ADS1282-SP [TI]

高分辨率模数转换器 (ADC);
ADS1282-SP
型号: ADS1282-SP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高分辨率模数转换器 (ADC)

转换器 模数转换器
文件: 总62页 (文件大小:1630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
ADS1282-SP 抗辐射加固保障高分辨率 Δ-Σ ADC  
1 特性  
2 应用  
1
QMLVQML V 类)MIL-PRF-38535 认证和抗辐  
射加固保障 (RHA)SMD 5962-14231  
太空卫星温度和温度检测  
太空卫星精密和科学 应用  
高精度仪器  
5962L1423101VXC - 符合军用级温度范围要求  
–55°C 125°C)  
(1)  
可提供工程评估 (/EM) 样片(1)  
5962L1423102VXC - 符合缩减温度范围要求  
–55°C 115°C),提高动态性能  
这些部件仅适用于工程评估。以非合规性流程对其进行了处理  
(即未进行老化处理等操作)并且仅在 25°C 额定温度下进行  
了测试。这些部件不适用于质检、生产、辐射测试或飞行。这  
些零部件无法在 –55°C 125°C 的完整 MIL 额定温度范围或  
运行寿命内保证其性能。  
5962L14231:  
抗辐射加固保障 (RHA) 高达 50kRAD (Si) 总电  
离剂量 (TID)  
3 说明  
125°C 的环境温度下,单粒子锁定 (SEL) 对  
LET 的抗扰度为 50MeV-cm2/mg  
ADS1282-SP 是一款超高性能的抗辐射单芯片模数转  
换器 (ADC),具有集成式低噪声可编程增益放大器  
(PGA) 和双通道输入多路复用器 (MUX)ADS1282-  
SP 具备超精密性能,适合要求较高的太空 应用 ;同  
时能够保持较高的抗辐射性能,适用于各类卫星、有效  
载荷及其他环境恶劣的 应用。  
85°C 的环境温度下,单粒子锁定 (SEL) 对于  
LET 的抗扰度为 60MeV-cm2/mg  
高分辨率:124dB 信噪比 (SNR) (1000SPS)  
高精度:总谐波失真 (THD)–102dB  
积分非线性 (INL)0.5ppm  
低噪声可编程增益放大器 (PGA)  
双通道输入多路复用器 (MUX)  
固有稳定性的调制器,支持快速响应超范围检测  
灵活的数字滤波器:  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
ADS1282-SP  
CFP (HKV) (28)  
18.23mm x 12.70mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
正弦 + 有限脉冲响应 (FIR) + 无限脉冲响应  
(IIR)(可选)  
线性或最小相位响应  
可编程的高通滤波器  
可选择 FIR 数据速率:  
250SPS 4kSPS  
滤波器旁路选项  
低功耗:25mW  
偏移和增益校准引擎  
SYNC 输入  
模拟电源:单极 (5V) 或双极 (±2.5V)  
数字电源:1.75V 3.3V  
简化原理图  
AVDD  
VREFN VREFP  
DVDD  
CLK  
ADS1282  
SCLK  
DOUT  
DIN  
Input 1  
4th-Order  
DS  
Programmable  
Digital Filter  
SPI  
PGA  
Calibration  
Interface  
Input 2  
Modulator  
DRDY  
VCOM  
Over-Range  
SYNC  
RESET  
PWDN  
Control  
Modulator Output  
3
AVSS  
DGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS691  
 
 
 
 
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 35  
8.5 Programming........................................................... 35  
8.6 Register Maps......................................................... 40  
Application and Implementation ........................ 45  
9.1 Application Information............................................ 45  
9.2 Typical Application ................................................. 45  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
(说明 (续))....................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 9  
7.7 Pulse-Sync Timing Requirements............................. 9  
7.8 Reset Timing Requirements ................................... 10  
7.9 Read Data Timing Requirements............................ 10  
7.10 Switching Characteristics...................................... 10  
7.11 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
9
10 Power Supply Recommendations ..................... 51  
11 Layout................................................................... 52  
11.1 Layout Guidelines ................................................. 52  
11.2 Layout Example .................................................... 53  
12 器件和文档支持 ..................................................... 54  
12.1 器件支持................................................................ 54  
12.2 接收文档更新通知 ................................................. 57  
12.3 社区资源................................................................ 57  
12.4 ....................................................................... 57  
12.5 静电放电警告......................................................... 57  
12.6 术语表 ................................................................... 57  
13 机械、封装和可订购信息....................................... 57  
8
4 修订历史记录  
Changes from Revision A (December 2016) to Revision B  
Page  
将文档标题从:“ADS1282-SP 耐辐射...” 更改为“ADS1282-SP 抗辐射加固保障...” ............................................................... 1  
特性 中将单粒子锁定 (SEL) 对于 LET 的抗扰度为 40...” 更改为单粒子锁定 (SEL) 对于 LET 的抗扰度为 50...” ............. 1  
特性 中添加单粒子锁定 (SEL) 对于 LET 的抗扰度为 60...” ............................................................................................... 1  
已添加 工程评估样片列表项和脚注至应用 列表...................................................................................................................... 1  
Changed the HKV Package appearance................................................................................................................................ 4  
Changes from Original (March 2016) to Revision A  
Page  
已添加 5962L1423102VXC 缩减温度范围列表项至特性 ................................................................................................ 1  
Added ESD Ratings table to Specifications section............................................................................................................... 5  
Added TJ values for 5962L1423102VXC to Recommended Operating Conditions table ...................................................... 5  
Added MIN, TYP and MAX values for 5962L1423102VXC to Electrical Characteristics table.............................................. 6  
已添加 接收文档更新通知 器件和文档支持 ............................................................................................................... 57  
2
版权 © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
5 (说明 (续))  
此转换器使用一个固有稳定性的四阶 Δ-Σ 调制器来获得出色的抗噪性能和线性度。该调制器可与片上数字滤波器搭  
配使用,也可通过旁路与后处理滤波器结合使用。  
输入 MUX 可灵活提供附加的外部输入用于测量以及内部自检连接。PGA 具有 出色的低噪声性能 (5nV/Hz) 和高  
输入阻抗,能够与较宽增益范围内的传感器轻松连接。  
数字滤波器提供 250SPS 4000SPS 的可选数据速率。高通滤波器 (HPF) 具有 可调节的角频率。片上增益和偏  
移调节寄存器支持系统校准。  
同步输入 (SYNC) 可用于对多个 ADS1282 的转换操作进行同步。SYNC 输入还接受外部时钟源输入,用于对转换  
操作进行持续校准。  
放大器、调制器和滤波器三者的总功耗为 30mWADS1282-SP –55°C 125°C 温度范围内完全额定运行。  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
HKV Package  
28-Pin CFP (HKV)  
Top View  
CLK  
SCLK  
DRDY  
DOUT  
DIN  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
BYPAS  
DGND  
DVDD  
DGND  
RESET  
PWDN  
VREFP  
VREFN  
AVSS  
2
3
4
5
DGND  
MCLK  
M1  
6
7
8
M0  
9
SYNC  
MFLAG  
DGND  
CAPN  
CAPP  
10  
11  
12  
13  
14  
AVDD  
AINN1  
AINP1  
AINN2  
AINP2  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
CLK  
Digital input  
Master clock input  
Serial clock input  
2
SCLK  
DRDY  
DOUT  
DIN  
Digital input  
Digital output  
Digital output  
Digital input  
Digital ground  
3
Data ready output: read data on falling edge  
Serial data output  
4
5
Serial data input  
6, 12, 27, 25 DGND  
Digital ground, pin 12 is the key ground point  
"Modulator clock output; if in modulator mode:  
MCLK: Modulator clock output  
Otherwise, the pin is an unused input (must be tied)."  
7
8
MCLK  
M1  
Digital I/O  
Digital I/O  
"Modulator data output 1; if in modulator mode:  
M1: Modulator data output 1  
Otherwise, the pin is an unused input (must be tied)."  
"Modulator data output 0; if in modulator mode:  
M0: Modulator data output 0  
9
M0  
Digital I/O  
Otherwise, the pin is an unused input (must be tied)."  
10  
11  
SYNC  
MFLAG  
Digital input  
Digital output  
Synchronize input  
Modulator Over-Range flag:  
0 = Normal  
1 = Modulator over-range  
13  
14  
CAPN  
CAPP  
Analog  
Analog  
PGA outputs: Connect 10-nF capacitor from CAPP to CAPN  
PGA outputs: Connect 10-nF capacitor from CAPP to CAPN  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
26  
28  
NAME  
AINP2  
Analog input  
Analog input  
Analog input  
Analog input  
Analog supply  
Analog supply  
Analog input  
Analog input  
Digital input  
Digital input  
Digital supply  
Analog  
Positive analog input 2  
AINN2  
AINP1  
AINN1  
AVDD  
AVSS  
Negative analog input 2  
Positive analog input 1  
Negative analog input 1  
Positive analog power supply  
Negative analog power supply  
Negative reference input  
Positive reference input  
VREFN  
VREFP  
PWDN  
RESET  
DVDD  
BYPAS  
Power-down input, active low  
Reset input, active low  
Digital power supply: 1.8 V to 3.3 V  
Sub-regulator output: Connect 1-μF capacitor to DGND  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–2.8  
–0.3  
MAX  
UNIT  
V
AVDD to AVSS  
AVSS to DGND  
DVDD to DGND  
Input current  
5.5  
0.3  
V
3.9  
V
100, momentary  
10, continuous  
mA  
mA  
Input current  
Analog input voltage (AINP1, AINN1, AINP2, AINN2, VREFN, VREFP,  
CAPP, CAPN)  
AVSS – 0.3  
AVDD + 0.3  
V
Digital input voltage to DGND (CLK, SCLK, DRDY, DOUT, DIN, MCLK,  
M1, M0, MFLAG, SYNC, PWDN, RESET)  
–0.3  
–60  
DVDD + 0.3  
150  
V
Storage temperature, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–55  
–55  
NOM  
MAX  
125  
UNIT  
5962L1423101VXC  
5962L1423102VXC  
TJ  
Operating temperature  
°C  
115  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
7.4 Thermal Information  
ADS1282-SP  
THERMAL METRIC(1)  
HKV [CFP (TBAR)]  
UNIT  
28 PINS  
64.4  
16  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.6  
13.3  
50.5  
5.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK(1) = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP = 10 nF, PGA = 1,  
and ƒDATA = 1000 SPS, over operating temperature range, unless otherwise noted. Typical values are TJ = 25°C. A total ionizing dose of 50  
kRad (Si) exposure at a low dose rate of < 10 mRads (Si)/s, post tested at 25°C.  
5962L1423101VXC  
TYP  
5962L1423102VXC  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
ANALOG INPUTS  
Full-scale input  
voltage  
VIN = (AINP – AINN)  
(VREFP – VREFN) / (PGA)  
(VREFP – VREFN) / (PGA)  
Vpp-diff  
V
AINP or Absolute input  
AVSS +  
0.7  
AVDD –  
1.25  
AVSS +  
0.7  
AVDD –  
AINN  
range  
1.25  
PGA input voltage  
noise density  
5
1
5
1
nV/Hz  
GΩ  
Differential input  
impedance(2)  
Common-mode  
input impedance  
100  
100  
MΩ  
Input bias current  
Crosstalk  
1
1
nA  
dB  
ƒ = 31.25 Hz  
–128  
–128  
MUX on-  
resistance  
30  
30  
PGA OUTPUT (CAPP, CAPN)  
Absolute output  
range  
AVSS +  
0.4  
AVSS +  
0.4  
AVDD –  
0.4  
AVDD – 0.4  
V
PGA differential  
output impedance  
600  
±10%  
10  
600  
±10%  
10  
Output impedance  
tolerance  
External bypass  
capacitance  
100  
100  
nF  
Modulator  
differential input  
impedance  
55  
55  
kΩ  
AC PERFORMANCE  
Signal-to-noise  
SNR  
112  
124  
112  
124  
dB  
ratio(3)  
(1) ƒCLK = system clock.  
(2) Input impedance is improved by disabling input chopping (CHOP bit = 0).  
(3) VIN = 20 mVDC / PGA, see Table 1.  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Electrical Characteristics (continued)  
AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK(1) = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP = 10  
nF, PGA = 1, and ƒDATA = 1000 SPS, over operating temperature range, unless otherwise noted. Typical values are TJ =  
25°C. A total ionizing dose of 50 kRad (Si) exposure at a low dose rate of < 10 mRads (Si)/s, post tested at 25°C.  
5962L1423101VXC  
5962L1423102VXC  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
–122  
–117  
–115  
MAX  
–99  
MIN  
TYP  
–122  
–117  
–115  
MAX  
–101  
–92  
PGA = 1...16  
PGA = 32  
Total harmonic  
distortion(4)  
THD  
–90  
dB  
dB  
PGA = 64  
Spurious-free  
dynamic range  
SFDR  
123  
123  
DC PERFORMANCE  
Resolution  
No missing codes  
FIR filter mode  
31  
250  
31  
250  
bits  
4000  
128000  
0.0090  
4000  
128000  
0.0090  
ƒDATA  
Data rate  
SPS  
SINC filter mode  
8000  
8000  
Integral  
0.00005  
50  
0.00005  
50  
Differenti  
%
nonlinearity  
al input  
FSR(6)  
(INL)(5)  
Offset error  
0.0170  
0.0170  
200  
750  
200  
750  
Offset error after  
calibration(7)  
μV  
Offset drift  
Shorted  
input  
Gain error(8)  
1
0.02  
1
0.02  
μV  
Gain error after  
calibration(7)  
μV/°C  
Gain drift  
–1.5%  
–1.0%  
–0.5%  
0.8%  
–1.5%  
–1.0%  
–0.5%  
0.8%  
0.0002  
%
Gain matching(9)  
0.0002%  
PGA = 1  
2
9
2
9
Common-mode  
rejection  
ppm/°C  
PGA = 16  
0.3%  
110  
90  
0.3%  
110  
90  
ƒCM = 60 Hz(10)  
82  
80  
82  
80  
dB  
dB  
AVDD,  
AVSS  
Post 50  
ƒPS = 60  
Power-supply  
rejection  
kRads (Si), TJ  
Hz(10)  
64  
90  
90  
64  
90  
90  
dB  
dB  
= 25°C(11)  
DVDD  
115  
115  
VOLTAGE REFERENCE INPUTS  
(AVDD –  
AVSS) +  
0.2  
Reference input  
voltage  
(VREF = VREFP –  
VREFN)  
(AVDD –  
AVSS) + 0.2  
0.5  
5
0.5  
5
V
Negative  
reference input  
AVSS –  
0.1  
VREFP –  
0.5  
AVSS –  
0.1  
VREFP –  
0.5  
VREFN  
VREFP  
V
V
Positive reference  
input  
VREFN  
+ 0.5  
VREFN +  
0.5  
AVDD +  
0.1  
AVDD + 0.1  
±0.003  
Reference input  
impedance  
85  
85  
kΩ  
DIGITAL FILTER RESPONSE  
Passband ripple  
±0.003  
dB  
(4) VIN = 31.25 Hz, –0.5 dBFS.  
(5) Best-fit method.  
(6) FSR: Full-scale range = ±VREF / (2 × PGA).  
(7) Calibration accuracy is on the level of noise reduced by 4 (calibration averages 16 readings).  
(8) The PGA output impedance and the modulator input impedance results in –1% systematic gain error.  
(9) Gain match relative to PGA = 1.  
(10) ƒCM is the input common-mode frequency. ƒPS is the power-supply frequency.  
(11) The maximum limit applies to SMD 5962L14231 post 50 kRads (Si) test at 25°C.  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK(1) = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP = 10  
nF, PGA = 1, and ƒDATA = 1000 SPS, over operating temperature range, unless otherwise noted. Typical values are TJ =  
25°C. A total ionizing dose of 50 kRad (Si) exposure at a low dose rate of < 10 mRads (Si)/s, post tested at 25°C.  
5962L1423101VXC  
TYP  
5962L1423102VXC  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
TYP  
MAX  
Passband (–0.01  
dB)  
0.375 ×  
ƒDATA  
0.375 × ƒDATA  
0.413 × ƒDATA  
Hz  
Hz  
Hz  
dB  
Hz  
s
Bandwidth (–3  
dB)  
0.413 ×  
ƒDATA  
High-pass filter  
corner  
0.1  
10  
0.1  
10  
Stop band  
135  
135  
attenuation(12)  
0.500 ×  
ƒDATA  
Stop band  
0.500 × ƒDATA  
5 / ƒDATA  
5 /  
ƒDATA  
Minimum phase filter(13)  
Settling time (latency)  
Minimum phase filter  
Linear phase filter  
Group delay  
31 /  
ƒDATA  
31 / ƒDATA  
62 / ƒDATA  
62 / ƒDATA  
s
62 /  
ƒDATA  
s
62 /  
ƒDATA  
s
DIGITAL INPUT/OUTPUT  
0.8 ×  
DVDD  
0.8 ×  
DVDD  
VIH  
DVDD  
DVDD  
V
V
V
V
0.2 ×  
DVDD  
VIL  
DGND  
0.2 × DVDD  
DGND  
0.8 ×  
DVDD  
0.8 ×  
DVDD  
VOH  
IOH = 1 mA  
0.2 ×  
DVDD  
VOL  
IOL = 1 mA  
0.2 × DVDD  
Input leakage  
0 < VDIGITAL IN < DVDD  
±10  
4.096  
±10  
4.096  
μA  
ƒCLK  
Clock input  
1
1
MHz  
MHz  
ƒSCLK  
Serial clock rate  
ƒCLK / 2  
ƒCLK / 2  
POWER SUPPLY  
AVSS  
–2.6  
0
–2.6  
0
V
V
AVSS +  
4.75  
AVSS +  
5.25  
AVSS +  
4.75  
AVSS +  
5.25  
AVDD  
DVDD  
1.75  
3.6  
7.2  
1.75  
3.6  
6.5  
V
4.5  
–200  
–200  
4.5  
-200  
-200  
|mA|  
High-  
Post 50  
resolution  
kRads (Si), TJ  
mode  
11  
200  
5
11  
200  
5
|mA|  
|μA|  
= 25°C(11)  
Power-  
AVDD, AVSS  
current  
Post 50  
down  
kRads (Si), TJ  
mode  
|mA|  
|μA|  
= 25°C(11)  
200  
5
200  
5
Standby  
mode  
Post 50  
kRads (Si), TJ  
|mA|  
= 25°C(11)  
(12) Input frequencies in the range of NƒCLK / 512 ± ƒDATA / 2 (N = 1, 2, 3...) can mix with the modulator chopping clock. In these frequency  
ranges intermodulation = 120 dB, typ.  
(13) At DC. See Figure 42.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Electrical Characteristics (continued)  
AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK(1) = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP = 10  
nF, PGA = 1, and ƒDATA = 1000 SPS, over operating temperature range, unless otherwise noted. Typical values are TJ =  
25°C. A total ionizing dose of 50 kRad (Si) exposure at a low dose rate of < 10 mRads (Si)/s, post tested at 25°C.  
5962L1423101VXC  
5962L1423102VXC  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
0.6  
32  
MAX  
1.5  
MIN  
TYP  
0.6  
32  
MAX  
1.2  
High-resolution mode  
Power-down mode(14)  
Standby mode  
mA  
μA  
DVDD current  
120  
175  
41  
120  
175  
41  
73  
73  
μA  
25  
25  
mW  
High-  
Post 50  
resolution  
kRads (Si), TJ  
mode  
60  
0.95  
25.4  
1.1  
60  
0.95  
25.4  
1.1  
mW  
mW  
mW  
mW  
mW  
= 25°C(11)  
0.45  
0.58  
0.45  
0.58  
Power-  
Post 50  
Power dissipation down  
mode  
kRads (Si), TJ  
= 25°C(11)  
Standby  
mode  
Post 50  
kRads (Si), TJ  
25.4  
25.4  
= 25°C(11)  
(14) CLK input stopped.  
7.6 Timing Requirements  
At TA = –55°C to 125°C and DVDD = 1.65 to 3.6 V, unless otherwise noted.  
MIN  
2
MAX  
UNIT  
tSCLK  
tSPWH, L  
tDIST  
SCLK period  
SCLK pulse width, high and low(1)  
16  
10  
1 / ƒCLK  
1 / ƒCLK  
ns  
0.8  
50  
50  
DIN valid to SCLK rising edge: setup time  
Valid DIN to SCLK rising edge: hold time  
SCLK falling edge to valid new DOUT: propagation delay(2)  
SCLK falling edge to DOUT invalid: hold time  
tDIHD  
ns  
tDOPD  
tDOHD  
100  
ns  
0
ns  
Final SCLK rising edge of command to first SCLK rising edge for register  
read/write data  
tSCDL  
24  
1 / ƒCLK  
(1) Holding SCLK low for 64 DRDY falling edges resets the serial interface.  
(2) Load on DOUT = 20 pF || 100 k.  
7.7 Pulse-Sync Timing Requirements  
See Figure 46 and Figure 47 for timing diagrams.  
MIN  
1
MAX  
Infinite  
UNIT  
n / ƒDATA  
ns  
tSYNC  
SYNC period(1)  
tCSHD  
CLK to SYNC hold time to not latch on CLK edge  
SYNC to CLK setup time to latch on CLK edge  
SYNC pulse width, high or low  
10  
10  
2
tSCSU  
ns  
tSPWH, L  
1 / ƒCLK  
Time for data ready (SINC filter)  
Time for data ready (FIR filter)  
See 器件支持, 21  
62.98046875 / ƒDATA + 466 / ƒCLK  
tDR  
(1) Continuous-Sync mode; a free-running SYNC clock input without causing re-synchronization.  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
7.8 Reset Timing Requirements  
See Figure 48 for timing diagram.  
MIN  
MAX  
UNIT  
ns  
tCRHD  
tRCSU  
tRST  
CLK to RESET hold time  
RESET to CLK setup time  
RESET low  
10  
10  
ns  
2
1 / ƒCLK  
s
tDR  
Time for data ready  
62.98046875 / ƒDATA + 468 / ƒCLK  
7.9 Read Data Timing Requirements  
MIN  
MAX  
100  
1
UNIT  
ns  
tDDPD  
tDR  
DRDY to valid MSB on DOUT propagation delay (see Figure 54)(1)  
Time for new data after data read command (see Figure 55)  
0
ƒDATA  
(1) Load on DOUT = 20 pF || 100 k.  
7.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Minimum phase filter  
Linear phase filter  
Minimum phase filter  
Linear phase filter  
5 / ƒDATA  
31 / ƒDATA  
62 / ƒDATA  
62 / ƒDATA  
s
s
s
s
Group delay(1)  
Settling time  
(latency)  
(1) At DC. See Figure 42.  
tSCDL  
tSPWH  
tSCLK  
SCLK  
DIN  
tDIST  
tSPWL  
tSCDL  
tDIHD  
tDOHD  
DOUT  
tDOPD  
Figure 1. Timing Diagram  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
7.11 Typical Characteristics  
At 25°C, AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP = 10 nF, PGA  
= 1, and ƒDATA = 1000 SPS, unless otherwise noted.  
0
-20  
0
-20  
8192-Point FFT  
VIN = -0.5dBFS, 31.25Hz  
8192-Point FFT  
VIN = -20dBFS, 31.25Hz  
PGA = 1  
THD = -124.0dB  
PGA = 1  
THD = -120.1dB  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Figure 2. Output Spectrum  
Figure 3. Output Spectrum  
0
-20  
0
-20  
8192-Point FFT  
VIN = -0.5dBFS, 31.25Hz  
8192-Point FFT  
Shorted Input  
SNR = 124.0dB  
PGA = 16  
THD = -122.4dB  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Figure 4. Output Spectrum  
Figure 5. Output Spectrum  
0
-20  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
THD Limited by  
Signal Generator  
8192-Point FFT  
20mVDC  
SNR = 124.2dB  
-40  
-60  
PGA = 1  
PGA = 8  
-80  
-100  
-120  
-140  
-160  
-180  
VIN = –0.5 dBFS  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Input Frequency (Hz)  
Figure 6. Output Spectrum  
Figure 7. THD vs Input Frequency  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At 25°C, AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP  
= 10 nF, PGA = 1, and ƒDATA = 1000 SPS, unless otherwise noted.  
126  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
125  
124  
123  
122  
121  
120  
119  
118  
117  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Temperature (°C)  
Temperature (°C)  
Figure 8. SNR (1000 SPS) vs Temperature  
Figure 9. THD (G = 8) vs Temperature  
130  
-110  
-115  
-120  
-125  
-130  
PGA = 1  
PGA = 8  
125  
120  
115  
110  
105  
100  
PGA = 8  
PGA = 1  
0
1
2
3
4
5
5.5  
0
1
2
3
4
5
6
VREF (V)  
VREF (V)  
Figure 10. SNR vs Reference Voltage  
Figure 11. THD vs Reference Voltage  
125  
124  
123  
122  
121  
120  
119  
-110  
-115  
-120  
-125  
-130  
PGA = 8  
VIN = 31.25Hz, -0.5dBFS  
Data Rate = fCLK/4096  
VIN = 20mVDC  
Data Rate = fCLK/4096  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
fCLK (MHz)  
fCLK (MHz)  
Figure 12. SNR vs Clock Frequency  
Figure 13. THD vs Clock Frequency  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Typical Characteristics (continued)  
At 25°C, AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP  
= 10 nF, PGA = 1, and ƒDATA = 1000 SPS, unless otherwise noted.  
130  
120  
110  
100  
90  
140  
120  
100  
80  
DVDD  
AVDD  
AVSS  
60  
40  
80  
20  
70  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Input Frequency (Hz)  
Power-Supply Frequency (Hz)  
Figure 14. CMR vs Input Frequency  
Figure 15. Power-Supply Rejection vs Frequency  
4
3
2
1
0
30  
20  
10  
0
PGA = 2  
-1  
PGA = 8  
PGA = 32  
-2  
-3  
-4  
-10  
-100 -75  
-50  
-25  
0
25  
50  
75  
100  
-55 -35 -15  
5 25 45 65 85 105 125  
Temperature (°C)  
Input Amplitude (% Full-Scale)  
Figure 17. INL vs Temperature  
Figure 16. INL vs Input Amplitude  
35  
0
Shorted Input  
8192-Point FFT  
Adjacent Channel VIN = -0.5dBFS, 31.25Hz  
-20  
30  
25  
20  
15  
10  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
-55  
-25  
5
35  
65  
95  
125  
Temperature (°C)  
Figure 18. Crosstalk Output Spectrum  
Figure 19. Power vs Temperature  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At 25°C, AVDD = 2.5 V, AVSS = –2.5 V, ƒCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, CAPN – CAPP  
= 10 nF, PGA = 1, and ƒDATA = 1000 SPS, unless otherwise noted.  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
25 Units  
PGA = 8  
PGA = 1  
0
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
fCLK (MHz)  
Offset (mV)  
Figure 20. Power vs Clock Frequency  
Figure 21. Offset Histogram  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
25 Units Based on  
25 Units  
+20°C Intervals  
Over the Range of  
-40°C to +85°C  
PGA = 8  
6
4
2
PGA =1  
0
-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3  
Gain Error (%)  
Offset Drift (mV/°C)  
Figure 22. Gain Error Histogram  
Figure 23. Offset Drift Histogram  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
4
2
0
25 Units Based on +20°C Intervals  
Over the Range of -40°C to +85°C  
Worst-Case Gain Match Relative PGA = 1 (25 Units)  
PGA = 1, 2, 4  
PGA = 32  
PGA = 8, 64  
PGA = 16  
Gain Drift (ppm/°C)  
Gain Error (%)  
Figure 24. Gain Drift Histogram  
Figure 25. Gain Match Histogram  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
8 Detailed Description  
8.1 Overview  
The ADS1282-SP is a high-performance analog-to-digital converter (ADC) intended for space satellite  
temperature sensing, precision scientific and high accuracy applications. The converter provides 24- or 32-bit  
output data in data rates from 250 SPS to 4000 SPS. The Functional Block Diagram shows the block diagram of  
the ADS1282-SP.  
The two-channel input MUX allows five configurations: Input 1; Input 2; Input 1 and Input 2 shorted together;  
shorted with 400-test; and common-mode test. The input MUX is followed by a continuous time PGA, featuring  
very low noise of 5 nV/Hz. The PGA is controlled by register settings, allowing gains of 1 to 64, in powers of 2.  
The inherently-stable, fourth-order, delta-sigma modulator measures the differential input signal VIN = (AINP –  
AINN) × PGA against the differential reference VREF = (VREFP – VREFN). A digital output (MFLAG) indicates  
that the modulator is in overload as a result of an overdrive condition. The modulator output is available directly  
on the MCLK, M0, and M1 output pins when in modulator mode. The modulator connects to an on-chip digital  
filter that provides the output code readings.  
The digital filter consists of a variable decimation rate, fifth-order sinc filter followed by a variable phase,  
decimate-by-32, finite-impulse response (FIR) low-pass filter with programmable phase, and then by an  
adjustable high-pass filter for DC removal of the output reading. The output of the digital filter can be taken from  
the sinc, the FIR low-pass, or the infinite impulse response (IIR) high-pass sections as long as the maximum  
clock rate of the SPI (fclk/2) is respected.  
Gain and offset registers scale the digital filter output to produce the final code value. The scaling feature can be  
used for calibration and sensor gain matching. The output data word is provided as either a 24-bit word or a full  
32-bit word, allowing complete utilization of the inherently high resolution.  
The SYNC input resets the operation of both the digital filter and the modulator, allowing synchronization  
conversions of multiple ADS1282-SP devices to an external event. The SYNC input supports a continuously-  
toggled input mode that accepts an external data frame clock locked to the conversion rate.  
The RESET input resets the register settings and also restarts the conversion process. The PWDN input sets the  
device into a micro-power state. The register settings are not retained in PWDN mode. Use the STANDBY  
command in its place if it is desired to retain register settings (the quiescent current in the Standby mode is  
slightly higher).  
Noise-immune Schmitt-trigger and clock-qualified inputs (RESET and SYNC) provide increased reliability in high-  
noise environments. The serial interface is used to read conversion data, in addition to reading from and writing  
to the configuration registers.  
The device features unipolar and bipolar analog power supplies (AVDD and AVSS, respectively) for input range  
flexibility and a digital supply accepting 1.8 V to 3.3 V. The analog supplies may be set to 5 V to accept unipolar  
signals (with input offset) or set lower in the range of ±2.5 V to accept true bipolar input signals (ground  
referenced).  
An internal sub-regulator is used to supply the digital core from DVDD. The BYPAS pin (pin 28) is the sub-  
regulator output and requires a 1-μF capacitor for noise reduction. BYPAS should not be used to drive external  
circuitry.  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
AVDD  
CLK  
BYPAS DVDD  
ADS1282  
+1.8V  
(Digital core)  
Calibration  
LDO  
AINP2  
AINN2  
AINP1  
DRDY  
SCLK  
DIN  
300W  
4th-Order  
DS  
Programmable  
Digital Filter  
Serial  
Interface  
PGA  
300W  
AINN1  
Modulator  
DOUT  
400W  
400W  
Over-Range  
Detection  
SYNC  
RESET  
PWDN  
Control  
AVDD + AVSS  
2
AVSS  
MFLAG  
DGND  
MCLK M0  
M1  
8.3 Feature Description  
8.3.1 Noise Performance  
The ADS1282-SP device offers outstanding noise performance (SNR). SNR depends on the data rate, the PGA  
setting, and the mode. As the bandwidth is reduced by decreasing the data rate, the SNR improves  
correspondingly. Similarly, as the PGA gain is increased, the SNR decreases. Table 1 summarizes the noise  
performance versus data rate, PGA setting, and mode.  
8.3.2 Input-Referred Noise  
The input-referred noise is related to SNR by Equation 1:  
FSRRMS  
SNR = 20log  
NRMS  
where:  
FSRRMS = Full-scale range RMS = (VREFP – VREFN)/(2 × 2 × PGA)  
NRMS = Noise RMS (input-referred)  
(1)  
8.3.3 Idle Tones  
The ADS1282-SP modulator incorporates an internal dither signal that randomizes the idle tone energy. Low-  
level idle tones may still be present, typically –137-dB less than full-scale. The low-level idle tones can be shifted  
out of the passband with an external offset = 20 mV/PGA. See the Application Information section for the  
recommended offset circuit.  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Feature Description (continued)  
8.3.4 Operating Mode  
The default mode is high-resolution.  
Table 1. Signal-to-Noise Ratio (dB)(1)  
PGA  
8
DATA RATE (SPS)  
1
2
4
16  
32  
64  
250  
500  
130  
127  
124  
121  
118  
130  
127  
124  
121  
118  
129  
126  
123  
120  
117  
128  
125  
122  
119  
116  
125  
122  
119  
116  
113  
119  
116  
113  
111  
108  
114  
111  
108  
106  
103  
1000  
2000  
4000  
(1) VIN = 20 mVDC / PGA.  
8.3.5 Analog Inputs and Multiplexer  
Figure 26 shows a diagram of the input multiplexer.  
ESD diodes protect the multiplexer inputs. If either input is taken less than AVSS – 0.3 V or greater than AVDD +  
0.3 V, the ESD protection diodes may turn on. If these conditions are possible, external Schottky clamp diodes  
and/or series resistors may be required to limit the input current to safe values (see the Absolute Maximum  
Ratings).  
Also, overdriving one unused input may affect the conversions of the other input. If overdriven inputs are  
possible, TI recommends clamping the signal with external Schottky diodes.  
AVDD  
S1  
AINP1  
ESD Diodes  
S2  
AINP2  
(+)  
400W  
S3  
S7  
AVSS  
AVDD  
To PGA  
AVDD + AVSS  
2
400W  
S4  
S5  
S6  
AINN1  
AINN2  
(-)  
ESD Diodes  
AVSS  
Figure 26. Analog Inputs and Multiplexer  
The specified input operating range of the PGA is shown in Equation 2:  
AVSS + 0.7 V < (AINN or AINP) < AVDD – 1.25 V  
(2)  
Absolute input levels (input signal level and common-mode level) should be maintained within these limits for  
best operation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
The multiplexer connects one of the two external differential inputs to the preamplifier inputs, in addition to  
internal connections for various self-test modes. Table 2 summarizes the multiplexer configurations for Figure 26.  
Table 2. Multiplexer Modes  
MUX[2:0]  
000  
SWITCHES  
S1, S5  
DESCRIPTION  
AINP1 and AINN1 connected to preamplifier  
001  
S2, S6  
AINP2 and AINN2 connected to preamplifier  
010  
S3, S4  
Preamplifier inputs shorted together through 400internal resistors  
AINP1, AINN1 and AINP2, AINN2 connected together and to the preamplifier  
External short, preamplifier inputs shorted to AINN2 (common-mode test)  
011  
S1, S5, S2, S6  
S6, S7  
100  
The typical on-resistance (RON) of the multiplexer switch is 30 . When the multiplexer is used to drive an  
external load on one input by a signal generator on the other input, on-resistance and on-resistance amplitude  
dependency can lead to measurement errors. Figure 27 shows THD versus load resistance and amplitude. THD  
improves with high-impedance loads and with lower amplitude drive signals. The data are measured with the  
circuit from Figure 28 with MUX[2:0] = 011.  
0
PGA = 1  
PGA = 2  
PGA = 4  
PGA = 8  
-20  
-40  
PGA = 16  
PGA = 32  
PGA = 64  
-60  
-80  
-100  
-120  
-140  
0.1k  
1k  
10k  
100k  
1M  
10M  
RLOAD (W)  
Figure 27. THD vs External Load and Signal Magnitude (PGA) (See Figure 28)  
500W  
500W  
ADS1282  
Input 1  
RLOAD  
Input 2  
Figure 28. Driving an External Load Through the MUX  
8.3.6 PGA (Programmable Gain Amplifier)  
The PGA of the ADS1282-SP is a low-noise, continuous-time, differential-in/differential-out CMOS amplifier. The  
gain is programmable from 1 to 64, set by register bits, PGA[2:0]. The PGA differentially drives the modulator  
through 300-internal resistors. A COG capacitor (10 nF typical) must be connected to CAPP and CAPN to filter  
modulator sampling glitches. The external capacitor also serves as an anti-alias filter. The corner frequency is  
given in Equation 3:  
1
fP =  
6.3 ´ 600 ´ C  
(3)  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Referring to Figure 29, amplifiers A1 and A2 are chopped to remove the offset, offset drift, and the 1/f noise.  
Chopping moves the effects to ƒCLK/128 (8 kHz), which is safely out of the passband. Chopping can be disabled  
by setting the CHOP register bit = 0. With chopping disabled, the impedance of the PGA increases substantially  
(>> 1 G). As shown in Figure 30, chopping maintains flat noise density; if chopping is disabled, however, it  
results in a rising 1/f noise profile.  
The PGA has programmable gains from 1 to 64. Table 3 shows the register bit setting for the PGA and resulting  
full-scale differential range.  
The specified output operating range of the PGA is shown in Equation 4:  
AVSS + 0.4 V < (CAPN or CAPP) < AVDD – 0.4 V  
(4)  
PGA output levels (signal plus common-mode) should be maintained within these limits for best operation.  
Table 3. PGA Gain Settings  
PGA[2:0]  
000  
GAIN  
1
DIFFERENTIAL INPUT RANGE (V)(1)  
±2.5  
001  
2
±1.25  
010  
4
±0.625  
±0.312  
±0.156  
±0.078  
±0.039  
011  
8
100  
16  
32  
64  
101  
110  
(1) VREF = VREFP – VREFN = 5 V  
AVDD  
MUX (+)  
300W  
A1  
CAPP  
CHOP  
Gain Control  
PGA[2:0] Bits  
10nF  
(55kW, typ(1)  
)
Modulator  
CAPN  
Effective  
300W  
A2  
Impedance  
MUX (-)  
Chopping Control CHOP Bit  
AVSS  
Figure 29. PGA Block Diagram  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
 
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
100  
PGA CHOP Off  
PGA CHOP On  
10  
1
10  
100  
1k  
Frequency (Hz)  
Figure 30. PGA Noise  
8.3.7 ADC  
The ADC block of the ADS1282-SP is composed of two sections: a high-accuracy modulator and a  
programmable digital filter.  
8.3.8 Modulator  
The high-performance modulator is an inherently-stable, fourth-order, ΔΣ, 2 + 2 pipelined structure, as Figure 31  
shows. It shifts the quantization noise to a higher frequency (out of the passband) where digital filtering can  
easily remove it. The modulator can be filtered either by the on-chip digital filter or by use of post-processing  
filters.  
fCLK/4  
MCLK  
M0  
2nd-Order  
DS  
Analog Input (VIN  
)
1st-Stage  
2nd-Order  
DS  
M1  
2nd-Stage  
4th-Order Modulator  
Figure 31. Fourth-Order Modulator  
The modulator first stage converts the analog input voltage into a pulse-code modulated (PCM) stream. When  
the level of differential analog input (AINP – AINN) is near one-half the level of the reference voltage 1/2 ×  
(VREFP – VREFN), the ‘1’ density of the PCM data stream is at its highest. When the level of the differential  
analog input is near zero, the PCM ‘0’ and ‘1’ densities are nearly equal. At the two extremes of the analog input  
levels (+FS and –FS), the ‘1’ density of the PCM streams is approximately 90% and 10%, respectively.  
The modulator second stage produces a '1' density data stream designed to cancel the quantization noise of the  
first stage. The data streams of the two stages are then combined before the digital filter stage, as shown in  
Equation 5.  
Y[n] = 3M0[n – 2] – 6M0[n –3] + 4M0[n – 4] + 9(M1[n] – 2M1[n – 1] + M1[n – 2])  
(5)  
M0[n] represents the most recent first-stage output while M0[n – 1] is the previous first-stage output. When the  
modulator output is enabled, the digital filter shuts down to save power.  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
The modulator is optimized for input signals within a 4-kHz passband. As Figure 32 shows, the noise shaping of  
the modulator results in a sharp increase in noise greater than 6 kHz. The modulator has a chopped input  
structure that further reduces noise within the passband. The noise moves out of the passband and appears at  
the chopping frequency (ƒCLK / 512 = 8 kHz). The component at 5.8 kHz is the tone frequency, shifted out of  
band by an external 20 mV/PGA offset. The frequency of the tone is proportional to the applied DC input and is  
given by PGA × VIN/0.003 (in kHz).  
0
VIN = 20mVDC  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
1-Hz resolution  
Figure 32. Modulator Output Spectrum  
8.3.9 Modulator Over-Range  
The ADS1282-SP modulator is inherently stable, and therefore, has predictable recovery behavior resulting from  
an input overdrive condition. The modulator does not exhibit self-resetting behavior, which often results in an  
unstable output data stream.  
The ADS1282-SP modulator outputs a 1s density data stream at 90% duty cycle with the positive full-scale input  
signal applied (10% duty cycle with the negative full-scale signal). If the input is overdriven past 90% modulation,  
but less than 100% modulation (10% and 0% for negative overdrive, respectively), the modulator remains stable  
and continues to output the 1s density data stream. The digital filter may or may not clip the output codes to +FS  
or –FS, depending on the duration of the overdrive. When the input returns to the normal range from a long  
duration overdrive (worst case), the modulator returns immediately to the normal range, but the group delay of  
the digital filter delays the return of the conversion result to within the linear range (31 readings for linear phase  
FIR). 31 additional readings (62 total) are required for completely settled data.  
If the inputs are sufficiently overdriven to drive the modulator to full duty cycle, all 1s or all 0s, the modulator  
enters a stable saturated state. The digital output code may clip to +FS or –FS, again depending on the duration.  
A small duration overdrive may not always clip the output code. When the input returns to the normal range, the  
modulator requires up to 12 modulator clock cycles (ƒMOD) to exit saturation and return to the linear region. The  
digital filter requires an additional 62 conversions for fully settled data (linear phase FIR).  
In the extreme case of over-range, either input is overdriven, exceeding the voltage of either analog supply  
voltage plus an internal ESD diode drop. The internal diodes begin to conduct and the signal on the input is  
clipped. When the input overdrive is removed, the diodes recover quickly. Keep in mind that the input current  
must be limited to 100-mA peak or 10-mA continuous if an overvoltage condition is possible.  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.3.10 Modulator Input Impedance  
The modulator samples the buffered input voltage with an internal capacitor to perform conversions. The  
charging of the input sampling capacitor draws a transient current from the PGA output. The average value of the  
current can be used to calculate an effective input impedance of:  
REFF = 1 / (ƒMOD × CS)  
where  
ƒMOD = Modulator sample frequency, Mode = CLK / 4  
CS = Input sampling capacitor (17 pF, typ)  
(6)  
The resulting modulator input impedance for CLK = 4.096 MHz is 55 k. The modulator input impedance and the  
PGA output resistors result in a systematic gain error of –1%. CS can vary ±20% over production lots, affecting  
the gain error.  
8.3.11 Modulator Over-Range Detection (MFLAG)  
The ADS1282-SP has a fast-responding over-range detection that indicates when the differential input exceeds  
±100% full scale. The threshold tolerance is ±2.5%.The MFLAG output asserts high when in an over-range  
condition. As Figure 33 and Figure 34 illustrate, the absolute differential input is compared to 100% of range. The  
output of the comparator is sampled at the rate of ƒMOD / 2, yielding the MFLAG output. The minimum MFLAG  
pulse width is ƒMOD / 2.  
AINP  
å
IABSI  
P
100% FS  
AINN  
Q
MFLAG  
Pin  
fMOD/2  
Figure 33. Modulator Over-Range Block Diagram  
+100  
(AINP - AINN)  
0
Time  
-100  
MFLAG  
Pin  
Figure 34. Modulator Over-Range Flag Operation  
8.3.12 Voltage Reference Inputs (VREFP, VREFN)  
The voltage reference for the ADS1282-SP is the differential voltage between VREFP and VREFN: VREF  
=
VREFP – VREFN. The reference inputs use a structure similar to that of the analog inputs with the circuitry of the  
reference inputs shown in Figure 35. The average load presented by the switched capacitor reference input can  
be modeled with an effective differential impedance of REFF = tSAMPLE / CIN (tSAMPLE = 1/ƒMOD). The effective  
impedance of the reference inputs loads the external reference.  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
AVDD  
ESD  
Diodes  
VREFP  
VREFN  
REFF = 85 kΩ  
11.5pF  
(fMOD = 1.024 MHz)  
ESD  
Diodes  
1
fMOD ´ CX  
REFF  
=
AVSS  
Figure 35. Simplified Reference Input Circuit  
The ADS1282-SP reference inputs are protected by ESD diodes. In order to prevent these diodes from turning  
on, the voltage on either input must stay within the range shown in Equation 7:  
AVSS – 300 mV < (VREFP or VREFN) < AVDD + 300 mV  
(7)  
The minimum valid input for VREFN is AVSS – 0.1 V and maximum valid input for VREFP is AVDD + 0.1 V.  
A high-quality 5 V reference voltage is necessary for achieving the best performance from the ADS1282-SP.  
Noise and drift on the reference degrade overall system performance, and it is critical that special care be given  
to the circuitry generating the reference voltages in order to achieve full performance. See Application  
Information for reference recommendations.  
8.3.13 Digital Filter  
The digital filter receives the modulator output and decimates the data stream. By adjusting the amount of  
filtering, tradeoffs can be made between resolution and data rate: filter more for higher resolution, filter less for  
higher data rate.  
The digital filter is comprised of three cascaded filter stages: a variable-decimation, fifth-order sinc filter; a fixed-  
decimation FIR, low-pass filter (LPF) with selectable phase; and a programmable, first-order, high-pass filter  
(HPF), as shown in Figure 36.  
The output can be taken from one of the three filter blocks, as Figure 36 shows. To implement the digital filter  
completely off-chip, select the filter bypass setting (modulator output). For partial filtering by the ADS1282-SP,  
select the sinc filter output. For complete on-chip filtering, activate both the sinc and FIR stages. The HPF can  
then be included to remove DC and low frequencies from the data. Table 4 shows the filter options.  
Table 4. Digital Filter Selection  
FILTR[1:0] BITS  
DIGITAL FILTERS SELECTED  
Bypass; modulator output mode  
Sinc  
00  
01  
10  
Sinc + FIR  
Sinc + FIR + HPF  
(low-pass and high-pass)  
11  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.3.13.1 Sinc Filter Stage (Sinx/X)  
The sinc filter is a variable decimation rate, fifth-order, low-pass filter. Data are supplied to this section of the filter  
from the modulator at the rate of ƒMOD CLK/4). The sinc filter attenuates the high-frequency noise of the  
modulator, then decimates the data stream into parallel data. The decimation rate affects the overall data rate of  
the converter; it is set by the DR[2:0] register bits, as shown in Table 5.  
Equation 8 shows the scaled Z-domain transfer function of the sinc filter.  
5
-N  
1 - Z  
-1  
N(1 - Z )  
H(Z) =  
(8)  
Table 5. Sinc Filter Data Rates (Clk = 4.096 MHz)  
DR[2:0] REGISTER  
DECIMATION RATIO (N)  
SINC DATA RATE (SPS)  
000  
001  
010  
011  
100  
128  
64  
32  
16  
8
8000  
16000  
32000  
64000  
128000  
Direct Modulator  
Bit Stream  
3
Filter Mode  
(Register Select)  
30  
31  
Filter  
MUX  
To Output Register  
Sinc Filter  
(Decimate by  
8 to 128)  
Coefficient Filter  
(FIR)  
(Decimate by 32)  
High-Pass Filter  
(IIR)  
Code  
Clip  
CAL  
Block  
From Modulator  
Figure 36. Digital Filter and Output Code Processing  
Equation 9 shows the frequency domain transfer function of the sinc filter.  
5
pN ´ f  
sin  
fMOD  
½H(f)½ =  
p ´ f  
N sin  
fMOD  
where  
N = Decimation ratio (see Table 5)  
(9)  
The sinc filter has notches (or zeroes) that occur at the output data rate and multiples thereof. At these  
frequencies, the filter has zero gain. Figure 37 shows the frequency response of the sinc filter and Figure 38  
shows the roll-off of the sinc filter.  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
Normalized Frequency (fIN/fDATA  
)
Figure 37. Sinc Filter Frequency Response  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0
0.05  
0.10  
0.15  
0.20  
Normalized Frequency (fIN/fDATA  
)
Figure 38. Sinc Filter Roll-Off  
8.3.13.2 FIR Stage  
The second stage of the ADS1282-SP digital filter is an FIR low-pass filter. Data are supplied to this stage from  
the sinc filter. The FIR stage is segmented into four sub-stages, as shown in Figure 39. The first two sub-stages  
are half-band filters with decimation ratios of 2. The third sub-stage decimates by 4 and the fourth sub-stage  
decimates by 2. The overall decimation of the FIR stage is 32. Two coefficient sets are used for the third and  
fourth sections, depending on the phase selection. 20 (in 器件支持) lists the FIR stage coefficients. Table 6  
lists the data rates and overall decimation ratio of the FIR stage.  
Table 6. Fir Filter Data Rates  
DR[2:0] REGISTER  
DECIMATION RATIO (N)  
FIR DATA RATE (SPS)  
000  
001  
010  
011  
100  
4096  
2048  
1024  
512  
250  
500  
1000  
2000  
4000  
256  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
FIR Stage 1  
Decimate by 2  
FIR Stage 2  
Decimate by 2  
FIR Stage 3  
Decimate by 4  
FIR Stage 4  
Decimate by 2  
Sinc  
Filter  
Output  
Coefficients  
Linear  
Minimum  
PHASE Select  
Figure 39. Fir Filter Sub-Stages  
As shown in Figure 40, the FIR frequency response provides a flat passband to 0.375 of the data rate (±0.003-  
dB passband ripple). Figure 41 shows the transition from passband to stop band.  
2.0  
1.5  
20  
0
-20  
1.0  
-40  
0.5  
-60  
0
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-160  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Normalized Input Frequency (fIN/fDATA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Normalized Input Frequency (fIN/fDATA  
)
)
Figure 41. FIR Transition Band Magnitude Response  
Figure 40. FIR Passband Magnitude Response (FDATA  
500 Hz)  
=
Although not shown in Figure 41, the passband response repeats at multiples of the modulator frequency  
(NƒMOD – ƒ0 and NƒMOD + ƒ0, where N = 1, 2, and so forth, and ƒ0 = passband). These image frequencies, if  
present in the signal and not externally filtered, fold back (or alias) into the passband and cause errors. A low-  
pass signal filter reduces the effect of aliasing. Often, the RC low-pass filter provided by the PGA output resistors  
and the external capacitor connected to CAPP and CAPN provides sufficient signal attenuation.  
8.3.13.3 Group Delay and Step Response  
The FIR block is implemented as a multi-stage FIR structure with selectable linear or minimum phase response.  
The passband, transition band, and stop band responses of the filters are nearly identical but differ in the  
respective phase responses.  
8.3.13.3.1 Linear Phase Response  
Linear phase filters exhibit constant delay time versus input frequency (that is, constant group delay). Linear  
phase filters have the property that the time delay from any instant of the input signal to the same instant of the  
output data is constant and is independent of the signal nature. This filter behavior results in essentially zero  
phase error when analyzing multi-tone signals. However, the group delay and settling time of the linear phase  
filter are somewhat larger than the minimum phase filter, as shown in Figure 42.  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Minimum Phase Filter  
Linear Phase Filter  
-0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Time Index (1/fDATA  
)
Figure 42. FIR Step Response  
8.3.13.3.2 Minimum Phase Response  
The minimum phase filter provides a short delay from the arrival of an input signal to the output, but the  
relationship (phase) is not constant versus frequency, as shown in Figure 43. The filter phase is selected by the  
PHS bit, as Table 7 shows.  
35  
Linear Phase Filter  
30  
25  
20  
15  
10  
Minimum Phase Filter  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
Figure 43. FIR Group Delay (FDATA = 500 Hz)  
Table 7. Fir Phase Selection  
PHS BIT  
FILTER PHASE  
0
1
Linear  
Minimum  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.3.13.4 HPF Stage  
The last stage of the ADS1282-SP filter block is a first-order HPF implemented as an IIR structure. This filter  
stage blocks DC signals and rolls off low-frequency components below the cut-off frequency. The transfer  
function for the filter is shown in 公式 17 of the 器件支持.  
The high-pass corner frequency is programmed by registers HPF[1:0], in hexadecimal. Equation 10 is used to set  
the high-pass corner frequency. Table 8 lists example values for the high-pass filter.  
cos wN + sin wN - 1  
HPF[1:0] = 65,536 1 -  
1 - 2  
cos wN  
where  
HPF = High-pass filter register value (converted to hexadecimal)  
ωN = 2πƒHPDATA (normalized frequency, radians)  
ƒHP = High-pass corner frequency (Hz)  
ƒDATA = Data rate (Hz)  
(10)  
Table 8. High-Pass Filter Value Examples  
ƒHP (Hz)  
DATA RATE (SPS)  
HPF[1:0]  
0337h  
0.5  
1
250  
500  
0337h  
1
1000  
019Ah  
The HPF causes a small gain error, in which case the magnitude of the error depends on the ratio of ƒHPDATA  
.
For many common values of (ƒHPDATA), the gain error is negligible. Figure 44 shows the gain error of the HPF.  
The gain error factor is illustrated in 公式 16 (see 器件支持).  
0
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
0.0001  
0.001  
0.01  
0.1  
Frequency Ratio (fHP/fDATA  
)
Figure 44. HPF Gain Error  
Figure 45 shows the first-order amplitude and phase response of the HPF. In the case of applying step inputs or  
synchronizing, the settling time of the filter should be taken into account.  
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
0
-7.5  
90  
75  
60  
45  
30  
15  
-15.0  
-22.5  
-30.0  
-37.5  
-45.0  
Amplitude  
Phase  
0
0.01  
0.1  
1
10  
100  
Normalized Frequency (f/fC)  
Figure 45. HPF Amplitude and Phase Response  
8.3.14 Master Clock Input (CLK)  
The ADS1282-SP requires a clock input for operation. The clock is applied to the CLK pin. The data conversion  
rate scales directly with the CLK frequency. Power consumption versus CLK frequency is relatively constant (see  
the Typical Characteristics).  
As with any high-speed data converter, a high-quality, low-jitter clock is essential for optimum performance.  
Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock  
input; keep the clock trace as short as possible and use a 50-series resistor close to the source.  
8.3.15 Synchronization (SYNC Pin and Sync Command)  
The ADS1282-SP can be synchronized to an external event, as well as synchronized to other ADS1282-SP  
devices if the sync event is applied simultaneously.  
The ADS1282-SP has two sources for synchronization: the SYNC input pin and the SYNC command. The  
ADS1282-SP also has two synchronizing modes: Pulse-sync and Continuous-sync. In Pulse-sync mode, the  
ADS1282-SP synchronizes to a single sync event. In Continuous-sync mode, either a single SYNC event is used  
to synchronize conversions or a continuous clock is applied to the pin with a period equal to integer multiples of  
the data rate. When the periods of the sync input and the DRDY output do not match, the ADS1282-SP re-  
synchronizes and conversions are restarted.  
8.3.16 Pulse-Sync Mode  
In pulse-sync mode, the ADS1282-SP stops and restarts the conversion process when a sync event occurs (by  
pin or command). When the sync event occurs, the device resets the internal memory; DRDY goes high (pulse  
SYNC mode) otherwise in Continuous SYNC mode, DRDY continues to toggle, and after the digital filter has  
settled, new conversion data are available, as shown in Figure 46 and Pulse-Sync Timing Requirements.  
Resynchronization occurs on the next rising CLK edge after the rising edge of the SYNC pin or after the eighth  
rising SCLK edge for opcode SYNC commands. To be effective, the SYNC opcode should be broadcast to all  
devices simultaneously.  
8.3.17 Continuous-Sync Mode  
In Continuous-sync mode, either a single sync pulse or a continuous clock may be applied. When a single sync  
pulse is applied (rising edge), the device behaves similar to the Pulse-sync mode. However, in this mode, DRDY  
continues to toggle unaffected but the DOUT output is held low until data are ready, 63 DRDY periods later.  
When the conversion data are non-zero, new conversion data are ready (as shown in Figure 46).  
When a continuous clock is applied to the SYNC pin, the period must be an integral multiple of the output data  
rate or the device re-synchronizes. Synchronization results in the restarting of the digital filter and an interruption  
of 63 readings (refer to Pulse-Sync Timing Requirements).  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
When the sync input is first applied, the device re-synchronizes (under the condition tSYNC N / ƒDATA). DRDY  
continues to output but DOUT is held low until the new data are ready. Then, if SYNC is applied again and the  
period matches an integral multiple of the output data rate, the device freely runs without re-synchronization. The  
phase of the applied clock and output data rate (DRDY) are not matched because of the initial delay of DRDY  
after SYNC is first applied. Figure 47 shows the timing for Continuous-Sync mode.  
A SYNC clock input should be applied after the Continuous-Sync mode is set. The first rising edge of SYNC then  
causes a synchronization.  
tCSHD  
System Clock  
(fCLK)  
tSCSU  
SYNC Command  
SYNC Pin  
tSPWH  
New Data  
Ready  
tSPWL  
tDR  
DRDY  
(Pulse-Sync)  
New Data  
Ready  
tDR  
DRDY  
(Continuous-Sync)  
DOUT  
Figure 46. Pulse-Sync Timing, Continuous-Sync Timing With Single Sync  
tSCSU  
tCSHD  
System Clock  
(fCLK)  
tSPWL  
tSPWH  
SYNC  
DRDY  
tSYNC  
1/fDATA  
Figure 47. Continuous-Sync Timing With Sync Clock  
8.3.18 Reset (RESET Pin and Reset Command)  
The ADS1282-SP may be reset in two ways: toggle the RESET pin low or send a Reset command. When using  
the RESET pin, take it low and hold for at least 2 / ƒCLK to force a reset. The ADS1282-SP is held in reset until  
the pin is released. By command, RESET takes effect on the next rising edge of ƒCLK after the eighth rising edge  
of SCLK of the command. To ensure the Reset command can function, the SPI interface may require resetting  
itself; see Serial Interface.  
In reset, registers are set to default and the conversions are synchronized on the next rising edge of CLK. New  
conversion data are available, as shown in Figure 48 and Reset Timing Requirements.  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Settled  
Data  
DRDY  
tDR  
tCRHD  
System Clock  
(fCLK)  
tRCSU  
tRST  
RESET Pin  
or  
RESET Command  
Figure 48. Reset Timing  
8.3.19 Power-Down (PWDN Pin and Standby Command)  
There are two ways to power-down the ADS1282-SP: take the PWDN pin low or send a Standby command.  
When the PWDN pin is pulled low, the internal circuitry is disabled to minimize power and the contents of the  
register settings are reset.  
In power-down, the device outputs remain active and the device inputs must not float. When the Standby  
command is sent, the SPI port and the configuration registers are kept active. Figure 49 and Pulse-Sync Timing  
Requirements show the timing.  
PWDN Pin  
Wakeup  
Command  
DRDY  
tDR  
Figure 49. PWDN Pin and Wake-Up Command Timing  
(Pulse-Sync Timing Requirements Shows tDR  
)
8.3.20 Power-On Sequence  
The ADS1282-SP has three power supplies: AVDD, AVSS, and DVDD. Figure 50 shows the power-on sequence  
of the ADS1282-SP. The power supplies can be sequenced in any order. The supplies [the difference of  
(AVDD – AVSS) and DVDD] generate an internal reset whose outputs are summed to generate a global internal  
reset. After the supplies have crossed the minimum thresholds, 216 ƒCLK cycles are counted before releasing the  
internal reset. After the internal reset is released, new conversion data are available, as shown in Figure 50 and  
Pulse-Sync Timing Requirements.  
3.5V nom  
AVDD - AVSS  
1V nom  
DVDD  
CLK  
16  
2
fCLK  
Internal Reset  
DRDY  
tDR  
Figure 50. Power-On Sequence  
Copyright © 2016–2018, Texas Instruments Incorporated  
31  
 
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.3.21 Serial Interface  
A serial interface is used to read the conversion data and access the configuration registers. The interface  
consists of three basic signals: SCLK, DIN, and DOUT. An additional output, DRDY, transitions low in Read Data  
Continuous mode when data are ready for retrieval. Figure 51 shows the connection when multiple converters  
are used.  
FPGA or Processor  
SCLK  
SCLK  
DOUT1  
DOUT1  
ADS1282  
DIN2  
DIN1  
DRDY1  
IRQ  
SCLK  
SCLK (optional)  
DOUT2  
DOUT2  
ADS1282  
DIN2  
DIN2  
DRDY2  
IRQ (optional)  
Figure 51. Interface for Multiple Devices  
8.3.21.1 Serial Clock (SCLK)  
The serial clock (SCLK) is an input that is used to clock data into (DIN) and out of (DOUT) the ADS1282-SP.  
This input is a Schmitt-trigger input that has a high degree of noise immunity. However, TI recommends keeping  
SCLK as clean as possible to prevent possible glitches from inadvertently shifting the data.  
Data are shifted into DIN on the rising edge of SCLK and data are shifted out of DOUT on the falling edge of  
SCLK. If SCLK is held low for 64 DRDY cycles, data transfer or commands in progress terminate and the SPI  
interface resets. The next SCLK pulse starts a new communication cycle. This time-out feature can be used to  
recover the interface when a transmission is interrupted or SCLK inadvertently glitches. SCLK should remain low  
when not active.  
8.3.21.2 Data Input (DIN)  
The data input pin (DIN) is used to input register data and commands to the ADS1282-SP. Keep DIN low when  
reading conversion data in the Read Data Continuous mode (except when issuing a STOP Read Data  
Continuous command). Data on DIN are shifted into the converter on the rising edge of SCLK. In Pin mode, DIN  
is not used.  
8.3.21.3 Data Output (DOUT)  
The data output pin (DOUT) is used to output data from the ADS1282-SP. Data are shifted out on DOUT on the  
falling edge of SCLK.  
8.3.21.4 Data Ready (DRDY)  
DRDY is an output; when it transitions low, this transition indicates new conversion data are ready, as shown in  
Figure 52. When reading data by the continuous mode, the data must be read within four CLK periods before  
DRDY goes low again or the data are overwritten with new conversion data. When reading data by the command  
mode, the read operation can overlap the occurrence of the next DRDY without data corruption.  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
DRDY  
DOUT  
SCLK  
Bit 31  
Bit 30  
Bit 29  
Figure 52. DRDY With Data Retrieval  
DRDY resets high on the first falling edge of SCLK. Figure 52 and Figure 53 show the function of DRDY with and  
without data readback, respectively.  
If data are not retrieved (no SCLK provided), DRDY pulses high for four ƒCLK periods during the update time, as  
shown in Figure 53.  
Data Updating  
4/fCLK  
DRDY  
Figure 53. DRDY With No Data Retrieval  
8.3.22 Data Format  
The ADS1282-SP provides 32 bits of conversion data in binary twos complement format, as shown in Table 9.  
The LSB of the data is a redundant sign bit: '0' for positive numbers and '1' for negative numbers. However,  
when the output is clipped to +FS, the LSB = 1; when the output is clipped to –FS, the LSB = 0. If desired, the  
data readback may be stopped at 24 bits. In sinc filter mode, the output data are scaled by 1/2.  
Table 9. Ideal Output Code Versus Input Signal  
INPUT SIGNAL VIN  
(AINP – AINN)  
32-BIT IDEAL OUTPUT CODE(1)  
FIR FILTER  
SINC FILTER(2)  
VREF  
(3)  
>
7FFFFFFFh  
2 x PGA  
VREF  
2 x PGA  
7FFFFFFEh  
3FFFFFFFh  
VREF  
2PGA ´ (230 - 1)  
00000002h  
00000000h  
FFFFFFFFh  
00000001h  
00000000h  
FFFFFFFFh  
0
-VREF  
2PGA ´ (230 - 1)  
230  
-VREF  
´
80000001h  
80000000h  
C0000000h  
230 - 1  
2PGA  
230  
-VREF  
(3)  
<
´
230 - 1  
2PGA  
Copyright © 2016–2018, Texas Instruments Incorporated  
33  
 
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
(1) Excludes effects of noise, linearity, offset, and gain errors.  
(2) Due to the reduction in oversampling ratio (OSR) related to the sinc filter high data rates, full 32-bit available resolution is reduced.  
(3) In sinc filter mode, the output does not clip at half-scale code when the full-scale range is exceeded.  
8.3.23 Reading Data  
The ADS1282-SP has two ways to read conversion data: Read Data Continuous and Read Data By Command.  
8.3.23.1 Read Data Continuous  
In the Read Data Continuous mode, the conversion data are shifted out directly from the device without the need  
for sending a read command. This mode is the default mode at power-on. This mode is also enabled by the  
RDATAC command. When DRDY goes low, indicating that new data are available, the MSB of data appears on  
DOUT, as shown in Figure 54. The data are normally read on the rising edge of SCLK, at the occurrence of the  
first falling edge of SCLK, DRDY returns high. After 32 bits of data have been shifted out, further SCLK  
transitions cause DOUT to go low. If desired, the read operation may be stopped at 24 bits. The data shift  
operation must be completed within four CLK periods before DRDY falls again or the data may be corrupted.  
When a Stop Read Data Continuous command is issued, the DRDY output is blocked but the ADS1282-SP  
continues conversions. In stop continuous mode, the data can only be read by command.  
8.3.23.2 Read Data by Command  
The Read Data Continuous mode is stopped by the SDATAC command. In this mode, conversion data are read  
by command. In the Read Data By Command mode, a read data command must be sent to the device for each  
data conversion (as shown in Figure 55). When the read data command is received (on the eighth SCLK rising  
edge), data are available to read only when DRDY goes low (tDR). When DRDY goes low, conversion data  
appear on DOUT. The data may be read on the rising edge of SCLK.  
DRDY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 25 26 27 28 29 30 31 32  
SCLK  
DOUT  
DIN  
Data Byte 1 (MSB)  
Data Byte 2 (MSB - 1)  
Data Byte 4 (LSB)  
tDDPD  
Figure 54. Read Data Continuous  
DRDY  
tDR  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 33 34 35 36 37 38 39 40  
SCLK  
DOUT  
DIN  
Don't Care  
Command Byte (0001 0010)  
Data Byte 1 (MSB)  
tDDPD  
Date Byte 4 (LSB)  
Figure 55. Read Data By Command, Rdata (TDDPD Timing Is Given In Read Data Timing Requirements)  
8.3.24 One-Shot Operation  
The ADS1282-SP can perform very power-efficient, one-shot conversions using the STANDBY command while  
under software control. Figure 73 shows this sequence. First, issue the STANDBY command to set the Standby  
mode.  
When ready to make a measurement, issue the WAKEUP command. Monitor DRDY; when it goes low, the fully  
settled conversion data are ready and may be read directly in Read Data Continuous mode. Afterwards, issue  
another STANDBY command. When ready for the next measurement, repeat the cycle starting with another  
WAKEUP command.  
34  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
8.4 Device Functional Modes  
8.4.1 Modulator Output Mode  
The modulator digital stream output is accessible directly, bypassing and disabling the internal digital filter. The  
modulator output mode is activated by setting the CONFIG0 register bits FILTR[1:0] = 00. Pins M0 and M1 then  
become the modulator data outputs and the MCLK becomes the modulator clock output. When not in the  
modulator mode, these pins are inputs and must be tied.  
The modulator output is composed of three signals: one output for the modulator clock (MCLK) and two outputs  
for the modulator data (M0 and M1). The modulator clock output rate is ƒMOD CLK / 4). The SYNC input resets  
the MCLK phase, as shown in Figure 56. The SYNC input is latched on the rising edge of CLK. The MCLK  
resets and the next rising edge of MCLK occurs five CLK periods later.  
The modulator output data are two bits wide, which must be merged together before being filtered. Use the time  
domain equation of Equation 5 to merge the data outputs.  
tCSHD  
CLK  
tCMD  
tSCSU  
SYNC  
tSYMD  
MCLK(1)  
tMCD0, 1  
M0  
M1  
(1) MCLK = ƒCLK / 4.  
Figure 56. Modulator Mode Timing  
Table 10. Modulator Output Timing for Figure 56  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tMCD0, 1  
tCMD  
MCLK rising edge to M0, M1 valid  
propagation delay  
100  
ns  
CLK rising edge (after SYNC rising  
edge) to MCLK rising edge CMD  
5
1/ƒCLK  
ns  
tCSHD  
tSCSU  
tSYMD  
CLK to SYNC hold time to not latch  
on CLK edge  
10  
10  
SYNC to CLK setup time to latch on  
CLK edge  
ns  
SYNC to stable bit stream  
16 1/ƒMOD  
8.5 Programming  
8.5.1 Commands  
The commands listed in Table 11 control the operation of the ADS1282-SP. Most commands are stand-alone  
(that is, 1 byte in length); the register reads and writes require a second command byte in addition to the actual  
data bytes.  
A delay of 24 ƒCLK cycles between commands and between bytes within a command is required, starting from  
the last SCLK rising edge of one command to the first SCLK rising edge of the following command. This delay is  
shown in Figure 57.  
In Read Data Continuous mode, the ADS1282-SP places conversion data on the DOUT pin as SCLK is applied.  
As a consequence of the potential conflict of conversion data on DOUT and data placed on DOUT resulting from  
a register or Read Data By Command operation, it is necessary to send a STOP Read Data Continuous  
command before Register or Data Read By Command. The STOP Read Data Continuous command disables the  
direct output of conversion data on the DOUT pin.  
Copyright © 2016–2018, Texas Instruments Incorporated  
35  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Programming (continued)  
Command  
Byte  
Command  
Byte  
DIN  
SCLK  
(1)  
tSCLKDLY  
(1) tSCLKDLY = 24/ƒCLK (min).  
Figure 57. Consecutive Commands  
Table 11. Command Descriptions  
COMMAND  
WAKEUP  
STANDBY  
SYNC  
TYPE  
Control  
Control  
Control  
Control  
Control  
Control  
Data  
DESCRIPTION  
Wake-up from Standby mode  
Enter Standby mode  
1st COMMAND BYTE(1)(2)  
2nd COMMAND BYTE(3)  
0000 000X (00h or 01h)  
0000 001X (0 h or 03h)  
0000 010X (04h or 5h)  
0000 011X (06h or 07h)  
0001 0000 (10h)  
Synchronize the A/D conversion  
Reset registers to default values  
Read data continuous  
RESET  
RDATAC  
SDATAC  
RDATA  
Stop read data continuous  
Read data by command(4)  
Read nnnnn register(s) at address rrrrr(4)  
Write nnnnn register(s) at address rrrrr  
Offset calibration  
0001 0001 (11h)  
0001 0010 (12h)  
RREG  
Register  
Register  
Calibration  
Calibration  
00r rrrr (20h + 000r rrrr)  
010r rrrr (40h + 000r rrrr)  
0110 0000 (60h)  
000n nnnn (00h + n nnnn)  
000n nnnn (00h + n nnnn)  
WREG  
OFSCAL  
GANCAL  
Gain calibration  
0110 0001 (61h)  
(1) X = Don't care.  
(2) rrrrr = starting address for register read and write commands.  
(3) nnnnn = number of registers to be read/written – 1. For example, to read/write three registers, set nnnnn = 2 (00010).  
(4) Required to cancel Read Data Continuous mode before sending a command.  
8.5.1.1 WAKEUP: Wake-Up from Standby Mode  
This command is used to exit the standby mode. Upon sending the command, the time for the first data to be  
ready is illustrated in Figure 49 and Table 9. Sending this command during normal operation has no effect; for  
example, reading data by the Read Data Continuous method with DIN held low.  
8.5.1.2 STANDBY: Standby Mode  
This command places the ADS1282-SP into Standby mode. In Standby, the device enters a reduced power state  
where a low quiescent current remains to keep the register settings and SPI interface active. For complete  
device shutdown, take the PWDN pin low (register settings are not saved). To exit Standby mode, issue the  
WAKEUP command. The operation of Standby mode is shown in Figure 58.  
0000 001X  
(STANDBY)  
0000 000X  
(WAKEUP)  
DIN  
SCLK  
Operating  
Standby Mode  
Operating  
Figure 58. Standby Command Sequence  
8.5.1.3 SYNC: Synchronize the A/D Conversion  
This command synchronizes the A/D conversion. Upon receipt of the command, the reading in progress is  
cancelled and the conversion process is re-started. In order to synchronize multiple ADS1282-SPs, the command  
must be sent simultaneously to all devices. The SYNC pin must be high for this command.  
36  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
8.5.1.4 RESET: Reset the Device  
The RESET command resets the registers to default values, enables the Read Data Continuous mode, and  
restarts the conversion process; the RESET command is functionally the same as the RESET pin. See Figure 48  
for the RESET command timing.  
8.5.1.5 RDATAC: Read Data Continuous  
This command enables the Read Data Continuous mode (default mode). In this mode, conversion data can be  
read from the device directly without the need to supply a data read command. Each time DRDY falls low, new  
data are available to read. See Read Data Continuous for more details.  
8.5.1.6 SDATAC: Stop Read Data Continuous  
This command stops the Read Data Continuous mode. Exiting the Read Data Continuous mode is required  
before sending Register and Data read commands. This command suppresses the DRDY output, but the  
ADS1282-SP continues conversions.  
8.5.1.7 RDATA: Read Data By Command  
This command reads the conversion data. See Read Data by Command for more details.  
8.5.1.8 RREG: Read Register Data  
This command is used to read single or multiple register data. The command consists of a two-byte op-code  
argument followed by the output of register data. The first byte of the op-code includes the starting address, and  
the second byte specifies the number of registers to read – 1.  
First command byte: 001r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers – 1 to read.  
Starting with the 16th falling edge of SCLK, the register data appear on DOUT.  
The RREG command is illustrated in Figure 59. The a delay of 24 ƒCLK cycles is required between each byte  
transaction.  
8.5.1.9 WREG: Write to Register  
This command writes single or multiple register data. The command consists of a two-byte op-code argument  
followed by the input of register data. The first byte of the op-code contains the starting address and the second  
byte specifies the number of registers to write – 1.  
First command byte: 001r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers – 1 to write.  
Data byte(s): one or more register data bytes, depending on the number of registers specified.  
Figure 60 illustrates the WREG command.  
A delay of 24 ƒCLK cycles is required between each byte transaction.  
8.5.1.10 OFSCAL: Offset Calibration  
This command performs an offset calibration. The inputs to the converter (or the inputs to the external pre-  
amplifier) should be zeroed and allowed to stabilize before sending this command. The offset calibration register  
updates after this operation. See Calibration Commands for more details.  
8.5.1.11 GANCAL: Gain Calibration  
This command performs a gain calibration. The inputs to the converter should have a stable DC input, preferably  
close to (but not exceeding) positive full-scale. The gain calibration register updates after this operation. See  
Calibration Commands for more details.  
Copyright © 2016–2018, Texas Instruments Incorporated  
37  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
tDLY  
tDLY  
tDLY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
SCLK  
DIN  
Command Byte 1  
Command Byte 2  
DOUT  
Don't Care  
Register Data 5  
Register Data 6  
Example: Read six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0010 0101  
Command Byte 2 = 0000 0101  
Figure 59. Read Register Data (Equation 11 Shows tDLY  
)
tDLY  
tDLY  
tDLY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
SCLK  
DIN  
Command Byte 1  
Command Byte 2  
Register Data 5  
Register Data 6  
Example: Write six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0100 0101  
Command Byte 2 = 0000 0101  
Figure 60. Write Register Data (Equation 11 Shows tDLY  
)
tDLY = 24 / ƒCLK  
(11)  
8.5.2 Calibration Commands  
Calibration commands may be sent to the ADS1282-SP to calibrate the conversion data. The values of the offset  
and gain calibration registers are internally written to perform calibration. The appropriate input signals must be  
applied to the ADS1282-SP inputs before sending the commands. Use slower data rates to achieve more  
consistent calibration results; this effect is a byproduct of the lower noise that these data rates provide. Also, if  
calibrating at power-on, be sure the reference voltage is fully settled.  
Figure 61 shows the calibration command sequence. After the analog input voltage (and reference) have  
stabilized, send the Stop Data Continuous command followed by the SYNC and Read Data Continuous  
commands. 64 data periods later, DRDY goes low. After DRDY goes low, send the Stop Data Continuous, then  
the Calibrate command followed by the Read Data Continuous command. After 16 data periods, calibration is  
complete and conversion data may be read at this time. The SYNC input must remain high during the calibration  
sequence.  
The calibration commands apply to specific PGA settings. If the PGA is changed, recalibration is necessary.  
Calibration is bypassed in the sinc filter mode.  
8.5.2.1 OFSCAL Command  
The OFSCAL command performs an offset calibration. Before sending the offset calibration command, a zero  
input signal must be applied to the ADS1282-SP and the inputs allowed to stabilize. When the command is sent,  
the ADS1282-SP averages 16 readings and then writes this value to the OFC register. The contents of the OFC  
register may be subsequently read or written. During offset calibration, the full-scale correction is bypassed.  
8.5.2.2 GANCAL Command  
The GANCAL command performs a gain calibration. Before sending the GANCAL command, a DC input signal  
must be applied that is in the range of, but not exceeding, positive or negative full-scale. After the signal has  
stabilized, the command can be sent. The ADS1282-SP averages 16 readings, then computes the value that  
compensates for the gain error. The gain correction value is then written to the FSC register. The contents of the  
GANCAL register may be subsequently read or written. While the gain calibration command corrects for gain  
errors greater than 1 (gain correction <1), to avoid input overload, the analog inputs cannot exceed full-scale  
range. The gain calibration should be performed after the offset calibration.  
38  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
VIN  
Fully stable input and reference voltage.  
OFSCAL or  
Commands  
SDATAC  
SYNC  
RDATAC  
SDATAC  
RDATAC  
GANCAL  
Calibration  
Complete  
16 Data  
Periods  
DRDY  
SYNC  
64 Data Periods  
Figure 61. Offset/Gain Calibration Timing  
8.5.3 User Calibration  
System calibration of the ADS1282-SP can be performed without using the calibration commands. This  
procedure requires the calibration values to be externally calculated and then written to the calibration registers.  
The steps for this procedure are:  
1. Set the OFSCAL[2:0] register = 0h and GANCAL[2:0] = 400000h. These values set the offset and gain  
registers to 0 and 1, respectively.  
2. Apply a zero differential input to the input of the system. Wait for the system to settle and then average n  
output readings. Higher numbers of averaged readings result in more consistent calibration. Write the  
averaged value to the OFC register.  
3. Apply a differential positive or negative DC signal, or an AC signal, less than the full-scale input to the  
system. Wait for the system to settle and then average the n output readings.  
The value written to the FSC registers is calculated by Equation 12.  
DC signal calibration is shown in Equation 12. The expected output code is based on 31-bit output data.  
Expected Output Code  
FSC[2:0] = 400000h ´  
Actual Output Code  
(12)  
For AC signal calibration, use an RMS value of collected data (as shown in Equation 13).  
Expected RMS Value  
FSC[2:0] = 400000h ´  
Actual RMS Value  
(13)  
8.5.4 Configuration Guide  
After RESET or power-on, the registers can be configured using the following procedure:  
1. Reset the serial interface. Before using the serial interface, it may be necessary to recover the serial  
interface (undefined I/O power-up sequencing may cause false SCLK detection). To reset the SPI interface,  
toggle the RESET pin or, when in Read Data Continuous mode, hold SCLK low for 64 DRDY periods.  
2. Configure the registers. The registers are configured by either writing to them individually or as a group.  
Software may be configured in either mode. The SDATAC command must be sent before register read/write  
operations to cancel the Read Data Continuous mode.  
3. Verify register data. The register may be read back for verification of device communications.  
4. Set the data mode. After register configuration, the device may be configured for Read Data Continuous  
mode, either by the Read Data Continuous command or configured in Read Data By Register mode using  
SDATAC command.  
5. Synchronize readings. Whenever SYNC is high, the ADS1282-SP freely runs the data conversions. To stop  
and re-sync the conversions, take SYNC low and then high.  
6. Read data. If the Read Data Continuous mode is active, the data are read directly after DRDY falls by  
applying SCLK pulses. If the Read Data Continuous mode is inactive, the data can only be read by Read  
Data By Command. The Read Data opcode command must be sent in this mode to read each conversion  
result (DRDY only asserts after each read data command is sent).  
Copyright © 2016–2018, Texas Instruments Incorporated  
39  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 ADS1282-SP Register Map Information  
Collectively, the registers contain all the information needed to configure the part, such as data rate, filter  
selection, calibration, and so forth. The registers are accessed by the RREG and WREG commands. The  
registers can be accessed individually or as a block of registers by sending or receiving consecutive bytes. After  
a register write operation the ADC resets, resulting in an interruption of 63 readings.  
Table 12. ADS1282-SP Register Map  
RESET  
ADDRESS  
00h  
REGISTER  
ID  
VALUE  
X0h  
52h  
08h  
32h  
03h  
00h  
00h  
00h  
00h  
00h  
40h  
BIT 7  
ID3  
BIT 6  
ID2  
BIT 5  
ID1  
BIT 4  
ID0  
BIT 3  
0
BIT 2  
0
BIT 1  
0
BIT 0  
0
01h  
CONFIG0  
CONFIG1  
HPF0  
SYNC  
0
MODE  
MUX2  
HPF06  
HPF14  
OFC06  
OFC14  
OFC22  
FSC06  
FSC14  
FSC22  
DR2  
DR1  
DR0  
PHS  
FILTR1  
PGA1  
HPF01  
HPF09  
OFC01  
OFC09  
OFC17  
FSC01  
FSC09  
FSC17  
FILTR0  
PGA0  
HPF00  
HPF08  
OFC00  
OFC08  
OFC16  
FSC00  
FSC08  
FSC16  
02h  
MUX1  
HPF05  
HPF13  
OFC05  
OFC13  
OFC21  
FSC05  
FSC13  
FSC21  
MUX0  
HPF04  
HPF12  
OFC04  
OFC12  
OFC20  
FSC04  
FSC12  
FSC20  
CHOP  
HPF03  
HPF11  
OFC03  
OFC11  
OFC19  
FSC03  
FSC11  
FSC19  
PGA2  
HPF02  
HPF10  
OFC02  
OFC10  
OFC18  
FSC02  
FSC10  
FSC18  
03h  
HPF07  
HPF15  
OFC07  
OFC15  
OFC23  
FSC07  
FSC15  
FSC23  
04h  
HPF1  
05h  
OFC0  
06h  
OFC1  
07h  
OFC2  
08h  
FSC0  
09h  
FSC1  
0Ah  
FSC2  
8.6.2 ID Register  
Figure 62. ID: ID Register (Address 00h)  
7
6
5
4
3
2
1
0
0
0
ID3  
ID2  
ID1  
ID0  
Reserved  
0
0
Reset value = X0h  
Table 13. ID Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
Reset  
Description  
ID[3:0]  
Reserved  
Factory-programmed identification bits (read-only)  
Always write '0'  
40  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
8.6.3 Configuration Registers  
8.6.3.1 Configuration Register 0  
Figure 63. CONFIG0: Configuration Register 0 (Address 01h)  
7
6
5
4
3
2
1
0
SYNC  
MODE  
DR2  
DR1  
DR0  
PHASE  
FILTR1  
FILTR0  
Reset value = 52h  
Table 14. Configuration Register 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC  
Synchronization mode  
0: Pulse SYNC mode (default)  
1: Continuous SYNC mode  
6
MODE  
1: High-resolution mode (default)  
5:3  
DR[2:0]  
Data Rate Select(1)  
000: 250SPS  
001: 500SPS  
010: 1000SPS (default)  
011: 2000SPS  
100: 4000SPS  
2
PHASE  
FIR Phase Response  
0: Linear phase (default)  
1: Minimum phase  
1:0  
FILTR[1:0]  
Digital Filter Select  
Digital filter configuration  
00: On-chip filter bypassed, modulator output mode  
01: Sinc filter block only  
10: Sinc + LPF filter blocks (default)  
11: Sinc + LPF + HPF filter blocks  
(1) Sample rate based on 4.096-Mhz clock.  
8.6.3.2 Configuration Register 1  
Figure 64. CONFIG1: Configuration Register 1 (Address 02h)  
7
6
5
4
3
2
1
0
RSVD  
MUX2  
MUX1  
MUX0  
CHOP  
PGA2  
PGA1  
PGA0  
0
Reset value = 08h  
Table 15. Configuration Register 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
MUX[2:0]  
Always write '0'  
6:4  
MUX Select  
000: AINP1 and AINN1 (default)  
001: AINP2 and AINN2  
010: Internal short via 400Ω  
011:AINP1 and AINN1 connected to AINP2 and AINN2  
100: External short to AINN2  
3
CHOP  
PGA Chopping Enable  
0: PGA chopping disabled  
1: PGA chopping enabled (default)  
2:0  
PGA[2:0]  
PGA Gain Select  
000: G = 1 (default)  
001: G = 2  
010: G = 4  
011: G = 8  
100: G = 16  
101: G = 32  
110: G = 64  
Copyright © 2016–2018, Texas Instruments Incorporated  
41  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.6.4 HPF1 and HPF0  
These two bytes (high-byte and low-byte, respectively) set the corner frequency of the high-pass filter.  
8.6.4.1 High-Pass Filter Corner Frequency, Low Byte  
Figure 65. HPF0: High-Pass Filter Corner Frequency, Low Byte (Address 03h)  
7
6
5
4
3
2
1
0
HP07  
HP06  
HP05  
HP04  
HP03  
HP02  
HP01  
HP00  
Reset value = 32h  
8.6.4.2 High-Pass Filter Corner Frequency, High Byte  
Figure 66. HPF1: High-Pass Filter Corner Frequency, High Byte (Address 04h)  
7
6
5
4
3
2
1
0
HP15  
HP14  
HP13  
HP12  
HP11  
HP10  
HP09  
HP08  
Reset value = 03h  
8.6.5 OFC2, OFC1, OFC0  
These three bytes set the offset calibration value.  
8.6.5.1 Offset Calibration, Low Byte  
Figure 67. OFC0: Offset Calibration, Low Byte (Address 05h)  
7
6
5
4
3
2
1
0
OC07  
OC06  
OC05  
OC04  
OC03  
OC02  
OC01  
OC00  
Reset value = 00h  
8.6.5.2 Offset Calibration, Mid Byte  
Figure 68. OFC1: Offset Calibration, Mid Byte (Address 06h)  
7
6
5
4
3
2
1
0
OC15  
OC14  
OC13  
OC12  
OC11  
OC10  
OC09  
OC08  
Reset value = 00h  
8.6.5.3 Offset Calibration, High Byte  
Figure 69. OFC2: Offset Calibration, High Byte (Address 07h)  
7
6
5
4
3
2
1
0
OC23  
OC22  
OC21  
OC20  
OC19  
OC18  
OC17  
OC16  
Reset value = 00h  
8.6.6 FSC2, FSC1, FSC0  
These three bytes set the full-scale calibration value.  
8.6.6.1 Full-Scale Calibration, Low Byte  
Figure 70. FSC0: Full-Scale Calibration, Low Byte (Address 08h)  
7
6
5
4
3
2
1
0
FSC07  
FSC06  
FSC05  
FSC04  
FSC03  
FSC02  
FSC01  
FSC00  
Reset value = 00h  
42  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
8.6.6.2 Full-Scale Calibration, Mid Byte  
Figure 71. FSC1: Full-Scale Calibration, Mid Byte (Address 09h)  
7
6
5
4
3
2
1
0
FSC15  
FSC14  
FSC13  
FSC12  
FSC11  
FSC10  
FSC09  
FSC08  
Reset value = 00h  
8.6.6.3 Full-Scale Calibration, High Byte  
Figure 72. FSC2: Full-Scale Calibration, High Byte (Address 0Ah)  
7
6
5
4
3
2
1
0
FSC23  
FSC22  
FSC21  
FSC20  
FSC19  
FSC18  
FSC17  
FSC16  
Reset value = 40h  
8.6.7 Offset and Full-Scale Calibration Registers  
The conversion data can be scaled for offset and gain before yielding the final output code. As shown in  
Figure 74, the output of the digital filter is first subtracted by the offset register (OFC) and then multiplied by the  
full-scale register (FSC). Equation 14 shows the scaling:  
FSC[2:0]  
Final Output Data = (Input - OFC[2:0]) ´  
400000h  
(14)  
The values of the offset and full-scale registers are set by writing to them directly, or they are set automatically  
by calibration commands.  
The offset and full-scale calibrations apply to specific PGA settings. When the PGA changes, the contents of  
these registers may have to be recalculated. Calibration is bypassed in the sinc filter mode.  
Standby  
Performing One-Shot Conversion  
Standby  
ADS1282 Status  
DRDY  
(1)  
WAKEUP  
STANDBY  
STANDBY  
DIN  
Settled  
Data  
DOUT  
(1) See Figure 49 and Pulse-Sync Timing Requirements for time to new data.  
Figure 73. One-Shot Conversions Using the Standby Command  
AINP  
AINN  
+
Output Data  
Clipped to 32 Bits  
Digital  
Filter  
´
Final Output  
S
Modulator  
-
OFC  
Register  
FSC Register  
400000h  
Figure 74. Calibration Block Diagram  
Copyright © 2016–2018, Texas Instruments Incorporated  
43  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.6.7.1 OFC[2:0] Registers  
The offset calibration is a 24-bit word, composed of three 8-bit registers, as shown in Table 18. The offset  
register is left-justified to align with the 32-bits of conversion data. The offset is in twos complement format with a  
maximum positive value of 7FFFFFh and a maximum negative value of 800000h. This value is subtracted from  
the conversion data. A register value of 00000h has no offset correction (default value). While the offset  
calibration register value can correct offsets ranging from –FS to +FS (as shown in Table 16), to avoid input  
overload, the analog inputs cannot exceed the full-scale range.  
Table 16. Offset Calibration Values  
OFC REGISTER  
7FFFFFh  
FINAL OUTPUT CODE(1)  
80000000h  
000001h  
FFFFFF00h  
000000h  
00000000h  
FFFFFFh  
800000h  
00000100h  
7FFFFF00h  
(1) Full 32-bit final output code with zero code input.  
8.6.7.2 FSC[2:0] Registers  
The full-scale calibration is a 24-bit word, composed of three 8-bit registers, as shown in Table 19. The full-scale  
calibration value is 24-bit, straight offset binary, normalized to 1 at code 400000h. Table 17 summarizes the  
scaling of the full-scale register. A register value of 400000h (default value) has no gain correction (gain = 1).  
While the gain calibration register value corrects gain errors greater than 1 (gain correction <1), the full-scale  
range of the analog inputs cannot be exceeded to avoid input overload.  
Table 17. Full-Scale Calibration Register Values  
FSC REGISTER  
800000h  
GAIN CORRECTION  
2
1
400000h  
200000h  
0.5  
0
000000h  
Table 18. Offset Calibration Word  
REGISTER  
OFC0  
BYTE  
LSB  
BIT ORDER  
7
15  
6
5
4
3
2
1
9
0 (LSB)  
OFC1  
MID  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
8
OFC2  
MSB  
23 (MSB)  
17  
16  
Table 19. Full-Scale Calibration Word  
REGISTER  
FSC0  
BYTE  
LSB  
BIT ORDER  
7
15  
6
5
4
3
2
1
9
0 (LSB)  
FSC1  
MID  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
8
FSC2  
MSB  
23 (MSB)  
17  
16  
44  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS1282-SP is a high-resolution ΔΣ ADC with space grade qualification making it an ideal candidate for  
space applications in temperature sensing, accelerometers, and precision instrumentation.  
9.2 Typical Application  
9.2.1 Thermocouple Temperature Sensing Application  
Thermocouples are among the most commonly used sensors to measure temperature. Thermocouples work on  
the principle that two dissimilar metals placed in contact will generate an output voltage as a function of  
temperature as shown in Figure 75. This output voltage is proportional to the difference between the hot junction  
temperature and the cold junction temperature by a scaling factor (α) known as the Seeback coefficient. To  
ensure the measured output voltage accurately represents that generated by the hot junction the two junctions  
from where Vout is measured should remain at the same (cold junction) reference temperature. Therefore, in  
order to determine the temperature of the hot junction the thermocouple output voltage must be measured, the  
cold junction temperature known, and the voltage versus temperature characteristics (Seeback coefficient) for the  
type of thermocouple used be known.  
Measuring (Hot) Junction  
Reference (Cold) Junction  
Metal A  
Copper  
Copper  
+
+
VH  
œ
VOUT  
œ
Metal B  
TH  
TC  
VOUT = . (TH œ TC)  
Figure 75. Basic Thermocouple Configuration  
The output voltage of the common type thermocouples is very repeatable and well documented by the American  
National Institute of Standards (ANSI). Figure 76 shows the thermocouple output voltage versus temperature for  
the most common types of thermocouples. As the graph illustrates, the output voltage is relatively small, less  
than 90 mV across all types of thermocouples.  
Copyright © 2016–2018, Texas Instruments Incorporated  
45  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Application (continued)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Type B  
Type E  
Type J  
Type K  
Type N  
Type R  
Type S  
Type T  
-10  
-20  
-300  
-100  
100  
300  
500  
700  
900  
1100  
1300  
1500  
1700  
1900  
Temperature (°C)  
D001  
Figure 76. Thermocouple Voltage vs Temperature vs TC Type  
9.2.1.1 Design Requirements  
Since the output voltages of common thermocouple types are well documented, the accuracy of a thermocouple  
measurement reduces to accurately measuring the output voltage of the thermocouple at the cold junction and  
accurately determining the temperature at that cold junction. Once the cold junction temperature is determined,  
the output voltage can be compensated to reflect the actual hot junction temperature. This compensation can be  
implemented in hardware on the analog front-end or in software and/or firmware on the digital back-end, each of  
which presents its own challenges. Analog compensation is challenging in that any components used in  
compensation circuits are also potential sources of error while back-end digital compensation puts additional  
processing requirements and algorithms on the FPGA or microprocessor. The premise of this application writing  
is that cold junction compensation will be implemented in the digital domain so that minimal circuitry is used in  
the analog domain. With this, the front-end design goal becomes effectively digitizing the thermocouple output  
voltage as well as the cold junction temperature voltage.  
The ADS1282-SP is ideal for achieving these goals as the device offers two analog inputs that are mux’d to one  
delta-sigma modulator. Figure 77 illustrates how one input receives the thermocouple output voltage while the  
second receives the cold junction compensation voltage. The Temp Sensor shown in the figure can take on  
many forms such as a temp sensor IC, an RTD, or a thermistor.  
46  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Typical Application (continued)  
Board for Reference  
Measuring (Hot) Junction  
(Cold) Junction  
TC  
Metal A  
Metal B  
+
Temp.  
Sensor  
TH  
VH  
œ
TC  
AINP2  
AINN2  
AINP1  
AINN1  
ADS1282-SP  
Figure 77. ADS1282-SP as Thermocouple DAQ  
The ADS1282-SP offers a very high dynamic range. To realize this dynamic range, however, the small  
thermocouple voltage requires amplification to make use of the full scale range (FSR) of the ADC. The integrated  
programmable gain amplifier (PGA) provides this amplification in factors of 1x to 64x (in powers of 2) making the  
ADS1282-SP versatile for use with different types of thermocouples.  
In addition to amplification, the analog input should be filtered. Filtering serves two purposes: first, to limit the  
effect of aliasing during the sampling process and second, to reduce external noise from becoming a part of the  
measurement. As with any sampled system, aliasing can occur if proper anti-alias filtering is not in place. Aliasing  
occurs when frequency components are present in the input signal that are higher than half the sampling  
frequency of the ADC (also known as the Nyquist frequency). These frequency components fold back and show  
up in the actual frequency band of interest below half the sampling frequency. The filter response of the digital  
filter repeats at multiples of the sampling frequency, also known as modulator frequency f(MOD), as shown in  
Figure 78. Any frequency components present in the input signal around the modulator frequency or multiples  
thereof are not attenuated and alias back into the band of interest, unless attenuated by an external analog filter.  
Copyright © 2016–2018, Texas Instruments Incorporated  
47  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Application (continued)  
Magnitude  
Sensor  
Signal  
Unwanted  
Signals  
Unwanted  
Signals  
Output  
Data Rate  
f(MOD)/2  
f(MOD)  
Frequency  
Frequency  
Frequency  
Magnitude  
Digital Filter  
Aliasing of  
Unwanted Signals  
Output  
Data Rate  
f(MOD)/2  
f(MOD)  
Magnitude  
External  
Antialiasing Filter  
Roll-Off  
Output  
f(MOD)/2  
f(MOD)  
Data Rate  
Figure 78. Effect of Aliasing  
Many sensor signals, such as the thermocouple, are inherently band-limited; the output has a limited rate of  
change. In this case, the sensor signal does not alias back into the pass-band when using a ΔΣ ADC. However,  
any noise pickup along the sensor wiring or the application circuitry can potentially alias into the pass band.  
Power line-cycle frequency and harmonics are one common noise source. External noise can also be generated  
from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as nearby motors  
and RF transceivers. Another noise source typically exists on the printed-circuit-board (PCB) itself in the form of  
clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the  
measurement result. A first-order, resistor-capacitor (RC) filter is, in most cases, sufficient to either eliminate  
such noise, or to reduce the effects to a level within the noise floor of the sensor.  
48  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Typical Application (continued)  
9.2.1.2 Detailed Design Procedure  
Figure 79 below shows a typical thermocouple application utilizing both analog inputs to the ADS1282-SP; one  
for hot junction and one for cold junction. The biasing resistors (RPU and RPD) serve two purposes. The first  
purpose is to set the common-mode voltage of the thermocouple to within the specified voltage range of the  
device. The second purpose is to offer a weak pullup and pulldown to detect an open thermocouple lead. When  
one of the thermocouple leads fails open, the positive input is pulled to AVDD and the negative input is pulled to  
GND. The ADC consequently reads a full-scale value that is outside the normal measurement range of the  
thermocouple voltage to indicate this failure condition. When choosing the values of the biasing resistors, take  
care so that the biasing current does not degrade measurement accuracy. The biasing current flows through the  
thermocouple and can cause self-heating and additional voltage drops across the thermocouple leads. Typical  
values for the biasing resistors range from 1 MΩ to 50 MΩ.  
5 V  
5 V  
1 F  
RPU  
CCMA  
RDIFFA  
AINP1  
AINN1  
AVDD  
CDIFF  
RDIFFB  
RPD  
CCMB  
CLK  
DOUT  
DIN  
Digital Filter  
and  
Interface  
PGA  
Mux  
ûADC  
DRDY  
CCMA  
RDIFFA  
AINP2  
AINN2  
Temp.  
Sensor  
CDIFF  
AVSS  
RDIFFB  
CCMB  
Figure 79. ADS1282-SP with Hot and Cold Junction Sensing  
Although the device digital filter attenuates high-frequency components of noise, provide a first-order, passive RC  
filter at the inputs to further improve performance. The differential RC filter formed by RDIFFA, RDIFFB, and the  
differential capacitor CDIFF offers a cutoff frequency that is calculated using Equation 15. Care must be taken  
when choosing the filter resistor values because the input currents flowing into and out of the device cause a  
voltage drop across the resistors. This voltage drop shows up as an additional offset error at the ADC inputs.  
Limit the filter resistor values to below 1 kΩ for best performance.  
fC = 1 / [2π × (RDIFFA + RDIFFB) × CDIFF]  
(15)  
Two common-mode filter capacitors (CCMA and CCMB) are also added to offer attenuation of high-frequency,  
common-mode noise components. Differential capacitor CDIFF must be at least an order of magnitude (10x)  
larger than these common-mode capacitors because mismatches in the common mode capacitors can convert  
common-mode noise into differential noise.  
The highest measurement resolution is achieved when the largest potential input signal is slightly lower than the  
FSR of the ADC. For a type K thermocouple, the maximum thermocouple voltage (VTC) occurs at a  
thermocouple temperature (TTC) of 1370°C. At this temperature, VTC = 54.819 mV, as defined in the tables  
published by the National Institute of Standards and Technology (NIST) using a cold-junction temperature (TCJ)  
of 0°C. A thermocouple produces an output voltage that is proportional to the temperature difference between the  
thermocouple tip and the cold junction. If the cold junction is at a temperature below 0°C, the thermocouple  
Copyright © 2016–2018, Texas Instruments Incorporated  
49  
 
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Application (continued)  
produces a voltage larger than 54.819 mV. The isothermal block area is often constrained by the operating  
temperature range of the device. Therefore, the isothermal block temperature is limited to –55°C. A K-type  
thermocouple at TTC = 1370°C produces an output voltage of VTC = 54.819 mV – (–2.067 mV) = 56.886 mV  
when referenced to a cold-junction temperature of TCJ = –55°C. When invoking the 64x amplification in the PGA  
the device offers a full-scale range of 70.3 mVpp-diff (with a reference of 4.5 V) allowing for nearly full utilization  
of the FSR with no additional external amplification required.  
9.2.2 Digital Connection to a Field Programmable Gate Array (FPGA) Device Typical Application  
Figure 80 shows the digital connection to a field programmable gate array (FPGA) device. In this example, two  
ADS1282-SP devices are shown connected. The DRDY output from each ADS1282-SP device can be used;  
however, when the devices are synchronized, the DRDY output from only one device is sufficient. A shared  
SCLK line between the devices is optional.  
4.096-MHz Clock  
47 W  
26  
1
+3.3 V(1)  
DVDD  
CLK  
ADS1282  
1 mF  
28  
47 W  
24  
CLK Input  
RESET  
DOUT  
DIN  
RESET  
DOUT1  
DIN1  
47 W  
4
BYPAS  
47 W  
47 W  
5
1 mF  
47 W  
47 W  
2
SCLK  
SYNC  
MFLAG  
SCLK1  
SYNC  
10  
11  
MFLAG1  
DGND  
6, 12, 25, 27  
1
26  
+3.3 V(1)  
FPGA  
DVDD  
CLK  
ADS1282  
1 mF  
24  
RESET  
47 W  
28  
4
DOUT2  
DIN2  
BYPAS  
DOUT  
DIN  
5
1 mF  
2
SCLK2  
SCLK  
SYNC  
MFLAG  
DRDY  
47 W  
10  
47 W  
11  
3
MFLAG2  
DRDY  
47 W  
DGND  
6, 12, 25, 27  
NOTE: Dashed line is optional.  
(1) For DVDD < 2.25 V, see the Power Supply Recommendations.  
Figure 80. Microcontroller Interface With Dual ADS1282-SPs  
9.2.2.1 Design Requirements  
It is critical to match the DVDD input and output thresholds of the ADS1282 to the IO voltage of the FPGA. The  
FPGA outputs with correct VOH and VOL levels must be compatible with VIH/VIL levels of ADS1282 utilizing  
respective DVDD voltage. Conversely the FPGA input thresholds must also be compatible with VOH/VOL levels  
of DVDD range of ADS1282. The wide DVDD range of the ADS1282 allows easy interfacing to 1.8-V, 2.5-V, and  
3.3-V logic levels. If DVDD is less than 2.25, then the BYPAS pin must be directly connected to DVDD to BYPAS  
internal LDO.  
50  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
Typical Application (continued)  
9.2.2.2 Detailed Design Procedure  
The modulator over-range flag (MFLAG) from each device ties to the FPGA. For synchronization, one SYNC  
control line connects all ADS1282-SP devices. The RESET line also connects to all ADS1282-SP devices.  
For best performance, the FPGA and the ADS1282-SPs should operate from the same clock. Avoid ringing on  
the digital inputs. 47-resistors in series with the digital traces can help to reduce ringing by controlling  
impedances. Place the resistors at the source (driver) end of the trace. Unused digital inputs should not float; use  
pullups or pulldowns to DVDD or GND. This includes the modulator data pins, M0, M1, and MCLK.  
Placement and layout of multiple ADS1282s should be done to allow digital and analog signals to be separated  
and not cross to minimize coupling of noise from digital signals to analog signals and prevent ground loops.  
FPGA firmware can monitor DRDY to initiate SPI transactions to obtain samples from both ADS1282s. Additional  
monitoring of MFLAG can be done to take appropriate action if signal is overrange.  
10 Power Supply Recommendations  
Bypass all supply pins with 1-μF ceramic capacitors. In order to minimize the lead and trace inductance, place  
the capacitors as close to the supply pins as possible. Where double-sided component mounting is allowed,  
these capacitors are best placed directly under the package. In addition to power supplies, the device has a  
reference supply at pins VREFP and VREFN that should also be bypassed. Bypass these pins with at least a 1-  
μF capacitor as higher value capacitors yield superior low-frequency noise suppression. For best results, choose  
low-inductance ceramic chip capacitors and place as close as possible to the device pins.  
The DVDD power supply operates over the range of 1.75 to 3.6 V. If DVDD is operated at less than 2.25 V,  
connect the DVDD pin to the BYPAS pin. If DVDD is greater than or equal to 2.25 V, do not connect DVDD to  
the BYPAS pin. Figure 81 shows this connection.  
1.75 V to 3.6 V  
DVDD  
ADS1282  
Tie DVDD to BYPAS if  
DVDD power is < 2.25 V.  
Otherwise float BYPAS.  
BYPAS  
1 μF  
Figure 81. DVDD Power  
Copyright © 2016–2018, Texas Instruments Incorporated  
51  
 
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
In any mixed-signal system design, the power-supply and grounding design plays a significant role. The device  
distinguishes between two different grounds: AVSS (analog ground) and DGND (digital ground). In low frequency  
applications such as temperature sensing with thermocouples, laying out the printed circuit board (PCB) to use a  
single ground plane is adequate but care must be taken so that ground loops are avoided. Ground loops act as  
loop antennas picking up interference currents which transform into voltage fluctuations. These fluctuations are  
effectively noise which can degrade system performance in high resolution applications. When placing  
components and routing over the ground plane, pay close attention to the path that ground currents will take.  
Avoid having return currents for digital functions pass close to analog sensitive devices or traces.  
Additionally, the proximity of digital devices to an analog signal chain has the potential to induce unwanted noise  
into the system. One primary source of noise is the switching noise from any digital circuitry such as the data  
output serializer or the microprocessor receiving the data. For the device, care must be taken to ensure that the  
interaction between the analog and digital supplies within the device is kept to a minimal amount. The extent of  
noise coupled and transmitted from the digital and analog sections depends on the effective inductances of each  
of the supply and ground connections. Smaller effective inductances of the supply and ground pins results in  
better noise suppression. For this reason, multiple pins are used to connect to the digital ground. Low inductance  
properties must be maintained throughout the design of the PCB layout by use of proper planes and layer  
thickness.  
To avoid noise coupling through supply pins, TI recommends to keep sensitive input pins (such as AINN1,  
AINP1, AINN2, AINP2 pins) away from the DVDD and DGND planes. For example, do not route the traces or  
vias connected to these pins across these planes; that is, avoid the digital power planes under the analog input  
pins. An exception may be acceptable to share DGND and AVSS when utilizing a unipolar supply for AVDD. As  
in the example below, DGND is shared with AVSS. Care should be taken to minimize inductance and route  
digital signals away from analog section.  
The analog inputs represent the most sensitive node of the ADC as the total system accuracy depends on the  
how well the integrity of this signal is maintained. The analog differential inputs to the ADC should be routed  
tightly coupled and symmetrical for common mode rejection. These inputs should be as short in length as  
possible to minimize exposure to potential sources of noise.  
52  
版权 © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
11.2 Layout Example  
1 µF  
GND Pour  
1 CLK  
BYPAS 28  
DGND 27  
DVDD 26  
DGND 25  
RESET 24  
PWDN 23  
VREFP 22  
VREFN 21  
AVSS 20  
AVDD 19  
AINN1 18  
AINP1 17  
AINN2 16  
AINP2 15  
GND  
DVDD  
GND  
2 SCLK  
3 DRDY  
4 DOUT  
5 DIN  
1 µF  
Digital Signals  
to Host  
Microprocessor or  
FPGA  
GND  
6 DGND  
7 MCLK  
8 M1  
1 µF  
GND  
9 M0  
1 µF  
AVDD  
10 SYNC  
11 MFLAG  
12 DGND  
13 CAPN  
14 CAPP  
GND  
Analog  
Differential Input  
Signals  
1 µF  
GND  
GND  
Figure 82. Unipolar Layout Example  
版权 © 2016–2018, Texas Instruments Incorporated  
53  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
20. FIR 级系数  
1 部分  
2 部分  
3 部分  
换算系数 = 134217728  
线性相位 最小相位  
–73 819  
4 部分  
换算系数 = 134217728  
线性相位 最小相位  
系数  
换算系数 = 1 / 8388608  
b0  
b1  
–10944  
0
–774  
–132  
–432  
11767  
133882  
0
–874  
8211  
44880  
b2  
103807  
0
8994  
–4648  
–75  
769961  
b3  
0
–16147  
174712  
2481  
2940447  
8262605  
17902757  
30428735  
40215494  
39260213  
23325925  
–1757787  
–21028126  
–21293602  
–3886901  
14396783  
16314388  
1518875  
–12979500  
–11506007  
2769794  
12195551  
6103823  
–6709466  
–9882714  
–353347  
8629331  
5597927  
–4389168  
–7594158  
–428064  
6566217  
4024593  
–3679749  
–5572954  
332589  
b4  
–507903  
0
–51663  
–41280  
536821  
6692  
b5  
0
199523  
0
–80934  
1372637  
3012996  
5788605  
9852286  
14957445  
20301435  
24569234  
26260385  
24247577  
18356231  
9668991  
327749  
7419  
b6  
2512192  
4194304  
2512192  
0
–120064  
–118690  
–18203  
–266  
b7  
–10663  
–8280  
b8  
–629120  
0
b9  
224751  
10620  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
b30  
b31  
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
–507903  
0
2570188  
4194304  
2570188  
0
580196  
22008  
893263  
348  
103807  
0
891396  
–34123  
–25549  
33460  
293598  
–10944  
–629120  
0
–987253  
–2635779  
–3860322  
–3572512  
–822573  
4669054  
12153698  
19911100  
25779390  
27966862  
61387  
199523  
0
–7546  
–7171917  
–10926627  
–10379094  
–6505618  
–1333678  
2972773  
5006366  
4566808  
2505652  
126331  
–94192  
–50629  
101135  
134826  
–56626  
–220104  
–56082  
263758  
231231  
–215231  
–430178  
34715  
–51663  
0
8994  
0
–774  
只显示一半;从  
22 开始对称。  
b
–1496514  
–1933830  
–1410695  
–502731  
245330  
580424  
283878  
–588382  
–693209  
366118  
1084786  
132893  
–1300087  
–878642  
1162189  
1741565  
–522533  
–2490395  
565174  
492084  
231656  
–9196  
5136333  
2351253  
–3357202  
–3767666  
1087392  
3847821  
919792  
–125456  
–122207  
–61813  
–4445  
22484  
22245  
54  
版权 © 2016–2018, Texas Instruments Incorporated  
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
器件支持 (接下页)  
20. FIR 级系数 (接下页)  
1 部分  
2 部分  
3 部分  
4 部分  
系数  
换算系数 = 134217728  
换算系数 = 134217728  
换算系数 = 1 / 8388608  
线性相位  
最小相位  
线性相位  
–688945  
最小相位  
–2918303  
–2193542  
1493873  
2595051  
–79991  
–2260106  
–963855  
1482337  
1480417  
–586408  
–1497356  
–168417  
1166800  
644405  
–675082  
–806095  
211391  
740896  
141976  
–527673  
–327618  
278227  
363809  
–70646  
–304819  
–63159  
205798  
124363  
–107173  
–131357  
31104  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
b49  
b50  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
b64  
b65  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
b75  
b76  
b77  
b78  
b79  
b80  
b81  
b82  
b83  
b84  
b85  
10775  
940  
2811738  
–2953  
–2599  
–1052  
-43  
2425494  
–2338095  
–4511116  
641555  
214  
6661730  
132  
2950811  
33  
–8538057  
–10537298  
9818477  
41426374  
56835776  
只显示一半;从  
b
53 开始对称。  
107182  
15644  
–71728  
–36319  
38331  
38783  
–13557  
–31453  
–1230  
20983  
7729  
–11463  
–8791  
版权 © 2016–2018, Texas Instruments Incorporated  
55  
ADS1282-SP  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
www.ti.com.cn  
器件支持 (接下页)  
20. FIR 级系数 (接下页)  
1 部分  
2 部分  
3 部分  
4 部分  
换算系数 = 134217728  
线性相位 最小相位  
系数  
换算系数 = 134217728  
换算系数 = 1 / 8388608  
线性相位  
最小相位  
b86  
b87  
4659  
7126  
–732  
–4687  
–976  
2551  
1339  
–1103  
–1085  
314  
681  
16  
b88  
b89  
b90  
b91  
b92  
b93  
b94  
b95  
b96  
b97  
b98  
–349  
–96  
144  
78  
b99  
b100  
b101  
b102  
b103  
b104  
b105  
b106  
b107  
-46  
–42  
9
16  
0
-4  
cos wN + sin wN - 1  
1 +  
1 - 2  
cos wN  
HPF Gain =  
cos wN + sin wN - 1  
cos wN  
2 -  
(16)  
有关该公式的使用示例,请参见HPF Stage。  
12.1.1 HPF 传递函数  
-1  
2 - a  
1 - Z  
HPF(Z) =  
´
-1  
2
1 - bZ  
(17)  
(18)  
其中,b 的计算公式如公式 18 所示:  
(1 + (1 - a)2)2  
b =  
2
56  
版权 © 2016–2018, Texas Instruments Incorporated  
 
ADS1282-SP  
www.ti.com.cn  
ZHCSES1B MARCH 2016REVISED OCTOBER 2018  
21. 数据就绪时间 tDR(正弦滤波器)  
(1)  
ƒDATA  
128k  
64k  
ƒCLK  
440  
616  
32k  
968  
16k  
1672  
2824  
8k  
(1) 对于同时有同步命令和唤醒命令的情况,ƒCLK = 从第八个 SCLK 上升  
沿后紧接着的下一个 CLK 上升沿到 DRDY 下降沿的 CLK 周期数。对  
于仅有唤醒命令的情况,减去两个 ƒCLK 周期。  
21 Pulse-Sync Timing Requirements引用。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2018, Texas Instruments Incorporated  
57  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962L1423101VXC  
5962L1423102VXC  
ADS1282HKV/EM  
ACTIVE  
CFP  
CFP  
CFP  
HKV  
28  
28  
28  
1
RoHS & Green  
RoHS & Green  
RoHS & Green  
AU  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 115  
25 to 25  
5962L1423101VXC  
ADS1282-SP  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
HKV  
1
AU  
AU  
5962L1423102VXC  
ADS1282-SP  
HKV  
1
ADS1282HKV/EM  
EVAL ONLY  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ADS1282-SP :  
Catalog : ADS1282  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962L1423101VXC  
5962L1423102VXC  
ADS1282HKV/EM  
HKV  
HKV  
HKV  
CFP (TBAR)  
CFP (TBAR)  
CFP (TBAR)  
28  
28  
28  
1
1
1
506.98  
506.98  
506.98  
26.16  
26.16  
26.16  
6220  
6220  
6220  
NA  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HKV0028A  
CFP - 2.85 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
12.9  
12.5  
9.40  
6.35  
B
TYP  
A
PIN 1 ID  
26X 1.27  
28  
1
18.49  
18.08  
2X  
16.51  
(10.795)  
14  
15  
0.53  
0.38  
0.2  
28X  
(9.017)  
C A  
C
B
0.23  
0.10  
28X  
2.85 MAX  
9.86  
9.45  
0.66 MIN  
4X 0.25 MIN  
4221846/A 01/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid.  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS1282HIPW

用于地震监测和能源勘探且具有 PGA 的超高分辨率 4kSPS 2 通道 Δ-Σ ADC | PW | 28 | -40 to 85
TI

ADS1282HIPWR

Ultra-high-resolution 4-kSPS 2-channel delta-sigma ADC with PGA for seismic and energy exploration 28-TSSOP -40 to 85
TI

ADS1282HKV/EM

高分辨率模数转换器 (ADC) | HKV | 28 | 25 to 25
TI

ADS1282HPW

HIGH-RESOLUTION ANALOG-TO-DIGITAL CONVERTER
TI

ADS1282IPW

High-Resolution Analog-to-Digital Converter
TI

ADS1282IPWG4

High-Resolution Analog-to-Digital Converter
TI

ADS1282IPWR

High-Resolution Analog-to-Digital Converter
TI

ADS1282IPWRG4

High-Resolution Analog-to-Digital Converter
TI

ADS1282SJDJ

HIGH-RESOLUTION ANALOG-TO-DIGITAL CONVERTER
TI

ADS1282SKGDA

HIGH-RESOLUTION ANALOG-TO-DIGITAL CONVERTER
TI

ADS1282_08

High-Resolution Analog-to-Digital Converter
TI

ADS1282_1

High-Resolution Analog-to-Digital Converter
TI