (13.4)  
21.4 (19.0)  
20.8 (18.6)  
20.5 (18.0)  
20.4 (17.8)  
20.0 (17.2)  
19.5 (16.6)  
18.7 (15.7)  
18.4 (15.5)  
16.7 (13.7)  
16.9 (13.4)  
21.3 (19.2)  
20.7 (18.6)  
20.4 (18.0)  
20.2 (17.8)  
19.7 (17.0)  
19.3 (16.4)  
18.5 (15.6)  
18.0 (14.8)  
17.0 (13.4)  
16.8 (13.4)  
20.9 (18.7)  
20.6 (18.0)  
20.0 (17.5)  
19.8 (17.4)  
19.4 (16.7)  
18.9 (16.0)  
18.1 (15.3)  
17.6 (14.7)  
16.8 (13.3)  
16.5 (13.3)  
20.2 (17.8)  
19.9 (17.5)  
19.3 (16.9)  
18.7 (16.3)  
18.4 (15.7)  
17.9 (15.2)  
17.4 (14.5)  
16.9 (14.1)  
16.4 (13.1)  
15.9 (13.0)  
19.4 (17.2)  
18.9 (16.5)  
18.4 (15.9)  
17.8 (15.4)  
17.5 (14.9)  
16.9 (14.2)  
16.5 (13.7)  
16.0 (13.1)  
15.6 (12.6)  
15.0 (12.2)  
20  
40  
80  
160  
320  
640  
1000  
2000  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
Table 7. Noise in mVRMS and (mVPP  
)
at AVDD = 5V, AVSS = 0V, and Internal Reference = 2.048V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
1.35 (7.78)  
1.80 (10.82)  
2.62 (14.32)  
2.64 (16.29)  
3.69 (23.62)  
5.70 (35.74)  
9.67 (67.44)  
13.66 (93.06)  
0.70 (4.17)  
0.88 (5.26)  
1.22 (7.05)  
1.34 (7.75)  
1.82 (10.81)  
2.63 (16.90)  
4.95 (35.30)  
7.04 (45.20)  
0.35 (2.03)  
0.50 (2.75)  
0.66 (3.88)  
0.69 (4.06)  
0.89 (5.48)  
1.34 (8.82)  
2.59 (17.52)  
3.63 (18.73)  
7.58 (61.30)  
8.07 (67.13)  
0.17 (0.95)  
0.24 (1.47)  
0.35 (2.05)  
0.35 (2.07)  
0.51 (2.68)  
0.68 (4.24)  
1.29 (8.86)  
1.84 (12.97)  
3.98 (33.04)  
4.06 (36.16)  
0.10 (0.53)  
0.13 (0.80)  
0.19 (1.09)  
0.21 (1.15)  
0.30 (1.69)  
0.40 (2.65)  
0.72 (4.35)  
1.02 (6.51)  
2.08 (16.82)  
2.29 (19.22)  
0.06 (0.32)  
0.09 (0.49)  
0.12 (0.66)  
0.15 (0.85)  
0.21 (1.32)  
0.30 (1.92)  
0.49 (3.03)  
0.68 (4.20)  
1.16 (9.08)  
1.38 (9.87)  
0.05 (0.31)  
0.07 (0.39)  
0.10 (0.61)  
0.14 (0.81)  
0.20 (1.09)  
0.28 (1.88)  
0.40 (2.44)  
0.58 (3.69)  
0.83 (5.42)  
1.06 (6.93)  
0.05 (0.29)  
0.07 (0.40)  
0.10 (0.55)  
0.13 (0.75)  
0.18 (0.98)  
0.26 (1.57)  
0.37 (2.34)  
0.53 (3.50)  
0.68 (4.65)  
1.00 (6.48)  
20  
40  
80  
160  
320  
640  
1000  
2000  
31.18 (284.59) 16.00 (129.77)  
31.42 (273.39) 15.45 (130.68)  
Table 8. Effective Number of Bits From RMS Noise and (Peak-to-Peak Noise)  
at AVDD = 5V, AVSS = 0V, and Internal Reference = 2.048V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
21.5 (19.0)  
21.1 (18.5)  
20.6 (18.1)  
20.6 (17.9)  
20.1 (17.4)  
19.5 (16.8)  
18.7 (15.9)  
18.2 (15.4)  
17.0 (13.8)  
17.0 (13.9)  
21.5 (18.9)  
21.1 (18.6)  
20.7 (18.1)  
20.5 (18.0)  
20.1 (17.5)  
19.6 (16.9)  
18.7 (15.8)  
18.1 (15.5)  
17.0 (13.9)  
17.0 (13.9)  
21.5 (18.9)  
21.0 (18.5)  
20.6 (18.0)  
20.5 (17.9)  
20.1 (17.5)  
19.5 (16.8)  
18.6 (15.8)  
18.1 (15.7)  
17.0 (14.0)  
17.0 (13.9)  
21.5 (19.0)  
21.0 (18.4)  
20.5 (17.9)  
20.5 (17.9)  
20.0 (17.5)  
19.5 (16.9)  
18.6 (15.8)  
18.1 (15.3)  
17.0 (13.9)  
16.9 (13.8)  
21.3 (18.9)  
20.9 (18.3)  
20.4 (17.8)  
20.2 (17.8)  
19.7 (17.2)  
19.3 (16.6)  
18.4 (15.8)  
17.9 (15.3)  
16.9 (13.9)  
16.8 (13.7)  
21.0 (18.6)  
20.5 (18.0)  
20.1 (17.6)  
19.7 (17.2)  
19.2 (16.6)  
18.7 (16.0)  
18.0 (15.4)  
17.5 (14.9)  
16.8 (13.8)  
16.5 (13.7)  
20.2 (17.7)  
19.8 (17.3)  
19.2 (16.7)  
18.8 (16.3)  
18.3 (15.8)  
17.8 (15.1)  
17.3 (14.7)  
16.8 (14.1)  
16.2 (13.5)  
15.9 (13.2)  
19.2 (16.8)  
18.7 (16.3)  
18.3 (15.8)  
17.9 (15.4)  
17.5 (15.0)  
16.9 (14.3)  
16.4 (13.7)  
15.9 (13.2)  
15.5 (12.7)  
15.0 (12.3)  
20  
40  
80  
160  
320  
640  
1000  
2000  
14  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
Table 9. Noise in mVRMS and (mVPP  
)
at AVDD = 3V, AVSS = 0V, and Internal Reference = 2.048V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
2.50 (14.24)  
3.09 (16.85)  
4.55 (24.74)  
5.06 (34.59)  
6.63 (43.46)  
9.75 (68.28)  
19.22 (140.06)  
1.32 (6.92)  
1.69 (9.32)  
2.19 (12.82)  
2.39 (14.49)  
3.28 (20.22)  
4.89 (32.19)  
9.80 (82.24)  
0.67 (3.48)  
0.82 (4.68)  
1.07 (5.94)  
1.27 (7.75)  
1.79 (10.64)  
2.36 (17.74)  
4.81 (32.74)  
0.32 (1.68)  
0.42 (2.41)  
0.55 (3.38)  
0.66 (4.01)  
0.89 (5.48)  
1.26 (9.87)  
2.47 (18.59)  
3.40 (25.93)  
0.17 (0.90)  
0.23 (1.18)  
0.28 (1.66)  
0.36 (2.18)  
0.47 (2.95)  
0.65 (4.77)  
1.27 (9.45)  
1.76 (12.49)  
2.66 (22.78)  
2.92 (23.06)  
0.09 (0.51)  
0.11 (0.63)  
0.16 (1.00)  
0.21 (1.16)  
0.29 (1.63)  
0.40 (2.60)  
0.71 (5.83)  
1.02 (7.49)  
1.45 (11.01)  
1.68 (11.71)  
0.08 (0.42)  
0.11 (0.66)  
0.15 (0.92)  
0.21 (1.27)  
0.28 (1.64)  
0.40 (2.70)  
0.50 (3.36)  
0.71 (4.81)  
0.93 (6.74)  
1.19 (8.23)  
0.07 (0.39)  
0.10 (0.55)  
0.14 (0.87)  
0.15 (0.84)  
0.21 (1.24)  
0.30 (2.12)  
0.43 (2.86)  
0.60 (4.06)  
0.74 (4.86)  
1.05 (6.97)  
20  
40  
80  
160  
320  
640  
1000  
2000  
27.07 (192.96) 13.54 (100.26) 6.88 (49.07)  
40.83 (388.28) 20.39 (185.96) 10.39 (89.38) 5.09 (43.28)  
42.06 (322.85) 21.15 (166.75) 10.66 (92.68) 5.61 (44.08)  
Table 10. Effective Number of Bits From RMS and (Peak-to-Peak Noise)  
at AVDD = 3V, AVSS = 0V, and Internal Reference = 2.048V  
DATA  
RATE  
(SPS)  
PGA SETTING  
1
2
4
8
16  
32  
64  
128  
5
10  
20.6 (18.1)  
20.3 (17.9)  
19.8 (17.3)  
19.6 (16.9)  
19.2 (16.5)  
18.7 (15.9)  
17.7 (14.8)  
17.2 (14.4)  
16.6 (13.4)  
16.6 (13.6)  
20.6 (18.2)  
20.2 (17.7)  
19.8 (17.3)  
19.7 (17.1)  
19.3 (16.6)  
18.7 (16.0)  
17.7 (14.6)  
17.2 (14.3)  
16.6 (13.4)  
16.6 (13.6)  
20.5 (18.2)  
20.3 (17.7)  
19.9 (17.4)  
19.6 (17.0)  
19.1 (16.6)  
18.7 (15.8)  
17.7 (14.9)  
17.2 (14.3)  
16.6 (13.5)  
16.6 (13.4)  
20.6 (18.2)  
20.2 (17.7)  
19.8 (17.2)  
19.6 (17.0)  
19.1 (16.5)  
18.6 (15.7)  
17.7 (14.7)  
17.2 (14.3)  
16.6 (13.5)  
16.5 (13.5)  
20.5 (18.1)  
20.1 (17.7)  
19.8 (17.2)  
19.5 (16.8)  
19.0 (16.4)  
18.6 (15.7)  
17.6 (14.7)  
17.1 (14.3)  
16.6 (13.5)  
16.4 (13.4)  
20.4 (17.9)  
20.1 (17.6)  
19.6 (17.0)  
19.2 (16.8)  
18.7 (16.3)  
18.3 (15.6)  
17.5 (14.4)  
16.9 (14.1)  
16.4 (13.5)  
16.2 (13.4)  
19.6 (17.2)  
19.1 (16.6)  
18.7 (16.1)  
18.2 (15.6)  
17.8 (15.3)  
17.3 (14.5)  
17.0 (14.2)  
16.5 (13.7)  
16.1 (13.2)  
15.7 (12.9)  
18.8 (16.3)  
18.3 (15.8)  
17.8 (15.2)  
17.7 (15.2)  
17.2 (14.7)  
16.7 (13.9)  
16.2 (13.4)  
15.7 (12.9)  
15.4 (12.7)  
14.9 (12.2)  
20  
40  
80  
160  
320  
640  
1000  
2000  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
NOISE HISTOGRAM PLOT  
NOISE HISTOGRAM PLOT  
1800  
1600  
1400  
1200  
1000  
800  
1800  
1600  
1400  
1200  
1000  
800  
AVDD = 5V  
PGA = 1  
AVDD = 5V  
PGA = 32  
Data Rate = 20SPS  
12k Samples  
s = 13  
Data Rate = 20SPS  
12k Samples  
s = 19  
600  
600  
400  
400  
200  
200  
0
0
(LSB)  
(LSB)  
Figure 5.  
NOISE HISTOGRAM PLOT  
Figure 6.  
NOISE HISTOGRAM PLOT  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = 3.3V  
PGA = 1  
AVDD = 3.3V  
PGA = 32  
Data Rate = 20SPS  
12k Samples  
s = 18.5  
Data Rate = 20SPS  
12k Samples  
s = 22  
(LSB)  
(LSB)  
Figure 7.  
Figure 8.  
RMS NOISE vs INPUT SIGNAL  
RMS NOISE vs INPUT SIGNAL  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
AVDD = 5V  
PGA = 32  
Data Rate = 5SPS  
AVDD = 3.3V  
PGA = 32  
Data Rate = 5SPS  
-100 -80 -60 -40 -20  
20  
40  
60  
80  
100  
-100 -80 -60 -40 -20  
20  
40  
60  
80  
100  
VIN (% of FSR)  
VIN (% of FSR)  
Figure 9.  
Figure 10.  
16  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
OFFSET vs TEMPERATURE  
OFFSET vs TEMPERATURE  
4
3
8
6
AVDD = 5V  
Data Rate = 160SPS  
AVDD = 5V  
Data Rate = 20SPS  
4
2
2
PGA = 32  
1
PGA = 128  
PGA = 32  
0
0
PGA = 128  
-2  
-4  
-6  
-8  
-1  
-2  
-3  
PGA = 1  
PGA = 1  
100  
-40  
-20  
-20  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
120  
Temperature (°C)  
Temperature (°C)  
Figure 11.  
Figure 12.  
OFFSET vs TEMPERATURE  
OFFSET vs TEMPERATURE  
8
15  
10  
5
AVDD = 5V  
Data Rate = 640SPS  
AVDD = 5V  
Data Rate = 2kSPS  
6
4
2
PGA = 32  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
PGA = 32  
0
PGA = 128  
-5  
-10  
-15  
PGA = 128  
PGA = 1  
PGA = 1  
-40  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 13.  
Figure 14.  
OFFSET vs TEMPERATURE  
OFFSET vs TEMPERATURE  
4
3
5
4
AVDD = 3.3V  
Data Rate = 160SPS  
AVDD = 3.3V  
Data Rate = 20SPS  
PGA = 1  
3
2
2
PGA = 32  
1
1
0
-1  
-2  
-3  
-4  
-5  
-6  
PGA = 128  
0
-1  
-2  
-3  
PGA = 1  
PGA = 32  
PGA = 128  
-40  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 15.  
Figure 16.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
OFFSET vs TEMPERATURE  
OFFSET vs TEMPERATURE  
10  
8
8
6
AVDD = 3.3V  
Data Rate = 640SPS  
AVDD = 3.3V  
Data Rate = 2kSPS  
6
PGA = 1  
PGA = 1  
4
4
PGA = 128  
PGA = 32  
2
2
0
0
PGA = 32  
-2  
-4  
-6  
-8  
-2  
-4  
-6  
PGA = 128  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 17.  
Figure 18.  
GAIN vs TEMPERATURE  
GAIN vs TEMPERATURE  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
AVDD = 5V  
Data Rate = 160SPS  
PGA = 1  
PGA = 1  
PGA = 32  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
PGA = 32  
PGA = 128  
PGA = 128  
AVDD = 5V  
Data Rate = 20SPS  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 19.  
Figure 20.  
GAIN vs TEMPERATURE  
GAIN vs TEMPERATURE  
0.03  
0.02  
0.01  
0
0.02  
0.01  
0
AVDD = 5V  
Data Rate = 2kSPS  
Data Rate = 640SPS  
PGA = 1  
PGA = 1  
PGA = 128  
PGA = 32  
-0.01  
-0.02  
-0.03  
-0.04  
PGA = 128  
PGA = 32  
-0.01  
-0.02  
-0.03  
-0.04  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 21.  
Figure 22.  
18  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
GAIN vs TEMPERATURE  
GAIN vs TEMPERATURE  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
AVDD = 3.3V  
Data Rate = 20SPS  
AVDD = 3.3V  
Data Rate = 160SPS  
PGA = 128  
PGA = 32  
PGA = 1  
PGA = 1  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
PGA = 32  
PGA = 128  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 23.  
Figure 24.  
GAIN vs TEMPERATURE  
GAIN vs TEMPERATURE  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
AVDD = 3.3V  
Data Rate = 640SPS  
AVDD = 3.3V  
Data Rate = 2kSPS  
PGA = 128  
PGA = 128  
PGA = 32  
PGA = 1  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
PGA = 1  
PGA = 32  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 25.  
Figure 26.  
ANALOG CURRENT vs DATA RATE  
DIGITAL CURRENT vs DATA RATE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
290  
270  
250  
230  
210  
190  
170  
AVDD = 5V  
DVDD = 5V  
AVDD = 3.3V  
DVDD = 3.3V  
5
10  
20  
40  
80 160 320 640 1000 2000  
5
10  
20  
40  
80 160 320 640 1000 2000  
Data Rate (SPS)  
Data Rate (SPS)  
Figure 27.  
Figure 28.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
ANALOG CURRENT vs TEMPERATURE  
DIGITAL CURRENT vs TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
330  
310  
290  
270  
250  
230  
210  
190  
DVDD = 5V  
AVDD = 5V  
2kSPS  
2kSPS  
320/640/1kSPS  
40/80/160SPS  
320/640/1kSPS  
5/10/20SPS  
40/80/160SPS  
5/10/20SPS  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 29.  
Figure 30.  
ANALOG CURRENT vs TEMPERATURE  
DIGITAL CURRENT vs TEMPERATURE  
700  
600  
500  
400  
300  
200  
100  
0
310  
290  
270  
250  
230  
210  
190  
2kSPS  
AVDD = 3.3V  
DVDD = 3.3V  
2kSPS  
320/640/1kSPS  
40/80/160SPS  
320/640/1kSPS  
5/10/20SPS  
40/80/160SPS  
5/10/20SPS  
-20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 31.  
Figure 32.  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
8
6
8
6
PGA = 32  
Data Rate = 20SPS  
PGA = 1  
Data Rate = 20SPS  
4
4
-40°C  
-10°C  
2
2
-10°C  
-40°C  
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
+25°C  
+25°C  
+105°C  
+105°C  
-100  
-50  
0
50  
100  
-100  
-50  
0
50  
100  
VIN (% of FSR)  
VIN (% of FSR)  
Figure 33.  
Figure 34.  
20  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
8
6
8
6
+105°C  
-40°C  
-10°C  
PGA = 128  
Data Rate = 20SPS  
4
4
+25°C  
-40°C  
-10°C  
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
+25°C  
+105°C  
PGA = 1  
Data Rate = 2kSPS  
-100  
-50  
0
50  
100  
-100  
-50  
0
50  
100  
VIN (% of FSR)  
VIN (% of FSR)  
Figure 35.  
Figure 36.  
DATA RATE ERROR vs TEMPERATURE  
(Using Internal Oscillator)  
CMRR vs TEMPERATURE  
130  
125  
120  
115  
110  
105  
100  
95  
3.0  
2.5  
2.0  
PGA = 32  
1.5  
1.0  
DVDD = 5V  
0.5  
PGA = 128  
0
DVDD = 3.3V  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
PGA = 1  
90  
85  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 37.  
Figure 38.  
INTERNAL VREF vs TEMPERATURE  
IDAC LINE REGULATION  
2.050  
2.049  
2.048  
2.047  
2.046  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
14 Units  
50mA  
100mA  
500mA  
250mA  
750mA  
IDAC Current Settings  
1mA  
1.5mA  
3.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.0  
2.5  
3.0  
4.0  
AVDD (V)  
4.5  
5.0  
5.5  
6.0  
Temperature (°C)  
Figure 39.  
Figure 40.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = 5V, VREF = 2.5V, and AVSS = 0V, unless otherwise noted.  
IDAC DRIFT  
POWER-SUPPLY REJECTION vs GAIN  
0.004  
0.003  
0.002  
0.001  
0
8
7
6
5
4
3
2
1
0
1.5mA Setting, 10 Units  
2000SPS  
320/640/1000SPS  
-0.001  
-0.002  
-0.003  
-0.004  
40/80/160SPS  
5/10/20SPS  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1
2
4
8
16  
32  
64  
128  
Temperature (°C)  
Gain  
Figure 41.  
Figure 42.  
INTERNAL VREF INITIAL ACCURACY HISTOGRAM  
IDAC INITIAL ACCURACY HISTOGRAM  
700  
200  
180  
160  
140  
120  
100  
80  
2280 Units  
2280 Units  
600  
500  
400  
300  
200  
100  
0
60  
40  
20  
0
Initial Accuracy (V)  
Initial Accuracy (%)  
Figure 43.  
Figure 44.  
IDAC MISMATCH HISTOGRAM  
350  
300  
250  
200  
150  
100  
50  
2280 Units  
0
Initial Accuracy (%)  
Figure 45.  
22  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
GENERAL DESCRIPTION  
OVERVIEW  
The ADS1247 and ADS1248 also include a flexible  
input multiplexer with system monitoring capability  
and general-purpose I/O settings, a very low-drift  
voltage reference, and two matched current sources  
for sensor excitation. Figure 46 and Figure 47 show  
the various functions incorporated in each device.  
The ADS1246, ADS1247 and ADS1248 are highly  
integrated 24-bit data converters. They include a  
low-noise, high-impedance programmable gain  
amplifier (PGA), a delta-sigma (ΔΣ) ADC with an  
adjustable single-cycle settling digital filter, internal  
oscillator, and a simple but flexible SPI-compatible  
serial interface.  
REFP REFN  
DVDD  
AVDD  
Burnout  
Detect  
ADS1246  
VBIAS  
SCLK  
DIN  
Serial  
DRDY  
Interface  
3rd Order  
DS  
Adjustable  
Digital  
Filter  
AIN0  
AIN1  
Input  
Mux  
PGA  
DOUT/DRDY  
CS  
and  
Modulator  
Control  
START  
RESET  
Internal Oscillator  
Burnout  
Detect  
AVSS  
CLK  
DGND  
Figure 46. ADS1246 Diagram  
ADS1248 Only  
REFP0/ REFN0/  
GPIO0 GPIO1 REFP1 REFN1 VREFOUT VREFCOM  
DVDD  
AVDD  
Burnout  
Detect  
ADS1247  
ADS1248  
Voltage  
VREF Mux  
VBIAS  
Reference  
GPIO  
SCLK  
AIN0/IEXC  
AIN1/IEXC  
System  
Monitor  
DIN  
Serial  
Interface  
and  
DRDY  
DOUT/DRDY  
CS  
AIN2/IEXC/GPIO2  
AIN3/IEXC/GPIO3  
3rd Order  
DS  
Adjustable  
Digital  
Filter  
Input  
Mux  
PGA  
Modulator  
AIN4/IEXC/GPIO4  
AIN5/IEXC/GPIO5  
Control  
START  
RESET  
Dual  
Current  
DACs  
AIN6/IEXC/GPIO6  
AIN7/IEXC/GPIO7  
Internal Oscillator  
ADS1248 Only  
Burnout  
Detect  
AVSS IEXC1 IEXC2  
CLK  
DGND  
ADS1248 Only  
Figure 47. ADS1247, ADS1248 Diagram  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADC INPUT AND MULTIPLEXER  
Any analog input pin can be selected as the positive  
input or negative input through the MUX0 register.  
The ADS1246/7/8 have a true fully differential mode,  
meaning that the input signal range can be from  
The ADS1246/7/8 ADC measures the input signal  
through the onboard PGA. All analog inputs are  
connected to the internal AINP or AINN analog inputs  
through the analog multiplexer. A block diagram of  
the analog input multiplexer is shown in Figure 48.  
–2.5V to +2.5V (when AVDD  
AVSS = –2.5V).  
=
2.5V and  
Through the input multiplexer, the ambient  
temperature (internal temperature sensor), AVDD,  
DVDD, and external reference can all be selected for  
measurement. Refer to the System Monitor section  
for details.  
The input multiplexer connects to eight (ADS1248),  
four (ADS1247), or two (ADS1246) analog inputs that  
can be configured as single-ended inputs, differential  
inputs, or in a combination of single-ended and  
differential inputs. The multiplexer also allows the  
on-chip excitation current and/or bias voltage to be  
selected to a specific channel.  
On the ADS1247 and ADS1248, the analog inputs  
can also be configured as general-purpose  
inputs/outputs (GPIOs). See the General-Purpose  
Digital I/O section for more details.  
AVDD  
AVDD  
IDAC2 IDAC1  
System Monitors  
AVSS  
AVSS  
AVDD  
AVDD  
VBIAS  
VBIAS  
AVDD  
AVDD  
AIN0  
AIN1  
Temperature  
Diode  
VREFP  
VREFN  
ADS1247/48 Only  
VREFP1/4  
VREFN1/4  
AVSS  
AVSS  
AVDD  
VBIAS  
VBIAS  
VREFP0/4  
VREFN0/4  
AIN2  
AVDD  
AVDD/4  
AVSS/4  
AIN3  
DVDD/4  
DGND/4  
ADS1248 Only  
AVSS  
AVSS  
AVDD  
AVDD  
VBIAS  
VBIAS  
AIN4  
AIN5  
AVDD  
Burnout Current Source  
(0.5mA, 2mA, 10mA)  
AINP  
AINN  
To  
PGA  
AVSS  
AVSS  
AVDD  
AVDD  
VBIAS  
VBIAS  
ADC  
AIN6  
AIN7  
Burnout Current Source  
(0.5mA, 2mA, 10mA)  
AVSS  
Figure 48. Analog Input Multiplexer Circuit  
24  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ESD diodes protect the ADC inputs. To prevent these  
diodes from turning on, make sure the voltages on  
the input pins do not go below AVSS by more than  
100mV, and do not exceed AVDD by more than  
100mV, as shown in Equation 2. Note that the same  
caution is true if the inputs are configured to be  
GPIOs.  
VOLTAGE REFERENCE INPUT  
The voltage reference for the ADS1246/7/8 is the  
differential voltage between REFP and REFN:  
VREF = VREFP – VREFN  
In the case of the ADS1246, these pins are dedicated  
inputs. For the ADS1247 and ADS1248, there is a  
multiplexer that selects the reference inputs, as  
shown in Figure 49. The reference input uses a buffer  
to increase the input impedance.  
AVSS – 100mV < (AINX) < AVDD + 100mV  
(2)  
Settling Time for Channel Multiplexing  
The ADS1246/7/8 is a true single-cycle settling ΔΣ  
converter. The first data available after the start of a  
conversion are fully settled and valid for use. The  
time required to settle is roughly equal to the inverse  
of the data rate. The exact time depends on the  
specific data rate and the operation that resulted in  
the start of a conversion; see Table 20 for specific  
values.  
As with the analog inputs, REFP0 and REFN0 can be  
configured as digital I/Os on the ADS1247/8.  
ADS1248 Only  
REFP1 REFN1 REFP0 REFN0  
VREFOUT VREFCOM  
ANALOG INPUT IMPEDANCE  
Internal  
Voltage  
Reference Multiplexer  
The ADS1246/7/8 inputs are buffered through a  
high-impedance PGA before they reach the ΔΣ  
modulator. For the majority of applications, the input  
current leakage is minimal and can be neglected.  
However, because the PGA is chopper-stabilized for  
noise and offset performance, the input impedance is  
best described as small absolute input current. The  
absolute current leakage for selected channels is  
approximately proportional to the selected modulator  
clock. Table 11 shows the typical values for these  
currents with a differential voltage coefficient and the  
corresponding input impedances over data rate.  
Reference  
REFP  
REFN  
ADC  
Figure 49. Reference Input Multiplexer  
The reference input circuit has ESD diodes to protect  
the inputs. To prevent the diodes from turning on,  
make sure the voltage on the reference input pin is  
not less than AVSS – 100mV, and does not exceed  
AVDD + 100mV, as shown in Equation 3:  
AVSS – 100mV < (VREFP or VREFN) < AVDD + 100mV  
(3)  
Table 11. Typical Values for Analog Input Current Over Data Rate(1)  
CONDITION  
ABSOLUTE INPUT CURRENT  
EFFECTIVE INPUT IMPEDANCE  
DR = 5SPS, 10SPS, 20SPS  
DR = 40SPS, 80SPS, 160SPS  
DR = 320SPS, 640SPS, 1kSPS  
DR = 2kSPS  
± (0.5nA + 0.1nA/V)  
± (2nA + 0.5nA/V)  
± (4nA + 1nA/V)  
± (8nA + 2nA/V)  
5000MΩ  
1200MΩ  
600MΩ  
300MΩ  
(1) Input current with VCM = 2.5V. TA = +25°C, AVDD = 5V, and AVSS = 0V.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
LOW-NOISE PGA  
MODULATOR  
The ADS1246/7/8 feature a low-drift, low-noise, high  
input impedance programmable gain amplifier (PGA).  
The PGA can be set to gain of 1, 2, 4, 8, 16, 32, 64,  
or 128 by register SYS0. A simplified diagram of the  
PGA is shown in Figure 50.  
A third-order modulator is used in the ADS1246/7/8.  
The modulator converts the analog input voltage into  
a pulse code modulated (PCM) data stream. To save  
power, the modulator clock runs from 32kHz up to  
512kHz for different data rates, as shown in Table 12.  
The PGA consists of two chopper-stabilized  
amplifiers (A1 and A2) and a resistor feedback  
network that sets the gain of the PGA. The PGA input  
is equipped with an electromagnetic interference  
(EMI) filter, as shown in Figure 50. Note that as with  
any PGA, it is necessary to ensure that the input  
voltage stays within the specified common-mode  
input range specified in the Electrical Characteristics.  
The common-mode input (VCMI) must be within the  
range shown in Equation 4:  
Table 12. Modulator Clock Frequency for Different  
Data Rates  
DATA RATE  
(SPS)  
fMOD  
(kHz)  
5, 10, 20  
40, 80, 160  
320, 640, 1000  
2000  
32  
128  
256  
512  
(VIN)(Gain)  
(VIN)(Gain)  
AVSS + 0.1V +  
£ VCMI  
£
) (  
AVDD - 0.1V -  
DIGITAL FILTER  
(
)
2
2
(4)  
The ADS1246/7/8 use linear-phase finite impulse  
response (FIR) digital filters that can be adjusted for  
different output data rates. The digital filter always  
settles in a single cycle.  
454W  
AINP  
7.5pF  
A1  
Table 13 shows the exact data rates when an  
external oscillator equal to 4.096MHz is used. Also  
shown is the signal –3dB bandwidth, and the 50Hz  
and 60Hz attenuation. For good 50Hz or 60Hz  
rejection, use a data rate of 20SPS or slower.  
R
7.5pF  
C
R
ADC  
The frequency responses of the digital filter are  
shown in Figure 51 to Figure 61. Figure 54 shows a  
detailed view of the filter frequency response from  
48Hz to 62Hz for a 20SPS data rate. All filter plots  
are generated with 4.096MHz external clock.  
7.5pF  
A2  
454W  
AINN  
7.5pF  
Figure 50. Simplified Diagram of the PGA  
Table 13. Digital Filter Specifications(1)  
ATTENUATION  
NOMINAL  
ACTUAL  
–3dB  
DATA RATE DATA RATE  
BANDWIDTH  
2.26Hz  
4.76Hz  
14.8Hz  
9.03Hz  
19.8Hz  
118Hz  
fIN = 50Hz ±0.3Hz  
–106dB  
fIN = 60Hz ±0.3Hz  
fIN = 50Hz ±1Hz  
–81dB  
fIN = 60Hz ±1Hz  
–69dB  
5SPS  
10SPS  
5.018SPS  
10.037SPS  
20.075SPS  
40.15SPS  
80.301SPS  
160.6SPS  
321.608SPS  
643.21SPS  
1000SPS  
–74dB  
–74dB  
–74dB  
–106dB  
–80dB  
–69dB  
20SPS  
–71dB  
–66dB  
–68dB  
40SPS  
80SPS  
160SPS  
320SPS  
640SPS  
1000SPS  
2000SPS  
154Hz  
495Hz  
732Hz  
2000SPS  
1465Hz  
(1) Values shown for fOSC = 4.096MHz.  
26  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
0
-20  
-60  
-70  
-40  
-80  
-60  
-90  
-80  
-100  
-110  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
48  
50  
52  
54  
56  
58  
60  
62  
Frequency (Hz)  
Figure 51. Filter Profile with Data Rate = 5SPS  
Figure 54. Detailed View of Filter Profile with Data  
Rate = 20SPS between 48Hz and 62Hz  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Frequency (Hz)  
Figure 52. Filter Profile with Data Rate = 10SPS  
Figure 55. Filter Profile with Data Rate = 40SPS  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Frequency (Hz)  
Figure 53. Filter Profile with Data Rate = 20SPS  
Figure 56. Filter Profile with Data Rate = 80SPS  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Frequency (Hz)  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (kHz)  
Figure 57. Filter Profile with Data Rate = 160SPS  
Figure 60. Filter Profile with Data Rate = 1kSPS  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Frequency (Hz)  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (kHz)  
Figure 58. Filter Profile with Data Rate = 320SPS  
Figure 61. Filter Profile with Data Rate = 2kSPS  
CLOCK SOURCE  
0
-20  
The ADS1246/7/8 can use either the internal  
oscillator or an external clock. Connect the CLK pin to  
DGND before power-on or reset to activate the  
internal oscillator. Connecting an external clock to the  
CLK pin at any time deactivates the internal oscillator,  
with the device then operating on the external clock.  
After the device switches to the external clock, it  
cannot be switched back to the internal oscillator  
without cycling the power supplies or resetting the  
device.  
-40  
-60  
-80  
-100  
-120  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Frequency (Hz)  
Figure 59. Filter Profile with Data Rate = 640SPS  
28  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
INTERNAL VOLTAGE REFERENCE  
EXCITATION CURRENT SOURCE DACS  
The ADS1247/8 includes an onboard voltage  
reference with a low temperature coefficient. The  
output of the voltage reference is 2.048V with the  
capability of both sourcing and sinking up to 10mA of  
current.  
The ADS1247/8 provide two matched excitation  
current sources for RTD applications. For three- or  
four-wire RTD applications, the matched current  
sources can be used to cancel the errors caused by  
sensor lead resistance. The output current of the  
current source DACs can be programmed to 50mA,  
100mA, 250mA, 500mA, 750mA, 1000mA, or 1500mA.  
The voltage reference must have  
a capacitor  
connected between VREFOUT and VREFCOM. The  
value of the capacitance should be in the range of  
1mF to 47mF. Large values provide more filtering of  
the reference; however, the turn-on time increases  
with capacitance, as shown in Table 14. For stability  
reasons, VREFCOM must have a path with an  
impedance less than 10to ac ground nodes, such  
as GND (for a 0V to 5V analog power supply), or  
AVSS (for a ±2.5V analog power supply). In case this  
impedance is higher than 10, a capacitor of at least  
0.1mF should be connected between VREFCOM and  
an ac ground node (for example, GND). Note that  
because it takes time for the voltage reference to  
settle to the final voltage, care must be taken when  
the device is turned off between conversions. Allow  
adequate time for the internal reference to fully settle.  
The two matched current sources can be connected  
to dedicated current output pins IOUT1 and IOUT2  
(ADS1248 only), or to any AIN pin (ADS1247/8); refer  
to the ADS1247/48 Detailed Register Definitions  
section for more information. It is possible to connect  
both current sources to the same pin. Note that the  
internal reference must be turned on and properly  
compensated when using the excitation current  
source DACs.  
SENSOR DETECTION  
The ADS1246/7/8 provide  
a selectable current  
(0.5mA, 2mA, or 10mA) to help detect a possible  
sensor malfunction.  
When enabled, two burnout current sources flow  
through the selected pair of analog inputs to the  
sensor. One sources the current to the positive input  
channel, and the other sinks the same current from  
the negative input channel.  
Table 14. Internal Reference Settling Time  
VREFOUT  
CAPACITOR  
SETTLING  
ERROR  
TIME TO REACH THE  
SETTLING ERROR  
±0.5%  
±0.1%  
±0.5%  
±0.1%  
±0.5%  
±0.1%  
70ms  
110ms  
290ms  
375ms  
2.2ms  
2.4ms  
1mF  
4.7mF  
47mF  
When the burnout current sources are enabled, a  
full-scale reading may indicate an open circuit in the  
front-end sensor, or that the sensor is overloaded. It  
may also indicate that the reference voltage is  
absent.  
A
near-zero reading may indicate  
a
short-circuit in the sensor.  
The onboard reference is controlled by the registers;  
by default, it is off after startup (see the ADS1247/48  
Detailed Register Definitions section for more details).  
Therefore, the internal reference must first be turned  
on and then connected via the internal reference  
multiplexer. Because the onboard reference is used  
to generate the current reference for the excitation  
current sources, it must be turned on before the  
excitation currents become available.  
BIAS VOLTAGE GENERATION  
A selectable bias voltage is provided for use with  
ungrounded thermocouples. The bias voltage is  
(AVDD + AVSS)/2 and can applied to any analog  
input channel through internal input multiplexer. The  
bias voltage turn-on times for different sensor  
capacitances are listed in Table 15.  
Table 15. Bias Voltage Settling Time  
SENSOR CAPACITANCE  
SETTLING TIME  
220ms  
0.1mF  
1mF  
2.2ms  
10mF  
200mF  
22ms  
450ms  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
Power-Supply Monitor  
GENERAL-PURPOSE DIGITAL I/O  
The system monitor can measure the analog or  
digital power supply. When measuring the power  
supply, the resulting conversion is approximately 1/4  
of the actual power supply voltage.  
The ADS1248 has eight pins and the ADS1247 has  
four pins that serve a dual purpose as either analog  
inputs or general-purpose digital inputs/outputs  
(GPIOs).  
Conversion Result = (VSP/4)/VREF  
(5)  
Figure 62 shows a diagram of how these functions  
are combined onto a single pin. Note that when the  
pin is configured as a GPIO, the corresponding logic  
is powered from AVDD and AVSS. When the  
ADS1247/8 are operated with bipolar analog  
supplies, the GPIO outputs bipolar voltages. Care  
must be taken loading the GPIO pins when used as  
outputs because large currents can cause droop or  
noise on the analog supplies.  
Where VSP is the selected supply to be measured.  
External Voltage Reference Monitor  
The ADS1246/7/8 can be selected to measure the  
external voltage reference. In this configuration, the  
monitored external voltage reference is connected to  
the analog input. The result (conversion code) is  
approximately 1/4 of the actual reference voltage.  
Conversion Result = (VREX/4)/VREF  
(6)  
IOCFG  
IODIR  
Where VREX is the external reference to be  
monitored.  
NOTE: The internal reference voltage must be  
enabled when measuring an external voltage  
reference using the system monitor.  
DIO WRITE  
REFx0/GPIOx  
AINx/GPIOx  
To Analog Mux  
Ambient Temperature Monitor  
DIO READ  
On-chip  
diodes  
provide  
temperature-sensing  
capability. When selecting the temperature monitor  
function, the anodes of two diodes are connected to  
the ADC. Typically, the difference in diode voltage is  
118mV at +25°C with a temperature coefficient of  
405mV/°C.  
Figure 62. Analog/Data Interface Pin  
SYSTEM MONITOR  
Note that when the onboard temperature monitor is  
selected, the PGA is automatically set to '1'.  
However, the PGA register bits in are not affected  
and the PGA returns to its set value when the  
temperature monitor is turned off.  
The ADS1247 and ADS1248 provide a system  
monitor function. This function can measure the  
analog power supply, digital power supply, external  
voltage reference, or ambient temperature. Note that  
the system monitor function provides a coarse result.  
When the system monitor is enabled, the analog  
inputs are disconnected.  
30  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
CALIBRATION  
full-scale calibration register can correct gain errors  
> 1 (with gain scaling < 1), make sure to avoid  
overloading the analog inputs. The default or reset  
value of FSC depends on the PGA setting. A different  
factory-trimmed FSC Reset value is stored for each  
PGA setting which provides outstanding gain  
accuracy over all the ADS1246/7/8 input ranges.  
Note: The factory-trimmed FSC reset value loads  
automatically loaded whenever the PGA setting  
changes.  
The conversion data are scaled by offset and gain  
registers before yielding the final output code. As  
shown in Figure 63, the output of the digital filter is  
first subtracted by the offset register (OSC) and then  
multiplied by the full-scale register (FSC). A digital  
clipping circuit ensures that the output code does not  
exceed 24 bits. Equation 7 shows the scaling.  
+
Output Data  
Clipped to 24 Bits  
Final  
Output  
Table 17. Gain Correction Factor versus  
Full-Scale Calibration Register Setting  
´
ADC  
S
-
FULL-SCALE REGISTER  
800000h  
GAIN SCALING  
OFC  
Register  
FSC Register  
400000h  
2.0  
1.0  
0.5  
0
400000h  
200000h  
Figure 63. Calibration Block Diagram  
FSC[2:0]  
Final Output Data = (Input - OFC[2:0]) ´  
000000h  
400000h  
Calibration Commands  
(7)  
The ADS1246/7/8 provide commands for three types  
of calibration: system gain calibration, system offset  
calibration and self offset calibration. Where absolute  
accuracy is needed, it is recommended that  
calibration be performed after power on, a change in  
temperature, a change of PGA and in some cases a  
change in channel. At the completion of calibration,  
the DRDY signal goes low indicating the calibration is  
finished. The first data after calibration are always  
valid. If the START pin is taken low or a SLEEP  
command is issued after any calibration command,  
the devices goes to sleep after completing calibration.  
The values of the offset and full-scale registers are  
set by writing to them directly, or they are set  
automatically by calibration commands.  
Offset Calibration Register: OFC[2:0]  
The offset calibration is a 24-bit word, composed of  
three 8-bit registers. The offset is in twos complement  
format with a maximum positive value of 7FFFFFh  
and a maximum negative value of 800000h. This  
value is subtracted from the conversion data. A  
register value of 000000h provides no offset  
correction. Note that while the offset calibration  
register value can correct offsets ranging from –FS to  
+FS (as shown in Table 16), make sure to avoid  
overloading the analog inputs.  
System Gain Calibration  
System gain calibration corrects for gain error in the  
signal path. The system gain calibration is initiated by  
sending the SYSGCAL command while applying a  
full-scale input to the selected analog inputs.  
Afterwards the full-scale calibration register (FSC) is  
updated. When a system gain calibration command is  
issued, the ADS1246/7/8 stop the current conversion  
and start the calibration procedure immediately.  
Table 16. Final Output Code versus Offset  
Calibration Register Setting  
FINAL OUTPUT CODE WITH  
OFFSET REGISTER  
7FFFFFh  
VIN = 0  
8000000h  
FFFFFFh  
000000h  
000001h  
7FFFFFh  
000001h  
System Offset and Self Offset Calibration  
000000h  
FFFFFFh  
System offset calibration corrects both internal and  
external offset errors. The system offset calibration is  
initiated by sending the SYSGOCAL command while  
applying a zero differential input (VIN = 0) to the  
selected analog inputs. The self offset calibration is  
initiated by sending the SELFOCAL command.  
During self offset calibration, the selected inputs are  
disconnected from the internal circuitry and a zero  
differential signal is applied internally. With both offset  
8000000h  
1. Excludes effects of noise and inherent offset  
errors.  
Full-Scale Calibration Register: FSC[2:0]  
The full-scale or gain calibration is a 24-bit word  
composed of three 8-bit registers. The full-scale  
calibration value is 24-bit, straight binary, normalized  
to 1.0 at code 400000h. Table 17 summarizes the  
scaling of the full-scale register. Note that while the  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
calibrations the offset calibration register (OFC) is  
updated afterwards. When either offset calibration  
command is issued, the ADS1246/7/8 stop the  
current conversion and start the calibration procedure  
immediately.  
ADC SLEEP MODE  
Power consumption can be dramatically reduced by  
placing the ADS1246/7/8 into sleep mode. There are  
two ways to put the device into sleep mode: the sleep  
command (SLEEP) and through the START pin.  
Calibration Timing  
During sleep mode, the internal reference status  
depends on the setting of the VREFCON bits in the  
MUX1 register; see the Register Descriptions section  
for details.  
When calibration is initiated, the device performs 16  
consecutive data conversions and averages the  
results to calculate the calibration value. This  
provides a more accurate calibration value. The time  
required for calibration is shown in Table 18 and can  
be calculated using Equation 8:  
ADC CONTROL  
ADC Conversion Control  
50  
32  
16  
+
+
Calibration Time =  
The START pin provides easy and precise control of  
conversions. Pulse the START pin high to begin a  
conversion, as shown in Figure 64 and Table 19. The  
conversion completion is indicated by the  
DOUT/DRDY pin going low. When the conversion  
completes, the ADS1246/7/8 automatically shuts  
down to save power. During shutdown, the  
conversion result can be retrieved; however, START  
must be taken high before communicating with the  
configuration registers. The device stays shut down  
until the START pin is once again taken high to begin  
a new conversion. When the START pin is taken  
back high again, the decimation filter is held in a  
reset state for 32 modulator clock cycles internally to  
allow the analog circuits to settle.  
fOSC  
fMOD  
fDATA  
(8)  
Table 18. Calibration Time versus Data Rate  
DATA RATE (SPS)  
CALIBRATION TIME (ms)  
5
3201.01  
1601.01  
801.012  
400.26  
200.26  
100.14  
50.14  
10  
20  
40  
80  
160  
320  
640  
1000  
2000  
25.14  
16.14  
The ADS1246/7/8 can be configured to convert  
continuously by holding the START pin high, as  
shown in Figure 65. With the START pin held high,  
the ADC converts the selected input channels  
continuously. This configuration continues until the  
START pin is taken low.  
8.07  
1. For fOSC = 4.096MHz.  
ADC POWER-UP  
When DVDD is pulled up, the internal power-on reset  
module generates a pulse that resets all digital  
circuitry. All the digital circuits are held in a reset  
state for 216 system clocks to allow the analog circuits  
and the internal digital power supply to settle. SPI  
communication cannot occur until the internal reset is  
released.  
The START pin can also be used to perform the  
synchronized measurement for the multi-channel  
applications by pulsing the START pin.  
32  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
tSTART  
START  
tCONV  
DOUT/DRDY  
SCLK  
1
2
3
24  
DRDY  
ADS1246/47/48  
Converting  
Shutdown  
Status  
Figure 64. Timing for Single Conversion Using START Pin  
Table 19. START Pin Conversion Times for Figure 64  
SYMBOL  
DESCRIPTION  
DATA RATE (SPS)  
VALUE  
200.295  
100.644  
50.825  
25.169  
12.716  
6.489  
UNIT  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
5
10  
20  
40  
80  
Time from START pulse to DRDY and  
DOUT/DRDY going low  
tCONV  
160  
320  
640  
1000  
2000  
3.247  
1.692  
1.138  
0.575  
START  
Data Ready  
Data Ready  
Data Ready  
DOUT/DRDY  
ADS1246/47/48  
Converting  
Converting  
Converting  
Converting  
Status  
NOTE: SCLK held low in this example.  
Figure 65. Timing for Conversion with START Pin High  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
RESET  
In the event of an overloaded state, care must also  
be taken to ensure single cycle settling into the next  
When the RESET pin goes low, the device is  
immediately reset. All the registers are restored to  
default values. The device stays in reset mode as  
long as the RESET pin stays low. When it goes high,  
the ADC comes out of reset mode and is able to  
convert data. After the RESET pin goes high, and  
when the system clock frequency is 4.096MHz, the  
digital filter and the registers are held in a reset state  
for 0.6ms when fOSC = 4.096MHz. Therefore, valid  
SPI communication can only be resumed 0.6ms after  
the RESET pin goes high; see Figure 4. When the  
RESET pin goes low, the clock selection is reset to  
the internal oscillator.  
cycle. Because the ADS1246/7/8 implement  
a
chopper-stabilized PGA, changing data rates during  
an overload state can cause the chopper to become  
unstable. This instability results in slow settling time.  
To prevent this slow settling, always change the PGA  
setting or MUX setting to a non-overloaded state  
before changing the data rate.  
Digital Filter Reset Operation  
Apart from the RESET command and the RESET pin,  
the digital filter is reset automatically when either a  
write operation to the MUX0, VBIAS, MUX1, or SYS0  
registers is performed, when a SYNC command is  
issued, or the START pin is taken high.  
Channel Cycling and Overload Recovery  
When cycling through channels, care must be taken  
when configuring the ADS1246/7/8 to ensure that  
settling occurs within one cycle. For setups that  
simply cycle through MUX channels, but do not  
change PGA and data rate settings, simply changing  
the MUX0 register is sufficient. However, when  
changing PGA and data rate settings it is important to  
ensure that an overloaded condition cannot occur  
during the transmission. When configuration data are  
transferred to the ADS1246/7/8, new settings become  
active at the end of each byte sent. Therefore, a brief  
overload condition can occur during the transmission  
of configuration data after the completion of the  
MUX0 byte and before completion of the SYS0 byte.  
This temporary overload can result in intermittent  
incorrect readings. To ensure that an overload does  
not occur, it may be necessary to split the  
communication into two separate communications  
allowing the change of the SYS0 register before the  
change of the MUX0 register.  
The filter is reset two system clocks after the last bit  
of the SYNC command is sent. The reset pulse  
created internally lasts for two multiplier clock cycles.  
If any write operation takes place in the MUX0  
register, the filter is reset regardless of whether the  
value changed or not. Internally, the filter pulse lasts  
for two system clock periods. If any write activity  
takes place in the VBIAS, MUX1, or SYS0 registers,  
the filter is reset as well, regardless of whether the  
value changed or not. The reset pulse lasts for 32  
modulator clocks after the write operation. If there are  
multiple write operations, the resulting reset pulse  
may be viewed as the ANDed result of the different  
active low pulses created individually by each action.  
Table 20 shows the conversion time after a filter  
reset. Note that this time depends on the operation  
initiating the reset. Also, the first conversion after a  
filter reset has a slightly different time than the  
second and subsequent conversions.  
34  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
Table 20. Data Conversion Time  
FIRST DATA CONVERSION TIME AFTER FILTER RESET  
HARDWARE RESET, RESET  
COMMAND, START PIN HIGH,  
WAKEUP COMMAND, VBIAS,  
MUX1, or SYS0 REGISTER  
WRITE  
SECOND AND SUBSEQUENT  
CONVERSION TIME AFTER  
FILTER RESET  
SYNC COMMAND, MUX0  
REGISTER WRITE  
NO. OF  
SYSTEM  
CLOCK  
NO. OF  
SYSTEM  
CLOCK  
NO. OF  
SYSTEM  
CLOCK  
NOMINAL  
DATA RATE  
(SPS)  
EXACT DATA  
RATE  
(SPS)  
(ms)(1)  
199.264  
99.639  
49.827  
24.920  
12.467  
6.241  
CYCLES  
816188  
408124  
204092  
102076  
51068  
25564  
12796  
6428  
(ms)(1)  
200.260  
100.635  
50.822  
25.172  
12.719  
6.492  
CYCLES  
820265  
412201  
208169  
103106  
52098  
26594  
13314  
6946  
(ms)  
199.250  
99.625  
49.812  
24.906  
12.453  
6.226  
CYCLES  
816128  
408064  
204032  
102016  
51008  
25504  
12736  
6368  
5
5.019  
10.038  
10  
20  
20.075  
40  
40.151  
80  
80.301  
160  
320  
640  
1000  
2000  
160.602  
321.608  
643.216  
1000.000  
2000.000  
3.124  
3.250  
3.109  
1.569  
1.695  
1.554  
1.014  
4156  
1.141  
4674  
1.000  
4096  
0.514  
2108  
0.578  
2370  
0.500  
2048  
(1) For fOSC = 4.096MHz.  
command and the RDATA command. These  
limitations are explained in detail in the SPI  
Commands section of this data sheet. For the basic  
serial interface timing characteristics, see Figure 1  
and Figure 2 of this datasheet.  
Data Format  
The ADS1246/7/8 output 24 bits of data in binary  
twos complement format. The least significant bit  
(LSB) has a weight of (VREF/PGA)/(223 – 1). The  
positive full-scale input produces an output code of  
7FFFFFh and the negative full-scale input produces  
an output code of 800000h. The output clips at these  
codes for signals exceeding full-scale. Table 21  
summarizes the ideal output codes for different input  
signals.  
CS  
The chip select pin (active low). The CS pin activates  
SPI communication. CS must be low before data  
transactions and must stay low for the entire SPI  
communication period. When CS is high, the  
DOUT/DRDY pin enters a high-impedance state.  
Therefore, reading and writing to the serial interface  
are ignored and the serial interface is reset. DRDY  
pin operation is independent of CS.  
Table 21. Ideal Output Code vs Input Signal  
INPUT SIGNAL, VIN  
(AINP – AINN)  
IDEAL OUTPUT CODE  
7FFFFFh  
Taking CS high deactivates only the SPI  
communication with the device. Data conversion  
continues and the DRDY signal can be monitored to  
check if a new conversion result is ready. A master  
device monitoring the DRDY signal can select the  
appropriate slave device by pulling the CS pin low.  
+VREF/PGA  
(+VREF/PGA)/(223 – 1)  
0
(–VREF/PGA)/(223 – 1)  
–(VREF/PGA) × (223/223 – 1)  
000001h  
000000h  
FFFFFFh  
800000h  
SCLK  
1. Excludes effects of noise, linearity, offset, and  
gain errors.  
The serial clock signal. SCLK provides the clock for  
serial communication. It is a Schmitt-trigger input, but  
it is highly recommended that SCLK be kept as clean  
as possible to prevent glitches from inadvertently  
shifting the data. Data are shifted into DIN on the  
falling edge of SCLK and shifted out of DOUT on the  
rising edge of SCLK.  
Digital Interface  
The ADS1246/7/8 provide a standard SPI serial  
communication interface plus a data ready signal  
(DRDY). Communication is full-duplex with the  
exception of a few limitations in regards to the RREG  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
DIN  
When the DRDY MODE bit is set to '0', this pin  
functions as DOUT only. Data are clocked out at  
rising edge of SCLK, MSB first (see Figure 66).  
The data input pin. DIN is used along with SCLK to  
send data to the device. Data on DIN are shifted into  
the device on the falling edge of SCLK.  
When the DRDY MODE bit is set to '1', this pin  
functions as both DOUT and DRDY. Data are shifted  
out from this pin, MSB first, at the rising edge of  
SCLK. This combined pin allows for the same control  
but with fewer pins.  
The communication of this device is full-duplex in  
nature. The device monitors commands shifted in  
even when data are being shifted out. Data that are  
present in the output shift register are shifted out  
when sending in  
a command. Therefore, it is  
When the DRDY MODE bit is enabled and a new  
conversion is complete, DOUT/DRDY goes low if it is  
high. If it is already low, then DOUT/DRDY goes high  
and then goes low (see Figure 67). Similar to the  
DRDY pin, a falling edge on the DOUT/DRDY pin  
signals that a new conversion result is ready. After  
DOUT/DRDY goes low, the data can be clocked out  
by providing 24 SCLKs. In order to force  
DOUT/DRDY high (so that DOUT/DRDY can be  
polled for a '0' instead of waiting for a falling edge), a  
no operation command (NOP) or any other command  
that does not load the data output register can be  
sent after reading out the data. Because SCLKs can  
only be sent in multiples of eight, a NOP can be sent  
to force DOUT/DRDY high if no other command is  
pending. The DOUT/DRDY pin goes high after the  
first rising edge of SCLK after reading the conversion  
result completely (see Figure 68). The same condition  
also applies after an RREG command. After all the  
register bits have been read out, the rising edge of  
SCLK forces DOUT/DRDY high. Figure 69 illustrates  
an example where sending four NOP commands after  
an RREG command forces the DOUT/DRDY pin  
high.  
important to make sure that whatever is being sent on  
the DIN pin is valid when shifting out data. When no  
command is to be sent to the device when reading  
out data, the NOP command should be sent on DIN.  
DRDY  
The data ready pin. The DRDY pin goes low to  
indicate a new conversion is complete, and the  
conversion result is stored in the conversion result  
buffer. The SPI clock must be low in a short time  
frame around the DRDY low transition (see Figure 2)  
so that the conversion result is loaded into both the  
result buffer and the output shift register. Therefore,  
no commands should be issued during this time  
frame if the conversion result is to be read out later.  
This constraint applies only when CS is asserted.  
When CS is not asserted, SPI communication with  
other devices on the SPI bus does not affect loading  
of the conversion result. After the DRDY pin goes  
low, it is forced high on the first falling edge of SCLK  
(so that the DRDY pin can be polled for '0' instead of  
waiting for a falling edge). If the DRDY pin is not  
taken high after it falls low, a short high pulse is  
created on it to indicate the next data are ready.  
DOUT/DRDY  
This pin has two modes: data out (DOUT) only, or  
data out (DOUT) combined with data ready (DRDY).  
The DRDY MODE bit determines the function of this  
pin. In either mode, the DOUT/DRDY pin goes to a  
high-impedance state when CS is taken high.  
1
2
3
22  
23  
24  
1
2
8
SCLK  
DOUT/DRDY(1)  
D[23]  
D[22]  
D[21]  
D[2]  
D[1]  
D[0]  
DRDY  
(1) CS tied low.  
Figure 66. Data Retrieval with the DRDY MODE Bit = 0 (Disabled)  
36  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
1
2
3
22  
23  
24  
1
2
24  
SCLK  
D[23] D[22] D[21]  
NOP  
D[2]  
D[1]  
D[0]  
D[23] D[22]  
NOP  
D[0]  
DOUT/DRDY(1)  
DIN  
DRDY  
(1) CS tied low.  
Figure 67. Data Retrieval with the DRDY MODE Bit = 1 (Enabled)  
1
2
3
22  
23  
24  
1
2
8
1
2
24  
SCLK  
D[23] D[22] D[21]  
NOP  
D[2]  
D[1] D[0]  
D[23] D[22]  
NOP  
D[0]  
DOUT/DRDY(1)  
DIN  
NOP  
DRDY  
(1) DRDY MODE bit enabled, CS tied low.  
Figure 68. DOUT/DRDY Forced High After Retrieving the Conversion Result  
1
2
7
8
1
2
7
8
SCLK  
DOUT/DRDY(1)  
DIN  
reg[7]  
reg[1] reg[0]  
NOP  
NOP  
(1) DRDY MODE bit enabled, CS tied low.  
Figure 69. DOUT/DRDY Forced High After Reading Register Data  
The DRDY MODE bit modifies only the DOUT/DRDY  
pin functionality. The DRDY pin functionality remains  
unaffected.  
SPI Communication During Sleep Mode  
When the START pin is low or the device is in sleep  
mode, only the RDATA, RDATAC, SDATAC,  
WAKEUP, and NOP commands can be issued. The  
RDATA command can be used to repeatedly read the  
last conversion result during sleep mode. Other  
commands do not function because the internal clock  
is shut down to save power during sleep mode.  
SPI Reset  
SPI communication can be reset in several ways. In  
order to reset the SPI interface (without resetting the  
registers or the digital filter), the CS pin can be pulled  
high. Taking the RESET pin low causes the SPI  
interface to be reset along with all the other digital  
functions. In this case, the registers and the  
conversion are reset.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
REGISTER DESCRIPTIONS  
Table 22. ADS1246 Register Map  
ADS1246 REGISTER MAP  
ADDRESS REGISTER  
BIT 7  
BCS1  
0
BIT 6  
BCS0  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
BIT 1  
0
BIT 0  
1
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
BCS  
VBIAS  
MUX1  
SYS0  
OFC0  
OFC1  
OFC2  
FSC0  
FSC1  
FSC2  
0
0
0
0
VBIAS1  
MUXCAL1  
DR1  
VBIAS0  
MUXCAL0  
DR0  
CLKSTAT  
0
0
0
0
0
MUXCAL2  
DR2  
PGA2  
OFC6  
OFC14  
OFC22  
FSC6  
FSC14  
FSC22  
PGA1  
OFC5  
OFC13  
OFC21  
FSC5  
FSC13  
FSC21  
PGA0  
OFC4  
OFC12  
OFC20  
FSC4  
FSC12  
FSC20  
DR3  
OFC7  
OFC15  
OFC23  
FSC7  
FSC15  
FSC23  
OFC3  
OFC11  
OFC19  
FSC3  
FSC11  
FSC19  
OFC2  
OFC10  
OFC18  
FSC2  
FSC10  
FSC18  
OFC1  
OFC9  
OFC17  
FSC1  
OFC0  
OFC8  
OFC16  
FSC0  
FSC9  
FSC8  
FSC17  
FSC16  
DRDY  
MODE  
0Ah  
ID  
ID3  
ID2  
ID1  
ID0  
0
0
0
ADS1246 DETAILED REGISTER DEFINITIONS  
BCS—Burnout Current Source Register. These bits control the settling of the sensor burnout detect current  
source.  
BCS - ADDRESS 00h  
RESET VALUE = 01h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BCS1  
BCS0  
0
0
0
0
0
1
Bits 7:6  
Bits 5:0  
BCS1:0  
These bits select the magnitude of the sensor burnout detect current source.  
00 = Burnout current source off (default)  
01 = Burnout current source on, 0.5mA  
10 = Burnout current source on, 2mA  
11 = Burnout current source on, 10mA  
These bits must always be set to '000001'.  
38  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1246 DETAILED REGISTER DEFINITIONS (continued)  
VBIAS—Bias Voltage Register. This register enables a bias voltage on the analog inputs.  
VBIAS - ADDRESS 01h  
RESET VALUE = 00h  
BIT 0  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
VBIAS1  
0
0
0
0
0
0
VBIAS0  
Bits 7:2  
Bits 1:0  
These bits must always be set to '000000'.  
VBIAS1:0  
These bits apply a bias voltage of midsupply (AVDD + AVSS)/2 to the selected analog input. Bit 0  
is for AIN0, and bit 1 is for AIN1.  
0 = Bias voltage not enabled (default)  
1 = Bias voltage is applied to the analog input  
MUX—Multiplexer Control Register.  
MUX - ADDRESS 02h  
RESET VALUE = x0h  
BIT 0  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
MUXCAL1  
CLKSTAT  
0
0
0
0
MUXCAL2  
MUXCAL0  
Bit 7  
CLKSTAT  
This bit is read-only and indicates whether the internal or external oscillator is being used.  
0 = Internal oscillator in use  
1 = External oscillator in use  
Bits 6:3  
Bits 2:0  
These bits must always be set to '0000'.  
MUXCAL2:0  
These bits are used to select a system monitor. The MUXCAL selection supercedes selections  
from the VBIAS register.  
000 = Normal operation (default)  
001 = Offset calibration. The analog inputs are disconnected and AINP and AINN are internally  
connected to midsupply (AVDD + AVSS)/2.  
010 = Gain calibration. The analog inputs are connected to the voltage reference.  
011 = Temperature measurement. The inputs are connected to a diode circuit that produces a  
voltage proportional to the ambient temperature of the device..  
Table 23 lists the ADC input connection and PGA settings for each MUXCAL setting. The PGA setting reverts to  
the original SYS0 register setting when MUXCAL is taken back to normal operation or offset measurement.  
Table 23. MUXCAL Settings  
MUXCAL[2:0]  
PGA GAIN SETTING  
Set by SYS0 register  
Set by SYS0 register  
Forced to 1  
ADC INPUT  
Normal operation  
000  
001  
010  
011  
Offset calibration: inputs shorted to midsupply (AVDD + AVSS)/2  
Gain calibration: VREFP – VREFN (full-scale)  
Temperature measurement diode  
Forced to 1  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADS1246 DETAILED REGISTER DEFINITIONS (continued)  
SYS0—System Control Register 0.  
SYS0 - ADDRESS 03h  
RESET VALUE = 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
PGA2  
PGA1  
PGA0  
DOR3  
DOR2  
DOR1  
DOR0  
Bit 7  
Bits 6:4  
These bits must always be set to '0'.  
PGA2:0  
These bits determine the gain of the PGA.  
000 = 1 (default)  
001 = 2  
010 = 4  
011 = 8  
100 = 16  
101 = 32  
110 = 64  
111 = 128  
Bits 3:0  
DOR3:0  
These bits select the output data rate of the ADC. Bits with a value higher than 1001 select the  
highest data rate of 2kSPS.  
0000 = 5SPS (default)  
0001 = 10SPS  
0010 = 20SPS  
0011 = 40SPS  
0100 = 80SPS  
0101 = 160SPS  
0110 = 320SPS  
0111 = 640SPS  
1000 = 1000SPS  
1001 to 1111 = 2000SPS  
OFC23:0  
These bits make up the offset calibration coefficient register of the ADS1248.  
OFC0—Offset Calibration Coefficient Register 0  
OFC0 - ADDRESS 04h  
RESET VALUE = 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
OFC7  
OFC6  
OFC5  
OFC4  
OFC3  
OFC2  
OFC1  
OFC0  
OFC1—Offset Calibration Coefficient Register 1  
OFC1 - ADDRESS 05h  
RESET VALUE = 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
OFC15  
OFC14  
OFC13  
OFC12  
OFC11  
OFC10  
OFC9  
OFC8  
OFC2—Offset Calibration Coefficient Register 2  
OFC2 - ADDRESS 06h  
RESET VALUE = 00h  
BIT 0  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
OFC23  
OFC22  
OFC21  
OFC20  
OFC19  
OFC18  
OFC17  
OFC16  
40  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1246 DETAILED REGISTER DEFINITIONS (continued)  
FSC23:0  
These bits make up the full-scale calibration coefficient register.  
FSC0—Full-Scale Calibration Coefficient Register 0  
FSC0 - ADDRESS 07h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC7  
FSC6  
FSC5  
FSC4  
FSC3  
FSC2  
FSC1  
FSC0  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
FSC1—Full-Scale Calibration Coefficient Register 1  
FSC1 - ADDRESS 08h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
FSC14  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC15  
FSC13  
FSC12  
FSC11  
FSC10  
FSC9  
FSC8  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
FSC2—Full-Scale Calibration Coefficient Register 2  
FSC2 - ADDRESS 09h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
FSC22  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC23  
FSC21  
FSC20  
FSC19  
FSC18  
FSC17  
FSC16  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
ID—ID Register  
IDAC0 - ADDRESS 0Ah  
RESET VALUE = x0h  
BIT 7  
BIT 6  
ID2  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ID3  
ID1  
ID0  
DRDY MODE  
0
0
0
Bits 7:4  
ID3:0  
Read-only, factory-programmed bits; used for revision identification.  
Bit 3  
DRDY MODE  
This bit sets the DOUT/DRDY pin functionality. In either setting of the DRDY MODE bit, the DRDY  
pin continues to indicate data ready, active low.  
0 = DOUT/DRDY pin functions only as Data Out (default)  
1 = DOUT/DRDY pin functions both as Data Out and Data Ready, active low  
Bits 2:0  
These bits must always be set to '000'.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADS1247 AND ADS1248 REGISTER MAP  
Table 24. ADS1247 and ADS1248 Register Map  
ADDRESS REGISTER  
BIT 7  
BCS1  
BIT 6  
BCS0  
BIT 5  
MUX_SP2  
VBIAS5  
BIT 4  
MUX_SP1  
VBIAS4  
BIT 3  
MUX_SP0  
VBIAS3  
BIT 2  
MUX_SN2  
VBIAS2  
BIT 1  
MUX_SN1  
VBIAS1  
MUXCAL1  
DR1  
BIT 0  
MUX_SN0  
VBIAS0  
MUXCAL0  
DR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
MUX0  
VBIAS  
MUX1  
SYS0  
OFC0  
OFC1  
OFC2  
FSC0  
FSC1  
FSC2  
VBIAS7  
VBIAS6  
CLKSTAT VREFCON1 VREFCON0 REFSELT1 REFSELT0 MUXCAL2  
0
PGA2  
OFC6  
PGA1  
OFC5  
PGA0  
OFC4  
DR3  
DR2  
OFC7  
OFC15  
OFC23  
FSC7  
OFC3  
OFC11  
OFC19  
FSC3  
OFC2  
OFC10  
OFC18  
FSC2  
OFC1  
OFC0  
OFC14  
OFC22  
FSC6  
OFC13  
OFC21  
FSC5  
OFC12  
OFC20  
FSC4  
OFC9  
OFC8  
OFC17  
FSC1  
OFC16  
FSC0  
FSC15  
FSC23  
FSC14  
FSC22  
FSC13  
FSC21  
FSC12  
FSC20  
FSC11  
FSC19  
FSC10  
FSC18  
FSC9  
FSC8  
FSC17  
FSC16  
DRDY  
MODE  
0Ah  
IDAC0  
ID3  
ID2  
ID1  
ID0  
IMAG2  
IMAG1  
IMAG0  
0Bh  
0Ch  
0Dh  
0Eh  
IDAC1  
I1DIR3  
IOCFG7  
IODIR7  
IODAT7  
I1DIR2  
IOCFG6  
IODIR6  
IODAT6  
I1DIR1  
IOCFG5  
IODIR5  
IODAT5  
I1DIR0  
IOCFG4  
IODIR4  
IODAT4  
I2DIR3  
IOCFG3  
IODIR3  
IODAT3  
I2DIR2  
IOCFG2  
IODIR2  
IODAT2  
I2DIR1  
IOCFG1  
IODIR1  
IODAT1  
I2DIR0  
IOCFG0  
IODIR0  
IODAT0  
GPIOCFG  
GPIODIR  
GPIODAT  
42  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS  
MUX0—Multiplexer Control Register 0. This register allows any combination of differential inputs to be selected  
on any of the input channels. Note that this setting can be superceded by the MUXCAL and VBIAS bits.  
MUX0 - ADDRESS 00h  
RESET VALUE = 01h  
BIT 0  
BIT 7  
BIT 6  
BCS0  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
MUX_SN1  
BCS1  
MUX_SP2  
MUX_SP1  
MUX_SP0  
MUX_SN2  
MUX_SN0  
Bits 7:6  
Bits 5:3  
BCS1:0  
These bits select the magnitude of the sensor detect current source.  
00 = Burnout current source off (default)  
01 = Burnout current source on, 0.5mA  
10 = Burnout current source on, 2mA  
11 = Burnout current source on, 10mA  
MUX_SP2:0  
Positive input channel selection bits.  
000 = AIN0 (default)  
001 = AIN1  
010 = AIN2  
011 = AIN3  
100 = AIN4 (ADS1248 only)  
101 = AIN5 (ADS1248 only)  
110 = AIN6 (ADS1248 only)  
111 = AIN7 (ADS1248 only)  
Bits 2:0  
MUX_SN2:0  
Negative input channel selection bits.  
000 = AIN0  
001 = AIN1 (default)  
010 = AIN2  
011 = AIN3  
100 = AIN4 (ADS1248 only)  
101 = AIN5 (ADS1248 only)  
110 = AIN6 (ADS1248 only)  
111 = AIN7 (ADS1248 only)  
VBIAS—Bias Voltage Register  
VBIAS - ADDRESS 01h  
RESET VALUE = 00h  
DEVICE  
ADS1248  
ADS1247  
BIT 7  
VBIAS7  
0
BIT 6  
VBIAS6  
0
BIT 5  
VBIAS5  
0
BIT 4  
VBIAS4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
VBIAS3  
VBIAS3  
VBIAS2  
VBIAS2  
VBIAS1  
VBIAS1  
VBIAS0  
VBIAS0  
Bits 7:0  
VBIAS7:0  
These bits apply a bias voltage of midsupply (AVDD + AVSS)/2 to the selected analog input.  
0 = Bias voltage not enabled (default)  
1 = Bias voltage is applied on the corresponding analog input (bit 0 corresponds to AIN0, etc.).  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS (continued)  
MUX1—Multiplexer Control Register 1  
MUX1 - ADDRESS 02h  
RESET VALUE = 00h  
BIT 0  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
MUXCAL1  
CLKSTAT  
VREFCON1  
VREFCON0  
REFSELT1  
REFSELT0  
MUXCAL2  
MUXCAL0  
Bit 7  
CLKSTAT  
This bit is read-only and indicates whether the internal or external oscillator is being used.  
0 = Internal oscillator in use  
1 = External oscillator in use  
Bits 6:5  
VREFCON1:0  
These bits control the internal voltage reference. These bits allow the reference to be turned on or  
off completely, or allow the reference state to follow the state of the device. Note that the internal  
reference is required for operation of the IDAC functions.  
00 = Internal reference is always off (default)  
01 = Internal reference is always on  
10 or 11 = Internal reference is on when a conversion is in progress and shuts down when the  
device receives a shutdown opcode or the START pin is taken low  
Bits 4:3  
Bits 2:0  
REFSELT1:0  
These bits select the reference input for the ADC.  
00 = REF0 input pair selected (default)  
01 = REF1 input pair selected (ADS1248 only)  
10 = Onboard reference selected  
11 = Onboard reference selected and internally connected to REF0 input pair  
MUXCAL2:0  
These bits are used to select a system monitor. The MUXCAL selection supercedes selections  
from registers MUX0 and MUX1 (MUX_SP, MUX_SN, and VBIAS).  
000 = Normal operation (default)  
001 = Offset measurement  
010 = Gain measurement  
011 = Temperature diode  
100 = External REF1 measurement (ADS1248 only)  
101 = External REF0 measurement  
110 = AVDD measurement  
111 = DVDD measurement  
Table 25 provides the ADC input connection and PGA settings for each MUXCAL setting. The PGA setting  
reverts to the original SYS0 register setting when MUXCAL is taken back to normal operation or offset  
measurement.  
Table 25. MUXCAL Settings  
MUXCAL[2:0]  
PGA GAIN SETTING  
Set by SYS0 register  
Set by SYS0 register  
Forced to 1  
ADC INPUT  
Normal operation  
000  
001  
010  
011  
100  
101  
110  
111  
Inputs shorted to midsupply (AVDD + AVSS)/2  
VREFP – VREFN (full-scale)  
Temperature measurement diode  
(VREFP1 – VREFN1)/4  
Forced to 1  
Forced to 1  
Forced to 1  
(VREFP0 – VREFN0)/4  
Forced to 1  
(AVDD – AVSS)/4  
Forced to 1  
(DVDD – DVSS)/4  
44  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS (continued)  
SYS0—System Control Register 0  
SYS0 - ADDRESS 03h  
RESET VALUE = 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
PGA2  
PGA1  
PGA0  
DOR3  
DOR2  
DOR1  
DOR0  
Bit 7  
Bits 6:4  
This bit must always be set to '0'  
PGA2:0  
These bits determine the gain of the PGA.  
000 = 1 (default)  
001 = 2  
010 = 4  
011 = 8  
100 = 16  
101 = 32  
110 = 64  
111 = 128  
Bits 3:0  
DOR3:0  
These bits select the output data rate of the ADC. Bits with a value higher than 1001 select the  
highest data rate of 2000SPS.  
0000 = 5SPS (default)  
0001 = 10SPS  
0010 = 20SPS  
0011 = 40SPS  
0100 = 80SPS  
0101 = 160SPS  
0110 = 320SPS  
0111 = 640SPS  
1000 = 1000SPS  
1001 to 1111 = 2000SPS  
OFC23:0  
These bits make up the offset calibration coefficient register of the ADS1248.  
OFC0—Offset Calibration Coefficient Register 0  
OFC0 - ADDRESS 04h  
RESET VALUE = 000000h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
OFC7  
OFC6  
OFC5  
OFC4  
OFC3  
OFC2  
OFC1  
OFC0  
OFC1—Offset Calibration Coefficient Register 1  
OFC1 - ADDRESS 05h  
RESET VALUE = 000000h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
OFC15  
OFC14  
OFC13  
OFC12  
OFC11  
OFC10  
OFC9  
OFC8  
OFC2—Offset Calibration Coefficient Register 2  
OFC2 - ADDRESS 06h  
RESET VALUE = 000000h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
OFC23  
OFC22  
OFC21  
OFC20  
OFC19  
OFC18  
OFC17  
OFC16  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS (continued)  
FSC23:0  
These bits make up the full-scale calibration coefficient register.  
FSC0—Full-Scale Calibration Coefficient Register 0  
FSC0 - ADDRESS 07h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC7  
FSC6  
FSC5  
FSC4  
FSC3  
FSC2  
FSC1  
FSC0  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
FSC1—Full-Scale Calibration Coefficient Register 1  
FSC1 - ADDRESS 08h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
FSC14  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC15  
FSC13  
FSC12  
FSC11  
FSC10  
FSC9  
FSC8  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
FSC2—Full-Scale Calibration Coefficient Register 2  
FSC2 - ADDRESS 09h  
RESET VALUE IS PGA DEPENDENT(1)  
BIT 7  
BIT 6  
FSC22  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FSC23  
FSC21  
FSC20  
FSC19  
FSC18  
FSC17  
FSC16  
(1) The reset value for FSC is factory-trimmed for each PGA setting. Note: the factory-trimmed FSC reset value is automatically loaded  
whenever the PGA setting is changed.  
IDAC0—IDAC Control Register 0  
IDAC0 - ADDRESS 0Ah  
RESET VALUE = x0h  
BIT 7  
BIT 6  
ID2  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ID3  
ID1  
ID0  
DRDY MODE  
IMAG2  
IMAG1  
IMAG0  
Bits 7:4  
ID3:0  
Read-only, factory-programmed bits; used for revision identification.  
Bit 3  
DRDY MODE  
This bit sets the DOUT/DRDY pin functionality. In either setting of the DRDY MODE bit, the DRDY  
pin continues to indicate data ready, active low.  
0 = DOUT/DRDY pin functions only as Data Out (default)  
1 = DOUT/DRDY pin functions both as Data Out and Data Ready, active low  
Bits 2:0  
IMAG2:0  
The ADS1247/8 have two programmable current source DACs that can be used for sensor  
excitation. The IMAG bits control the magnitude of the excitation current. The IDACs require the  
internal reference to be on.  
000 = off (default)  
001 = 50mA  
010 = 100mA  
011 = 250mA  
100 = 500mA  
101 = 750mA  
110 = 1000mA  
111 = 1500mA  
46  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS (continued)  
IDAC1—IDAC Control Register 1  
IDAC1 - ADDRESS 0Bh  
RESET VALUE = FFh  
DEVICE  
ADS1248  
ADS1247  
BIT 7  
I1DIR3  
0
BIT 6  
I1DIR2  
0
BIT 5  
I1DIR1  
I1DIR1  
BIT 4  
I1DIR0  
I1DIR0  
BIT 3  
I2DIR3  
0
BIT 2  
I2DIR2  
0
BIT 1  
I2DIR1  
I2DIR1  
BIT 0  
I2DIR0  
I2DIR0  
The two IDACs on the ADS1247/8 can be routed to either the IEXC1 and IEXC2 output pins or directly to the  
analog inputs.  
Bits 7:4  
I1DIR3:0  
These bits select the output pin for the first current source DAC.  
0000 = AIN0  
0001 = AIN1  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4 (ADS1248 only)  
0101 = AIN5 (ADS1248 only)  
0110 = AIN6 (ADS1248 only)  
0111 = AIN7 (ADS1248 only)  
10x0 = IEXT1 (ADS1248 only)  
10x1 = IEXT2 (ADS1248 only)  
11xx = Disconnected (default)  
Bits 3:0  
I2DIR3:0  
These bits select the output pin for the second current source DAC.  
0000 = AIN0  
0001 = AIN1  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4 (ADS1248 only)  
0101 = AIN5 (ADS1248 only)  
0110 = AIN6 (ADS1248 only)  
0111 = AIN7 (ADS1248 only)  
10x0 = IEXT1 (ADS1248 only)  
10x1 = IEXT2 (ADS1248 only)  
11xx = Disconnected (default)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
ADS1247 and ADS1248 DETAILED REGISTER DEFINITIONS (continued)  
GPIOCFG—GPIO Configuration Register. The GPIO and analog pins are shared as follows:  
GPIO0 shared with REFP0  
GPIO1 shared with REFN0  
GPIO2 shared with AIN2  
GPIO3 shared with AIN3  
GPIO4 shared with AIN4 (ADS1248)  
GPIO5 shared with AIN5 (ADS1248)  
GPIO6 shared with AIN6 (ADS1248)  
GPIO7 shared with AIN7 (ADS1248)  
GPIOCFG - ADDRESS 0Ch  
RESET VALUE = 00h  
DEVICE  
ADS1248  
ADS1247  
BIT 7  
IOCFG7  
0
BIT 6  
IOCFG6  
0
BIT 5  
IOCFG5  
0
BIT 4  
IOCFG4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IOCFG3  
IOCFG3  
IOCFG2  
IOCFG2  
IOCFG1  
IOCFG1  
IOCFG0  
IOCFG0  
Bits 7:0  
IOCFG7:0  
These bits enable the GPIO because the GPIO pins are shared with the analog pins. Note that the  
ADS1248 uses all the IOCFG bits, whereas the ADS1247 uses only bits 3:0.  
0 = The pin is used as an analog input (default)  
1 = The pin is used as a GPIO pin  
GPIODIR—GPIO Direction Register  
GPIODIR - ADDRESS 0Dh  
RESET VALUE = 00h  
DEVICE  
ADS1248  
ADS1247  
BIT 7  
IODIR7  
0
BIT 6  
IODIR6  
0
BIT 5  
IODIR5  
0
BIT 4  
IODIR4  
0
BIT 3  
IODIR3  
IODIR3  
BIT 2  
IODIR2  
IODIR2  
BIT 1  
BIT 0  
IODIR1  
IODIR1  
IODIR0  
IODIR0  
Bits 7:0  
IODIR7:0  
These bits control the direction of the GPIO when enabled by the IOCFG bits. Note that the  
ADS1248 uses all the IODIR bits, whereas the ADS1247 uses only bits 3:0.  
0 = The GPIO is an output (default)  
1 = The GPIO is an input  
GPIODAT—GPIO Data Register  
GPIODAT - ADDRESS 0Eh  
RESET VALUE = 00h  
DEVICE  
ADS1248  
ADS1247  
BIT 7  
IODAT7  
0
BIT 6  
IODAT6  
0
BIT 5  
IODAT5  
0
BIT 4  
IODAT4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IODAT3  
IODAT3  
IODAT2  
IODAT2  
IODAT1  
IODAT1  
IODAT0  
IODAT0  
Bits 7:0  
IODAT7:0  
If a GPIO pin is enabled in the GPIOCFG register and configured as an output in the GPIO  
Direction register (GPIODIR), the value written to this register appears on the appropriate GPIO  
pin. If a GPIO pin is configured as an input in GPIODIR, reading this register returns the value of  
the digital I/O pins. Note that the ADS1248 uses all eight IODAT bits, while the ADS1247 uses only  
bits 3:0.  
48  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
SPI COMMANDS  
SPI COMMAND DEFINITIONS  
The commands shown in Table 26 control the operation of the ADS1246/7/8. Some of the commands are  
stand-alone commands (for example, RESET), whereas others require additional bytes (for example, WREG  
requires command, count, and the data bytes).  
Operands:  
n = number of registers to be read or written (number of bytes – 1)  
r = register (0 to 15)  
x = don't care  
Table 26. SPI Commands  
COMMAND TYPE  
COMMAND  
WAKEUP  
SLEEP  
DESCRIPTION  
Exit sleep mode  
1st COMMAND BYTE  
0000 000x (00h, 01h)  
0000 001x (02h, 03h)  
0000 010x (04h, 05h)  
0000 011x (06h, 07h)  
1111 1111 (FFh)  
2nd COMMAND BYTE  
Enter sleep mode  
System Control  
SYNC  
Synchronize the A/D conversion  
Reset to power-up values  
No operation  
0000-010x (04,05h)  
RESET  
NOP  
RDATA  
Read data once  
0001 001x (12h, 13h)  
0001 010x (14h, 15h)  
0001 011x (16h, 17h)  
0010 rrrr (2xh)  
Data Read  
RDATAC  
SDATAC  
RREG  
Read data continuously  
Stop reading data continuously  
Read from register rrrr  
Write to register rrrr  
Read Register  
Write Register  
0000_nnnn  
0000_nnnn  
WREG  
0100 rrrr (4xh)  
SYSOCAL  
SYSGCAL  
SELFOCAL  
System offset calibration  
System gain calibration  
Self offset calibration  
0110 0000 (60h)  
Calibration  
0110 0001 (61h)  
0110 0010 (62h)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
SYSTEM CONTROL COMMANDS  
WAKEUP—Wake up from sleep mode that is set by the SLEEP command.  
Use this command to awaken the device from sleep mode. After execution of the WAKEUP command, the  
device wakes up on the rising edge of the eighth SCLK.  
SLEEP—Set the device to sleep mode; can only be awakened by the WAKEUP command.  
This command places the part into a sleep (power-saving) mode. When the SLEEP command is issued, the  
device completes the current conversion and then goes into sleep mode. Note that this command does not  
automatically power-down the internal voltage reference; see the VREFCON bits in the MUX1 register for  
each device for further details.  
To exit sleep mode, issue the WAKEUP command. Single conversions can be performed by issuing a  
WAKEUP command followed by a SLEEP command.  
Both WAKEUP and SLEEP are the software command equivalents of using the START pin to control the device.  
SLEEP  
WAKEUP  
DIN  
SCLK  
DRDY  
0000 001X  
0000 000X  
Eighth SCLK  
Status  
Normal Mode  
Sleep Mode  
Normal Mode  
Finish Current Conversion  
Start New Conversion  
Figure 70. SLEEP and WAKEUP Commands Operation  
SYNC—Synchronize DRDY.  
This command resets the ADC digital filter and starts a new conversion. The DRDY pin from multiple devices  
connected to the same SPI bus can be synchronized by issuing a SYNC command to all of devices  
simultaneously.  
SYNC  
DIN  
0000 010X 0000 010X  
SCLK  
Synchronization  
Occurs Here  
2 tOSC  
Figure 71. SYNC Command Operation  
RESET—Reset the device to power-up state.  
This command restores the registers to the respective power-up values. This command also resets the digital  
filter. RESET is the command equivalent of using the RESET pin to reset the device. However, the RESET  
command does not reset the SPI interface. If the RESET command is issued when the SPI interface is in the  
wrong state, the device does not reset. The CS pin can be used to reset SPI interface first, and then a  
RESET command can be issued to reset the device. The RESET command holds the registers and the  
decimation filter in a reset state for 0.6ms when the system clock frequency is 4.096MHz, similar to the  
hardware reset. Therefore, SPI communication can be only be started 0.6ms after the RESET command is  
issued, as shown in Figure 72.  
Any SPI  
Command  
DIN  
RESET  
1
8
SCLK  
0.6ms  
Figure 72. SPI Communication After an SPI Reset  
50  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
DATA RETRIEVAL COMMANDS  
RDATAC—Read data continuously.  
The RDATAC command enables the automatic loading of a new conversion result into the output data  
register. In this mode, the conversion result can be received once from the device after the DRDY signal  
goes low by sending 24 SCLKs. It is not necessary to read back all the bits, as long as the number of bits  
read out is a multiple of eight. The RDATAC command must be issued after DRDY goes low, and the  
command takes effect on the next DRDY.  
Be sure to complete data retrieval (conversion result or register read-back) before DRDY goes low, or the  
resulting data will be corrupt. Successful register read operations in RDATAC mode require the knowledge of  
when the next DRDY falling edge occurs.  
DRDY  
RDATAC  
NOP  
DIN  
0001 010X  
DOUT  
SCLK  
24 Bits  
1
8
1
24  
Figure 73. Read Data Continuously  
SDATAC—Stop reading data continuously.  
The SDATAC command terminates the RDATAC mode. Afterwards, the conversion result is not  
automatically loaded into the output shift register when DRDY goes low, and register read operations can be  
performed without interruption from new conversion results being loaded into the output shift register. Use  
the RDATA command to retrieve conversion data. The SDATAC command takes effect after the next DRDY.  
DRDY  
SDATAC  
DIN  
0001 011X  
Figure 74. Stop Reading Data Continuously  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
RDATA—Read data once.  
The RDATA command loads the most recent conversion result into the output register. After issuing this  
command, the conversion result can be read out by sending 24 SCLKs, as shown in Figure 75. This  
command also works in RDATAC mode.  
When performing multiple reads of the conversion result, the RDATA command can be sent when the last  
eight bits of the conversion result are being shifted out during the course of the first read operation by taking  
advantage of the duplex communication nature of the SPI interface, as shown in Figure 76.  
DRDY  
RDATA  
NOP  
MSB  
NOP  
NOP  
LSB  
DIN  
DOUT  
SCLK  
0001 001X  
Mid-Byte  
1
8
1
24  
Figure 75. Read Data Once  
1
2
7
8
9
10  
23  
24  
1
2
23  
24  
SCLK  
D[23] D[22]  
NOP  
D[17] D[16] D[15] D[14]  
D[1] D[0] D[23] D[22]  
D[1] D[0]  
NOP  
DOUT  
DIN  
NOP  
NOP  
RDATA  
NOP  
DRDY  
Figure 76. Using RDATA in Full-Duplex Mode  
52  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
USER REGISTER READ AND WRITE COMMANDS  
RREG—Read from registers.  
This command outputs the data from up to 16 registers, starting with the register address specified as part of  
the instruction. The number of registers read is one plus the second byte. If the count exceeds the remaining  
registers, the addresses wrap back to the beginning.  
First Command Byte: 0010 rrrr, where rrrr is the address of the first register to read.  
Second Command Byte: 0000 nnnn, where nnnn is the number of bytes to read –1.  
It is not possible to use the full-duplex nature of the SPI interface when reading out the register data. For  
example, a SYNC command cannot be issued when reading out the VBIAS and MUX1 data, as shown in  
Figure 77. Any command sent during the readout of the register data is ignored. Thus, it is advisable to send  
NOP through the DIN when reading out the register data.  
1st  
Command Command  
Byte Byte  
2nd  
DIN  
0010 0001 0000 0001  
VBIAS  
MUX1  
DOUT  
Data Byte Data Byte  
Figure 77. Read from Register  
WREG—Write to registers.  
This command writes to the registers, starting with the register specified as part of the instruction. The  
number of registers that are written is one plus the value of the second byte.  
First Command Byte: 0100 rrrr, where rrrr is the address of the first register to be written.  
Second Command Byte: 0000 nnnn, where nnnn is the number of bytes to be written – 1.  
Data Byte(s): data to be written to the registers.  
DIN  
0100 0010 0000 0001  
MUX2  
SYS0  
1st  
2nd  
Data  
Byte  
Data  
Byte  
Command Command  
Figure 78. Write to Register  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
CALIBRATION COMMANDS  
The ADS1246/7/8 provide system and offset calibration commands and a system gain calibration command.  
SYSOCAL—Offset system calibration.  
This command initiates a system offset calibration. For a system offset calibration, the input should be  
externally set to zero. The OFC register is updated when this operation completes.  
SYSGCAL—System gain calibration.  
This command initiates the system gain calibration. For a system gain calibration, the input should be set to  
full-scale. The FSC register is updated after this operation.  
SELFOCAL—Self offset calibration.  
This command initiates a self-calibration for offset. The device internally shorts the inputs and performs the  
calibration. The OFC register is updated after this operation.  
Calibration  
Starts  
Calibration  
Complete  
tCAL  
DRDY  
DIN  
Calibration  
Command  
SCLK  
1
8
Figure 79. Calibration Command  
54  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
APPLICATION INFORMATION  
SPI COMMUNICATION EXAMPLES  
negative terminal of both sensors (that is, channels  
AIN1 and AIN3). All these settings can be changed  
by performing a block write operation on the first four  
registers of the device. After the DRDY pin goes low,  
the conversion result can be immediately retrieved by  
sending in 16 SPI clock pulses because the device  
defaults to RDATAC mode. As the conversion result  
is being retrieved, the active input channels can be  
switched to AIN2 and AIN3 by writing into the MUX0  
This section contains several examples of SPI  
communication with the ADS1246/7/8, including the  
power-up sequence.  
Channel Multiplexing Example  
This first example applies only to the ADS1247 and  
ADS1248. It explains a method to use the device with  
two sensors connected to two different analog  
channels. Figure 80 shows the sequence of SPI  
operations performed on the device. After power-up,  
216 system clocks are required before communication  
may be started. During the first 216 system clock  
cycles, the devices are internally held in a reset state.  
In this example, one of the sensors is connected to  
channels AIN0 and AIN1 and the other sensor is  
connected to channels AIN2 and AIN3. The ADC is  
operated at a data rate of 2kSPS. The PGA gain is  
set to 32 for both sensors. VBIAS is connected to the  
register in  
a full-duplex manner, as shown in  
Figure 80. The write operation is completed with an  
additional eight SPI clock pulses. The time from the  
write operation into the MUX0 register to the next  
DRDY low transition is shown in Figure 80 and is  
0.513ms in this case. After DRDY goes low, the  
conversion result can be retrieved and the active  
channel can be switched as before.  
Power-up sequence  
16ms(1)  
ADC initial setup  
Multiplexer change is channel 2  
Data Retrieval for  
Channel 2 Conversion  
DVDD  
START  
RESET  
CS  
WREG  
WREG  
NOP  
DIN  
3
00 01 02 03  
00 00  
SCLK  
Conversion result  
for channel 1  
Conversion result  
for channel 2  
DOUT  
DRDY  
0.513ms  
tDRDY  
for  
Initial setting:  
MUX0  
Write  
AIN0 is the positive channel,  
AIN1 is the negative channel,  
internal reference selected,  
PGA gain = 32,  
AIN2 is the positive channel,  
AIN3 is the negative channel.  
data rate = 2kSPS,  
VBIAS is connected to the  
negative pins AIN1 and AIN3.  
(1) For fOSC = 4.096MHz.  
Figure 80. SPI Communication Sequence for Channel Multiplexing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
Sleep Mode Example  
be changed by performing a block write operation on  
the first four registers of the device. After performing  
the block write operation, the START pin can be  
taken low. The device enters the power-saving sleep  
mode as soon as DRDY goes low 0.575ms after  
writing into the SYS0 register. The conversion result  
can be retrieved even after the device enters sleep  
mode by sending 16 SPI clock pulses.  
This second example deals with performing one  
conversion after power-up and then entering into the  
power-saving sleep mode. In this example, a sensor  
is connected to input channels AIN0 and AIN1.  
Commands to set up the devices must occur at least  
216 system clock cycles after powering up the  
devices. The ADC operates at a data rate of 2kSPS.  
The PGA gain is set to 32 for both sensors. VBIAS is  
connected to the negative terminal of both the  
sensors (that is, channel AIN1). All these settings can  
ADC is put to sleep  
after a single conversion.  
Data are retrieved when  
ADC is sleeping.  
Power-up sequence  
16ms(1)  
ADC initial setup  
DVDD  
START  
RESET  
CS  
WREG  
NOP  
DIN  
00 01 02 03  
SCLK  
Conversion result  
for channel 1  
DOUT  
DRDY  
tDRDY  
Initial setting:  
ADC enters  
power-saving  
sleep mode  
(0.575ms)  
AIN0 is the positive channel,  
AIN1 is the negative channel,  
internal reference selected,  
PGA gain = 32,  
data rate = 2kSPS,  
VBIAS is connected to the  
negative pins, AIN1 and AIN3.  
(1) For fOSC = 4.096MHz.  
Figure 81. SPI Communication Sequence for Entering Sleep Mode After a Conversion  
56  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
Hardware-Compensated, Three-Wire RTD  
Measurement Example  
be equal to the resistance of the PT-100 sensor at  
+25°C (approximately 110). The IDAC current is set  
to 1.5mA. This setting results in a differential input  
swing of ±14.7mV at the inputs of the ADC. The PGA  
gain is set to 128. The full-scale input for the ADC is  
±19.53mV. Fixing RBIAS at 833fixes the reference at  
2.5V and the input common-mode at approximately  
2.7V, ensuring that the voltage at AIN0 is far away  
from the IDAC compliance voltage.  
Figure 82 is an application circuit to measure  
temperatures in the range of 0°C to +50°C using a  
PT-100 RTD and the ADS1247 or ADS1248 in a  
three-wire, hardware-compensated topology. The two  
onboard matched current DACs of the ADS1247/8  
are ideally suited for implementing the three-wire  
RTD topology. This circuit uses  
a ratiometric  
approach, where the reference is derived from the  
IDAC currents in order to achieve excellent noise  
performance. The resistance of the PT-100 changes  
from 100at 0°C to 119.6at +50°C. The  
compensating resistor (RCOMP) has been chosen to  
The maximum number of noise-free output codes for  
this circuit in the 0°C to +50°C temperature range is  
(2ENOB)(14.7mV)/19.53mV.  
+5V  
+3.3V  
IN  
EN  
VOUT  
TPS79333  
GND  
0.1mF  
2.2mF  
NR  
AVDD  
DVDD  
VDD  
RESET  
IDAC1  
1.5mA  
IDAC2  
1.5mA  
RTD  
(1)  
RL  
15W  
AIN0  
AIN1  
(1)  
(2)  
MSP430  
or  
RL  
RCOMP  
110W  
PGA  
Modulator  
15W  
other  
Microprocessor  
Gain = 128  
(1)  
RL  
15W  
SCLK  
DIN  
REFP0  
REFN0  
(2)  
RBIAS  
833W  
ADS1247/48  
DOUT/DRDY  
CS  
START  
CLK  
GND  
AVSS  
DGND  
(1) RTD line resistances.  
(2) RBIAS and RCOMP should be as close to the ADC as possible.  
Figure 82. Three-Wire RTD Application with Hardware Compensation  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
 
ADS1246  
ADS1247  
ADS1248  
SBAS426D AUGUST 2008REVISED MARCH 2010  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (August 2009) to Revision D  
Page  
Updated Description section ................................................................................................................................................. 1  
Added Analog Inputs, Full-scale input voltage maximum specification in Electrical Characteristics .................................... 4  
Changed Analog Inputs, Absolute input current parameter of Electrical Characteristics ..................................................... 4  
Added new footnote 1 to Electrical Characteristics .............................................................................................................. 4  
Changed conditions of System Performance, Power-supply rejection parameter of Electricsl Characteristics ................... 4  
Changed typical specification of Current Sources (IDACS), Initial mismatch parameter of Electrical Characteristics ........ 5  
Changed typical specification of Current Sources (IDACS), Temperature drift parameter of Electrical Characteristics ...... 5  
Changed Power Supply, AVDD current typical specification for 3.3V parameter in Electrical Characteristics .................... 5  
Changed title of Table 6 ...................................................................................................................................................... 13  
Changed title of Table 7 ...................................................................................................................................................... 14  
Changed title of Table 9 ...................................................................................................................................................... 15  
Updated Figure 5 ................................................................................................................................................................ 16  
Updated Figure 6 ................................................................................................................................................................ 16  
Added Figure 7, Noise Histogram Plot ............................................................................................................................... 16  
Added Figure 8, Noise Histogram Plot ............................................................................................................................... 16  
Updated Figure 9 ................................................................................................................................................................ 16  
Added Figure 10, RMS Noise vs Input Signal .................................................................................................................... 16  
Updated Figure 11 .............................................................................................................................................................. 17  
Updated Figure 12 .............................................................................................................................................................. 17  
Updated Figure 13 .............................................................................................................................................................. 17  
Updated Figure 14 .............................................................................................................................................................. 17  
Added Figure 15, Offset Drift vs Temperature .................................................................................................................... 17  
Added Figure 16, Offset Drift vs Temperature .................................................................................................................... 17  
Added Figure 17, Offset vs Temperature ........................................................................................................................... 18  
Added Figure 18, Offset vs Temperature ........................................................................................................................... 18  
Updated Figure 19 .............................................................................................................................................................. 18  
Updated Figure 20 .............................................................................................................................................................. 18  
Updated Figure 21 .............................................................................................................................................................. 18  
Updated Figure 22 .............................................................................................................................................................. 18  
Added Figure 23, Gain vs Temperature ............................................................................................................................. 19  
Added Figure 24, Gain vs Temperature ............................................................................................................................. 19  
Added Figure 25, Gain vs Temperature ............................................................................................................................. 19  
Added Figure 26, Gain vs Temperature ............................................................................................................................. 19  
Updated Figure 29 .............................................................................................................................................................. 20  
Added Figure 31, Analog Current vs Temperature ............................................................................................................. 20  
Added Figure 32, Digital Current vs Temperature .............................................................................................................. 20  
Added Figure 42, Power-Supply Rejection vs Gain ........................................................................................................... 22  
Added Figure 43, Internal VREF Initial Accuracy Histogram ................................................................................................ 22  
Added Figure 44, IDAC Initial Accuracy Histogram ............................................................................................................ 22  
Added Figure 45, IDAC Mismatch Histogram ..................................................................................................................... 22  
Changed Table 11 .............................................................................................................................................................. 25  
Updated Figure 55 .............................................................................................................................................................. 27  
58  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
ADS1246  
ADS1247  
ADS1248  
www.ti.com  
SBAS426D AUGUST 2008REVISED MARCH 2010  
Updated Figure 56 .............................................................................................................................................................. 27  
Revised VREFCOM description in Internal Voltage Reference section ............................................................................. 29  
Changed fourth row entry of final output code column in Table 16 .................................................................................... 31  
Added ADC Power-Up section ........................................................................................................................................... 32  
Added Channel Cycling and Overload Recovery section ................................................................................................... 34  
Changed first three rows of hardware reset columns in Table 20 ...................................................................................... 35  
Revised Channel Multiplexing Example section ................................................................................................................. 55  
Revised Sleep Mode Example section ............................................................................................................................... 56  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS1246 ADS1247 ADS1248  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-May-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS1246IPW  
ADS1246IPWR  
ADS1247IPW  
ADS1247IPWR  
ADS1248IPW  
ADS1248IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
16  
16  
20  
20  
28  
28  
90  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Request Free Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Request Free Samples  
Purchase Samples  
Purchase Samples  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
2000  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-May-2010  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1246IPWR  
ADS1247IPWR  
ADS1248IPWR  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
16  
20  
28  
2000  
2000  
2000  
330.0  
330.0  
330.0  
12.4  
16.4  
16.4  
6.9  
6.95  
7.1  
5.6  
7.1  
1.6  
1.6  
1.6  
8.0  
8.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
10.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1246IPWR  
ADS1247IPWR  
ADS1248IPWR  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
16  
20  
28  
2000  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
29.0  
33.0  
33.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

ADS1247

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1247IPW

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1247IPWR

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1248

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1248EVM-PDK

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1248IPW

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS1248IPW-ADS11

Contains all support circuitry needed for the ADS1148/ADS1248
TI

ADS1248IPWR

24-Bit Analog-to-Digital Converters for Temperature Sensors
TI

ADS124S06

适用于精密传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、6 通道 Δ-Σ ADC
TI

ADS124S06IPBS

适用于精密传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、6 通道 Δ-Σ ADC | PBS | 32 | -50 to 125
TI

ADS124S06IPBSR

适用于精密传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、6 通道 Δ-Σ ADC | PBS | 32 | -50 to 125
TI

ADS124S06IRHBR

适用于精密传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、6 通道 Δ-Σ ADC | RHB | 32 | -50 to 125
TI