ADS131B23PHPR [TI]

24 位、64kSPS、三通道同步采样 Δ-Σ ADC | PHP | 48 | -40 to 125;
ADS131B23PHPR
型号: ADS131B23PHPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24 位、64kSPS、三通道同步采样 Δ-Σ ADC | PHP | 48 | -40 to 125

文件: 总223页 (文件大小:3940K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
ADS131B23 适用于工业电池管理系统的电流、电压和温度测量模拟前端  
1 特性  
3 说明  
• 两个用于电流分流测量的同步采24 ADC  
ADC1AADC1B)  
ADS131B23 是一款适用于工业电池管理系统 (BMS)  
的完整模拟前(AFE)。该器件集成两个同步采样、高  
精度、24 ADC 通道ADC1AADC1B),可使用  
外部分流电阻器来以高分辨率和高精度测量电池电流。  
两个独立的数字比较器可与两个 ADC 并联来实现快速  
过流检测。  
– 可编程满标量程:  
±39mV ±312.5mV  
• 支持多种分流电阻器值和电流测量范围  
– 通过以下特性实现高精度电流分流测量:  
• 失调电压误差±1.5μV最大值)  
• 增益漂移25ppm/°C最大值)  
– 可编程数据速率500SPS 64kSPS  
– 每ADC 具有可编程阈值的数字过流比较器,  
可实现快速过流检测  
另外还提供一个多路复用的 16 ADC (ADC2A)可  
使用外部高压电阻分压器来测量分流器温度和系统中的  
其他电压例如电池包电压。分流器温度通过热敏电阻  
或模拟输出温度传感器等外部温度传感器进行测量。  
ADC2A 配备一个通道序列发生器后者会自动逐步调  
试配置的多路复用器输入以减SPI 上的通信。  
• 一个用于电压和温度测量的多路复16 ADC  
(ADC2A)  
该器件集成了多种监控和诊断功能可缓解和检测随机  
硬件故障从而帮助开发功能安全BMS。  
8 路模拟输入  
– 可编程满量程范围:  
±312.5mV ±1.25V  
– 通道序列发生器  
输入范围高达 16V 的内部线性稳压器支持使用非稳压  
直流/直流转换器为器件供电。  
• 监控和诊断功能用于缓解和检测随机硬件故障  
• 电源电压范围2.9 V 16 V  
SPI 兼容的接口  
ADS131B23 采用 48 引脚 HTQFP 封装额定工业级  
温度范围40°C +105°C。  
封装信息(1)  
9 个具PWM 功能GPIO  
器件型号  
封装  
封装尺寸标称值)  
2 应用  
ADS131B23  
7.00mm × 7.00mm  
PHPHTQFP、  
48)  
电池储能系(ESS):  
– 电流分流测量  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 使用外部电阻分压器实现电压测量  
– 使用热敏电阻或模拟输出温度传感器实现温度测  
Isolated  
Supply  
DC/DC-Converter  
IBAT  
HV-  
ADS131B23  
UI-Sensor AFE  
SPI  
SPI  
Digital  
Isolator  
Shunt  
MCU  
HV-  
Isolation Barrier  
Temperature  
Sensor  
BMS 电流检测模(CSM) 系统方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAP8  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................51  
8.5 Programming............................................................ 59  
8.6 Register Map.............................................................72  
9 Application and Implementation................................212  
9.1 Application Information........................................... 212  
9.2 Typical Application.................................................. 212  
9.3 Power Supply Recommendations...........................216  
9.4 Layout..................................................................... 219  
10 Device and Documentation Support........................220  
10.1 Documentation Support........................................ 220  
10.2 接收文档更新通知................................................. 220  
10.3 支持资源................................................................220  
10.4 Trademarks...........................................................220  
10.5 静电放电警告........................................................ 220  
10.6 术语表................................................................... 220  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
ESD Ratings..................................................................... 5  
6.2 Recommended Operating Conditions.........................6  
6.3 Thermal Information....................................................7  
6.4 Electrical Characteristics.............................................7  
6.5 时序要求....................................................................13  
6.6 Switching Characteristics..........................................14  
6.7 Timing Diagram.........................................................14  
6.8 Typical Characteristics..............................................15  
7 Parameter Measurement Information..........................20  
7.1 Offset Drift Measurement..........................................20  
7.2 Gain Drift Measurement............................................20  
7.3 Noise Performance................................................... 21  
8 Detailed Description......................................................22  
Information.................................................................. 220  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
V1A  
V0A  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DCAP  
2
DGND  
IOVDD  
GPIO0/MHD  
CLK  
GPIO0A  
GPIO1A  
CPA  
3
4
5
CNA  
6
CSn  
Thermal  
Pad  
GPIO1B  
GPIO0B  
CNB  
7
SDI  
8
SDO  
9
SCLK  
CPB  
10  
11  
12  
DRDYn  
GPIO1  
GPIO2/FAULT  
NC  
NC  
Not to scale  
5-1. PHP Package, 48-Pin HTQFP (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION(1)  
NAME  
AGND  
NO.  
39  
21  
42  
19  
38  
Analog supply Analog ground  
Analog supply Analog ground  
AGND  
AGNDA  
AGNDB  
APWR  
Analog supply Section A analog ground. Connect to AGND.  
Analog supply Section B analog ground. Connect to AGND.  
Analog supply  
Analog supply  
Digital I/O  
Analog power supply. Connect a 1-μF capacitor to AGND.  
Analog supply. Connect a 1-μF capacitor to AGND.  
Sets the logic levels for GPIO0A, GPIO1A, GPIO0B, and GPIO1B.  
AVDD  
40  
CLK  
CNA  
CNB  
CPA  
32  
6
Main clock input(4)  
Analog input ADC1A negative analog input  
Analog input ADC1B negative analog input  
Analog input ADC1A positive analog input  
9
5
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION(1)  
NAME  
NO.  
10  
31  
36  
35  
37  
27  
3
CPB  
CSn  
Analog input ADC1B positive analog input  
Digital input  
Chip-select input. Active low. Internal pullup resistor to IOVDD.(4)  
DCAP  
Digital supply DVDD LDO output. Connect a 220-nF capacitor to DGND.  
Digital supply Digital ground  
DGND  
DPWR  
DRDYn  
GPIO0A  
GPIO0B  
Digital supply  
Digital output Data-ready output. Active low.(2) (4)  
Digital power supply. Connect a 1-μF capacitor to DGND.  
Digital I/O  
Digital I/O  
General-purpose digital input/output 0A.(2) (3)  
General-purpose digital input/output 0B.(2) (3)  
8
General-purpose digital input/output 0.(2) (4)  
Missing host detect output.(2) (4)  
GPIO0/MHD  
33  
Digital I/O  
GPIO1  
26  
4
Digital I/O  
Digital I/O  
Digital I/O  
General-purpose digital input/output 1.(2) (4)  
General-purpose digital input/output 1A.(2) (3)  
General-purpose digital input/output 1B.(2) (3)  
GPIO1A  
GPIO1B  
7
General-purpose digital input/output 2.(2) (4)  
Fault output.(2) (4)  
GPIO2/FAULT  
GPIO3/OCCA  
GPIO4/OCCB  
IOVDD  
25  
24  
22  
34  
Digital I/O  
Digital I/O  
General-purpose digital input/output 3.(2) (4)  
Overcurrent comparator A output.(2) (4)  
General-purpose digital input/output 4.(2) (4)  
Overcurrent comparator B output.(2) (4)  
Digital I/O  
Digital I/O supply.  
Digital supply  
Sets the logic levels for the digital I/Os, except for GPIO0A, GPIO1A, GPIO0B, and GPIO1B.  
No connect. Leave these pins floating or connected to AGNDB.  
REFA voltage reference output. Connect a 1-μF capacitor to AGNDA.  
REFB voltage reference output. Connect a 1-μF capacitor to AGNDB.  
Reset input. Active low. Internal pulldown resistor to DGND.  
Serial data clock input(4)  
NC  
11 to 18  
41  
20  
23  
28  
30  
29  
2
NC  
RCAPA  
RCAPB  
RESETn  
SCLK  
SDI  
Analog output  
Analog output  
Digital input  
Digital input  
Digital input  
Serial data input(4)  
SDO  
Digital output Serial data output(2) (4)  
Analog input ADC2A analog input 0A  
Analog input ADC2A analog input 1A  
Analog input ADC2A analog input 2A  
Analog input ADC2A analog input 3A  
Analog input ADC2A analog input 4A  
Analog input ADC2A analog input 5A  
Analog input ADC2A analog input 6A  
Analog input ADC2A analog input 7A  
V0A  
V1A  
1
V2A  
48  
47  
46  
45  
44  
43  
V3A  
V4A  
V5A  
V6A  
V7A  
Thermal Pad  
Thermal power pad. Connect to AGND.  
(1) See the Unused Inputs and Outputs section for details on how to connect unused pins.  
(2) Push-pull output.  
(3) Logic levels referenced to AVDD.  
(4) Logic levels referenced to IOVDD.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see (1)  
MIN  
0.3  
MAX  
UNIT  
APWR to AGND  
20  
DPWR to DGND  
20  
0.3  
AGND, AGNDy to DGND  
0.3  
0.3  
Power-supply voltage  
AVDD to AGND  
IOVDD to DGND  
DCAP to DGND  
RCAPy to AGND  
CPy, CNy, Vxy  
3.9  
V
0.3  
7
2.2  
0.3  
0.3  
2.2  
0.3  
Analog input voltage  
Digital input voltage  
AVDD + 0.3  
V
V
AGND 1.6  
CSn, SCLK, SDI, SDO, RESETn, DRDYn, CLK, GPIO0/MHD,  
GPIO1, GPIO2/FAULT, GPIO3/OCCA, GPIO4/OCCB  
IOVDD + 0.3  
DGND 0.3  
GPIO0A, GPIO1A  
AVDD + 0.3  
AVDD + 0.3  
10  
AGNDA 0.3  
AGNDB 0.3  
10  
GPIO0B, GPIO1B  
Input current  
Temperature  
Continuous, all pins except power-supply pins  
Junction, TJ  
mA  
°C  
150  
Storage, Tstg  
150  
60  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional this may affect device reliability, functionality, performance, and shorten the device  
lifetime.  
ESD Ratings  
VALUE  
2000  
500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS131B23  
 
 
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.2 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
APWR to AGND  
4
2.9  
16  
3.6  
16  
APWR = AVDD to AGND  
(APWR shorted to AVDD, AVDD LDO  
bypassed)  
3.3  
DPWR to DGND  
4
Power supply  
V
DPWR = IOVDD to DGND  
(DPWR shorted to IOVDD, IOVDD LDO  
bypassed)  
2.9  
3.3  
0
5.5  
0.2  
AGND, AGNDy to DGND  
0.2  
ANALOG INPUTS ADC1A, ADC1B(1)  
VCPy, VCNy  
VIN1y  
Absolute input voltage  
Differential input voltage  
Gain = 4, 8, 16, 32  
V
V
AGND 0.3125  
VREFy / Gain  
AVDD 2.4  
VREFy / Gain  
VIN1y = VCPy VCNy  
ANALOG INPUTS ADC2A(1)  
Gain = 1, 2  
Gain = 4  
AGND 0.1  
AVDD 1.2  
AVDD 2.4  
VVxy  
Absolute input voltage  
V
V
AGND 0.3125  
VIN2y = VVxy VAGNDy or  
VIN2y = VVxy V7y  
VIN2y  
Differential input voltage  
VREFy / Gain  
VREFy / Gain  
EXTERNAL CLOCK SOURCE(2)  
fCLK External clock frequency  
Duty cycle  
DIGITAL INPUTS  
7.8  
8.192  
50%  
8.4  
MHz  
40%  
60%  
CSn, SCLK, SDI, SDO, RESETn, DRDYn,  
CLK, GPIO0/MHD, GPIO1, GPIO2/FAULT,  
GPIO3/OCCA, GPIO4/OCCB  
DGND  
IOVDD  
Input voltage  
V
GPIO0A, GPIO1A  
GPIO0B, GPIO1B  
AGNDA  
AGNDB  
AVDD  
AVDD  
EXTERNAL CAPACITORS  
APWR, DPWR  
AVDD, IOVDD  
RCAPA, RCAPB  
DCAP  
1
1
0.5  
0.5  
2
µF  
nF  
Capacitor value(3)  
1
1.4  
220  
TEMPERATURE RANGE  
Specified ambient temperature  
Operating ambient temperature  
105  
125  
40  
45  
TA  
°C  
(1) The subscript 'y' refers to section 'A' or section 'B'.  
The subscript 'x' refers to the analog input channel 'x' on ADC2y.  
(2) An external clock is not required when the internal oscillator is used.  
(3) Capacitor values that need to be met over temperature and lifetime.  
See the Power-Supply Decoupling section for additional information.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.3 Thermal Information  
TQFP (PHP)  
UNIT  
48 PINS  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
23.7  
15.3  
7.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
7.7  
ΨJB  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Electrical Characteristics  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
CURRENT MEASUREMENT ADCS (ADC1A, ADC1B)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
24  
Bits  
V/V  
Gain settings  
4, 8, 16, 32  
fDATA  
Output data rate  
fCLK = 8.192 MHz  
500  
64k  
5
SPS  
All data rates, all gains, global-chop enabled or  
disabled, VCPy = VCNy = 0 V  
Absolute input current  
±0.5  
±1  
nA  
nA  
All data rates, all gains, global-chop enabled or  
disabled, VCPy = VCNy = 0 V  
Differential input current  
5  
All data rates, all gains, global-chop enabled or  
disabled  
Differential input impedance  
1.8  
M  
Gain = 4, global-chop disabled  
Gain = 8 to 32, global-chop disabled  
All gains, global-chop enabled  
All gains, global-chop disabled  
All gains, global-chop enabled  
±1  
±15  
±0.5  
20  
Offset error (input referred)  
Offset drift  
µV  
1.5  
100  
7
1.5  
nV/°C  
1
TA = 25°C, all gains, single-ended operation with  
CNy held at AGNDy, including initial accuracy of  
REFy  
Gain error  
Gain drift  
±0.05%  
7
0.15%  
0.15%  
0.07%  
All gains, single-ended operation with CNy held  
at AGNDy, incuding drift of REFy  
25 ppm/°C  
0.07%  
Gain match  
Between gain settings  
±0.04%  
0.65  
110  
Noise (input referred)  
Gain = 8, fDATA = 1 kSPS  
µVRMS  
At DC, global-chop disabled  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
At DC, global-chop enabled  
113  
APWR at DC, global-chop enabled or disabled  
DPWR at DC, global-chop enabled or disabled  
AVDD at DC, global-chop enabled or disabled  
IOVDD at DC, global-chop enabled or disabled  
133  
133  
dB  
115  
131  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE AND TEMPERATURE MEASUREMENT ADC (ADC2A)  
Resolution  
16  
Bits  
V/V  
nA  
Gain settings  
1, 2, 4  
±0.2  
±0.4  
15  
Absolute input current  
Differential input current  
OSR2y = 64, all gains, VVxy = 0 V  
OSR2y = 64, all gains, VVxy = 0 V  
OSR2y = 64, all gains  
OSR2y = 128, all gains  
OSR2y = 256, all gains  
OSR2y = 512, all gains  
Gain = 1  
nA  
30  
Differential input impedance  
Offset error (input referred)  
MΩ  
60  
120  
±85  
±5  
350  
25  
350  
25  
µV  
Gain = 2 and 4  
Gain = 1  
60  
300  
150  
Offset drift  
Gain error  
nV/°C  
Gain = 2 and 4  
30  
TA = 25°C, all gains,  
including initial accuracy of REFy  
±0.1%  
0.3%  
0.3%  
Gain drift  
All gains, including drift of REFy  
Between gain settings  
8
±0.06%  
95  
30 ppm/°C  
0.15%  
Gain match  
0.15%  
CMRR  
PSRR  
Common-mode rejection ratio At DC  
APWR at DC  
dB  
103  
DPWR at DC  
AVDD at DC  
IOVDD at DC  
103  
Power-supply rejection ratio  
dB  
91  
96  
PRECISION VOLTAGE REFERENCES (REFA, REFB)  
VREFA  
VREFB  
,
Reference voltage  
1.25  
V
Accuracy  
TA = 25°C  
±0.05%  
4
0.15%  
14 ppm/°C  
0.15%  
10  
Temperature drift  
Source only,  
available for external loads on RCAPy pin  
Output current  
250  
µA  
Short-circuit current limit  
Start-up time  
Sink or source  
10  
mA  
ms  
8
1-μF capacitor on RCAPy, 0.01% settling  
MAIN OSCILLATOR (OSCM)  
fOSCM  
Frequency  
Accuracy  
8.192  
MHz  
MHz  
µV  
2.5%  
2.5%  
2.5%  
2.5%  
DIAGNOSTIC OSCILLATOR (OSCD)  
fOSCD  
Frequency  
Accuracy  
8.192  
OVERCURRENT COMPARATORS (OCCA, OCCB)  
Offset error (input referred)  
All gains  
20  
500  
500  
Gain error  
All gains, including error of REFy  
±0.2%  
0.5%  
0.5%  
TEMPERATURE SENSOR (TSA)  
TSOffset  
TSTC  
Output voltage  
TA = 25°C  
118.4  
410  
mV  
Temperature coefficient  
µV/°C  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMMON-MODE OUTPUT BUFFERS (VCMA)  
VCMA  
Common-mode output voltage  
Output current  
0.75  
1  
5  
0.78  
0.81  
1
V
Sink or source  
Sink or source  
mA  
mA  
pF  
Short-circuit current limit  
Capacitive load  
5
100  
TEST DACS (TDACA, TDACB)  
1 × VREFy / 40  
2 × VREFy / 40  
4 × VREFy / 40  
9 × VREFy / 40  
18 × VREFy / 40  
36 × VREFy / 40  
4 × VREFy / 40  
9 × VREFy / 40  
Output voltage settings  
V
Accuracy  
Drift  
±0.3%  
6
Positive output voltages  
Negative output voltages  
35  
70  
ppm/°C  
12  
OPEN-WIRE DETECTION CURRENT SOURCES AND SINKS (OWD1A, OWD1B, OWD2A)  
Current source settings  
Current sink settings  
4, 40, 240  
4, 40, 240  
±8%  
µA  
µA  
Current source accuracy  
Current sink accuracy  
±8%  
DIGITAL INPUTS/OUTPUTS (GPIO0A, GPIO1A, GPIO0B, GPIO1B)  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
AGNDy  
0.3 AVDD  
AVDD  
V
V
V
V
VIH  
VOL  
VOH  
0.7 AVDD  
0.2 AVDD  
IOL = 100 µA  
IOH = 100 µA  
0.8 AVDD  
DIGITAL INPUTS/OUTPUTS (CSn, SCLK, SDI, SDO, RESETn, DRDYn, CLK, GPIO0/MHD, GPIO1, GPIO2/FAULT, GPIO3/OCCA, GPIO4/OCCB)  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
Input current  
DGND  
0.3 IOVDD  
IOVDD  
V
V
VIH  
VOL  
VOH  
IIN  
0.7 IOVDD  
0.2 IOVDD  
V
IOL = 1 mA  
IOH = 1 mA  
0.8 IOVDD  
V
DGND < VDigital Input < IOVDD  
1
µA  
1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY MONITORS  
AVDD_UV_TH  
AVDD_OV_TH  
AVDD undervoltage threshold  
AVDD overvoltage threshold  
2.9  
3.8  
2.95  
3.9  
3.0  
4.0  
3.0  
4.4  
4.0  
5.9  
1.65  
2.0  
V
V
IOVDD_UV_TH = 1b  
2.9  
2.95  
4.3  
IOVDD_UV_TH IOVDD undervoltage threshold  
IOVDD_OV_TH IOVDD overvoltage threshold  
V
V
IOVDD_UV_TH = 0b  
IOVDD_OV_TH = 1b  
IOVDD_OV_TH = 0b  
4.2  
3.8  
3.9  
5.6  
5.75  
1.6  
DVDD_UV_TH DVDD undervoltage threshold  
DVDD_OV_TH DVDD overvoltage threshold  
AVDD_OSC_MA AVDD oscillation detection  
1.55  
1.90  
V
V
1.95  
Amplitude required to generate fault  
500  
2
mVpp  
kHz  
G
magnitude  
AVDD_OSC_FR AVDD oscillation detection  
EQ input frequency  
Oscillation frequency range to generate fault  
Amplitude required to generate fault  
500  
500  
500  
IOVDD_OSC_M IOVDD oscillation detection  
AG magnitude  
500  
2
mVpp  
kHz  
IOVDD_OSC_F IOVDD oscillation detection  
REQ input frequency  
Oscillation frequency range to generate fault  
Amplitude required to generate fault  
DVDD_OSC_M DVDD oscillation detection  
AG magnitude  
500  
2
mVpp  
kHz  
DVDD_OSC_FR DVDD oscillation detection  
EQ  
Oscillation frequency range to generate fault  
input frequency  
60  
100  
120  
140  
AVDD overtemperature  
warning thresholds  
AVDD_OTW_TH  
°C  
°C  
°C  
°C  
AVDD overtemperature  
warning threshold accuracy  
±2  
60  
100  
120  
140  
IOVDD_OTW_T IOVDD overtemperature  
H
warning thresholds  
IOVDD overtemperature  
warning threshold accuracy  
±2  
APWR  
DPWR  
AVDD  
IOVDD  
DVDD  
103  
103  
4
ADC2y power-supply  
readback attenuation factor  
4
2
ADC2y power-supply  
readback accuracy  
±1%  
2.7  
OSR2y = 128, MUX2y_DELAY 256 × tMCLK  
AVDD_POR_TH AVDD POR release threshold  
2.6  
2.6  
1.4  
2.85  
2.85  
1.6  
V
V
V
IOVDD_POR_T  
IOVDD POR release threshold  
H
2.7  
DVDD_POR_TH DVDD POR release threshold  
1.5  
ADC MONITORS  
ADC1y overrange detection  
threshold  
±115  
±115  
% of FS  
% of FS  
ADC2y overrange detection  
threshold  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
CLOCK MONITORS  
Main clock (MCLK) watchdog Watchdog indicates a fault when MCLK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fMCLK_WD_TH  
300  
300  
kHz  
kHz  
frequency threshold  
frequency drops below frequency threshold  
Diagnostic oscillator (OSCD)  
watchdog frequency threshold frequency drops below frequency threshold  
Watchdog indicates a fault when OSCD  
fOSCD_WD_TH  
MCLK_FAULT_ Main clock fault detection  
TH frequency threshold  
Difference in clock frequencies between MCLK  
and OSCD to generate a fault  
10%  
FAULT MONITOR RESPONSE TIMES  
AVDD overvoltage detection  
Delay time from AVDD exceeding AVDD  
overvoltage threshold to FAULT pin active  
tp(AVDD_OV)  
tp(IOVDD_OV)  
tp(DVDD_OV)  
tp(AVDD_UV)  
tp(IOVDD_UV)  
tp(DVDD_UV)  
tp(AVDD_OSC)  
tp(IOVDD_OSC)  
tp(DVDD_OSC)  
tp(AVDD_CL)  
tp(IOVDD_CL)  
4
4
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
response time  
IOVDD overvoltage detection Delay time from IOVDD exceeding IOVDD  
response time  
overvoltage threshold to FAULT pin active  
DVDD overvoltage detection  
response time  
Delay time from DVDD exceeding DVDD  
overvoltage threshold to FAULT pin active  
4
AVDD undervoltage detection Delay time from AVDD dropping below AVDD  
response time undervoltage threshold to FAULT pin active  
4
IOVDD undervoltage detection Delay time from IOVDD dropping below IOVDD  
response time undervoltage threshold to FAULT pin active  
4
DVDD undervoltage detection Delay time from DVDD dropping below DVDD  
response time  
4
undervoltage threshold to FAULT pin active  
AVDD oscillation detection  
response time  
Delay time from AVDD oscillations exceeding  
AVDD oscillation threshold to FAULT pin active  
30  
30  
30  
40  
40  
IOVDD oscillation detection  
response time  
Delay time from IOVDD oscillations exceeding  
IOVDD oscillation threshold to FAULT pin active  
DVDD oscillation detection  
response time  
Delay time from DVDD oscillations exceeding  
DVDD oscillation threshold to FAULT pin active  
AVDD current limit detection  
response time  
Delay time from AVDD exceeding AVDD current  
limit threshold to FAULT pin active  
IOVDD current limit detection Delay time from IOVDD exceeding IOVDD  
response time  
current limit threshold to FAULT pin active  
Delay time from AVDD exceeding AVDD  
overtemperature warning threshold to FAULT pin  
active  
AVDD overtemperature  
warning response time  
tp(AVDD_OTW)  
300  
300  
µs  
µs  
Delay time from IOVDD exceeding IOVDD  
overtemperature warning threshold to FAULT pin  
active  
IOVDD overtemperature  
warning response time  
tp(IOVDD_OTW)  
DGND open detection  
response time  
Delay time from DGND pin disconnected to  
FAULT pin active  
tp(DGND_OPEN)  
tp(AGNDA_OPEN)  
tp(AGNDB_OPEN)  
tp(MEM_MAP_CRC)  
tp(REG_MAP_CRC)  
tp(MCLK_WD)  
4
4
µs  
µs  
AGNDA open detection  
response time  
Delay time from AGNDA pin disconnected to  
FAULT pin active  
AGNDB open detection  
response time  
Delay time from AGNDB pin disconnected to  
FAULT pin active  
4
µs  
Memory map CRC fault  
detection response time  
Delay time from bit flip occurence in memory  
map to FAULT pin active  
69  
138  
2048  
2
tOSCD  
tOSCD  
µs  
Register map CRC fault  
detection response time  
Delay time from bit flip occurence in register map  
to FAULT pin active  
1024  
Main clock watchdog  
response time  
Delay time from main clock watchdog timeout to  
FAULT pin active  
Diagnostic oscillator watchdog Delay time from diagnostic oscillator watchdog  
tp(OSCD_WD)  
2
µs  
response time  
timeout to FAULT pin active  
Main clock fault detection  
response time  
Delay time from main clock fault detection to  
FAULT pin active  
tp(MCLK_FAULT)  
4096  
tMCLK  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +105°C; typical specifications are at TA = 25°C; all  
specifications are at APWR = 5 V, DPWR = 5 V, IOVDD = 3.3 V, external clock, fCLK = 8.192 MHz, global-chop mode  
disabled, ADC1y data rate = 1 kSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AVDD LDO  
AVDD  
Output voltage  
3.1  
3.3  
3.5  
20  
60  
V
mA  
Load current  
Available to external circuitry on the AVDD pin  
Short-circuit current limit  
Load regulation  
mA  
1
mV/mA  
IOVDD LDO  
IOVDD  
Output voltage  
3.1  
3.3  
3.5  
20  
60  
V
mA  
Load current  
Available to external circuitry on the IOVDD pin  
Short-circuit current limit  
Load regulation  
mA  
1
mV/mA  
SUPPLY CURRENTS  
Power-down mode  
0.01  
0.46  
0.9  
Standby mode  
Active mode, all ADCs disabled  
APWR supply current  
Active mode, all ADCs enabled and converting  
(all features enabled, no external load on AVDD  
LDO)  
4.8  
5.8  
IAPWR  
mA  
ADC1y enabled and converting,  
all gains, all data rates  
1.7  
0.5  
APWR supply current per  
individual ADC  
ADC2A enabled and converting,  
all gains, all data rates  
Power-down mode  
0.01  
0.4  
Standby mode  
DPWR supply current(1)  
Active mode, all ADCs disabled  
0.8  
Active mode, all ADCs enabled and converting  
(all features enabled, no external load on IOVDD  
LDO)  
IDPWR  
mA  
1.0  
1.5  
ADC1y enabled and converting, all data rates  
ADC2A enabled and converting, all data rates  
0.06  
0.06  
DPWR supply current per  
individual ADC(1)  
APWR shorted to AVDD, AVDD LDO bypassed,  
active mode, all ADCs enabled and converting  
(all features enabled)  
IAVDD  
IIOVDD  
PD  
AVDD supply current  
IOVDD supply current(1)  
Power dissipation  
4.8  
1.0  
29  
mA  
mA  
mW  
DPWR shorted to IOVDD, IOVDD LDO  
bypassed,  
active mode, all ADCs enabled and converting  
(all features enabled)  
Active mode, all ADCs enabled and converting  
(all features enabled, no external load on AVDD  
LDO)  
(1) Currents measured with SPI idle.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 时序要求  
在工作环境温度范围内SDO 负载20pF || 100kΩ除非另有说明)  
最小值  
最大值  
单位  
3.0V IOVDD 3.6V  
tw(CLH)  
tw(CLL)  
tc(SC)  
49  
49  
64  
32  
32  
16  
10  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
脉冲持续时间CLK 高电平  
脉冲持续时间CLK 低电平  
SCLK 周期  
tw(SCL)  
tw(SCH)  
td(CSSC)  
td(SCCS)  
tw(CSH)  
tsu(DI)  
脉冲持续时间SCLK 为低电平  
脉冲持续时间SCLK 为高电平  
延时时间CSn 下降沿后的第一SCLK 上升沿  
延时时间最后一SCLK 下降沿后CSn 上升沿  
脉冲持续时间CSn 高电平  
建立时间SCLK 下降沿前SDI 有效  
保持时间SCLK 下降沿后SDI 有效  
脉冲持续时间RESETn 低电平以生成器件复位  
th(DI)  
8
tw(RSL)  
500  
4.5V IOVDD 5.5V  
tw(CLL)  
tw(CLH)  
tc(SC)  
49  
49  
50  
25  
25  
16  
10  
15  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
脉冲持续时间CLK 低电平  
脉冲持续时间CLK 高电平  
SCLK 周期  
tw(SCL)  
tw(SCH)  
td(CSSC)  
td(SCCS)  
tw(CSH)  
tsu(DI)  
脉冲持续时间SCLK 为低电平  
脉冲持续时间SCLK 为高电平  
延时时间CSn 下降沿后的第一SCLK 上升沿  
延时时间最后一SCLK 下降沿后CSn 上升沿  
脉冲持续时间CSn 高电平  
建立时间SCLK 下降沿前SDI 有效  
保持时间SCLK 下降沿后SDI 有效  
脉冲持续时间RESETn 低电平以生成器件复位  
th(DI)  
8
tw(RSL)  
500  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
over operating ambient temperature range, SDO load: 20 pF || 100 k(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.0 V IOVDD 3.6 V  
Propagation delay time, CSn falling edge to  
SDO driven  
tp(CSDO)  
tp(CSDOZ)  
tp(SCDO)  
50  
75  
32  
ns  
ns  
ns  
Propagation delay time, CSn rising edge to  
SDO high impedance  
Progapation delay time, SCLK rising edge to  
valid new SDO  
tw(DRH)  
Pulse duration, DRDYn high  
SPI timeout  
4
tMCLK  
tOSCD  
tTIMEOUT  
16385  
Measured from supplies crossing POR  
threshold to DRDYn rising edge  
tPOR  
Power-on-reset time  
250  
44  
µs  
µs  
Measured from RESETn rising edge to  
DRDYn rising edge  
tREGACQ  
Register default value acquisition time  
114  
4.5 V IOVDD 5.5 V  
Propagation delay time, CSn falling edge to  
SDO driven  
tp(CSDO)  
tp(SCDO)  
tp(CSDOZ)  
50  
20  
75  
ns  
ns  
ns  
Progapation delay time, SCLK rising edge to  
valid new SDO  
Propagation delay time, CSn rising edge to  
SDO high impedance  
tw(DRH)  
Pulse duration, DRDYn high  
SPI timeout  
4
tMCLK  
tOSCD  
tTIMEOUT  
16385  
Measured from supplies crossing POR  
threshold to DRDYn rising edge  
tPOR  
Power-on-reset time  
250  
44  
µs  
µs  
Measured from RESETn rising edge to  
DRDYn rising edge  
tREGACQ  
Register default value acquisition time  
114  
6.7 Timing Diagram  
tw(CLH)  
tw(CLL)  
CLK  
DRDYn  
tw(DRH)  
CSn  
SCLK  
SDI  
tw(SCL)  
td(SCCS)  
td(CSSC)  
tc(SC)  
tw(CSH)  
tw(SCH)  
tsu(DI)  
th(DI)  
tp(CSDO)  
tp(SCDO)  
tw(CSDOZ)  
MSB  
MSB - 1  
LSB + 1  
LSB  
SDO  
6-1. SPI Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, APWR = 5 V, DPWR = 5 V, and external clock with fCLK = 8.192 MHz (unless otherwise noted)  
25  
20  
ADC1A  
ADC1B  
15  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
20  
10  
5
15  
0
10  
-5  
-10  
5
-15  
-20  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-25  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
25  
Offset Error (V)  
Temperature (°C)  
32 devices, gain = 8, global-chop disabled, input referred  
Global-chop disabled, input referred  
6-2. ADC1y Offset Error Histogram  
6-3. ADC1y Offset Error vs Temperature  
25  
ADC1A  
ADC1B  
20  
15  
10  
5
0
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Offset Error (V)  
32 devices, gain = 8, global-chop enabled, input referred  
Global-chop enabled, input referred  
6-4. ADC1y Offset Error Histogram  
6-5. ADC1y Offset Error vs Temperature  
25  
20  
15  
10  
5
0.4  
ADC1A  
ADC1B  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09  
Gain Error (%)  
Temperature (°C)  
32 devices, gain = 4, including error of REFy  
Including error of REFy  
6-7. ADC1y Gain Error vs Temperature  
6-6. ADC1y Gain Error Histogram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, APWR = 5 V, DPWR = 5 V, and external clock with fCLK = 8.192 MHz (unless otherwise noted)  
25  
100  
75  
20  
50  
25  
15  
0
10  
-25  
-50  
5
Gain = 1  
Gain = 2  
Gain = 4  
-75  
-100  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-250 -200 -150 -100  
-50  
0
50  
100  
150  
200  
250  
Offset Error (V)  
Temperature (°C)  
32 devices, gain = 1, input referred  
Input referred  
6-8. ADC2A Offset Error Histogram  
6-9. ADC2A Offset Error vs Temperature  
25  
20  
15  
10  
5
0.4  
0.3  
Gain = 1  
Gain = 2  
Gain = 4  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.16 0.17 0.18  
Gain Error (%)  
Temperature (°C)  
32 devices, gain = 1, including error of REFy  
Including error of REFy  
6-11. ADC2A Gain Error vs Temperature  
6-10. ADC2A Gain Error Histogram  
25  
20  
15  
10  
5
1.2510  
1.2505  
1.2500  
1.2495  
1.2490  
1.2485  
1.2480  
REFA  
REFB  
REFA  
REFB  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.2490 1.2491 1.2492 1.2493 1.2494 1.2495 1.2496 1.2497 1.2498 1.2499 1.2500  
Output Voltage (V)  
Temperature (°C)  
6-12. REFy Output Voltage Histogram  
6-13. REFy Output Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, APWR = 5 V, DPWR = 5 V, and external clock with fCLK = 8.192 MHz (unless otherwise noted)  
25  
8.5  
OSCM  
OSCD  
OSCM  
OSCD  
8.4  
20  
8.3  
15  
8.2  
10  
8.1  
5
8.0  
7.9  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
8.19  
8.2  
8.21  
8.22  
8.23  
8.24  
8.25  
8.26  
8.27  
8.28  
Temperature (°C)  
Frequency [MHz]  
6-14. OSCM and OSCD Frequency Histogram  
6-15. OSCM and OSCD Frequency vs Temperature  
25  
20  
15  
10  
5
20  
OCCA  
OCCB  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Offset Error (V)  
Temperature (°C)  
27 devices, ADC1y gain = 4, input referred  
Input referred  
6-16. OCCy Offset Error Histogram  
6-17. OCCy Offset Error vs Temperature  
25  
20  
15  
10  
5
0.4  
0.3  
OCCA  
OCCB  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-0.2 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10  
Gain Error (%)  
Temperature (°C)  
32 devices, ADC1y gain = 4, including error of REFy  
Including error of REFy  
6-19. OCCy Gain Error vs Temperature  
6-18. OCCy Gain Error Histogram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, APWR = 5 V, DPWR = 5 V, and external clock with fCLK = 8.192 MHz (unless otherwise noted)  
25  
20  
15  
10  
5
0
118.0 118.1 118.2 118.3 118.4 118.5 118.6 118.7 118.8 118.9 119  
Output Voltage (V)  
28 devices  
6-20. Temperature Sensor Output Voltage Histogram  
6-21. Temperature Sensor Measurement Error vs Ambient  
Temperature  
25  
282.0  
281.5  
281.0  
280.5  
280.0  
20  
15  
10  
5
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
Temperature (°C)  
Output Voltage (mV)  
TDACy Output Voltage = 9 × VREFy / 40  
6-22. Test DACy Output Voltage Histogram  
TDACy Output Voltage = 9 × VREFy / 40  
6-23. Test DACy Output Voltage vs Temperature  
25  
20  
15  
10  
5
-280.0  
-280.5  
-281.0  
-281.5  
-282.0  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-286  
-285  
-284  
-283  
-282  
-281  
-280  
-279  
-278  
Temperature (°C)  
Output Voltage (mV)  
TDACy Output Voltage = 9 × VREFy / 40  
6-24. Test DACy Output Voltage Histogram  
TDACy Output Voltage = 9 × VREFy / 40  
6-25. Test DACy Output Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, APWR = 5 V, DPWR = 5 V, and external clock with fCLK = 8.192 MHz (unless otherwise noted)  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
OSR2y = 64  
OSR2y = 128  
OSR2y = 256  
OSR2y = 512  
16  
64  
128  
256  
512  
1024  
2048  
4096  
Multiplexer Delay Time (tMCLK  
)
APWR or DPWR  
AVDD or IOVDD  
6-26. ADC2A Supply Voltage Readback Measurement  
6-27. ADC2A Supply Voltage Readback Measurement  
Accuracy  
Accuracy  
25  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
AVDD  
IOVDD  
20  
15  
10  
5
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39  
Output Voltage (V)  
3.4  
3.41 3.42  
Temperature (°C)  
32 devices  
6-28. VCMA Output Voltage vs Temperature  
6-29. AVDD and IOVDD LDO Output Voltage Histogram  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
7
AVDD  
IOVDD  
IAPWR  
IDPWR  
6
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
Active mode, all ADCs enabled and converting  
6-30. AVDD and IOVDD LDO Output Voltage vs Temperature  
6-31. Supply Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Offset Drift Measurement  
Offset drift is defined as the change in offset voltage over the specified temperature range. Offset drift is  
calculated using the box method in which a box is formed over the maximum and minimum offset voltages and  
over the specified temperature range. The box method specifies limits for the temperature error but does not  
specify the exact shape and slope of the device under test. For that reason offset drift is specified as a positive  
number only, even though the drift can possibly be negative. 方程式 1 shows the offset drift calculation using the  
box method:  
Offset Drift (nV/°C) = 109 × (VOFSMAX VOFSMIN) / (TMAX TMIN  
)
(1)  
where:  
VOFSMIN and VOFSMAX = Minimum and maximum offset voltages over the specified temperature range  
TMIN and TMAX = Minimum and maximum temperatures  
7.2 Gain Drift Measurement  
Gain drift is defined as the change of gain error over the specified temperature range. Gain drift is calculated  
using the box method in which a box is formed over the maximum and minimum gain errors and over the  
specified temperature range. The box method specifies limits for the temperature error but does not specify the  
exact shape and slope of the device under test. For that reason gain drift is specified as a positive number only  
even though the drift can possibly be negative. 方程式 2 describes the gain drift calculation using the box  
method.  
Gain Drift (ppm/°C) = (GEMAX GEMIN) / (TMAX TMIN  
)
(2)  
where:  
GEMIN and GEMAX = Minimum and maximum gain errors over the specified temperature range  
TMIN and TMAX = Minimum and maximum temperatures  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 Noise Performance  
Adjust the data rate and gain to optimize the noise performance of the individual ADCs. When reducing the data  
rate by increasing the oversampling ratio (OSR), averaging is increased and results in lower noise. 7-1 and 表  
7-2 summarize the noise performance of ADC1y and ADC2y. The data are representative of typical noise  
performance at TA = 25°C using fMCLK = 8.192 MHz. The data shown are typical input-referred noise results in  
units of μVRMS with the analog inputs shorted together and averaging data across a 1-ms period. Use 方程式 3  
to calculate effective resolution from the provided μVRMS numbers.  
Effective Resolution = ln[(2 × VREFy / Gain) / VRMS-Noise] / ln(2)  
(3)  
The noise performance of ADC1y improves by a factor of 2 in global-chop mode.  
7-1. ADC1y Noise Performance (μVRMS) at TA = 25°C  
GAIN  
DATA RATE,  
fMCLK = 8.192 MHz  
OSR1y  
4
8
16  
32  
64  
64 kSPS  
32 kSPS  
16 kSPS  
8 kSPS  
4 kSPS  
2 kSPS  
1 kSPS  
0.5 kSPS  
20.7  
6.19  
3.70  
2.61  
1.88  
1.46  
1.15  
0.88  
10.8  
3.96  
2.51  
1.78  
1.28  
0.91  
0.65  
0.44  
10.8  
3.96  
2.51  
1.78  
1.28  
0.91  
0.65  
0.44  
10.8  
3.96  
2.51  
1.78  
1.28  
0.91  
0.65  
0.44  
128  
256  
512  
1024  
2048  
4096  
8192  
7-2. ADC2y Noise Performance (μVRMS) at TA = 25°C  
GAIN  
CONVERSION TIME,  
fMCLK = 8.192 MHz  
OSR2y  
1
2
4
64  
93.4  
48.4  
31.9  
22.4  
48.3  
26.5  
17.5  
12.1  
48.3  
26.5  
17.5  
12.1  
46.87 μs  
62.50 μs  
93.75 μs  
156.25 μs  
128  
256  
512  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS131B23 is a complete analog front-end (AFE) for industrial battery management systems (BMS) that  
integrates two simultaneous-sampling, high-precision, 24-bit ADC channels (ADC1A, ADC1B) to redundantly  
measure battery current with high resolution and accuracy using an external shunt resistor. Two independent  
digital overcurrent detection comparators (OCCA, OCCB) work in parallel to the two ADCs for fast overcurrent  
detection.  
Additionally, a multiplexed, 16-bit ADC (ADC2A) is available to measure shunt temperature using external  
temperature sensors, such as thermistors or analog output temperature sensors, as well as other voltages in the  
system. ADC2A is equipped with a channel sequencer that automatically steps through the configured  
multiplexer inputs, selects them for measurement, and starts ADC conversions.  
The device is partitioned into two sections, A and B. The circuitry in section A is independent from the circuitry in  
section B, however both sections are powered from the same supply, derive their respective clocks from the  
same main clock source, and share the same digital control and serial interface.  
Besides the various ADC channels, each section provides:  
A precision, low-drift, 1.25-V voltage reference (REFA, REFB) that feeds the ADCs in each section  
A negative charge pump (NCPA, NCPB) that provides a negative supply voltage for the gain stages in front of  
each ADC to allow signal measurements below ground  
A Test DAC (Test DAC A, Test DAC B), which generates precision test voltages that can be routed for  
measurement to the ADCs in the other section  
Two GPIOs (GPIO0A, GPIO1A and GPIO0B, GPIO1B) with logic levels based on AVDD  
In many BMS applications, the AFE is powered from an unregulated isolated DC/DC converter. For that reason,  
the ADS131B23 integrates linear regulators (AVDD and IOVDD LDOs) that accept voltages between 4 V and 16  
V and provide regulated 3.3-V analog and digital supply rails for the internal circuitry. The two low-dropout  
regulators (LDOs) can also provide a limited amount of current to external circuitry. A common use case is to  
power the primary side of a digital isolator, to isolate the SPI communication to a host microcontroller, with the  
IOVDD LDO output; see the ADS131B26Q1EVM-PDK Evaluation Module user guide.  
The main clock for the ADS131B23 is either provided by the internal 8.192-MHz oscillator or by an external clock  
provided at the CLK pin.  
A multitude of monitoring and diagnostic features are integrated in the device to mitigate and detect random  
hardware faults to aid in the development of functional safe BMS, such as:  
Supply undervoltage, overvoltage, overtemperature, and oscillation monitors  
Supply-voltage readback capability through ADC2A  
ADC overrange monitors  
A set of open-wire detection current sources and sinks per ADC  
Clock monitors  
Cyclic redundancy check (CRC), timeout monitor, and SCLK counter on the SPI to achieve high data integrity  
for the communication  
Register and memory map CRC  
ADC conversion and sequence counters  
The device offers five GPIOs (GPIO0 through GPIO4) with logic levels based on IOVDD and optional pulse-  
width modulation (PWM) input and output capability. GPIO2 can alternatively be configured as a FAULT output,  
and GPIO3 and GPIO4 can be configured as overcurrent comparator outputs.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
RCAPA  
AVDD  
APWR  
AGND  
AVDD  
AVDD  
LDO  
Negative  
Charge-  
Pump A  
Precision  
REFA  
Buf  
VREFA = 1.25 V  
VNCPA  
AVDD = 3.3 V  
GPIO0A  
RCAPA  
IOVDD  
GPIO1A  
Section A  
RBIAS  
V0A  
V1A  
Gain = 1 to 4  
IOVDD  
LDO  
DPWR  
DGND  
16-bit, 64-kSPS  
Delta-Sigma  
ADC2A  
V2A  
V3A  
PGA  
Sequencer  
TMP61  
IOVDD  
V4A  
V5A  
Mux  
V6A  
VREFA  
MCLK  
DVDD  
LDO  
V7A  
AGNDA  
DCAP  
Internal  
Temperature  
Sensor A  
Supply  
Voltage  
Readback  
Test DAC A  
VREFA  
ADC1B  
DVDD  
HV-  
Battery  
Current  
Gain = 4, 8, 16, 32  
PGA  
CPA  
CNA  
24-bit, 64-kSPS  
Delta-Sigma  
ADC1A  
CSn  
OCCA  
Fast Filter  
Path  
SCLK  
SDI  
SDO  
DRDYn  
VREFA  
MCLK  
Control,  
SPI with CRC  
Gain = 4, 8, 16, 32  
PGA  
CPB  
CNB  
24-bit, 64-kSPS  
Delta-Sigma  
ADC1B  
RESETn  
OCCB  
Fast Filter  
Path  
VREFB  
MCLK  
Section B  
GPIO0/MHD  
GPIO1  
Monitors  
GPIOs  
&
with PWM  
Capability  
GPIO2/FAULT  
GPIO3/OCCA  
GPIO4/OCCB  
Diagnostics  
ADC1A  
ADC2A  
Test DAC B  
VREFB  
GPIO0B  
GPIO1B  
MCLK  
CLK Select  
CLK  
VNCPB  
VREFB = 1.25 V  
Diagnostic  
Oscillator  
OSCD  
Main  
Oscillator  
OSCM  
Negative  
Charge-  
Pump B  
Precision  
REFB  
Buf  
ADS131B23  
AVDD  
RCAPB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Naming Conventions  
Throughout this document, suffixes x and y refer to certain elements of the device:  
Suffix y refers to elements in both sections A and B.  
For example, ADC1y refers to ADC1A as well as to ADC1B.  
Suffix x either refers to all ADCs in one section or to all analog inputs of ADC2y.  
For example, ADCxA refers to ADC1A and ADC2A, and VxA refers to analog inputs V0A to V7A of ADC2A.  
8.3.2 Precision Voltage References (REFA, REFB)  
The ADS131B23 integrates two precision, low-drift, band-gap voltage references (REFA and REFB), one for  
each section of the device. The references have a nominal voltage of 1.25 V. No external voltage reference can  
be provided to the device. All ADCs in section A use REFA and, correspondingly, all ADCs in section B use  
REFB. The RCAPA and RCAPB pins are outputs of the voltage references. Decouple the RCAPA pin with a 1-  
μF capacitor to AGNDA and the RCAPB pin with a 1-μF capacitor to AGNDB. The voltage references are  
buffered and can source external circuitry with a limited amount of current out of the RCAPy pins. The buffers  
cannot sink any current. See the Electrical Characteristics table for details.  
8.3.3 Clocking (MCLK, OSCM, OSCD)  
The ADS131B23 requires a main clock (MCLK) to operate. As shown in 8-1, the main clock to the  
ADS131B23 is provided in one of two ways:  
By the internal 8.192-MHz main oscillator (OSCM) or  
By an external clock on the CLK pin  
The CLK_SOURCE bit selects the according main clock source for the device. At device power-up or after  
device reset, the internal main oscillator is selected as the MCLK source by default.  
CLK pin  
Mux  
Main Clock (fMCLK)  
Main Oscillator  
(OSCM)  
Clock Divider  
÷2  
Modulator Clock (fMOD  
)
8-1. Main Clock Selection Diagram  
The modulator clock of the various delta-sigma ADCs is derived from the common main clock. A clock divider  
divides the main clock frequency (fMCLK) by a factor of two to create the modulator frequency (fMOD = fMCLK / 2)  
with a duty cycle of 50%.  
Before changing the clock source using the CLK_SOURCE bit, disable all ADCs using the respective ADC  
enable bits or set the device in standby mode to prevent clock glitching during the clock switchover. When  
switching from an external clock source to the internal main oscillator, keep the external clock running until after  
the device switched over to the internal main oscillator.  
The ADS131B23 integrates a second internal oscillator, called the diagnostic oscillator (OSCD), which is used  
for various monitoring and diagnostic functions.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.4 ADC1y  
The primary purpose of the 24-bit ADC1A and ADC1B is to redundantly measure battery current across an  
external low-side, GND-referenced shunt resistor.  
The ADC1y channel signal chain consists of two differential analog inputs (CPy, CNy), an input multiplexer  
followed by a programmable gain amplifier (PGA), a delta-sigma modulator and digital filter, and the global-chop  
and calibration logic.  
8.3.4.1 ADC1y Input Multiplexer  
The input multiplexer controls which signals are routed to the PGA of the ADC1y channel. Configure the input  
multiplexer using the MUX1y[1:0] bits. The input multiplexer allows the following inputs to be connected to the  
PGA:  
The differential analog signal between the CPy and CNy inputs.  
The inverse differential analog signal between the CPy and CNy inputs.  
Internal short to AGNDy. The analog inputs CPy and CNy are disconnected from the PGA in this case. Use  
this setting for self-offset calibration of the ADC1y channel.  
DC test signal provided by the Test DAC of the other section.  
8-2 shows a diagram of the ADC1A input multiplexer and 8-1 lists the according switch positions  
depending on the MUX1A[1:0] bit settings.  
AVDD  
Current  
Source  
S3  
S1  
ADC1AP  
CPA  
S2  
S3n  
AGNDA  
CNA  
ADC1AN  
S_TDAC  
Current  
Sink  
Test DAC B  
AGNDA  
8-2. ADC1A Input Multiplexer  
8-1. ADC1A Multiplexer Switch Positions Based on MUX1A[1:0] Bit Settings  
MUX1A[1:0]  
SETTING  
S1  
S2  
S3  
S3n  
S_TDAC  
00b  
Closed  
Closed  
Open  
Open  
Open  
Closed  
Open  
Open  
Closed  
Open  
Open  
Open  
Open  
01b  
10b  
Closed  
Closed  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-1. ADC1A Multiplexer Switch Positions Based on MUX1A[1:0] Bit Settings (continued)  
MUX1A[1:0]  
SETTING  
S1  
S2  
S3  
S3n  
S_TDAC  
11b  
Open  
Open  
Closed  
Open  
Closed  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.4.2 ADC1y Programmable Gain Amplifier (PGA)  
ADC1y features an integrated programmable gain amplifier (PGA) that provides gains of 4, 8, 16, and 32. Select  
the gain setting using the GAIN1y[1:0] bits.  
Varying the PGA gain scales the differential full-scale input voltage range (FSR) of ADC1y. 方程式 4 describes  
the relationship between FSR and gain. 方程式 4 uses the internal reference voltage, 1.25 V, as the scaling  
factor without accounting for gain error caused by tolerance in the reference voltage.  
FSR = ±1.25 V / Gain  
(4)  
8-2 shows the corresponding full-scale ranges for each gain setting.  
8-2. ADC1y Full-Scale Range  
GAIN SETTING  
FSR  
4
8
±312.5 mV  
±156.25 mV  
±78.125 mV  
±39.063 mV  
16  
32  
To measure bidirectional currents across a shunt resistor that is GND referenced, the PGA must accept voltages  
below GND. For that reason, the negative supply of the PGA is provided by an internal negative charge pump  
(NCPy). This provision allows the PGA to accept absolute input voltages on each input below GND.  
The input impedance of the ADC1y channel is independent of the gain, OSR, and global-chop mode settings.  
The input impedance does, however, scale indirectly proportional with the MCLK frequency.  
8.3.4.3 ADC1y ΔΣModulator  
ADC1y uses a second-order delta-sigma (ΔΣ) modulator to convert the analog input signal to a 1's density  
modulated digital bit-stream. The ΔΣ modulator oversamples the input signal at a frequency many times  
greater than the output data rate. The modulator frequency, fMOD, of ADC1y is equal to half the main clock  
frequency (that is, fMOD = fMCLK / 2).  
8.3.4.4 ADC1y Digital Filter  
The ADC1y ΔΣ modulator bitstream feeds into a digital filter. The digital filter is a linear phase, finite impulse  
response (FIR), low-pass sinc3 filter that attenuates the out-of-band quantization noise of the ΔΣ modulator.  
The low-resolution, high-speed modulator output is decimated and downsampled by the digital filter to produce  
high-resolution ADC data at an output data rate of fDATA. The decimation factor, defined as per 方程5, is called  
the oversampling ratio (OSR).  
OSR = fMOD / fDATA  
(5)  
The OSR determines the amount of averaging that is applied to the modulator output in the digital filter and,  
therefore, the filter bandwidth and conversion noise. Higher OSRs lead to lower filter bandwidth and better noise  
performance.  
The OSR is programmable within a range of 64 and 8192 using the OSR1y[2:0] bits. 8-3 lists the OSR  
settings for ADC1y together with the corresponding output data rates and 3-dB frequencies of the sinc3 filter  
for a nominal MCLK frequency of 8.192 MHz.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-3. ADC1y OSR Settings, Output Data Rates and 3-dB Frequencies for  
fMCLK = 8.192 MHz  
OSR  
64  
OUTPUT DATA RATE (fDATA)  
3-dB FREQUENCY  
16.8 kHz  
8.4 kHz  
64 kSPS  
32 kSPS  
16 kSPS  
8 kSPS  
4 kSPS  
2 kSPS  
1 kSPS  
500 SPS  
128  
256  
4.2 kHz  
512  
2.1 kHz  
1024  
2048  
4096  
8192  
1.0 kHz  
524 Hz  
262 Hz  
131 Hz  
8-3 and 8-4 show the filter frequency response of the sinc3 filter. The sinc3 filter has infinite attenuation at  
integer multiples of the output data rate except for integer multiples of fMOD. As with all digital filters, the digital  
filter response repeats at integer multiples of the modulator frequency, fMOD. The data rate and filter notch  
frequencies scale with fMOD  
.
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
8
16  
24  
32  
40  
48  
)
56  
64  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Normalized Frequency (fIN/fDATA  
Normalized Frequency (fIN/fDATA  
)
8-4. Sinc3 Filter Frequency Response to fMOD  
8-3. Sinc3 Filter Frequency Response  
(OSR = 64)  
8.3.4.5 ADC1y Offset and Gain Calibration  
ADC1y provides the ability to compute offset and gain corrected conversion data using user-programmable  
offset and gain correction registers. As shown in 8-5, the 24-bit offset correction value (OCAL1y[23:0]) is  
subtracted from the conversion data before being multiplied by the 16-bit gain correction factor (GCAL1y[15:0]).  
Output data are rounded to the final resolution and clipped to +FS and FS code values after the scaling  
operation. The offset and gain calibration coefficients must be stored in external nonvolatile memory and  
programmed into the offset and gain calibration registers each time the device powers up or resets because the  
ADS131B23 registers are volatile.  
+
Digital  
Filter  
Output data  
clipped to 24 bits  
ADC1y  
X
-
OCAL1y[23:0]  
GCAL1y[15:0]  
8-5. Calibration Logic Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The 24-bit offset calibration value is provided in two's complement format and programmed into the  
OCAL1y[23:0] bit field that spans across the ADC1y_OCAL_MSB and ADC1y_OCAL_LSB registers. 8-4  
shows example offset calibration values. The LSB size of the offset calibration value is calculated as follows:  
LSB size = (2 × VREFy) / (GAIN1y × 224)  
8-4. Offset Calibration Value Examples  
OCAL1y[23:0] VALUE  
APPLIED OFFSET CORRECTION  
000010h  
16 LSB  
1 LSB  
1 LSB  
000001h  
FFFFFFh  
FFFFF0h  
16 LSB  
The 16-bit gain calibration value is provided in two's complement format and programmed into the GCAL1y[15:0]  
bit field. One LSB of the gain calibration value equals a gain correction factor of 1/216 = 0.000015. 8-5 shows  
example gain calibration values.  
8-5. Gain Calibration Value Examples  
GCAL1y[15:0] VALUE  
APPLIED GAIN CORRECTION  
7FFFh  
0001h  
0000h  
FFFFh  
8000h  
1.499985  
1.000015  
1
0.999985  
0.5  
The recommended calibration procedure is as follows:  
1. Preset the offset and gain calibration registers to OCAL1y[23:0] = 000000h and GCAL1y[15:0] = 0000h,  
respectively.  
2. Perform an offset calibration by shorting the ADC1y inputs internally using the respective input multiplexer  
setting (MUX1y[1:0] = 10b), or short the inputs externally at the system level to include the offset error of the  
external filter stages. Acquire multiple conversion data and write the average value of the data into the offset  
calibration registers. Averaging the data reduces conversion noise to improve calibration accuracy.  
3. Perform a gain calibration by applying a precision calibration signal to the ADC1y inputs or at the system  
level to include the gain error of the external filter stages. Choose the calibration voltage to be less than the  
full-scale input range to avoid clipping the output code. Clipped output codes result in inaccurate calibration.  
For example, use a 150-mV calibration signal when using gain = 8. Acquire multiple conversion data and  
average the results. Use 方程6 to calculate the gain calibration value.  
Gain Calibration Value = (expected output code / actual output code)  
(6)  
The expected output code for a 150-mV calibration voltage using gain = 8 is: (150 mV / LSB size) =  
7AE148h, where LSB size = (2 × 1.25 V) / (8 × 224). If the actual measured output code is 6FB587h for  
example, then the gain calibration factor calculates to 1.1. The resulting gain calibration value to write into  
the GCAL1y[15:0] bit field is: (1.1 1) / (1 / 216) = 199Ah.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.4.6 ADC1y Conversion Data  
Conversion data for ADC1A and ADC1B are 24 bits and are automatically output on SDO as part of the SPI  
frame, unless register data are output following a register read command.  
Data are provided in binary two's complement format. Use 方程7 to calculate the size of one code (LSB).  
1 LSB = (2 × VREFy / Gain) / 224 = +FSR / 223  
(7)  
A positive full-scale input VIN +FSR 1 LSB = VREFy / Gain 1 LSB produces an output code of 7FFFFFh  
and a negative full-scale input (VIN FSR = VREFy / Gain) produces an output code of 800000h. The output  
clips at these codes for signals that exceed full-scale.  
8-6 summarizes the ideal output codes for different input signals.  
8-6. Ideal Output Code versus Input Signal (24-Bit  
Conversion Data)  
INPUT SIGNAL  
(VIN = VAINP VAINN  
IDEAL OUTPUT CODE  
)
FSR (223 1) / 223  
FSR / 223  
7FFFFFh  
000001h  
000000h  
FFFFFFh  
800000h  
0
FSR / 223  
FSR  
8-6 shows the mapping of the analog input signal to the output codes.  
7FFFFFh  
7FFFFEh  
000001h  
000000h  
FFFFFFh  
800001h  
800000h  
¼
¼
-FS  
-FS  
0
FS  
Input Voltage VIN  
223 - 1  
223 - 1  
FS  
223  
223  
8-6. Code Transition Diagram (24-Bit Conversion Data)  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.5 ADC2y  
The purpose of the multiplexed, 16-bit ADC2A is to measure shunt temperature using external thermistors or  
analog output temperature sensors, and any other voltages that must be measured in the BMS.  
The ADC2y channel signal chain consists of eight analog inputs (V0y to V7y), an input multiplexer followed by a  
programmable gain amplifier (PGA), a delta-sigma modulator and digital filter, calibration logic, and a channel  
sequencer.  
8.3.5.1 ADC2y Input Multiplexer  
The input multiplexer controls which signals are routed to the positive and negative PGA inputs of the ADC2y  
channel in each sequence step. Configure the input multiplexer using the SEQ2y_STEPn_CH_P[3:0] and  
SEQ2y_STEPn_CH_N bits.  
The input multiplexer allows the following inputs to be connected to the PGA:  
Any of the eight analog inputs, V0y to V7y, in single-ended measurement configuration when AGNDy is  
selected as the negative multiplexer channel.  
Any of the seven analog inputs, V0y to V6y, in single-ended measurement configuration when V7y is selected  
as the negative multiplexer channel and connected to AGNDy externally.  
Any of the seven analog inputs, V0y to V6y, in pseudo-differential measurement configuration when V7y is  
selected as the negative multiplexer channel. Connect a positive bias voltage to V7y in this case, either using  
an external bias voltage or the internal common-mode voltage of the VCMy buffer.  
Internal temperature sensor, TSy.  
Internal short to AGNDy. Use this setting for self-offset calibration of the ADC2y channel.  
DC test signal provided by the Test DAC of the other section.  
Attenuated signals of the various supply voltages (APWR, DPWR, AVDD, IOVDD, and DVDD).  
Whenever a signal other than an analog input is selected as the positive multiplexer input, the analog inputs are  
disconnected from the PGA and AGNDy is selected automatically as the negative multiplexer input. 8-7  
illustrates a diagram of the ADC2A input multiplexer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Temperature Sensor TSA  
Test DAC B  
APWR/103  
DPWR/103  
AVDD/4  
IOVDD/4  
DVDD/2  
AVDD  
AGNDA  
Current  
Source  
200 Ω  
MUX2AP  
ADC2AP  
V0A  
Current  
Sink  
V1A  
V2A  
V3A  
V4A  
V1A to V6A use same structure as V0A  
V5A  
V6A  
Current  
Source  
200 Ω  
V7A  
Current  
Sink  
+
VCMA  
MUX2AN  
ADC2AN  
AGNDA  
AGNDA  
AGNDA  
8-7. ADC2A Input Multiplexer  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.5.2 ADC2y Programmable Gain Amplifier (PGA)  
ADC2y features an integrated programmable gain amplifier (PGA) that provides gains of 1, 2, and 4. Select the  
gain setting using the SEQ2y_STEPn_GAIN[1:0] bits.  
Varying the PGA gain scales the differential full-scale input voltage range (FSR) of ADC2y. 方程式 8 describes  
the relationship between FSR and gain. 方程式 8 uses the internal reference voltage, 1.25 V, as the scaling  
factor without accounting for gain error caused by tolerance in the reference voltage.  
FSR = ±1.25 V / Gain  
(8)  
8-7 shows the corresponding full-scale ranges for each gain setting.  
8-7. ADC2y Full-Scale Range  
GAIN SETTING  
FSR  
1
2
4
±1.25 V  
±625 mV  
±312.5 mV  
When performing single-ended measurements (that is, AGNDy is selected as the negative multiplexer channel  
for ADC2y), gain settings of 1 and 2 only allow for unipolar measurements, whereas gain setting of 4 allows for  
both unipolar and bipolar input voltage measurements. See the absolute input voltage range specification of  
ADC2y in the Recommended Operating Conditions table for details and the ADC2y Measurement Configurations  
section for example input configurations. Unipolar measurements only use the positive code range from  
approximately 0000h to 7FFFh, which maps to an input voltage range from approximately 0 V to +FS.  
The input impedance of the ADC2y channel depends on two factors: the main clock frequency (fMCLK) and the  
selected OSR setting. The Electrical Characteristics table lists typical input impedance values for fMCLK = 8.192  
MHz at the various OSR settings. Increasing the OSR by twice the value effectively doubles the input  
impedance. The input impedance scales indirectly proportional with the MCLK frequency.  
8.3.5.3 ADC2y ΔΣModulator  
ADC2y uses a second-order, delta-sigma (ΔΣ) modulator to convert the analog input signal to a 1's density  
modulated digital bitstream. The ΔΣmodulator oversamples the input signal at a frequency many times greater  
than the output data rate. The modulator frequency, fMOD, of ADC2y is equal to half the main clock frequency  
(that is, fMOD = fMCLK / 2).  
8.3.5.4 ADC2y Digital Filter  
The ADC2y ΔΣ modulator bitstream feeds into a digital filter. The digital filter is a linear phase, finite impulse  
response (FIR), low-pass sinc filter that attenuates the out-of-band quantization noise of the ΔΣmodulator.  
In contrast to ADC1y, ADC2y always operates in a single-shot conversion mode fashion. The ADC2y sequencer  
triggers the individual conversions. The digital filter resets at the start of every conversion and must completely  
settle for every conversion. ADC2y only outputs settled conversion results, assuming that the input signal settled  
before the conversion started.  
Use the OSR2y[1:0] bits to select the conversion time for ADC2y. For an OSR = 64, the filter is comprised of a  
pure sinc3 filter. A sinc3 filter takes three cycles to settle. Therefore, the conversion time for an OSR = 64 equals  
(3 × 64 / fMOD = 192 tMOD = 384 tMCLK). For higher OSR settings the sinc3 filter is followed by a sinc1 filter.  
8-8 lists an overview of the OSR settings and the corresponding conversion times for ADC2y based on a  
nominal MCLK frequency of 8.192 MHz.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-8. ADC2y OSR Settings and Conversion Times for fMCLK = 8.192 MHz  
OSR  
SINC3  
64  
CONVERSION TIME  
OVERALL  
64  
SINC1  
tMCLK  
μs  
1
2
4
8
384 tMCLK  
512 tMCLK  
768 tMCLK  
1280 tMCLK  
46.87 μs  
128  
64  
62.50 μs  
93.75 μs  
156.25 μs  
256  
64  
512  
64  
8.3.5.5 ADC2y Offset and Gain Calibration  
ADC2y provides the ability to compute offset and gain corrected conversion data using user-programmable  
offset and gain correction registers. The same calibration values are used for all sequence steps, however, the  
offset and gain correction factors are not applied when the internal temperature sensor is selected for  
measurement by MUX2y. As shown in 8-8, the 16-bit offset correction value (OCAL2y[15:0]) is subtracted  
from the conversion data before being multiplied by the 16-bit gain correction factor (GCAL2y15:0]). Output data  
are rounded to the final resolution and clipped to +FS and FS code values after the scaling operation. The  
offset and gain calibration coefficients must be stored in external nonvolatile memory and programmed into the  
offset and gain calibration registers each time the device powers up or resets because the ADS131B23 registers  
are volatile.  
+
Digital  
Filter  
Output data  
clipped to 16 bits  
ADC2y  
X
-
OCAL2y[15:0]  
GCAL2y[15:0]  
8-8. Calibration Logic Block Diagram  
The 16-bit offset calibration value is provided in two's-complement format and programmed into the  
OCAL2y[15:0] bit field. 8-9 shows example offset calibration values. The LSB size of the offset calibration  
value is calculated using 方程9 and 方程10 depending on the selected gain setting.  
GAIN2y = 1: LSB size = VREFy / 215  
(9)  
GAIN2y = 2 or 4: LSB size = VREFy / (2 × 215)  
(10)  
8-9. Offset Calibration Value Examples  
OCAL2y[15:0] VALUE  
APPLIED OFFSET CORRECTION  
0010h  
0001h  
FFFFh  
FFF0h  
16 LSB  
1 LSB  
1 LSB  
16 LSB  
The 16-bit gain calibration value is provided in two's-complement format and programmed into the GCAL2y[15:0]  
bit field. One LSB of the gain calibration value equals a gain correction factor of 1/216 = 0.000015. 8-10 shows  
example gain calibration values.  
8-10. Gain Calibration Value Examples  
GCAL2y[15:0] VALUE  
APPLIED GAIN CORRECTION  
7FFFh  
0001h  
0000h  
FFFFh  
1.499985  
1.000015  
1
0.999985  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-10. Gain Calibration Value Examples  
(continued)  
GCAL2y[15:0] VALUE  
APPLIED GAIN CORRECTION  
8000h  
0.5  
The recommended calibration procedure is as follows:  
1. Preset the offset and gain calibration registers to OCAL2y[15:0] = 0000h and GCAL2y[15:0] = 0000h,  
respectively.  
2. Perform an offset calibration by shorting the ADC2y input in one or multiple sequence steps internally to  
AGNDy using the respective input multiplexer setting (SEQ2y_STEPn_CH_P[3:0] = 1001b), or short one of  
the ADC2y inputs externally at the system level to include the offset error of the external filter stages. Set the  
gain for the respective sequence step to 1 or 2. Acquire multiple conversion data and write the average  
value of the data into the offset calibration registers. Averaging the data reduces conversion noise to  
improve calibration accuracy.  
3. Perform a gain calibration by applying a precision calibration signal to one of the ADC2y inputs or at the  
system level to include the gain error of the external filter stages. Choose the calibration voltage to be less  
than the full-scale input range to avoid clipping the output code. Clipped output codes result in inaccurate  
calibration. For example, use a 1.2-V calibration signal when using gain = 1. Acquire multiple conversion  
data and average the results. Use 方程11 to calculate the gain calibration value.  
Gain Calibration Value = (expected output code / actual output code)  
(11)  
The expected output code for a 1.2-V calibration voltage using gain = 1 is: (1.2 V / LSB size) = 7AE1h,  
where LSB size = (1.25 V / 215). If the actual measured output code is 6FB6h for example, then the gain  
calibration factor calculates to 1.1. The resulting gain calibration value to write into the GCAL2y[15:0] bit field  
is: (1.1 1) / (1 / 216) = 199Ah.  
8.3.5.6 ADC2y Sequencer  
See the ADC2y Sequencer Operation and Sequence Modes section for details.  
8.3.5.7 VCMy Buffers  
The ADC2y signal chain includes a bias voltage generator of typically 0.78 V followed by a common-mode  
buffer, VCMy. When the VCMy_EN bit is set, the output of the VCMy buffer is internally connected to the V7y  
multiplexer channel to provide the bias voltage to V7y. Use the VCMy buffer to implement pseudo-differential  
measurements, where V7y is selected as the negative multiplexer channel of ADC2y.  
When the VCMy buffer is enabled, the capacitive load from V7y to AGNDy must be limited to less than 100 pF.  
8.3.5.8 ADC2y Measurement Configurations  
ADC2y allows measurements of input voltages in three different configurations, as summarized in 8-11, 图  
8-9, 8-10, and 8-11.  
8-11. Overview of Possible Measurement Configurations for ADC2y  
INPUT  
CONFIGURATION  
POSITIVE MUX  
CHANNEL  
NEGATIVE MUX  
CHANNEL  
GAIN  
INPUT RANGE  
ABSOLUTE  
INPUT VOLTAGE  
FIGURE  
0 V to +FS =  
VREFy / Gain  
Single-ended  
V0y to V7y  
AGNDy  
1, 2, or 4  
Unipolar  
8-9  
0.3125 V to  
0.3125 V  
Single-ended  
V0y to V7y  
V0y to V6y  
AGNDy  
V7y  
4
Bipolar  
Bipolar  
8-10  
8-11  
Pseudo-differential  
1, 2, or 4  
VV7y ±FS(1)  
(1) Actual input range limited by absolute input voltage range specification in the Recommended Operating Conditions table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
V0y  
0 V to 1.25 V  
Gain = 1  
PGA  
0.78 V  
VCMy  
Mux  
ADC2y  
HV-  
V7y  
AGNDy  
HV-  
8-9. Single-Ended Input, Unipolar Voltage Measurement (Gain = 1)  
V0y  
-0.3125 V to 0.3125 V  
Gain = 4  
0.78 V  
VCMy  
Mux  
PGA  
ADC2y  
HV-  
V7y  
AGNDy  
HV-  
8-10. Single-Ended Input, Bipolar Voltage Measurement (Gain = 4)  
V0y  
0.78 V ±0.625 V  
Gain = 2  
0.78 V  
VCMy  
Mux  
PGA  
ADC2y  
V7y  
AGNDy  
HV-  
8-11. Pseudo-Differential Input, Bipolar Voltage Measurement  
(Gain = 2, Using Internal Bias Voltage)  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.5.9 ADC2y Conversion Data  
Conversion data for the sequence steps of ADC2y are 16 bits and (in contrast to ADC1y conversion data) stored  
in the user register space (register addresses 10h to 1Fh). Read ADC2y conversion data using the register read  
command.  
Data are provided in binary two's-complement format. Use 方程12 to calculate the size of one code (LSB).  
1 LSB = (2 × VREFy / Gain) / 216 = +FSR / 215  
(12)  
A positive full-scale input VIN +FSR 1 LSB = VREFy / Gain 1 LSB produces an output code of 7FFFh and  
a negative full-scale input (VIN ≤ –FSR = VREFy / Gain) produces an output code of 8000h. The output clips  
at these codes for signals that exceed full-scale.  
8-12 summarizes the ideal output codes for different input signals.  
8-12. Ideal Output Code versus Input Signal (16-  
Bit Conversion Data)  
INPUT SIGNAL  
(VIN = VAINP VAINN  
IDEAL OUTPUT CODE  
)
FSR (215 1) / 215  
FSR / 215  
7FFFh  
0001h  
0000h  
FFFFh  
8000h  
0
FSR / 215  
FSR  
8-12 shows the mapping of the analog input signal to the output codes.  
0x7FFF  
0x7FFE  
0x0001  
0x0000  
0xFFFF  
0x8001  
0x8000  
¼
¼
-FS  
-FS  
0
FS  
Input Voltage (VIN  
)
215 - 1  
215 - 1  
FS  
215  
215  
8-12. Code Transition Diagram (16-Bit Conversion Data)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.6 General-Purpose Digital Inputs and Outputs (GPIO0 to GPIO4)  
The ADS131B23 offers five GPIO pins (GPIO0 to GPIO4) that use logic levels based on the IOVDD supply. See  
the Electrical Characteristics table for details regarding the logic high and low levels. The GPIOs offer a  
multitude of configuration options:  
Configure the individual GPIOs as either digital inputs or digital outputs using the respective GPIOx_DIR bits  
(x = 0, 1, 2, 3, or 4).  
Configure the input and output format of the individual GPIOs as either static logic levels or PWM using the  
respective GPIOx_FMT bits. See the GPIOx PWM Output Configuration section for details on how to  
configure the PWM period and duty cycle for a specific GPIO.  
Four of the GPIO pins can be configured with a special output function (FAULT, MHD, OCCA, and OCCB)  
using the respective GPIOx_SRC bits. Configure GPIOx as a digital output using the GPIOx_DIR bit when  
selecting the special output function for GPIOx.  
Use the GPOx_DAT bit to drive a logic high or low level on the respective GPIO pin when GPIOx is configured  
as a digital output. The GPIO outputs are push-pull. GPIOx ignores the value written to the GPOx_DAT bit when  
configured for a special output function.  
The device always reads back the value of the GPIOs and provides the detected logic level in the  
GPIx_DAT[1:0] bit fields, no matter if GPIOx is configured as digital input or output. See the GPIx_DAT[1:0] bit  
field descriptions for details on how the device decodes PWM signals.  
The GPIOs are configured as inputs when the device is held in reset.  
8.3.6.1 GPIOx PWM Output Configuration  
When GPIOx is configured for PWM format using the GPIOx_FMT bit, the PWM period and duty cycle can be  
independently configured for a logic high and low level with fine granularity. The GPIOx_LL_PWM_LC[6:0]  
(GPIOx logic low level PWM low counter value) and GPIOx_LL_PWM_HC[6:0] (GPIOx logic low level PWM high  
counter value) bits together with the GPIOx_PWM_TB[1:0] (GPIOx PWM time base) bits determine the PWM  
period and duty cycle when a logic low level is driven as per the GPOx_DAT bit. Similarly, the  
GPIOx_LH_PWM_LC[6:0] (GPIOx logic high level PWM low counter value) and GPIOx_LH_PWM_HC[6:0]  
(GPIOx logic high level PWM high counter value) bits together with the GPIOx_PWM_TB[1:0] bits determine the  
PWM period and duty cycle when a logic high level is driven as per the GPOx_DAT bit.  
The following equations specify the PWM period and duty cycle:  
PWM period = (PWM high counter value + PWM low counter value) × PWM time base  
PWM low time = (PWM low counter value × PWM time base)  
(13)  
(14)  
(15)  
(16)  
PWM high time = (PWM high counter value × PWM time base)  
PWM duty cycle = PWM high time / (PWM high time + PWM low time)  
8-13 depicts a visual representation of how the various configuration values produce a certain PWM output.  
The PWM period always starts with the PWM low time. Changes to the PWM period and duty cycle based on the  
GPOx_DAT bit only take effect at the start of a new PWM period.  
8-13 provides example configuration values for GPIO1 where the logic high level is configured for 75% duty  
cycle using a 1-ms period and the logic low level for a 25% duty cycle using the same 1-ms period. The PWM  
time base is chosen as 8.192 MHz / 1024 = 125 μs, assuming an fMCLK = 8.192 MHz is used. The sum of the  
high and low counter must be eight in this case to yield a PWM period of 8 × 125 μs = 1 ms. Changing the  
GPIO1_LL_PWM_LC[6:0] = 3Ch = 60 and the GPIO1_LL_PWM_HC[6:0] = 14h = 20 (for example) results in the  
same 25% duty cycle, but at a PWM period of 80 × 125 μs = 10 ms.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Host changes GPOx_DAT  
using WREG command  
PWM time base  
1
6
1
2
1
6
1
2
1
2
1
6
Time Base Clock  
GPIOx Output  
PWM low time  
PWM high time  
PWM changes duty cycle at the  
start of a new PWM period.  
PWM period  
8-13. GPIOx PWM Output Timing Diagram  
8-13. GPIO1 PWM Configuration Example  
CORRESPONDING TIME  
(BASED ON fMCLK = 8.192 MHz)  
BIT FIELD  
GPIO1_PWM_TB[1:0]  
BIT FIELD SETTING  
VALUE  
3h  
1024 × tMCLK  
125 μs  
750 μs  
250 μs  
250 μs  
750 μs  
GPIO1_LL_PWM_LC[6:0]  
GPIO1_LL_PWM_HC[6:0]  
GPIO1_LH_PWM_LC[6:0]  
GPIO1_LH_PWM_HC[6:0]  
06h  
02h  
02h  
06h  
6
2
2
6
8.3.6.2 GPIOx PWM Input Readback  
For GPIOx to decode PWM input signals, configure the GPIOx_FMT bit for PWM decoding. GPIOx uses the time  
base configured in the GPIOx_PWM_TB[1:0] bits for PWM decoding. The decoded input value is provided in the  
GPIx_DAT[1:0] bit field. The GPIOs decode PWM signals with four different levels as specified in the  
GPI_DAT[1:0] bit field description.  
The GPIx_DAT[1:0] bits need up to two PWM cycles to indicate the correct logic level after the PWM period or  
duty cycle applied to GPIOx changed.  
8.3.7 General-Purpose Digital Inputs and Outputs (GPIO0A, GPIO1A, GPIO0B, GPIO1B)  
The ADS131B23 offers four additional GPIO pins (GPIO0A, GPIO1A, GPIO0B, and GPIO1B) that use logic  
levels based on the AVDD supply. See the Electrical Characteristics table for details regarding the logic high and  
low levels. The GPIOs offer a multitude of configuration options:  
Configure the individual GPIOs as either digital inputs or digital outputs using the respective GPIOxy_DIR bits  
(x = 0 or 1, y = A or B).  
Configure the input format of the individual GPIOs for either static logic level or PWM inputs using the  
respective GPIOxy_FMT bits. In contrast to GPIO0 to GPIO4, the GPIOxy do not offer PWM output capability.  
Select the appropriate PWM timebase for each GPIO PWM decoder using the GPIOxy_PWM_TB[1:0] bits.  
The timebase of the source driving the GPIOxy input must be equal to or slower than the timebase of the  
GPIOxy input decoder, otherwise the logic levels are not correctly decoded. GPIOxy always uses static logic  
levels when configured as a digital output.  
Use the GPOxy_DAT bit to drive a logic high or low level on the respective GPIO pin when GPIOxy is configured  
as a digital output. The GPIO outputs are push-pull.  
The device always reads back the value of the GPIOs and provides the detected logic level in the  
GPIxy_DAT[1:0] bit fields, regardless if GPIOxy is configured as a digital input or output. See the  
GPIxy_DAT[1:0] bit field descriptions for details on how the device decodes PWM signals.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8 Monitors and Diagnostics  
The ADS131B23 integrates many monitor and diagnostic circuits to aid in the design of functional safe systems.  
Monitors detect faults in the device, such as a supply undervoltage condition, whereas diagnostics detect faults  
within the monitoring circuit to check if the monitor is still working as intended.  
8-14 provides an overview of all available monitors and diagnostics. Most monitors can be enabled or  
disabled as required using a dedicated monitor enable bit. In case a monitor detects a fault, the according low-  
active fault flag is set to 0b. Except for the communication-related monitor fault flags, the fault flags must be  
cleared to 1b by the host after the fault condition is removed. The communication-related monitor fault flags reset  
to 1b automatically in the SPI frame following a frame where no communication fault occurred.  
The monitors that have a dedicated diagnostic circuit to check the integrity of the monitor show the respective  
diagnostic enable bit in 8-14.  
The monitors have individual fault response times, which is the time from fault occurrence to fault flag indication,  
as specified in the Electrical Characteristics table.  
8-14. Monitor and Diagnostic Overview  
DIAGNOSTIC ENABLE FAULT FLAG REGISTER  
MONITOR NAME  
MONITOR ENABLE BIT MONITOR FAULT FLAG  
BIT  
LOCATION  
SUPPLY MONITORS AND DIAGNOSTICS  
Reset  
N/A  
RESETn  
AVDD_OVn  
AVDD_UVn  
IOVDD_OVn  
IOVDD_UVn  
DVDD_OVn  
DVDD_UVn  
AVDD_OSCn  
IOVDD_OSCn  
DVDD_OSCn  
N/A  
STATUS_MSB  
AVDD overvoltage  
AVDD undervoltage  
IOVDD overvoltage  
IOVDD undervoltage  
DVDD overvoltage  
DVDD undervoltage  
AVDD oscillation  
IOVDD oscillation  
DVDD oscillation  
AVDD_OV_EN  
AVDD_UV_EN  
IOVDD_OV_EN  
IOVDD_UV_EN  
DVDD_OV_EN  
DVDD_UV_EN  
AVDD_OSC_EN  
IOVDD_OSC_EN  
DVDD_OSC_EN  
AVDD_OV_DIAG_EN  
AVDD_UV_DIAG_EN  
IOVDD_OV_DIAG_EN  
IOVDD_UV_DIAG_EN  
DVDD_OV_DIAG_EN  
DVDD_UV_DIAG_EN  
AVDD_OSC_DIAG_EN  
IOVDD_OSC_DIAG_EN  
DVDD_OSC_DIAG_EN  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
AVDD LDO  
overtemperature warning  
AVDD_OTW_EN  
IOVDD_OTW_EN  
AVDD_CL_EN  
AVDD_OTWn  
IOVDD_OTWn  
AVDD_CLn  
N/A  
N/A  
N/A  
N/A  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
IOVDD LDO  
overtemperature warning  
AVDD LDO output current  
limit  
IOVDD LDO output  
current limit  
IOVDD_CL_EN  
IOVDD_CLn  
AGNDA pin disconnect  
AGNDB pin disconnect  
DGND pin disconnect  
AGNDA_DISC_EN  
AGNDB_DISC_EN  
DGND_DISC_EN  
AGNDA_DISCn  
AGNDB_DISCn  
DGND_DISCn  
AGNDA_DISC_DIAG_EN  
AGNDB_DISC_DIAG_EN  
DGND_DISC_DIAG_EN  
SUPPLY_STATUS  
SUPPLY_STATUS  
SUPPLY_STATUS  
ADC MONITORS AND DIAGNOSTICS  
ADC1A overrange  
ADC1B overrange  
ADC2A overrange  
ADC1A_OR_EN  
ADC1A_ORn  
ADC1B_ORn  
ADC2A_ORn  
N/A  
N/A  
N/A  
ADC_STATUS  
ADC_STATUS  
ADC_STATUS  
ADC1B_OR_EN  
ADC2A_OR_EN  
CLOCK MONITORS AND DIAGNOSTICS  
MCLK_HI_DIAG_EN,  
MCLK_LO_DIAG_EN  
Main clock frequency  
MCLK_MON_EN  
MCLK_FAULTn  
ADC_STATUS  
Diagnostic oscillator  
watchdog  
OSCD_WD_EN  
MCLK_WD_EN  
OSCD_WDn  
MCLK_WDn  
OSCD_WD_DIAG_EN  
MCLK_WD_DIAG_EN  
ADC_STATUS  
ADC_STATUS  
Main clock watchdog  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-14. Monitor and Diagnostic Overview (continued)  
DIAGNOSTIC ENABLE FAULT FLAG REGISTER  
MONITOR NAME  
MONITOR ENABLE BIT MONITOR FAULT FLAG  
BIT  
LOCATION  
DIGITAL MONITORS AND DIAGNOSTICS  
Register map section 1  
CRC  
REG_MAP1_CRC_FAULT  
n
REG_MAP1_CRC_EN  
N/A  
DIGITAL_STATUS  
DIGITAL_STATUS  
DIGITAL_STATUS  
DIGITAL_STATUS  
Register map section 2  
CRC  
REG_MAP2_CRC_FAULT  
n
REG_MAP2_CRC_EN  
REG_MAP3_CRC_EN  
N/A  
N/A  
N/A  
Register map section 3  
CRC  
REG_MAP3_CRC_FAULT  
n
MEM_MAP_CRC_FAULT MEM_MAP_CRC_DIAG[1:  
Memory map CRC  
n
0]  
GPIOA readback  
GPIOB readback  
GPIO readback  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GPIOA_DIAG_EN  
GPIOB_DIAG_EN  
GPIO_DIAG_EN  
GPIA_GPIB_DATA  
GPIA_GPIB_DATA  
GPI_DATA  
COMMUNICATION MONITORS AND DIAGNOSTICS  
SPI CRC  
N/A  
TIMEOUT_EN  
SCLK_COUNTER_EN  
N/A  
SPI_CRC_FAULTn  
SPI_TIMEOUTn  
N/A  
N/A  
N/A  
N/A  
STATUS_MSB  
STATUS_MSB  
STATUS_MSB  
STATUS_MSB  
SPI timeout  
SCLK counter  
Register access  
SCLK_COUNT_FAULTn  
REG_ACCESS_FAULTn  
In addition to the monitors that detect faults in the device, the ADS131B23 also provides the indicators shown in  
8-15, which provide feedback about the device state or behavior.  
8-15. Indicator Overview  
INDICATOR NAME  
Command response  
INDICATOR STATUS BIT  
COMMAND_RESPONSE[3:0]  
LOCK  
STATUS BIT REGISTER LOCATION  
STATUS_MSB  
Lock state  
STATUS_MSB  
Clock source  
CLOCK  
STATUS_MSB  
Operating mode  
ADC2A sequence active  
OTP bank  
MODE  
STATUS_MSB  
SEQ2A_ACTIVE  
OTB_BANK  
STATUS_LSB  
DIGITAL_STATUS  
Lastly, the device provides the conversion and sequence counters shown in 8-16 for the individual ADCs.  
8-16. Conversion and Sequence Counter Overview  
COUNTER NAME  
COUNTER BITS  
CONV1A_COUNT[1:0]  
CONV1B_COUNT[1:0]  
SEQ2A_COUNT[1:0]  
COUNTER BITS REGISTER LOCATION  
ADC1A conversion counter  
STATUS_LSB  
ADC1B conversion counter  
ADC2A sequencer counter  
STATUS_LSB  
STATUS_LSB  
Besides the monitors, indicators, and counters mentioned in the previous tables, the ADS131B23 offers  
additional means to check the integrity of the device, such as:  
Power-supply voltage readback using ADC2A  
A temperature sensor, TSA  
Two test DACs, TDACA and TDACB  
Open-wire detection current sources and sinks on every ADC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.1 Supply Monitors  
Individual power-on reset (POR) circuits are implemented on the AVDD, IOVDD, and DVDD supplies. If any of  
the three supplies drops below the respective POR threshold, the device is held in reset.  
The ADS131B23 monitors the outputs of the three internal LDOs (AVDD, IOVDD, and DVDD) for overvoltage  
(OV), undervoltage (UV), and oscillations. See the Electrical Characteristics table for the according monitor  
detection thresholds. In case of an OV event, the respective LDO shuts down to prevent damage to the internal  
circuitry. The LDO turns back on after the output voltage drops below the OV threshold. There is the potential  
that the device resets if the supply voltage drops below the POR threshold before the LDO is turned on again.  
The LDOs do not shut down when an OV diagnostic is performed.  
AVDD or IOVDD can be supplied externally when shorting APWR to AVDD or DPWR to IOVDD, respectively,  
and thus bypassing the internal LDOs. The monitors check the externally provided supply when bypassing the  
internal LDO. Configure the IOVDD OV and UV monitor thresholds using the IOVDD_OV_TH and  
IOVDD_UV_TH bits based on the used IOVDD supply.  
The AVDD and IOVDD LDOs integrate individual temperature sensors to indicate potential overtemperature  
events. Configure the overtemperature warning thresholds using the AVDD_OTW_CFG[1:0] and  
IOVDD_OTW_CFG[1:0] bits.  
The AGNDA, AGNDB, and DGND pins are monitored for pin disconnections. The AGND pin is implemented  
redundantly and therefore does not provide a pin disconnection monitor.  
The AVDD and IOVDD LDOs are designed with an output current limit to prevent excessive current draw from  
the LDOs. When the LDOs are operating in current limit, the according fault flags are set. If more current draw is  
demanded from the LDOs than the current limit, then the LDO output voltage typically drops below the POR  
threshold and causes a POR event.  
8.3.8.2 ADC Monitors  
Every ADC has an individual delta-sigma modulator overrange monitor that indicates when a differential input  
signal larger than the ADC overrange detection threshold is applied to the ADC inputs, as specified in the  
Electrical Characteristics table.  
The individual ADCs must be enabled, but do not need to convert for the overrange monitors to work.  
8.3.8.3 Clock Monitors  
The ADS131B23 integrates a diagnostic oscillator (OSCD) to monitor the frequency of the selected main clock  
(MCLK), which is either sourced from the internal main oscillator (OSCM) or from an external clock provided at  
the CLK pin. The MCLK_FAULTn flag is set to 0b when the frequencies between the main clock and the  
diagnostic oscillator deviate by more than the main clock fault detection frequency threshold  
(MCLK_FAULT_TH).  
Additionally, individual watchdogs (MCLK_WD and OSCD_WD) monitor the main clock and the diagnostic  
oscillator to detect a missing clock signal. The MCLK_WDn flag is set to 0b when the MCLK frequency drops  
below fMCLK_WD_TH, and the OSCD_WDn flag is set to 0b when the OSCD frequency drops below fOSCD_WD_TH  
.
8.3.8.4 Digital Monitors  
The following sections explain the available digital monitors, such as Register Map CRC, Memory Map CRC,  
and GPIO readback functionality.  
8.3.8.4.1 Register Map CRC  
Register map CRCs in the ADS131B23 are used to detect unintended changes in the register map contents.  
The register map is divided into four sections.  
Section 0 includes read-only bits only that update their values based on the device state or ADC2y conversion  
data. Therefore, section 0 does not offer any register map CRC check.  
Sections 1 to 3 include the device configuration bits and provide independent CRC checks. Enable the register  
map CRC for each section using the REG_MAPx_CRC_EN (x = 1 to 3) bits. When the register map CRC for a  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
section is enabled, the device constantly calculates a 16-bit CRC value across that register map section and  
compares the internal calculation result against the CRC value provided by the user in the  
REG_MAPx_CRC_VALUE[15:0]  
bit  
field.  
If  
the  
internal  
calculation  
result  
and  
the  
REG_MAPx_CRC_VALUE[15:0] do not match, the REG_MAPx_CRC_FAULTn is set to 0b. No other action is  
taken by the device in the event of a register map section CRC fault.  
The CRC calculation begins with the MSB of the first register in the respective register section and ends with the  
LSB of last specified register in the respective register section using the polynomial selected in the CRC_TYPE  
bit. Two types of CRC polynomials are available: CCITT CRC and ANSI CRC (CRC-16). See the  
Communication Cyclic Redundancy Check (CRC) section for details on the CRC polynomials. The CRC  
calculations are initialized with the seed value of FFFFh.  
The CRC calculation is implemented serially, one register map bit per OSCD period. Therefore, unintended bit  
changes are not indicated immediately in the REG_MAPx_CRC_FAULTn fault flags, but can take up to  
tp(REG_MAP_CRC)  
.
Use the following procedure to change register bits in sections 1 to 3 without accidentally causing a  
REG_MAPx_CRC_FAULTn indication:  
Disable register map section x CRC by setting REG_MAPx_CRC_EN = 0b  
Wait fault response time tp(REG_MAP_CRC)  
In case REG_MAPx_CRC_FAULTn fault flag is set to 0b, clear the fault flag by writing 1b to the  
REG_MAPx_CRC_FAULTn bit  
Optional: Verify REG_MAPx_CRC_FAULTn fault flag is cleared to 1b  
Optional: Clear DIGITAL_FAULTn fault flag by writing 1b to the DIGITAL_FAULTn bit  
Change the section x register bits as needed  
Update REG_MAPx_CRC_VALUE[15:0] based on the new register map section x settings  
Enable the register map section x CRC by setting REG_MAPx_CRC_EN = 1b  
Register bits in section x can also be changed while the register map section x CRC is enabled as discussed in  
the following procedure, but can cause unintended REG_MAPx_CRC_FAULTn indications.  
Change the section x register bits as needed while the register map section x CRC is enabled  
Update REG_MAPx_CRC_VALUE[15:0] based on the new register map section x settings  
Wait fault response time tp(REG_MAP_CRC)  
In case the REG_MAPx_CRC_FAULTn fault flag is set to 0b, clear the fault flag by writing 1b to the  
REG_MAPx_CRC_FAULTn bit  
Optional: Verify the REG_MAPx_CRC_FAULTn fault flag is cleared to 1b  
Optional: Clear the DIGITAL_FAULTn fault flag by writing 1b to the DIGITAL_FAULTn bit  
8.3.8.4.2 Memory Map CRC  
Similar to the register map CRC, the device uses a memory map CRC to check the internal memory for random  
bit changes. Changes to the internal memory bits can cause undetermined device behavior or degraded device  
performance.  
The memory map CRC is always enabled and constantly calculates the CRC value across the internal memory  
map. The device compares the calculation result against a memory map CRC value that is stored in the memory  
map in production. If the internal calculation result and the stored memory map CRC value do not match, the  
MEM_MAP_CRC_FAULTn is set to 0b. No other action is taken by the device in the event of a memory map  
CRC fault.  
The CRC calculation is implemented serially, one memory map word per OSCD period. Therefore random bit  
changes are not indicated immediately in the MEM_MAP_CRC_FAULTn fault flag, but can take up to  
tp(MEM_MAP_CRC)  
.
In case of a memory map CRC fault, write 1b to the MEM_MAP_CRC_FAULTn bit to clear the fault flag to 1b.  
Reset the device in case the fault flag continues to set to 0b.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.4.3 GPIO Readback  
All available GPIOs (GPIOx, GPIOxy) in ADS131B23 provide an independent readback path when the  
respective GPIO is configured as digital output. That means an input receiver circuit independent from the output  
driver circuit detects the voltage level driven on the GPIO pin. The result of the readback is displayed in the  
according GPIx_DAT[1:0] and GPIxy_DAT[1:0] bit fields.  
8.3.8.5 Communication Monitors  
The communication related monitors (SPI CRC, SPI timeout, and SCLK counter) are explained in detail in the  
Serial Interface Communication Structure section.  
In addition the register access monitor indicates if a read or write register access was attempted to register  
addresses FFh or beyond. Writing to or reading from not specified register addresses within the address range  
from 00h to FEh does not trigger a fault indication. The data and register address returned when reading from a  
non-existing register is all 0s.  
8.3.8.6 Fault Flags and Fault Masking  
Every monitor in the ADS131B23 has a corresponding fault flag (see 8-14) that sets to 0b when the  
respective monitor detects a fault condition. The RESETn and communication related fault flags are located in  
the STATUS_MSB register, whereas the supply, ADC, clock, and digital related fault flags are grouped together  
in detailed status registers, as shown in 8-17. The STATUS_MSB register is transmitted as part of the  
STATUS word at the beginning of every SPI frame as described in the STATUS Word section. To allow  
immediate indication of any of the supply, ADC, clock, or digital related faults as part of the STATUS word, every  
detailed status register has a corresponding combined fault flag in the STATUS_MSB register. That is, if any of  
the fault flags in the detailed status register set to 0b, then the combined fault flag sets to 0b as well.  
8-17. Detailed Status Registers and Corresponding Combined Fault Flags  
MONITOR FAULT FLAGS FOR:  
DETAILED STATUS REGISTER LOCATION  
COMBINED FAULT FLAG  
IN STATUS_MSB REGISTER  
Supply  
ADC and clock  
Digital  
SUPPLY_STATUS  
ADC_STATUS  
SUPPLY_FAULTn  
ADC_FAULTn  
DIGITAL_STATUS  
DIGITAL_FAULTn  
To clear a set combined fault flag to 1b, the host must first clear all set fault flags in the corresponding detailed  
status register. Only after all fault flags in the detailed status register are cleared to 1b can the host clear the  
combined fault flag by writing 1b.  
The ADS131B23 allows additional masking of individual fault flags located in the detailed status registers from  
triggering the combined fault flag in the STATUS_MSB register. The masking bits are located in the  
SUPPLY_FAULT_MASK, ADC_FAULT_MASK, and DIGITAL_FAULT_MASK registers. In case a fault flag in a  
detailed status register is masked, a fault indicated by this masked fault flag does not trigger a fault indication of  
the combined fault flag in the STATUS_MSB register. However, the fault is still indicated by the fault flag in the  
detailed status register.  
The following examples for the AVDD OV monitor explain the various configuration options:  
No AVDD OV fault indication required in either SUPPLY_STATUS (AVDD_OVn fault flag) or STATUS_MSB  
(SUPPLY_FAULTn fault flag) register: Disable the AVDD OV monitor by setting AVDD_OV_EN = 0b.  
AVDD OV fault indication in SUPPLY_STATUS, but not in STATUS_MSB register: Enable the AVDD OV  
monitor by setting AVDD_OV_EN = 1b. Mask the AVDD_OVn fault flag from triggering the SUPPLY_FAULTn  
fault flag by setting AVDD_OV_MASK = 1b.  
AVDD OV fault indication in both SUPPLY_STATUS and STATUS_MSB register: Enable the AVDD OV  
monitor by setting AVDD_OV_EN = 1b. Unmask the AVDD_OVn fault flag by setting AVDD_OV_MASK = 0b.  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.7 FAULT Pin  
The GPIO2/FAULT pin can be configured as a FAULT indication output by setting GPIO2_DIR = 1b and  
GPIO2_SRC = 0b. The FAULT pin is active when any of the STATUS_MSB[14:7] fault flags set to 0b. The  
FAULT pin changes to inactive as soon as all STATUS_MSB[14:7] fault flags are cleared to 1b.  
The actual output signal of the FAULT pin when active or inactive depends on the GPIO2 format (GPIO2_FMT  
bit) and FAULT pin polarity (FAULT_POL bit) configuration. See the respective bit descriptions and the General-  
Purpose Digital Inputs and Outputs (GPIO0 to GPIO4) section for details. 8-18 shows an example where the  
FAULT pin is configured for a static low signal in an active state, and a static high signal in an inactive state. The  
pin can for example also be configured for a static low signal in an active state, and a PWM output signal with  
50% duty cycle in an inactive state to act as some sort of heart beat signal when everything is okay. The  
configuration options are endless.  
8-18. FAULT Pin Output Behavior Configuration Example  
REGISTER BIT  
GPIO2_DIR  
GPIO2_SRC  
GPIO2_FMT  
FAULT_POL  
BIT SETTING  
DESCRIPTION  
1b  
0b  
0b  
0b  
GPIO2/FAULT pin configured as digital output  
FAULT selected as data source for GPIO2/FAULT pin  
GPIO2/FAULT pin configured for static output levels  
FAULT output is active low  
Additionally, the ADS131B23 allows masking of any of the eight STATUS_MSB[14:7] fault flags from triggering  
the FAULT pin. Use the mask bits in the FAULT_PIN_MASK register to mask individual fault flags. If a fault flag  
is masked and the respective fault flag is set to 0b in the STATUS_MSB register, then no fault is indicated on the  
FAULT pin.  
8.3.8.8 Diagnostics and Diagnostic Procedure  
Diagnostics detect faults within a monitoring circuit to check if the monitor is still working as intended. Enable a  
diagnostic using the respective enable bit in 8-14 to inject a fault condition into the monitoring circuit. When  
the according monitor fault flag sets to 0b within the specified monitor fault response time (see the Electrical  
Characteristics table), the diagnostic completed successfully, indicating a correctly working monitor.  
Except for the main clock frequency monitor diagnostics (MCLK_HI_DIAG_EN and MCLK_LO_DIAG_EN), all  
diagnostics can be performed simultaneously to save execution time. The MCLK_HI_DIAG_EN and  
MCLK_LO_DIAG_EN diagnostics must be performed sequentially. However, either the MCLK_HI_DIAG_EN or  
the MCLK_LO_DIAG_EN can be executed together with all other diagnostics.  
The following steps outline the general procedure for implementing a monitor diagnostic. An example for  
implementing the AVDD UV monitor diagnostic is shown in parentheses.  
Enable monitor (set AVDD_UV_EN = 1b)  
Wait fault response time (wait tp(AVDD_UV)  
)
Clear detailed fault flag (write 1b to AVDD_UVn)  
Optional: Verify detailed fault flag is cleared to 1b (read AVDD_UVn)  
Optional: Clear main fault flag (write 1b to SUPPLY_FAULTn)  
Enable diagnostic (set AVDD_UV_DIAG_EN = 1b)  
Wait fault response time (wait tp(AVDD_UV)  
)
Check if detailed fault flag is set to 0b (read AVDD_UVn)  
Disable monitor (set AVDD_UV_EN = 0b)  
Disable diagnostic (set AVDD_UV_DIAG_EN = 0b)  
Clear detailed fault flag (write 1b to AVDD_UVn)  
Optional: Clear main fault flag (write 1b to SUPPLY_FAULTn)  
Enable monitor (set AVDD_UV_EN = 1b)  
The memory map CRC diagnostic is a small exception. Instead of an enable bit, select any of the three bit  
patterns available in the MEM_MAP_CRC_DIAG[1:0] bit field to inject into the memory map CRC calculation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.9 Indicators  
The ADS131B23 provides a set of indicator bits inside the STATUS_MSB and STATUS_LSB registers that help  
to verify the state of the device:  
Command response: The COMMAND_RESPONSE[3:0] bit field is transmitted in every SPI frame and  
provides feedback about the command that was received by the device in the previous frame. Information  
about which command was executed is also provided. See the COMMAND_RESPONSE[3:0] register bit field  
description for details.  
Lock state: The LOCK bit indicates if the device is currently locked or unlocked. See the Commands section  
for details on how to lock and unlock the device.  
Clock source: The CLOCK bit indicates which clock source the device is using as the main clock, either the  
internal main oscillator (OSCM) or an external clock provided at the CLK pin.  
Operating mode: The MODE bit indicates which mode the device is currently operating in, either active,  
standby, or power-down mode.  
ADC2A sequence active: The SEQ2A_ACTIVE bit indicates if a sequence on ADC2A is currently in progress.  
An additional OTP_BANK status bit is provided in the DIGITAL_STATUS register. The device includes two one-  
time programmable (OTP) memory banks, bank 0 and bank 1. Device configuration and calibration data are  
stored during device production in those OTP banks. A corrupted OTP bank can cause undetermined device  
behavior or degraded device performance. The information in bank 0 is duplicated in bank 1 for redundancy. At  
device power-up or during reset, the device loads the content of OTP bank 0 into the internal memory. If the  
device fails to acquire the data from bank 0, then the device loads the content from OTP bank 1. The  
OTP_BANK bit indicates which bank was acquired. The device performs normally even when running from OTP  
bank 1.  
If the device fails to acquire data from OTP bank 1 as well, then the memory map CRC fault flag is set to 0b. If  
resetting the device does not clear the MEM_MAP_CRC_FAULTn fault flag, consider the device damaged.  
8.3.8.10 Conversion and Sequence Counters  
The STATUS_LSB register includes 2-bit conversion and sequence counters for the various ADCs  
(CONV1y_COUNT[1:0], SEQ2y_COUNT[1:0]).  
The conversion counter, CONV1y_COUNT[1:0], increments every time a new conversion on ADC1y completes.  
The counter rolls over from 11b to 00b. To reset the counter, disable ADC1y or place the device in standby or  
power-down mode. The device makes sure that the conversion counter value always matches to the ADC1y  
conversion result that is output in the same SPI frame.  
The sequence counter, SEQ2y_COUNT[1:0], increments every time a new sequence on ADC2y completes. The  
counter rolls over from 11b to 00b. To reset the counter, disable ADC2y or place the device in standby or power-  
down mode. The device makes sure that the sequence counter value always matches to the ADC2y conversion  
step results that are output in the same SPI frame. That means, in case a new sequence completes while  
reading out conversion results from the ADC2y conversion step result registers (SEQxy_STEPx_DATA), the  
conversion results from the new sequence run are blocked from overwriting the conversion result registers, but  
are internally buffered. Only after the read command is complete do the buffered conversion results from the  
new sequence run update the conversion step result registers.  
8.3.8.11 Supply Voltage Readback  
In addition to the dedicated supply monitors, all supplies (APWR, DPWR, AVDD, IOVDD, and DVDD) can also  
be measured back internally through ADC2A. Resistor dividers are integrated in the device to attenuate the  
supply voltages to within the input voltage range of ADC2A. See the Electrical Characteristics table for the  
according attenuation factors. Use the SEQ2y_STEPx_CH_P[3:0] bits to configure an ADC2y sequence step for  
any of the supply voltage measurements.  
The supply voltage measurement accuracy depends on two factors:  
Multiplexer delay time (configured using the MUX2y_DELAY[2:0] bits)  
ADC2y conversion time (configured using the OSR2y[1:0] bits)  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The large resistor divider values used internally to divide the supply voltages down together with the internal filter  
capacitor lead to a large RC filter time constant. The input signal therefore needs considerable time to settle  
when the ADC2y multiplexer selects one of the supply voltage measurements. Increasing the multiplexer delay  
time provides more time for the input signal to settle after the multiplexer change before ADC2y starts  
converting. Setting the multiplexer delay time to equal to or greater than 256 × tMCLK provides sufficient time for  
the input signals to settle when measuring the supply voltages.  
In case increasing the multiplexer delay time is not possible, because the delay time affects all sequence steps  
equally, configure multiple consecutive sequence steps for the same supply voltage measurement. Then  
disregard the initial sequence step readings where the conversions are not settled yet.  
The input impedance of ADC2y changes with the selected conversion time, see the Electrical Characteristics  
table. The impedance of the resistor divider interacts with the input impedance of ADC2y leading to a gain error.  
Increasing the ADC2y input impedance by increasing the ADC2y conversion time reduces the gain error for the  
supply voltage measurements.  
See 6-26 for details on how the supply voltage measurement accuracy changes with the multiplexer delay  
time and the ADC2y conversion time.  
8.3.8.12 Temperature Sensor (TSA)  
The ADS131B23 integrates a temperature sensor (TSA) to measure the die temperature of the device. The  
temperature sensor outputs a linear voltage that is proportional to temperature. The output voltage  
characteristics (TSOffset, TSTC) of the temperature sensor are specified in the Electrical Characteristics table.  
Use ADC2A to measure the output signal of TSA. To select TSA for measurement, configure any of the ADC2A  
sequence steps (SEQ2A_STEPx_CH_P[3:0]) for TSA measurement. For best measurement performance,  
configure the respective sequence step for gain = 2 using the SEQ2A_STEPx_GAIN[1:0] bits.  
Use 方程17 to convert the measured temperature sensor output voltage to die temperature:  
Die temperature [°C] = 25°C + (Measured voltage TSOffset) × TSTC  
(17)  
8.3.8.13 Test DACs (TDACA, TDACB)  
The ADS131B23 integrates two independent Test DACs, TDACA and TDACB, one in each section of the device.  
TDACA uses the voltage reference in section A (REFA), and TDACB the voltage reference in section B (REFB).  
Use the TDACy_VALUE[2:0] bits to set the Test DAC output voltage to one of eight available settings. The output  
voltage of Test DAC A can be applied as an input signal to any of the ADCs in section B for measurement to  
check the accuracy and integrity of the ADCxB signal chains including the voltage reference (REFB). Use the  
respective ADCxB multiplexer configuration bits to select Test DAC A as an input signal. Correspondingly, the  
output voltage of Test DAC B can be applied as an input signal to any of the ADCs in section A for  
measurement.  
Selecting the Test DAC as an input signal for multiple ADCs at the same time may degrade the measurement  
accuracy because of loading of the Test DAC output.  
8.3.8.14 Open-Wire Detection  
To detect potential pin fault conditions (such as open, short-to-adjacent pin, short-to-GND, or short-to-supply) on  
the individual ADC analog input pins, every ADC integrates a dedicated open-wire detection (OWD) current  
source and sink. See 8-2 and 8-7 for how the current sources and sinks are connected to the ADC inputs.  
The input path of ADC2y includes a series impedance of approximately 200 Ω, see 8-7. Consider the  
additional voltage drop across this impedance when enabling the current source or sink on any of the ADC2y  
inputs.  
As listed in 8-19, every current source and sink offers individual configuration and control.  
8-19. Open-wire Detection Current Source and Sink Configuration  
REGISTER BIT(S)  
FUNCTION  
OWDxy_SOURCE_VALUE[1:0]  
Enables current source and selects current source value from three available settings  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-19. Open-wire Detection Current Source and Sink Configuration (continued)  
REGISTER BIT(S)  
OWDxy_SINK_VALUE[1:0]  
OWDxy_SOURCE_MUX  
OWDxy_SINK_MUX  
FUNCTION  
Enables current sink and selects current sink value from three available settings  
Selects the input channel that the current source is routed to  
Selects the input channel that the current sink is routed to  
8.3.8.15 Overcurrent Comparators (OCCA, OCCB)  
The ADS131B23 integrates two digital overcurrent comparators (OCCA, OCCB), which are used to provide a  
faster response to overcurrent conditions than ADC1y, especially when ADC1y is operated at low data rates.  
The comparators use the ADC1y ΣΔ-modulator (and therefore the same multiplexer and PGA settings as  
ADC1y) but with a separate digital fast filter that works in parallel to the main ADC1y digital filter. This fast filter is  
a sinc3 implementation with a fixed OSR of 64. The offset and gain calibration registers (OCAL1y[23:0],  
GALC1y[15:0]) for ADC1y do not affect the OCCy comparators, means there is no user calibration of the  
overcurrent comparators possible.  
Enable the overcurrent comparators using the OCCy_EN bits. To use overcurrent comparator OCCy, ADC1y  
must be enabled (ADC1y_EN =1b) as well so that the ADC1y modulator is active. However conversions on  
ADC1y do not need to be started to use the overcurrent comparator function. The sinc3 filter of the comparator  
starts operating as soon as the OCCy_EN bit is set and runs independently of the conversion state of ADC1y.  
The digital fast filter of the comparator outputs 16-bit conversion results that are internally compared against a  
high and low threshold, configured by the OCCy_HIGH_TH[15:0] and OCCy_LOW_TH[15:0] register bits,  
respectively. The comparator triggers when the conversion results exceed the high threshold or when the results  
fall below the low threshold. Set OCCy_HIGH_TH[15:0] = 7FFFh to disable the high threshold detection.  
Similarly, set OCCy_LOW_TH[15:0] = 8000h to disable the low threshold detection.  
OCCy_NUM[4:0] configures the number of conversions that the output of the digital fast filter must exceed the  
programmed high or low threshold before flagging an overcurrent condition in the OCCy_HTn or OCCy_LTn  
status bits, respectively. An internal counter keeps track of the number of conversions that exceed either the high  
or low threshold. The counter resets as soon as one conversion result drops below the threshold again or when  
the OCCy comparator is disabled (OCCy_EN = 0b).  
Disable the overcurrent comparator (OCCy_EN = 0b) before changing any of the comparator settings in the  
OCCy_CFG, OCCy_HIGH_THRESHOLD, or OCCy_LOW_THRESHOLD registers.  
Similar to the detailed ADC, supply, and digital status flags, the detailed status flags in the OCC_STATUS  
register feed a combined OCC_FAULTn flag in the STATUS_MSB register. That is, if any of the fault flags in the  
OCC_STATUS register set to 0b, then the OCC_FAULTn flag sets to 0b as well.  
To clear a set OCC_FAULTn flag to 1b after the overcurrent condition has been removed, the host must first  
clear all set fault flags in the OCC_STATUS register. Only after all fault flags in the OCC_STATUS register are  
cleared to 1b can the host clear the OCC_FAULTn flag by writing 1b.  
The ADS131B23 allows additional masking of the four fault flags located in the OCC_STATUS register from  
triggering the combined OCC_FAULTn flag in the STATUS_MSB register. The masking bits are located in the  
OCC_FAULT_MASK register. In case a fault flag in the OCC_STATUS register is masked, then a fault indicated  
by this masked fault flag does not trigger the OCC_FAULTn flag in the STATUS_MSB register. However the fault  
is still indicated by the fault flag in the OCC_STATUS register.  
8.3.8.15.1 OCCA and OCCB Pins  
Each comparator can be configured to drive a dedicated overcurrent comparator fault pin (OCCA and OCCB  
pins) for fast overcurrent indication without SPI communication. To configure GPIO3/OCCA for overcurrent  
comparator output, set GPIO3_DIR = 1b for digital output function and GPIO3_SRC = 0b for OCCA output.  
Equivalently, set GPIO4_DIR = 1b and GPIO4_SRC = 0b to configure GPIO4/OCCB for overcurrent comparator  
B output.  
The OCCy pins indicate a fault when either the OCCy_HTn or OCCy_LTn bits, or both set to 0b. The mask bits  
in the OCC_FAULT_MASK register do not affect the output of the OCCy pins.  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The actual output signal of the OCCy pins when active or inactive is configured in the same way as the FAULT  
pin. Use the GPIO3_FMT and OCCA_POL bits to configure the output behavior of the OCCA pin, and the  
GPIO4_FMT and OCCB_POL bits to configure the OCCB pin behavior.  
8.3.8.15.2 Overcurrent Indication Response Time  
The fault indication response time to an overcurrent event depends on the amount of overshoot of the input  
signal beyond the comparator threshold. The reason for this dependency is the settling time of the sinc3 filter  
that is used for the digital comparator function.  
8-14 and 8-15 show two examples for the OCCA fault indication behavior with OCCA_NUM[4:0] = 00000b,  
that is only one conversion must exceed the threshold to trigger a fault. In 8-14 the comparator triggers in less  
than 64/fMOD (= 15.6 μs when using fMCLK = 8.192 MHz) because the sinc3 filter already settles to a value  
above the set high threshold in one conversion due to the large overshoot beyond the high threshold on the  
input signal. 8-15 shows a worst case scenario where the sinc3 filter needs even four conversion periods to  
settle to a value above the set high threshold because the input signal barely exceeds the high threshold and the  
overcurrent event happens in the middle of a fast filter conversion cycle.  
VCPA – VCNA  
OCCA High Threshold  
OCCA Sinc3  
Filter Output  
OCCA High Threshold  
Sinc3 Filter  
Conversion Period  
64/fMOD  
OCCA_HTn  
Status Flag  
Response  
Time  
8-14. OCCA Behavior With Large Input Overshoot  
OCCA High Threshold  
VCPA – VCNA  
OCCA High Threshold  
OCCA Sinc3  
Filter Output  
Sinc3 Filter  
Conversion Period  
64/fMOD  
OCCA_HTn  
Status Flag  
Response Time  
8-15. OCCA Behavior With Small Input Overshoot  
The response time changes when global-chop mode of ADC1y is enabled and ADC1y is converting. See the  
Overcurrent Indication Response Time in Global-Chop Mode section for details.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.16 Missing Host Detection and MHD Pin  
The ADS131B23 offers a missing host detection (MHD) monitor that detects when the host is not communicating  
with the device anymore. A watchdog timer checks the time between two SPI frames with valid commands  
including valid CRCs. If a valid command with a valid CRC is not received within the watchdog time window, the  
host is considered missing. There is no monitor fault flag that indicates a missing host, only the MHD pin is used  
to detect this fault.  
To use the missing host detection mode, configure the GPIO0/MHD pin as output (GPIO0_DIR = 1b) and the  
GPIO0 source for missing host detection mode (GPIO0_SRC = 0b). When the watchdog times out, the MHD pin  
is set active. Enable the missing host detection mode by setting the MHD_CFG[1:0] bits to one of the three  
available watchdog timeout windows. To reset the MHD output after a missing host was detected, disable the  
missing host detection mode by setting MHD_CFG = 00b.  
The actual output signal of the MHD pin when active or inactive depends on the GPIO0 format (GPIO0_FMT bit)  
and MHD pin polarity (MHD_POL bit) configuration. See the respective bit descriptions and the General-Purpose  
Digital Inputs and Outputs (GPIO0 to GPIO4) section for details. 8-20 shows an example where the MHD pin  
is configured for a static low signal in an active state, and a static high signal in an inactive state. The pin can for  
example also be configured for a static low signal in an active state, and a PWM output signal with 50% duty  
cycle in an inactive state to act as some sort of heart beat signal as long as the device detects a valid host.  
8-20. MHD Pin Output Behavior Configuration Example  
REGISTER BIT  
GPIO0_DIR  
GPIO0_SRC  
GPIO0_FMT  
MHD_POL  
BIT SETTING  
DESCRIPTION  
1b  
0b  
0b  
0b  
GPIO0/MHD pin configured as digital output  
MHD selected as data source for GPIO0/MHD pin  
GPIO0/MHD pin configured for static output levels  
MHD output is active low  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Power-Up and Reset  
The ADS131B23 is reset in one three ways:  
Power-on reset (POR)  
RESETn pin (hardware reset)  
RESET command (software reset)  
After a reset occurs, the user registers reset to the respective default settings and the device is in active mode.  
All ADCs are enabled, but no conversions are started. With all three reset options, a low-to-high transition on the  
DRDYn pin indicates that the SPI interface is ready for communication. The device ignores any SPI  
communication before this point and SDO stays low.  
8.4.1.1 Power-On Reset (POR)  
Power-on reset (POR) is the reset that occurs when valid supply voltages are first applied to the device. The  
POR process requires tPOR to complete from when the supply voltages reach 90% of the nominal value to allow  
for the internal circuitry to power up. The DRDYn pin transitions from low to high immediately after tPOR  
,
indicating the SPI interface is ready for communication.  
8.4.1.2 RESETn Pin  
The RESETn pin is an active low pin with an internal pulldown resistor to DGND. The device resets if the pin is  
held low for longer than tw(RSL) and maintains a reset state until the RESETn pin is returned high. The host must  
actively drive the pin high for the device to operate. Wait for at least tREGACQ after the RESETn pin is brought  
high or for the DRDYn rising edge before communicating with the device.  
8.4.1.3 RESET Command  
The ADS131B23 can be reset with the SPI RESET command. See the RESET section for details. A device reset  
occurs immediately after the RESET command is latched. The host must wait for at least tREGACQ or for the  
DRDYn rising edge before communicating with the device.  
8.4.2 Operating Modes  
The ADS131B23 offers three operating modes: active, standby, and power-down mode. The mode is  
programmable using the OP_MODE[1:0] bits. 8-16 shows how the device transitions between the different  
operating modes.  
OP_MODE[1:0] = 1xb  
OP_MODE[1:0] = 01b  
OP_MODE[1:0] = 00b  
OP_MODE[1:0] = 1xb  
OP_MODE[1:0] = 01b  
Power-up  
or  
Reset  
Active  
Mode  
Standby  
Mode  
Power-down  
Mode  
OP_MODE[1:0] = 00b  
8-16. Operating Mode State Diagram  
8.4.2.1 Active Mode  
Active mode is the default operating mode after power-up or reset. In active mode all internal circuitry is powered  
up. By default all ADCs are enabled, but no conversions are started. The individual ADCs can be enabled or  
disabled using the respective ADCxy_EN bits. ADC conversions can only be started in active mode and when  
the respective ADC is enabled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.2.2 Standby Mode  
In standby mode all internal circuitry is powered up, but all ADCs are disabled and ongoing conversions are  
stopped immediately irrespective of the ADCxy_EN bit settings. No ADC conversions can be started in standby  
mode. Transition the device to standby mode before changing the main clock source using the CLK_SOURCE  
bit to prevent clock glitching during the clock switchover.  
8.4.2.3 Power-Down Mode  
In power-down mode, all nonessential internal circuitry (such as the ADCs, voltage references, and oscillators) is  
powered down. The LDOs and POR circuitry stay active. Register settings are retained in power-down mode. All  
ADCs are disabled and ongoing conversions are stopped immediately irrespective of the ADCxy_EN bit settings.  
No conversions can be started in power-down mode. When transitioning to active mode, wait for the voltage  
reference start-up time before starting any conversions to allow the voltage references to power up.  
8.4.3 ADC Conversion Modes  
8.4.3.1 ADC1y Conversion Modes  
The ADS131B23 offers two conversion modes for ADCs ADC1y: continuous-conversion and single-shot  
conversion mode.  
The CONV_MODE1A bit selects the conversion mode for ADC1y.  
Do not change the contents of the following registers while conversions on ADC1y are ongoing: ADC1y_CFG,  
ADC1y_OCAL_MSB, ADC1y_OCAL_LSB, and ADC1y_GCAL. Stop conversions or disable ADC1y before  
making changes to these registers.  
8.4.3.1.1 Continuous-Conversion Mode  
In continuous-conversion mode, ADC1y converts indefinitely until stopped by the host. Set the respective  
STARTy bits in the CONVERSION_CTRL register to start conversions of the enabled ADC, ADC1y. Conversions  
on ADC1A and ADC1B can be started at different times using the respective STARTA and STARTB bits. Setting  
the STARTy bit while conversions are ongoing on an ADC aborts the ongoing conversion and restarts  
conversions. Use the STOPy bits to stop conversions of the enabled ADC, ADC1y. The currently ongoing  
conversion is allowed to finish after the STOPy bit is set and the digital filter is held in reset thereafter. After  
setting the STOPy bits, the STOPy bits read back 1b until conversions are stopped.  
The STARTy bits take priority over the STOPy bits. That means if both the STARTy and STOPy bits in the  
CONVERSION_CTRL register are set at the same time, then conversions are started or ongoing conversions  
are aborted and new conversions are started.  
The last conversion result of an ADC is still available for readout after conversions are stopped. The conversion  
results of an ADC are only cleared after a device reset, when the ADC is disabled, when the device is in standby  
or power-down mode, or are overwritten when a new conversion result becomes available.  
The STARTy bits take effect and conversions start at the last SCLK falling edge of the register data CRC word  
within the SPI frame where the CONVERSION_CTRL register is written. See the Serial Interface Communication  
Structure section for details on the SPI frame of a register write command.  
Setting the STARTy bit drives the DRDYn pin high in case DRDYn was low, however the old conversion data can  
still be read until the new conversions become available.  
ADC1y use a sinc3 digital filter that requires three conversion periods to settle. When conversions are started or  
restarted using the STARTy bits, the device hides the first two unsettled conversions and only provides a settled  
conversion result after the third conversion period. Use 方程式 18 to calculate the time until the first conversion  
after a conversion start is available. All subsequent conversions have a conversion period, as illustrated in 图  
8-17, of tDATA = 1/fDATA = OSR / fMOD  
.
tSETTLE = (3 × OSR + 44) × tMOD  
(18)  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Start of  
new conversions  
DRDYn  
tSETTLE  
tDATA  
tDATA  
8-17. Sinc3 Filter Settling Time and Conversion Period  
The ADC does not detect when a sudden step change on the analog input occurs while the ADC is continuously  
converting. Therefore, the ADC continues to output conversion data at the programmed output data rate. If the  
step change occurs concurrently with the start of a new conversion period, then settled data are output three  
conversion periods after the step change. However, the sinc3 filter takes four conversion periods to provide  
settled data, as shown in 8-18, if the step change occurs in the middle of a conversion period.  
Analog Input  
Fully Settled Data  
ADC Output  
DRDYn  
tDATA  
8-18. SINC3 Filter Behavior During Input Step Change  
8.4.3.1.2 Single-Shot Conversion Mode  
In single-shot conversion mode, ADC ADC1y performs one single conversion after the STARTy bit is set. Setting  
the STARTy bit while a conversion is ongoing on an ADC aborts the ongoing conversion and restarts a single  
new conversion. The STOPy bits have no effect in single-shot conversion mode.  
Equivalent to continuous-conversion mode, the STARTy bits take effect and conversions start at the last SCLK  
falling edge of the register data CRC word within the SPI frame where the CONVERSION_CTRL register is  
written.  
Every conversion in single-shot conversion mode is available after the first-conversion settling time as calculated  
by 方程式 18. If an input step change occurs during the conversion process, the conversion result is not fully  
settled. Another subsequent single-shot conversion is required in that case to output a settled conversion result.  
8.4.3.1.3 Global-Chop Mode  
The signal chain of ADC1y uses a very low-drift, chopper-stabilized PGA and ΣΔ-modulator to provide very low  
offset error and offset drift. However, a small amount of offset drift remains in normal measurement. For that  
reason, the ADC1y signal chain incorporates an optional global-chop mode to reduce offset error and offset drift  
over both temperature and time to exceptionally low levels. When the global-chop mode is enabled by setting  
the GC1y_EN bit, ADC1y performs two consecutive conversions with alternate input signal polarity to cancel  
offset error. The first conversion is taken with normal input polarity. The global-chop control logic inverts the input  
polarity and resets the digital filter for the second conversion. The average of the two conversions yields the final  
corrected result, removing the offset voltage. 8-19 illustrates a block diagram of the ADC1y global-chop  
implementation. VOFS models the combined PGA and ADC1y internal offset voltage. Only this device-inherent  
offset voltage is reduced by global-chop mode. Offset in the external circuitry connected to the analog inputs is  
not affected by global-chop mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Global-chop Switches  
within MUX1y  
VOFS  
CPA  
Global-  
chop  
Control  
Digital  
Filter  
Calibration  
Logic  
PGA  
ADC1y  
CNA  
8-19. ADC1y Global-Chop Mode Control Diagram  
The operational sequence of global-chop mode is as follows:  
Conversion C1: VCPA VCNA VOFS First conversion withheld after conversion start  
Conversion C2: VCNA VCPA VOFS Output 1 = (VC1 VC2) / 2 = VCPA VCNA  
Conversion C3: VCPA VCNA VOFS Output 2 = (VC3 VC2) / 2 = VCPA VCNA  
...  
The first conversion result (Output 1) after a conversion start is available after ADC1y takes two settled  
conversions. Because of the sinc3 filter, data of one conversion settles in three conversions cycles. 方程式 19  
calculates the time required to output the first conversion result after a conversion start.  
In continuous-conversion mode with the global-chop mode enabled, subsequent conversions complete in  
t
GC_DATA, as calculated by 方程式 20 and shown in 8-20. That means the data rate in global-chop mode is  
approximately 1/3rd the data rate in normal mode.  
tGC_SETTLE = 2 × (tGC1y_DELAY + 3 × OSR × tMOD) + 44 tMOD  
(19)  
(20)  
tGC_DATA = tGC1y_DELAY + 3 × OSR × tMOD  
,
Before starting conversions after the input polarity is inverted, ADC1y waits the global-chop delay time,  
GC1y_DELAY[2:0], to allow for the internal circuitry to settle. In some cases, the programmable global-chop  
delay time must be increased to allow for settling of external components.  
Global-chop delay  
Modulator sampling  
Conversion  
start  
Data not  
settled  
Data not  
settled  
Swap inputs,  
digital filter reset  
Data not  
settled  
Data not  
settled  
Output 1  
Output 2  
Sampling  
C1  
Sampling  
C1  
Sampling  
C1  
Sampling  
C2  
Sampling  
C2  
Sampling  
C2  
Sampling  
C3  
Sampling  
C3  
Sampling  
C3  
Sampling  
C4  
Sampling  
C4  
tDATA  
DRDYn  
tGC_SETTLE  
tGC_DATA  
8-20. Sinc3 Filter Settling Time and Conversion Period in Global-Chop Mode  
Global-chop mode reduces the ADC1y noise by a factor of 2 because two conversions are averaged. Divide  
the input-referred noise values in 7-1 by 2 to derive the noise performance when global-chop mode is  
enabled.  
The notches of the sinc3 filter in 8-3 do not change in global-chop mode. However, additional filter notches  
appear at multiples of fGC_DATA / 2.  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.3.1.3.1 Overcurrent Indication Response Time in Global-Chop Mode  
Enabling global-chop mode of ADC1y changes the overcurrent detection behavior of OCCy when ADC1y is  
converting. The OCCy digital fast filter resets each time ADC1y inverts the polarity of the analog inputs. After  
every fast filter reset, the device ignores the first two conversions of the OCCy filter because these conversions  
are unsettled. The device does not increment the OCCy_NUM counter for these two conversions. Depending on  
the OCCy_NUM and OSR1y settings, the overcurrent indication response time in global-chop mode can  
therefore be longer compared to when global-chop mode is disabled. The difference in response time is most  
noticeable when using large OCCy_NUM and small OSR1y settings.  
8-21 shows an example of the OCCy behavior with OSR1y = 32. The OCCy DRDYn signal indicates when  
conversion of the OCCy fast filter completes. This signal is internal only and is not accessible by the host. In this  
specific example, the OCCy_NUM counter only manages to increment four times per ADC1y data period. If  
OCCy_NUM = 8, then the OCCy fast filter resets two times before the OCCy_NUM counter reaches 8. The  
approximate overcurrent indication response time is calculated as (8 + (2 × 2)) × 64/fMOD = 12 × 64/fMOD  
.
First two conversions  
OCCy digital  
filter resets.  
after OCCy digital filter  
reset are ignored.  
64/fMOD  
OCCy DRDYn (internal)  
OCCy_NUM Count  
...  
1
2
3
4
5
6
7
8
tGC_DATA  
32/fMOD  
ADC1y DRDYn  
...  
Overcurrent event  
occurrence  
ADC1y input polarity changes,  
ADC1y digital filter resets.  
Internally hidden conversions  
of ADC1y digital filter.  
8-21. Overcurrent Detection Behavior with Global-Chop Mode Enabled (ADC1y OSR = 32)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.3.2 ADC2y Sequencer Operation and Sequence Modes  
In contrast to ADC1y, conversions on ADC2y are controlled by means of a channel sequencer. 8-22 depicts a  
flow chart of the sequencer operation. The ADC2y sequencer has up to 16 sequence steps that are individually  
enabled or disabled using the SEQ2y_STEPn_EN bits (n = 0 to 15). Each sequence step corresponds to one  
single conversion of ADC2y, which means up to 16 different measurements can be taken in one sequence run.  
The SEQ2y_STEPn_CFG registers configure the PGA gain, and the positive and negative input for the PGA for  
every sequence step. When a sequence is started, the sequencer steps through all enabled sequence steps,  
always starting with step 0. The sequencer ignores sequence steps that are disabled. One conversion is taken  
by ADC2y in each step before the sequencer configures ADC2y for the next step in the sequence. After the  
sequencer configures ADC2y for the next sequence step, the sequencer adds a programmable delay before  
starting the conversion to allow for settling of the input signal. The MUX2y_DELAY[2:0] bits select the delay time  
globally for all sequence steps. The time required to complete a sequence is given by 方程21:  
tSEQ = N × (tMUX_DELAY + tCONVERSION  
)
(21)  
where:  
N is the number of enabled steps  
tMUX_DELAY is the multiplexer delay time  
tCONVERSION is the conversion time of ADC2y  
While a sequence is ongoing, the SEQ2y_ACTIVE bit is set in the STATUS register.  
Do not make any changes to registers in the address range from 0x8C to 0x9F while ADC2A is enabled. Follow  
the following procedure to configure and start the sequencer to avoid false sequencer starts:  
1. Disable ADC2y by setting ADC2y_EN = 0b, or alternatively put the device into standby mode  
2. Configure the ADC2y sequencer register bits  
3. Enable ADC2y by setting ADC2y_EN = 1b, or alternatively put the device back into active mode  
4. Start the sequence by setting the SEQ2y_START bit  
Setting the SEQ2y_START bit while ADC2y is disabled does not start a sequence.  
Conversion data for the sequence steps of ADC2y are 16 bits and (in contrast to ADC1y conversion data) are  
stored in the user register space (register addresses 10h to 1Fh). The conversion data for sequence step n are  
stored in the corresponding SEQ2y_STEPn_DATA register. Conversion data for a sequence step that is disabled  
are set to 0000h. Read ADC2y conversion data using the register read command.  
The conversion data of all SEQ2y_STEPn_DATA registers only update when a sequence run of ADC2y  
completes. While a sequence run is ongoing, the conversion data of the previous sequence run are read from  
the SEQ2y_STEPn_DATA registers. There is no data corruption or mix of data from two different sequence runs,  
even when a sequence completes while the SEQ2y_STEPn_DATA registers are read.  
The ADC2y sequencer offers three sequence modes:  
Continuous sequence mode  
Single-shot sequence mode  
Synchronized single-shot sequence mode based on ADC1y conversion starts  
The SEQ2y_MODE[1:0] bits select the sequence mode for ADC2y.  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
No  
Bit  
SEQ2y_START  
= 1b ?  
Yes  
Start Sequence  
Configure ADC2y  
based on  
SEQ2y_STEP0_CFG  
register settings  
Yes  
Wait  
Store conversion data for  
Start ADC2y  
conversion  
Step 0  
enabled?  
MUX2y_DELAY[2:0]  
time  
step 0 in shadow register  
after conversion completed  
No  
Configure ADC2y  
based on  
SEQ2y_STEP1_CFG  
register settings  
Yes  
Wait  
MUX2y_DELAY[2:0]  
time  
Store conversion data for  
step 1 in shadow register  
after conversion completed  
Step 1  
enabled?  
Start ADC2y  
conversion  
No  
Configure ADC2y  
based on  
SEQ2y_STEP15_CFG  
register settings  
Yes  
Wait  
MUX2y_DELAY[2:0]  
time  
Store conversion data for  
step 15 in shadow register  
after conversion completed  
Step 15  
enabled?  
Start ADC2y  
conversion  
No  
Any of the  
Yes  
SEQ2y_STEPn_DATA  
registers currently  
output on SDO?  
This process runs in the background. It does not prevent  
the sequencer from starting a new sequence run.  
No  
Copy all conversion data from  
shadow registers to  
Data from disabled steps are set to 0000h.  
SEQ2y_STEPn_DATA registers  
Increment sequence counter  
SEQ2y_COUNT[1:0]  
No  
Yes  
Bit  
Continuous  
Sequence Mode?  
SEQ2y_STOP  
= 1b ?  
Yes  
No  
Stop Sequence  
8-22. ADC2y Sequencer Flow Chart  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.3.2.1 Continuous Sequence Mode  
In continuous sequence mode, the ADC2y sequencer runs through the configured sequence over and over  
again until stopped by the host. Set the respective SEQ2y_START bit in the CONVERSION_CTRL register to  
start the sequencer of ADC2y. Setting the SEQ2y_START bit while the sequencer is running aborts the ongoing  
sequence run and restarts a new sequence run from the beginning. Use the SEQ2y_STOP bit to stop the  
sequencer of ADC2y. The currently ongoing sequence run is allowed to finish after the SEQ2y_STOP bit is set.  
After setting the SEQ2y_STOP bit, the SEQ2y_STOP bit reads back 1b until the sequencer stopped. Disabling  
ADC2y or putting the device into standby or power-down mode aborts the sequence run immediately.  
The SEQ2y_START bits take priority over the SEQ2y_STOP bits. That means if both the SEQ2y_START and  
SEQ2y_STOP bits in the CONVERSION_CTRL register are set at the same time, then the sequencer starts a  
sequence run or aborts an ongoing sequence run and starts a new sequence run from the beginning.  
The last conversion results of an ADC2y sequence run are still available for readout after the sequencer  
stopped. The conversion results of the sequencer are only cleared to 0000h after a device reset, when the ADC  
is disabled, when the device is in standby or power-down mode, or are overwritten when conversion results from  
a new sequence run become available.  
8.4.3.2.2 Single-Shot Sequence Mode  
In single-shot sequence mode the ADC2y sequencer runs through the configured sequence one time after the  
SEQ2y_START bit is set. Setting the SEQ2y_START bit while a sequence is ongoing aborts the ongoing  
sequence and restarts a single new sequence run from the beginning. The SEQ2y_STOP bit has no effect in  
single-shot sequence mode.  
8.4.3.2.3 Synchronized Single-Shot Sequence Mode Based on ADC1y Conversion Starts  
The synchronized sequence mode allows the sequence starts of ADC2A to be synchronized with the conversion  
starts of ADC1A. In this mode a single sequence run is started on ADC2y whenever a new conversion on  
ADC1y starts. However, an ongoing sequence run on ADC2y does not abort and restart when a new conversion  
on ADC1y starts. This means a single new sequence run on ADC2y is only triggered by ADC1y when no  
sequence is currently ongoing.  
Start the ADC2y sequencer initially by setting the SEQ2y_START bit.  
The synchronized single-shot sequence mode is only useful when ADC1y is configured for continuous-  
conversion mode. When ADC1y is configured for single-shot conversion mode, synchronize conversions of  
ADC1y and sequence starts of ADC2y by setting the STARTy and SEQy_START bits at the same time.  
8-23 shows an example of how ADC1A conversions and ADC2A sequence starts are synchronized. The  
falling edge of the internally generated DRDYAn signal in 8-23 indicates when new ADC1A conversions  
results are available and a new ADC1A conversion starts.  
ADC1A STARTA bit set.  
ADC2A SEQ2A_START bit set.  
New ADC2A sequence starts at  
ADC1A DRDYAn falling edge  
No new ADC2A sequence starts  
because a sequence is ongoing  
Internal DRDYAn  
Conversion 1  
(unsettled)  
Conversion 2  
(unsettled)  
Conversion 3  
(settled)  
Conversion 4  
(settled)  
Conversion 5  
(settled)  
Conversion 6  
(settled)  
Conversion 7  
(settled)  
ADC1A  
ADC2A  
Sequence 1  
Sequence 2  
Sequence 3  
8-23. Synchronizing ADC1A Conversions and ADC2A Sequence Starts  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5 Programming  
8.5.1 Serial Interface  
The ADS131B23 uses an SPI-compatible interface to configure the device and retrieve conversion data. The  
device always acts as an SPI peripheral; SCLK and CSn are inputs to the interface. The interface operates in  
SPI mode 1 where CPOL = 0 and CPHA = 1. In SPI mode 1, SCLK idles low and data are launched or changed  
only on SCLK rising edges; data are latched or read by the controller and peripheral on SCLK falling edges. The  
interface is full-duplex, meaning data can be sent and received simultaneously by the interface. The device  
includes the typical SPI signals: CSn, SCLK, SDI, and SDO. In addition, the DRDYn pin serves as a flag to the  
host to indicate new conversion data are available.  
8.5.1.1 Serial Interface Signals  
8.5.1.1.1 Chip Select (CSn)  
The CSn pin is an active low input signal that selects the device for communication. The device ignores any  
communication and SDO is high impedance when CSn is held high. Hold CSn low for the duration of a  
communication frame to ensure proper communication. The interface is reset each time CSn is taken high.  
8.5.1.1.2 Serial Data Clock (SCLK)  
The SCLK pin is an input that serves as the serial clock for the interface. Output data on SDO transition on the  
rising edge of SCLK and input data on SDI are latched on the falling edge of SCLK.  
8.5.1.1.3 Serial Data Input (SDI)  
The SDI pin is the serial data input pin for the device. Serial commands are shifted in through the SDI pin by the  
device with each SCLK falling edge when the CSn pin is low.  
8.5.1.1.4 Serial Data Output (SDO)  
The SDO pin is the serial data output pin for the device. The device shifts out data serially with each rising SCLK  
edge when the CSn pin is low. This pin assumes a high-impedance state when CSn is high. When CSn  
transitions low, the SDO pin drives low.  
SDO stays at the level of the last bit sent if the host does not send any extra SCLK pulses after the last data is  
shifted out on SDO. If the host sends additional SCLK pulses after the last data is shifted out, then SDO drives  
low. 8-24 and 8-25 show timing diagrams of the SDO behavior both without and with additional SCLK  
pulses, respectively.  
CSn  
SCLK  
SDO  
CSn  
SCLK  
SDO  
LSB  
LSB  
8-24. SDO Behavior Without Additional SCLK  
8-25. SDO Behavior With Additional SCLK  
Pulses  
Pulses  
8.5.1.1.5 Data Ready (DRDYn)  
The DRDYn pin is an active-low, push-pull output. A DRDYn falling edge indicates when new conversion data of  
ADC1A or ADC1B are available for readout. The DRDY_CTRL bit selects which ADC drives the DRDYn signal,  
either ADC1A or ADC1B. If the host starts ADC1A and ADC1B conversions at the same time by setting both the  
STARTA and STARTB bits during the same CONVERSION_CTRL register write, conversions of both ADCs  
complete at the same time. The period between DRDYn falling edges is the data rate period of the ADC that  
controls the DRDYn pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
During device power-up or while the device is held in reset, the DRDYn pin drives low. As shown in 8-26 and  
8-27, the DRDYn pin drives high after the POR is released and the device is ready for communication.  
POR reset time (tPOR  
)
90%  
Supplies  
CSn  
SDI  
COMMAND  
STATUS  
Command CRC  
ADC1A Data  
SDO  
High-Z  
ADC1B Data  
DRDYn  
DRDYn transitions high to indicate  
device is ready for communication.  
Conversion data are all zeros in the first  
frame following a device reset.  
RESETn bit in STATUS register sets to 0b.  
All counters reset.  
COMMAND_RESPONSE[3:0] indicates that  
this is the first frame after power-up or reset  
and that a NULL command is executed.  
8-26. DRDYn Pin Behavior After POR  
Reset is released here  
Device reset happens here  
Reset time (tREGACQ  
)
RESETn  
CSn  
SDI  
COMMAND  
STATUS  
Command CRC  
SDO  
High-Z  
ADC1A Data  
ADC1B Data  
DRDYn  
DRDYn transitions high to indicate  
device is ready for communication.  
Conversion data are all zeros in the first  
frame following a device reset.  
RESETn bit in STATUS register sets to 0b.  
All counters reset.  
COMMAND_RESPONSE[3:0] indicates that  
this is the first frame after power-up or reset  
and that a NULL command is executed.  
8-27. DRDYn Pin Behavior After Device Reset  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2 Serial Interface Communication Structure  
8.5.1.2.1 SPI Communication Frames  
SPI communication on the ADS131B23 is performed in frames. Each SPI communication frame starts with a  
CSn falling edge, consists of several words, and ends with a CSn rising edge. The interface is full duplex,  
meaning that the interface is capable of transmitting data on SDO while simultaneously receiving data on SDI. 图  
8-28 provides an overview of the general SPI frame structure and frame length for the various commands.  
The input frame that the host sends on SDI always begins with a command word followed by a command CRC  
word. The first word on the output frame that the device transmits on SDO always begins with the STATUS word.  
The number of words in a frame depends on the command provided. See the Commands section for a list of all  
valid commands on the ADS131B23.  
For the NULL, RESET, LOCK, UNLOCK, and RREG commands there are four words in a frame. On SDI, the  
host provides the command, the command CRC, and two additional words of zeros. Simultaneously on SDO, the  
device outputs the STATUS word, two words of ADC data (representing the data from ADC1A and ADC1B), and  
an output CRC word. 8-28 shows a typical communication frame structure. In the remaining sections of this  
document the SCLK signal is omitted in the figures for clarity.  
CSn  
SCLK  
SDI  
NULL  
Command CRC  
ADC1A Data  
SDO  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
High-Z  
8-28. Typical Communication Frame  
In the case of a write register (WREG) command where more than one register is written, the frame extends to  
accommodate the additional data. See the WREG section for more details on the WREG command.  
In the case of a read register (RREG) command the response to the command in the following frame contains  
the STATUS word followed by the register data requested, which can require a shorter or longer frame  
depending on how many registers are read. See the RREG section for more details on the RREG command.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.2 SPI Communication Words  
An SPI communication frame of the ADS131B23 is made of multiple words. The word size is configurable as  
either 24 bits, or 32 bits using the WORD_LENGTH bit in the DEVICE_CFG register. The content within each  
word is always most significant bit (MSB) aligned and least significant bit (LSB) padded with zeros to  
accommodate 24-bit or 32-bit word sizes. 8-21 provides an overview of all available word types and the actual  
unpadded data length of the respective content.  
8-21. Unpadded Data Length of Individual Word Types  
DIRECTION  
SDI  
WORD TYPE  
UNPADDED DATA LENGTH  
Command  
16 bits  
SDI  
Command CRC  
16 bits  
SDI  
Register data for WREG command  
Register data CRC for WREG command  
STATUS  
16 bits  
SDI  
16 bits  
SDO  
SDO  
SDO  
SDO  
24 bits  
ADC1A and ADC1B conversion data  
Register data for RREG command  
Output CRC  
24 bits  
16 bits register data + 8 bits register address  
16 bits  
8-29 and 8-30 show the bit alignments and zero padding within the individual words for a WREG and  
RREG command, respectively.  
CSn  
SDI  
WREG  
Command CRC  
REG Data 0  
Register Data CRC  
Output CRC  
23  
23  
8
8
0
0
23  
23  
8
0
0
23  
23  
8
0
0
23  
8
8
0
0
SDO  
STATUS  
ADC1A Data  
ADC1B Data  
23  
8-29. Bit Alignment, 24-Bit Word Size, WREG Command  
CSn  
SDI  
RREG  
Command CRC  
23  
23  
8
8
0
0
23  
23  
8
0
0
SDO  
STATUS  
ADC1A Data  
ADC1B Data  
Output CRC  
23  
0
23  
8
0
CSn  
SDI  
NULL  
Command CRC  
23  
23  
8
0
0
23  
23  
8
8
0
0
SDO  
STATUS  
REG Data n  
ADDR  
REG Data n+1  
ADDR  
Output CRC  
23  
8
0
23  
8
0
8-30. Bit Alignment, 24-Bit Word Size, RREG Command  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.3 STATUS Word  
The ADS131B23 outputs a STATUS word as the first word in every frame on SDO. The 24-bit STATUS word is a  
concatenation of the STATUS_MSB[15:0] and STATUS_LSB[15:8] register bits. Fault flags, status flags, ADC1A  
and ADC1B conversion counters, ADC2A sequence counters, and the command response are all part of these  
bits. See the respective register bit descriptions in the 8.6.1 section for details.  
Communication-related fault flags, such as the SPI_CRC_FAULTn, SPI_TIMEOUTn,  
SCLK_COUNT_FAULTn, and REG_ACCESS_FAULTn flags, always indicate faults that occurred in the  
previous SPI frame. These fault flags clear automatically for the next SPI frame.  
All other device-related fault and status flags indicate the state of the device at the instance of the start of the  
current SPI frame.  
All fault flags, except for the communication related fault flags mentioned above, are latching. That means,  
these fault flags do not reset automatically to 1b when the fault condition is removed and must be cleared by  
the host.  
The command response indicates which command was received by the device in the previous SPI frame and  
was executed.  
The conversion and sequence counters indicate the count of the data which is output in the current SPI  
frame.  
8.5.1.2.4 Communication Cyclic Redundancy Check (CRC)  
The ADS131B23 features a cyclic redundancy check (CRC) engine on both input and output data to detect SPI  
communication errors. Overall there are three different CRCs that are all 16 bits wide:  
On SDI: Command CRC and, in case of a WREG command, a register data CRC  
On SDO: Output CRC  
The command CRC covers the command word(that is, the first word on SDI in every frame). The WREG  
command is a special case that requires an additional register data CRC. The register data CRC covers the  
register data words transmitted after the command CRC word. The output CRC covers all words on SDO  
preceding the output CRC word. The CRCs also cover all zero-padded bits.  
The device checks the provided command CRC, and (in case of a WREG command) the register data CRC  
against the internally calculated CRCs based on the received input data. A CRC error occurs if the CRC words  
do not match. The device does not execute any commands if the command CRC or register data CRC checks  
fail. The device sets the SPI_CRC_FAULTn bit in the STATUS_MSB register for all cases of a CRC error on the  
input data.  
The response on the output in the SPI frame following a frame where a CRC error occurred is that of a NULL  
command, which means the STATUS word plus the conversion data for ADC1A and ADC1B are output in the  
following SPI frame. The SPI_CRC_FAULTn bit is output as part of the STATUS word to provide immediate  
indication that a CRC error occurred in the previous frame. The SPI_CRC_FAULTn bit clears automatically in the  
next SPI frame.  
There are two types of CRC polynomials available: CCITT CRC and ANSI CRC (CRC-16). The CRC polynomial  
setting determines the algorithm for all three CRCs. The CRC type is programmed using the CRC_TYPE bit. 表  
8-22 lists the details of the two CRC types.  
The CRC calculation is initialized with the seed value of FFFFh to detect errors in the event that SDI or SDO are  
stuck low.  
8-22. CRC Types  
CRC TYPE  
CCITT CRC  
ANSI CRC  
POLYNOMIAL  
x16 + x12 + x5 + 1  
x16 + x15 + x2 + 1  
BINARY POLYNOMIAL  
0001 0000 0010 0001  
1000 0000 0000 0101  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.5 Commands  
8-23 contains a list of all valid commands, a short description of the command functionality, and the binary  
command word.  
8-23. Command Definitions  
COMMAND  
NULL  
DESCRIPTION  
COMMAND WORD  
0000 0000 0000 0000b  
0000 0000 0001 0001b  
No operation  
RESET  
Reset the device  
Lock the interface such that only the NULL, UNLOCK, and RREG  
commands are valid  
LOCK  
0000 0101 0101 0101b  
UNLOCK  
WREG  
RREG  
Unlock the interface after the interface is locked  
0000 0110 0101 0101b  
011a aaaa aaa0 0nnnb  
101a aaaa aaan nnnnb  
Write nnn plus 1 registers beginning at address a aaaa aaa  
Read n nnnn plus 1 registers beginning at address a aaaa aaa  
8.5.1.2.5.1 NULL (0000 0000 0000 0000b)  
The NULL command is the no-operation command that results in no registers being read or written, and the  
state of the device remains unchanged. The intended use case for the NULL command is to read out conversion  
data for ADC1A and ADC1B.  
The command response in the next frame indicates if an error occurred during the transmission of the NULL  
command frame. However, a NULL command is executed regardless if an error occurred or not.  
8-31 shows a typical NULL command frame where no faults occurred during the communication.  
CSn  
SDI  
NULL  
Command CRC  
ADC1A Data  
Command  
STATUS  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
ADC1B Data  
Output CRC  
COMMAND_RESPONSE[3:0] = 0001b  
indicates that a NULL command was  
received in the previous frame  
Conversion data for ADC1A and ADC1B are  
output as response to a NULL command.  
8-31. NULL Command Frame  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.5.2 RESET (0000 0000 0001 0001b)  
The RESET command resets the device and sets all user registers to the respective default values. The  
command is latched by the device at the last SCLK falling edge of the output CRC word. Terminating the frame  
before the output CRC word is shifted out on SDO causes the RESET command to be ignored. A reset occurs  
immediately after the command is latched. The DRDYn pin transitions low at the same instance. The host must  
wait for tREGACQ after reset or for the DRDYn rising edge to ensure the device completed the reset process  
before communicating with the device.  
The RESETn status bit and the command response in the next frame indicate if the RESET command executed  
successfully or if an error occurred that prevented the RESET command from executing. A NULL command is  
executed in case the RESET command did not execute.  
8-32 shows a RESET command frame where no faults occurred during the communication.  
Device reset happens at the last SCLK  
falling edge of the output CRC word.  
DRDYn transitions high to indicate  
device is ready for communication.  
CSn  
SDI  
RESET  
Command CRC  
ADC1A Data  
Command  
STATUS  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
High-Z  
ADC1B Data  
Output CRC  
DRDYn  
Reset time (tREGACQ  
)
RESETn bit in STATUS register sets to 0b.  
All counters reset.  
COMMAND_RESPONSE[3:0] = 1001b  
indicates that this is the first frame after power-up  
or reset and that a NULL command is executed.  
Conversion data for ADC1A and ADC1B  
which are all zero are output in the first  
frame following a device reset.  
8-32. RESET Command Frame  
8.5.1.2.5.3 LOCK (0000 0101 0101 0101b)  
The LOCK command locks the interface, preventing the device from accidentally latching unwanted commands  
that can change the state of the device. When the interface is locked, the device only responds to the NULL,  
RREG, and UNLOCK commands. The device continues to output conversion data even when locked.  
The LOCK status bit and the command response in the next frame indicate if the LOCK command executed  
successfully or if an error occurred that prevented the LOCK command from executing. A NULL command is  
executed in case the LOCK command did not execute.  
8-33 shows a LOCK command frame where no faults occurred during the communication.  
CSn  
SDI  
LOCK  
Command CRC  
ADC1A Data  
Command  
STATUS  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
ADC1B Data  
Output CRC  
LOCK bit in STATUS register is set.  
COMMAND_RESPONSE[3:0] = 0010b  
indicates that a LOCK command was  
received in the previous frame.  
Conversion data for ADC1A and ADC1B are  
output as response to a LOCK command.  
8-33. LOCK Command Frame  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.5.4 UNLOCK (0000 0110 0101 0101b)  
The UNLOCK command unlocks the interface if previously locked by the LOCK command.  
The LOCK status bit and the command response in the next frame indicate if the UNLOCK command executed  
successfully or if an error occurred that prevented the UNLOCK command from executing. A NULL command is  
executed in case the UNLOCK command did not execute.  
8-34 shows an UNLOCK command frame where no faults occurred during the communication.  
CSn  
SDI  
UNLOCK  
STATUS  
Command CRC  
ADC1A Data  
Command  
STATUS  
Command CRC  
ADC1A Data  
SDO  
ADC1B Data  
Output CRC  
ADC1B Data  
Output CRC  
LOCK bit in STATUS register is cleared.  
COMMAND_RESPONSE[3:0] = 0011b  
indicates that an UNLOCK command  
was received in the previous frame.  
Conversion data for ADC1A and ADC1B are  
output as response to an UNLOCK command.  
8-34. UNLOCK Command Frame  
8.5.1.2.5.5 WREG (011a aaaa aaa0 0nnnb)  
The WREG command is used to write the device registers. The binary format of the command word is 011a  
aaaa aaa0 0nnn, where a aaaa aaa is the binary address of the register to begin writing to and nnn is the  
unsigned binary number of consecutive registers to write minus one. Send the register data to be written  
immediately following the WREG command CRC word. Write the intended contents of each register into  
individual words, MSB aligned. Follow the register data words with the register data CRC word that covers the  
register data content.  
The device prevents register data writes if the command CRC or register data CRC fail. The command response  
in the next frame indicates if the WREG command executed successfully or if an error occurred that prevented  
the WREG command from executing. A NULL command is executed in case the WREG command did not  
execute.  
8-35 shows a WREG command frame for a single register write where no faults occurred during the  
communication.  
CSn  
SDI  
WREG  
Command CRC  
ADC1A Data  
REG Data 0  
ADC1B Data  
REG Data CRC  
Output CRC  
Command  
STATUS  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
COMMAND_RESPONSE[3:0] = 0110b  
indicates that a WREG command was  
received in the previous frame and the  
register data updated.  
Conversion data for ADC1A and ADC1B are  
output as response to a WREG command.  
8-35. WREG Command Frame (Single Register)  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-36 shows a WREG command frame where the number of registers to write is larger than one and,  
therefore, the frame extends beyond the regular four words.  
CSn  
SDI  
WREG  
Command CRC  
ADC1A Data  
REG Data 0  
ADC1B Data  
REG Data 1  
Output CRC  
REG Data 2  
REG Data 3  
REG Data 4  
REG Data 5  
REG Data CRC  
SDO  
STATUS  
8-36. WREG Command Frame (Six Registers)  
8.5.1.2.5.6 RREG (101a aaaa aaan nnnnb)  
RREG is used to read the device registers. The binary format of the command word is 101a aaaa aaan nnnn,  
where a aaaa aaa is the binary address of the register to begin reading from and n nnnn is the unsigned binary  
number of consecutive registers to read minus one. The device outputs the requested register data sequentially  
in order of addresses in the following frame instead of the conversion data of ADC1A and ADC1B. In case more  
than two registers are read, the frame extends beyond the regular four words.  
Send the NULL command in the frame following the RREG command frame to shift out the register data. No  
other command is accepted in the frame following the RREG command frame.  
The 16-bit register data are MSB aligned within the individual words. As shown in 8-30, the device outputs the  
respective 8-bit register address following the register data within each word for traceability. When reading from  
an invalid register address, the device responds with 0000h for the register data and 00h for the register  
address.  
The command response in the frame following the RREG command frame indicates if the RREG command  
executed successfully or if an error occurred that prevented the RREG command from executing. A NULL  
command is executed in case the RREG command did not execute.  
8-37 shows a RREG command frame where no faults occurred during the communication.  
NULL command must be sent  
in register read-back frame.  
CSn  
SDI  
RREG  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
REG Data n  
SDO  
STATUS  
ADC1B Data  
Output CRC  
STATUS  
REG Data n+1  
REG Data n+2  
...  
Output CRC  
COMMAND_RESPONSE[3:0] = 0100b  
indicates that a RREG command was  
received in the previous frame and  
register data are output in this frame.  
Up to 32 registers can be read  
within a single SPI frame.  
8-37. RREG Command Frame  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.6 SCLK Counter  
The ADS131B23 implements an SCLK counter that counts the received SCLK pulses within a frame. If the  
number of received SCLK pulses does not match the number of SCLKs to complete a specific frame, then the  
SCLK_COUNT_FAULTn flag is set in the following frame. Enable or disable the SCLK counter using the  
SCLK_COUNTER_EN bit.  
The device determines the number of SCLKs expected for a specific SPI frame at the end of the command CRC  
word. Both the expected number of words to be received on SDI and the words to be transmitted on SDO are  
considered in the SCLK count calculation. The larger of the two values determines the SCLK count for the frame.  
For example, the SCLK count in the two frames in 8-35 is (4 × NWORD_LENGTH), while in 8-36 the SCLK  
count for the frame is (9 × NWORD_LENGTH). The data word length, NWORD_LENGTH, is either 24 or 32, as  
configured by the WORD_LENGTH bit.  
Sending more SCLK pulses than required to complete a frame does not impact the SPI communication, however  
the SCLK_COUNT_FAULTn does still set in that case to indicate that too many SCLKs were received.  
Sending insufficient SCLK pulses to complete a frame does impact the SPI communication in certain situations:  
NULL command: No effect.  
RESET command: Does not execute until sufficient SCLK pulses are provided to clock out the complete  
output CRC word on SDO.  
LOCK, UNLOCK, RREG commands: Do execute if at least the command and command CRC words are  
received on SDI.  
WREG command: Does execute if at least the command, command CRC, register data, and register data  
CRC words are received on SDI.  
DRDYn pin: The DRDYn pin only transitions high after the conversion data word for ADC1B is clocked out on  
SDO. Otherwise, the device assumes the host did not receive the latest conversion data and the DRDYn pin  
stays low.  
8.5.1.2.7 SPI Timeout  
The ADS131B23 implements an SPI timeout feature that measures the time between the CSn falling and CSn  
rising edge within a frame. If the CSn rising edge does not occur within the SPI timeout period (tTIMEOUT) after  
the CSn falling edge, then the SPI_TIMEOUTn flag is set in the following frame. When a timeout occurs, the rest  
of the SPI frame on SDI is ignored before the rising edge of CSn. A new SPI transaction starts at the next CSn  
falling edge. Enable or disable the SPI timeout using the TIMEOUT_EN bit.  
If the SPI times out after a complete frame was transmitted on SDI and SDO already, then there is no impact to  
the SPI communication, however the SPI_TIMEOUTn flag does still set in that case to indicate that the CSn  
signal was held low for too long.  
If the SPI times out before a complete frame is transmitted on SDI and SDO, then there is potential impact to the  
SPI communication in certain situations:  
NULL command: No effect.  
RESET command: Does not execute until the complete output CRC word is clocked out on SDO before the  
SPI times out.  
LOCK, UNLOCK, RREG commands: Do execute if at least the command and command CRC words are  
received on SDI before the SPI times out.  
WREG command: Does execute if at least the command, command CRC, register data, and register data  
CRC words are received on SDI before the SPI times out.  
DRDYn pin: The DRDYn pin only transitions high after the conversion data word for ADC1B is clocked out on  
SDO before the SPI times out. Otherwise, the device assumes the host did not receive the latest conversion  
data and the DRDYn pin stays low.  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.8 Reading ADC1A, ADC1B, and ADC2A Conversion Data  
Conversion data from all three ADCs of the ADS131B23 can be read within two SPI frames. Conversion data for  
ADC1A and ADC1B are always output as the response to a NULL command in the following SPI frame.  
Conversion data for ADC2A must be read from the user registers using the RREG command. The conversion  
results for the various sequence steps of ADC2A are stored in consecutive register address locations starting at  
register address 10h. The RREG command allows to read up to 32 consecutive registers within one SPI frame,  
which is sufficient to read conversion data for all sequence steps of ADC2A. 8-38 shows an SPI frame  
sequence example of how to read all ADC conversion data.  
RREG command to request  
conversion data for ADC2A in next  
SPI frame.  
CSn  
SDI  
RREG  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
NULL command to request conversion  
data for ADC1A and ADC1B in next  
SPI frame.  
Conversion data for ADC1A and ADC1B  
are output as response to a NULL  
command sent in the previous frame.  
CSn  
SDI  
NULL  
Command CRC  
SDO  
STATUS  
ADC2A Data n  
...  
ADC2A Data m  
Output CRC  
Between one and 16 conversion results can  
be read from ADC2A within one SPI frame.  
8-38. Reading Conversion Data From ADC1A, ADC1B, and ADC2A Within Two SPI Frames  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5.1.2.9 DRDYn Pin Behavior  
This section provides details about the DRDYn pin behavior in various scenarios.  
DRDYn transitions low whenever new conversion data complete on ADC1A or ADC1B, depending on which  
ADC drives the DRDYn signal as configured in the DRDY_CTRL bit. If DRDYn is low when a new conversion  
completes on ADC1y, DRDYn drives high tw(DRH) before the DRDYn falling edge (see 8-40 and 8-42).  
DRDYn transitions high after the conversion data for ADC1B are retrieved on SDO (8-39). If CSn is driven  
high before the ADC1B conversion data are retrieved, then DRDYn stays low, indicating that not all conversion  
data were read (8-40 and 8-41).  
8-41 shows that the same conversion data can be read multiple times until new conversions complete. The  
ADC1y conversion counters indicate if the same data were read again or if new data were read.  
The device avoids data corruption in case new conversions n+1 complete while conversion data n are being  
read. Conversion data n+1 are held in an internal buffer until the read of conversion data n is complete. In the  
following frame, conversion data n+1 are loaded into the SDO output buffer. DRDYn does not transition high  
after conversion data n have been read in this case to indicate that new conversion data n+1 are available for  
readout (see 8-42).  
8-43 illustrates that conversion data n+1 are lost in case the host does not read the data before conversions  
n+2 complete. The ADC1y conversion counters are helpful in this situation to detect if the host missed reading  
the intermediate conversion results.  
CSn  
SDI  
SDO  
NULL  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
ADC1A Data  
STATUS  
ADC1B Data  
Output CRC  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
Conversions n+1 complete  
Conversion data n+1 are output  
8-39. DRDYn Pin Behavior: Reading All Conversion Data Before New Conversions Complete  
CSn  
SDI  
SDO  
NULL  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
ADC1A Data  
STATUS  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
Conversions n+1 complete  
Conversion data n+1 are output  
DRDYn does not transition high because  
not all conversion data were read.  
8-40. DRDYn Pin Behavior: Incomplete Read of Conversion Data Before New Conversions Complete  
CSn  
SDI  
SDO  
NULL  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
ADC1A Data  
STATUS  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
Conversion data n are output  
DRDYn does not transition high because  
not all conversion data were read.  
8-41. DRDYn Pin Behavior: Incomplete Read of Conversion Data Followed by Complete Read of Same  
Conversion Data  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Conversion data n  
are not corrupted.  
CSn  
SDI  
NULL  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
SDO  
STATUS  
ADC1B Data  
Output CRC  
High-Z  
STATUS  
ADC1A Data  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
DRDYn does not transition high because  
new data are available for readout.  
Conversion data n+1 are output  
Conversions n+1 complete  
8-42. DRDYn Pin Behavior: Reading Conversion Data While New Conversions Complete  
CSn  
SDI  
NULL  
Command CRC  
ADC1A Data  
NULL  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1B Data  
Output CRC  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
Conversions n+1 complete  
Conversions n+2 complete  
Conversion data n+2 are output  
8-43. DRDYn Pin Behavior: Missed Reading Intermediate Conversion Results  
Setting the STARTy bit drives the DRDYn pin high at the last SCLK falling edge of the register data CRC word  
within the SPI frame where the CONVERSION_CTRL register is written. However, the old conversion data can  
still be read until the new conversions become available. 8-44 shows the device behavior when setting the  
STARTy bit to abort an ongoing conversion and to restart new conversions while reading out conversion data. 图  
8-45 shows a scenario where new conversions complete while setting the STARTy bit and reading out  
conversion data.  
Aborts ongoing conversion n+1 and  
restarts conversion n+1 after matching  
Set ADC1y STARTy bit  
Register Data CRC word is received.  
CSn  
SDI  
WREG  
Command CRC  
Data 0  
REG Data CRC  
NULL  
Command CRC  
ADC1A Data  
SDO  
STATUS  
ADC1A Data  
ADC1B Data  
Output CRC  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
Conversions n+1 complete  
Conversion data n+1 are output  
8-44. DRDYn Pin Behavior: Setting the STARTy Bit While Reading Conversion Data  
Aborts ongoing conversion n+2 and  
restarts conversion n+2 after matching  
Set ADC1y STARTy bit  
Register Data CRC word is received.  
CSn  
SDI  
WREG  
Command CRC  
Data 0  
REG Data CRC  
NULL  
REG Data CRC  
ADC1A Data  
SDO  
STATUS  
ADC1A Data  
ADC1B Data  
Output CRC  
High-Z  
STATUS  
ADC1B Data  
Output CRC  
DRDYn  
Conversion data n are output  
DRDYn does not transition high because  
new data are available for readout.  
Conversions n+2 complete  
Conversion data n+2 are output  
Conversions n+1 complete  
8-45. DRDYn Pin Behavior: Setting the STARTy Bit and Reading Conversion Data While New  
Conversions Complete  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6 Register Map  
The ADS131B23 register map spans across the address space from 00h to FEh and is divided into four general  
sections:  
Section 0 (address space: 00h to 1Fh): Only includes read-only bits (such as ID, status, GPIO input data,  
ADC2y conversion data, and the conversion and sequence control bits)  
Section 1 (address space: 40h to 7Eh): Includes global device configuration bits that are not specific to  
section A or B of the device  
Section 2 (address space: 80h to BEh): Includes device configuration bits that are specific to section A  
Section 3 (address space: C0h to FEh): Includes device configuration bits that are specific to section B  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1 Registers  
8-24 lists the memory-mapped registers for the Registers registers. All register offset addresses not listed in  
8-24 should be considered as reserved locations and the register contents should not be modified.  
8-24. Register Map  
Address  
Acronym  
Reset  
Bit 15  
Bit 7  
Bit 14  
Bit 6  
Bit 13  
Bit 12  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 5  
Bit 4  
SECTION 0  
00h  
ID  
X
REV[7:0]  
ADC_COUNT[2:0]  
DEVICE_ID[4:0]  
01h  
02h  
STATUS_MSB  
7FC8h  
RESETn  
SUPPLY_FAUL ADC_FAULTn DIGITAL_FAUL OCC_FAULTn SPI_CRC_FAU SPI_TIMEOUT SCLK_COUNT  
Tn  
Tn  
LTn  
n
_FAULTn  
REG_ACCESS  
_FAULTn  
COMMAND_RESPONSE[3:0]  
LOCK  
CLOCK  
MODE  
STATUS_LSB  
0000h  
SEQ2A_COUNT[1:0]  
RESERVED  
RESERVED  
CONV1A_COUNT[1:0]  
CONV1B_COUNT[1:0]  
SEQ2A_ACTIV RESERVED  
E
03h  
04h  
05h  
SUPPLY_STATUS  
ADC_STATUS  
FFFFh  
FC07h  
AVDD_OVn  
AVDD_UVn  
AVDD_OTWn  
ADC1B_ORn  
IOVDD_OVn  
IOVDD_OTWn  
ADC2A_ORn  
RESERVED  
IOVDD_UVn  
AVDD_CLn  
DVDD_OVn  
DVDD_UVn  
AVDD_OSCn  
IOVDD_OSCn  
DVDD_OSCn  
ADC1A_ORn  
IOVDD_CLn  
AGNDA_DISCn AGNDB_DISCn DGND_DISCn  
RESERVED  
MCLK_FAULTn  
OTP_BANK  
OSCD_WDn  
MCLK_WDn  
DIGITAL_STATUS  
EC00h REG_MAP1_C REG_MAP2_C REG_MAP3_C  
RC_FAULTn RC_FAULTn RC_FAULTn  
RESERVED  
MEM_MAP_CR  
C_FAULTn  
RESERVED  
RESERVED  
RESERVED  
OCCA_HTn  
06h  
07h  
08h  
OCC_STATUS  
GPI_DATA  
000Fh  
0000h  
0000h  
RESERVED  
OCCA_LTn  
OCCB_HTn  
GPI4_DAT[1:0]  
OCCB_LTn  
RESERVED  
GPI2_DAT[1:0]  
GPI3_DAT[1:0]  
GPI1_DAT[1:0]  
GPI0_DAT[1:0]  
GPI0A_DAT[1:0]  
GPI0B_DAT[1:0]  
GPIA_GPIB_DATA  
RESERVED  
RESERVED  
GPI1A_DAT[1:0]  
GPI1B_DAT[1:0]  
09h  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
CONVERSION_CTR 0000h  
L
RESERVED  
RESERVED  
STARTA  
SEQ2A_START  
RESERVED  
STARTB  
RESERVED  
RESERVED  
STOPA  
SEQ2A_STOP  
RESERVED  
STOPB  
RESERVED  
SEQ2A_STEP0_DAT 0000h  
A
SEQ2A_STEP0_DAT[15:0]  
SEQ2A_STEP0_DAT[15:0]  
SEQ2A_STEP1_DAT[15:0]  
SEQ2A_STEP1_DAT[15:0]  
SEQ2A_STEP2_DAT[15:0]  
SEQ2A_STEP2_DAT[15:0]  
SEQ2A_STEP3_DAT[15:0]  
SEQ2A_STEP3_DAT[15:0]  
SEQ2A_STEP4_DAT[15:0]  
SEQ2A_STEP4_DAT[15:0]  
SEQ2A_STEP5_DAT[15:0]  
SEQ2A_STEP5_DAT[15:0]  
SEQ2A_STEP6_DAT[15:0]  
SEQ2A_STEP6_DAT[15:0]  
SEQ2A_STEP7_DAT[15:0]  
SEQ2A_STEP7_DAT[15:0]  
SEQ2A_STEP8_DAT[15:0]  
SEQ2A_STEP8_DAT[15:0]  
SEQ2A_STEP9_DAT[15:0]  
SEQ2A_STEP9_DAT[15:0]  
SEQ2A_STEP10_DAT[15:0]  
SEQ2A_STEP10_DAT[15:0]  
SEQ2A_STEP11_DAT[15:0]  
SEQ2A_STEP11_DAT[15:0]  
SEQ2A_STEP12_DAT[15:0]  
SEQ2A_STEP12_DAT[15:0]  
SEQ2A_STEP1_DAT 0000h  
A
SEQ2A_STEP2_DAT 0000h  
A
SEQ2A_STEP3_DAT 0000h  
A
SEQ2A_STEP4_DAT 0000h  
A
SEQ2A_STEP5_DAT 0000h  
A
SEQ2A_STEP6_DAT 0000h  
A
SEQ2A_STEP7_DAT 0000h  
A
SEQ2A_STEP8_DAT 0000h  
A
SEQ2A_STEP9_DAT 0000h  
A
SEQ2A_STEP10_DA 0000h  
TA  
SEQ2A_STEP11_DA 0000h  
TA  
SEQ2A_STEP12_DA 0000h  
TA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. Register Map (continued)  
Address  
1Dh  
Acronym  
Reset  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SEQ2A_STEP13_DA 0000h  
TA  
SEQ2A_STEP13_DAT[15:0]  
SEQ2A_STEP13_DAT[15:0]  
SEQ2A_STEP14_DAT[15:0]  
SEQ2A_STEP14_DAT[15:0]  
SEQ2A_STEP15_DAT[15:0]  
SEQ2A_STEP15_DAT[15:0]  
1Eh  
SEQ2A_STEP14_DA 0000h  
TA  
1Fh  
SEQ2A_STEP15_DA 0000h  
TA  
SECTION 1  
40h  
DEVICE_MONITOR_ 3000h  
REG_MAP1_C  
RC_EN  
CRC_TYPE  
SCLK_COUNT TIMEOUT_EN  
ER_EN  
RESERVED  
MHD_POL  
FAULT_POL  
CFG  
RESERVED  
MHD_CFG[1:0]  
41h  
SUPPLY_MONITOR FFFFh  
_CFG1  
AVDD_OV_EN AVDD_UV_EN IOVDD_OV_EN IOVDD_UV_EN DVDD_OV_EN DVDD_UV_EN AVDD_OSC_E IOVDD_OSC_E  
N
N
DVDD_OSC_E AVDD_OTW_E IOVDD_OTW_ AVDD_CL_EN IOVDD_CL_EN AGNDA_DISC_ AGNDB_DISC_ DGND_DISC_E  
N
N
EN  
EN  
EN  
N
42h  
43h  
SUPPLY_MONITOR  
_CFG2  
10F0h  
RESERVED  
AVDD_OTW_CFG[1:0]  
IOVDD_OV_TH IOVDD_UV_TH  
IOVDD_OTW_CFG[1:0]  
RESERVED  
RESERVED  
ADC_MONITOR_CF FC07h  
G
ADC1A_OR_E ADC1B_OR_E ADC2A_OR_E  
SPARE[2:0]  
RESERVED  
N
N
N
RESERVED  
MCLK_MON_E OSCD_WD_EN MCLK_WD_EN  
N
44h  
SUPPLY_MONITOR  
_DIAGNOSTIC_CFG  
0000h AVDD_OV_DIA AVDD_UV_DIA IOVDD_OV_DI IOVDD_UV_DI DVDD_OV_DIA DVDD_UV_DIA AVDD_OSC_DI IOVDD_OSC_D  
G_EN  
G_EN  
AG_EN  
AG_EN  
G_EN  
G_EN  
AG_EN  
IAG_EN  
DVDD_OSC_DI  
AG_EN  
RESERVED  
AGNDA_DISC_ AGNDB_DISC_ DGND_DISC_D  
DIAG_EN DIAG_EN IAG_EN  
45h  
46h  
47h  
ADC_MONITOR_DI  
AGNOSTIC_CFG  
0000h  
0000h  
SPARE[11:0]  
MCLK_HI_DIA MCLK_LO_DIA OSCD_WD_DI MCLK_WD_DI  
SPARE[11:0]  
G_EN G_EN AG_EN AG_EN  
DIGITAL_MONITOR  
_DIAGNOSTIC_CFG  
RESERVED  
RESERVED  
MEM_MAP_CRC_DIAG[1:0]  
GPIOA_DIAG_ GPIOB_DIAG_ GPIO_DIAG_E  
EN EN  
N
SUPPLY_FAULT_MA 0000h  
SK  
AVDD_OV_MA AVDD_UV_MA IOVDD_OV_M IOVDD_UV_MA DVDD_OV_MA DVDD_UV_MA AVDD_OSC_M IOVDD_OSC_  
SK SK ASK SK SK SK ASK MASK  
DVDD_OSC_M AVDD_OTW_M IOVDD_OTW_ AVDD_CL_MA IOVDD_CL_MA AGNDA_DISC_ AGNDB_DISC_ DGND_DISC_  
ASK  
ASK  
MASK  
SK  
SK  
MASK  
MASK  
MASK  
48h  
49h  
ADC_FAULT_MASK  
0000h  
ADC1A_OR_M ADC1B_OR_M ADC2A_OR_M  
SPARE[2:0]  
RESERVED  
ASK  
ASK  
ASK  
RESERVED  
MCLK_FAULT_ OSCD_WD_MA MCLK_WD_MA  
MASK  
SK  
SK  
DIGITAL_FAULT_MA 0000h  
SK  
REG_MAP1_C REG_MAP2_C REG_MAP3_C  
RC_FAULT_MA RC_FAULT_MA RC_FAULT_MA  
RESERVED  
MEM_MAP_CR  
C_FAULT_MAS  
K
RESERVED  
SK  
SK  
SK  
RESERVED  
RESERVED  
OCCA_HT_MA OCCA_LT_MA OCCB_HT_MA OCCB_LT_MA  
4Ah  
4Bh  
OCC_FAULT_MASK  
FAULT_PIN_MASK  
0000h  
0780h  
RESERVED  
SK SK SK SK  
RESERVED  
SUPPLY_FAUL ADC_FAULT_M DIGITAL_FAUL OCC_FAULT_ SPI_CRC_FAU SPI_TIMEOUT SCLK_COUNT  
T_MASK  
ASK  
T_MASK  
MASK  
LT_MASK  
_MASK  
_FAULT_MASK  
REG_ACCESS  
_FAULT_MASK  
RESERVED  
4Ch  
DEVICE_CFG  
0000h  
RESERVED  
DRDY_CTRL  
RESERVED  
CLK_SOURCE WORD_LENGT  
H
RESERVED  
OP_MODE[1:0]  
RESERVED  
4Dh  
4Eh  
4Fh  
GPIO_CFG  
GPO_DATA  
0000h  
0000h  
007Fh  
RESERVED  
GPIO2_DIR  
GPIO4_FMT  
GPIO1_DIR  
GPIO3_FMT  
GPIO0_DIR  
GPIO2_FMT  
GPIO4_SRC  
GPIO1_FMT  
GPIO3_SRC  
GPIO0_FMT  
GPIO2_SRC  
GPIO4_DIR  
RESERVED  
GPIO3_DIR  
GPIO0_SRC  
SPARE[10:0]  
SPARE[10:0]  
GPO4_DAT  
GPO3_DAT  
GPO2_DAT  
GPO1_DAT  
GPO0_DAT  
GPIO0_LL_PWM_C  
FG  
GPIO0_PWM_TB[1:0]  
GPIO0_LL_PWM_HC[6:0]  
GPIO0_LL_PWM_LC[6:0]  
GPIO0_LL_PW  
M_HC[6:0]  
50h  
GPIO0_LH_PWM_C  
FG  
3F80h  
RESERVED  
GPIO0_LH_PWM_HC[6:0]  
GPIO0_LH_PWM_LC[6:0]  
GPIO0_LH_PW  
M_HC[6:0]  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. Register Map (continued)  
Address  
Acronym  
Reset  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
51h  
GPIO1_LL_PWM_C  
FG  
007Fh  
GPIO1_PWM_TB[1:0]  
GPIO1_LL_PW  
GPIO1_LL_PWM_HC[6:0]  
GPIO1_LL_PWM_LC[6:0]  
M_HC[6:0]  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
GPIO1_LH_PWM_C  
FG  
3F80h  
007Fh  
3F80h  
007Fh  
3F80h  
007Fh  
3F80h  
RESERVED  
GPIO1_LH_PWM_HC[6:0]  
GPIO1_LH_PWM_LC[6:0]  
GPIO1_LH_PW  
M_HC[6:0]  
GPIO2_LL_PWM_C  
FG  
GPIO2_PWM_TB[1:0]  
GPIO2_LL_PWM_HC[6:0]  
GPIO2_LL_PWM_LC[6:0]  
GPIO2_LL_PW  
M_HC[6:0]  
GPIO2_LH_PWM_C  
FG  
RESERVED  
GPIO2_LH_PWM_HC[6:0]  
GPIO2_LH_PWM_LC[6:0]  
GPIO2_LH_PW  
M_HC[6:0]  
GPIO3_LL_PWM_C  
FG  
GPIO3_PWM_TB[1:0]  
GPIO3_LL_PWM_HC[6:0]  
GPIO3_LL_PWM_LC[6:0]  
GPIO3_LL_PW  
M_HC[6:0]  
GPIO3_LH_PWM_C  
FG  
RESERVED  
GPIO3_LH_PWM_HC[6:0]  
GPIO3_LH_PWM_LC[6:0]  
GPIO3_LH_PW  
M_HC[6:0]  
GPIO4_LL_PWM_C  
FG  
GPIO4_PWM_TB[1:0]  
GPIO4_LL_PWM_HC[6:0]  
GPIO4_LL_PWM_LC[6:0]  
GPIO4_LL_PW  
M_HC[6:0]  
GPIO4_LH_PWM_C  
FG  
RESERVED  
GPIO4_LH_PWM_HC[6:0]  
GPIO4_LH_PWM_LC[6:0]  
GPIO4_LH_PW  
M_HC[6:0]  
59h  
7Eh  
SPARE_59h  
5555h  
0000h  
SPARE[15:0]  
SPARE[15:0]  
REGISTER_MAP1_  
CRC  
REG_MAP1_CRC_VALUE[15:0]  
REG_MAP1_CRC_VALUE[15:0]  
SECTION 2  
80h  
REGMAP2_TDACA_ 0000h  
CFG  
REG_MAP2_C  
RC_EN  
RESERVED  
RESERVED  
SPARE[2:0]  
TDACA_VALUE[2:0]  
GPIO1A_DIR  
GPO1A_DAT  
81h  
82h  
GPIOA_CFG  
8000h  
0400h  
RESERVED  
GPIO1A_FMT  
GPIO0A_FMT  
GPIO0A_DIR  
GPO0A_DAT  
GPIO1A_PWM_TB[1:0]  
GPIO0A_PWM_TB[1:0]  
SPARE[1:0]  
ADC1A_CFG1  
RESERVED  
CONV_MODE1  
A
OSR1A[2:0]  
RESERVED  
RESERVED  
OWD1A_SOUR OWD1A_SINK_ OWD1A_SOURCE_VALUE[1:0]  
GC1A_EN  
GC1A_DELAY[2:0]  
83h  
ADC1A_CFG2  
8010h  
ADC1A_EN  
RESERVED  
GAIN1A[1:0]  
MUX1A[1:0]  
OWD1A_SINK_VALUE[1:0]  
CE_MUX  
MUX  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
ADC1A_OCAL_MSB 0000h  
OCAL1A[23:8]  
OCAL1A[23:8]  
OCAL1A[7:0]  
RESERVED  
ADC1A_OCAL_LSB  
ADC1A_GCAL  
OCCA_CFG  
0000h  
0000h  
0000h  
GCAL1A[15:0]  
GCAL1A[15:0]  
OCCA_EN  
OCCA_POL  
RESERVED  
OCCA_NUM[4:0]  
RESERVED  
OCCA_HIGH_TH[15:0]  
OCCA_HIGH_TH[15:0]  
OCCA_LOW_TH[15:0]  
OCCA_LOW_TH[15:0]  
SPARE[15:0]  
OCCA_HIGH_THRE 7FFFh  
SHOLD  
OCCA_LOW_THRE  
SHOLD  
8000h  
5555h  
8010h  
SPARE_8Ah  
SPARE[15:0]  
ADC2A_CFG1  
ADC2A_EN  
RESERVED  
OWD2A_SINK_MUX[2:0]  
VCMA_EN  
OWD2A_SOURCE_VALUE[1:0]  
OWD2A_SOURCE_MUX[2:0]  
OWD2A_SINK_VALUE[1:0]  
OWD2A_SOUR  
CE_MUX[2:0]  
8Ch  
ADC2A_CFG2  
0000h  
SEQ2A_MODE[1:0]  
RESERVED  
MUX2A_DELAY[2:0]  
OSR2A[1:0]  
RESERVED  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. Register Map (continued)  
Address  
8Dh  
Acronym  
Reset  
0000h  
0000h  
0000h  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SPARE_8Dh  
ADC2A_OCAL  
ADC2A_GCAL  
RESERVED  
SPARE[7:0]  
8Eh  
OCAL2A[15:0]  
OCAL2A[15:0]  
GCAL2A[15:0]  
GCAL2A[15:0]  
8Fh  
90h  
SEQ2A_STEP0_CF  
G
0000h SEQ2A_STEP0  
_EN  
SEQ2A_STEP0_GAIN[1:0]  
RESERVED  
RESERVED  
SEQ2A_STEP0  
SEQ2A_STEP0_CH_P[3:0]  
RESERVED  
_CH_N  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
SEQ2A_STEP1_CF  
G
0001h SEQ2A_STEP1  
_EN  
SEQ2A_STEP1_GAIN[1:0]  
RESERVED  
SEQ2A_STEP1  
_CH_N  
SEQ2A_STEP1_CH_P[3:0]  
RESERVED  
SEQ2A_STEP2_CF  
G
0002h SEQ2A_STEP2  
_EN  
SEQ2A_STEP2_GAIN[1:0]  
RESERVED  
SEQ2A_STEP2  
_CH_N  
SEQ2A_STEP2_CH_P[3:0]  
RESERVED  
SEQ2A_STEP3_CF  
G
0003h SEQ2A_STEP3  
_EN  
SEQ2A_STEP3_GAIN[1:0]  
RESERVED  
SEQ2A_STEP3  
_CH_N  
SEQ2A_STEP3_CH_P[3:0]  
RESERVED  
SEQ2A_STEP4_CF  
G
0004h SEQ2A_STEP4  
_EN  
SEQ2A_STEP4_GAIN[1:0]  
RESERVED  
SEQ2A_STEP4  
_CH_N  
SEQ2A_STEP4_CH_P[3:0]  
RESERVED  
SEQ2A_STEP5_CF  
G
0005h SEQ2A_STEP5  
_EN  
SEQ2A_STEP5_GAIN[1:0]  
RESERVED  
SEQ2A_STEP5  
_CH_N  
SEQ2A_STEP5_CH_P[3:0]  
RESERVED  
SEQ2A_STEP6_CF  
G
0006h SEQ2A_STEP6  
_EN  
SEQ2A_STEP6_GAIN[1:0]  
RESERVED  
SEQ2A_STEP6  
_CH_N  
SEQ2A_STEP6_CH_P[3:0]  
RESERVED  
SEQ2A_STEP7_CF  
G
0007h SEQ2A_STEP7  
_EN  
SEQ2A_STEP7_GAIN[1:0]  
RESERVED  
SEQ2A_STEP7  
_CH_N  
SEQ2A_STEP7_CH_P[3:0]  
RESERVED  
SEQ2A_STEP8_CF  
G
0008h SEQ2A_STEP8  
_EN  
SEQ2A_STEP8_GAIN[1:0]  
RESERVED  
SEQ2A_STEP8  
_CH_N  
SEQ2A_STEP8_CH_P[3:0]  
RESERVED  
SEQ2A_STEP9_CF  
G
0009h SEQ2A_STEP9  
_EN  
SEQ2A_STEP9_GAIN[1:0]  
RESERVED  
SEQ2A_STEP9  
_CH_N  
SEQ2A_STEP9_CH_P[3:0]  
RESERVED  
SEQ2A_STEP10_CF 000Ah SEQ2A_STEP1  
0_EN  
SEQ2A_STEP10_GAIN[1:0]  
RESERVED  
G
SEQ2A_STEP1  
0_CH_N  
SEQ2A_STEP10_CH_P[3:0]  
RESERVED  
SEQ2A_STEP11_CF 000Bh SEQ2A_STEP1  
1_EN  
SEQ2A_STEP11_GAIN[1:0]  
RESERVED  
G
SEQ2A_STEP1  
1_CH_N  
SEQ2A_STEP11_CH_P[3:0]  
RESERVED  
SEQ2A_STEP12_CF 000Ch SEQ2A_STEP1  
2_EN  
SEQ2A_STEP12_GAIN[1:0]  
RESERVED  
G
SEQ2A_STEP1  
2_CH_N  
SEQ2A_STEP12_CH_P[3:0]  
RESERVED  
SEQ2A_STEP13_CF 000Dh SEQ2A_STEP1  
3_EN  
SEQ2A_STEP13_GAIN[1:0]  
RESERVED  
G
SEQ2A_STEP1  
3_CH_N  
SEQ2A_STEP13_CH_P[3:0]  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. Register Map (continued)  
Address  
Acronym  
Reset  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
9Eh  
SEQ2A_STEP14_CF 000Eh SEQ2A_STEP1  
4_EN  
SEQ2A_STEP14_GAIN[1:0]  
RESERVED  
RESERVED  
G
SEQ2A_STEP1  
4_CH_N  
SEQ2A_STEP14_CH_P[3:0]  
RESERVED  
9Fh  
SEQ2A_STEP15_CF 000Fh SEQ2A_STEP1  
SEQ2A_STEP15_GAIN[1:0]  
RESERVED  
G
5_EN  
SEQ2A_STEP1  
5_CH_N  
SEQ2A_STEP15_CH_P[3:0]  
A0h  
A1h  
SPARE_A0h  
SPARE_A1h  
SPARE_A2h  
SPARE_A3h  
0210h  
0000h  
0000h  
0000h  
0000h  
RESERVED  
SPARE[1:0]  
RESERVED  
RESERVED  
SPARE[1:0]  
RESERVED  
SPARE[15:0]  
SPARE[15:0]  
SPARE[7:0]  
RESERVED  
SPARE[15:0]  
SPARE[15:0]  
A2h  
A3h  
BEh  
REGISTER_MAP2_  
CRC  
REG_MAP2_CRC_VALUE[15:0]  
REG_MAP2_CRC_VALUE[15:0]  
SECTION 3  
C0h  
REGMAP3_TDACB_ 0000h  
CFG  
REG_MAP3_C  
RC_EN  
RESERVED  
RESERVED  
SPARE[2:0]  
TDACB_VALUE[2:0]  
C1h  
C2h  
GPIOB_CFG  
8000h  
0400h  
RESERVED  
GPIO1B_FMT  
GPIO0B_FMT  
GPIO1B_DIR  
GPO1B_DAT  
OSR1B[2:0]  
GPIO0B_DIR  
GPO0B_DAT  
GPIO1B_PWM_TB[1:0]  
GPIO0B_PWM_TB[1:0]  
SPARE[1:0]  
ADC1B_CFG1  
RESERVED  
CONV_MODE1  
B
RESERVED  
GC1B_EN  
GC1B_DELAY[2:0]  
C3h  
ADC1B_CFG2  
8010h  
ADC1B_EN  
RESERVED  
GAIN1B[1:0]  
MUX1B[1:0]  
OWD1B_SINK_VALUE[1:0]  
RESERVED  
OWD1B_SOUR OWD1B_SINK_ OWD1B_SOURCE_VALUE[1:0]  
CE_MUX  
MUX  
OCAL1B[23:8]  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
ADC1B_OCAL_MSB 0000h  
OCAL1B[23:8]  
OCAL1B[7:0]  
RESERVED  
ADC1B_OCAL_LSB  
ADC1B_GCAL  
OCCB_CFG  
0000h  
0000h  
0000h  
GCAL1B[15:0]  
GCAL1B[15:0]  
OCCB_EN  
OCCB_POL  
RESERVED  
OCCB_NUM[4:0]  
RESERVED  
OCCB_HIGH_TH[15:0]  
OCCB_HIGH_TH[15:0]  
OCCB_LOW_TH[15:0]  
OCCB_LOW_TH[15:0]  
SPARE[15:0]  
OCCB_HIGH_THRE 7FFFh  
SHOLD  
OCCB_LOW_THRE  
SHOLD  
8000h  
5555h  
0010h  
0000h  
0000h  
0000h  
0000h  
0000h  
SPARE_CAh  
SPARE_CBh  
SPARE_CCh  
SPARE_CDh  
SPARE_CEh  
SPARE_CFh  
SPARE_D0h  
SPARE[15:0]  
RESERVED  
SPARE[6:0]  
RESERVED  
SPARE[2:0]  
SPARE[1:0]  
SPARE[6:0]  
SPARE[1:0]  
RESERVED  
RESERVED  
RESERVED  
SPARE[7:0]  
SPARE[15:0]  
SPARE[15:0]  
SPARE[15:0]  
SPARE[15:0]  
SPARE[2:0]  
RESERVED  
RESERVED  
SPARE[4:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. Register Map (continued)  
Address  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
Acronym  
Reset  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0210h  
0000h  
0000h  
0000h  
0000h  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SPARE_D1h  
SPARE_D2h  
SPARE_D3h  
SPARE_D4h  
SPARE_D5h  
SPARE_D6h  
SPARE_D7h  
SPARE_D8h  
SPARE_D9h  
SPARE_DAh  
SPARE_DBh  
SPARE_DCh  
SPARE_DDh  
SPARE_DEh  
SPARE_DFh  
SPARE_E0h  
SPARE_E1h  
SPARE_E2h  
SPARE_E3h  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
SPARE[2:0]  
RESERVED  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[4:0]  
RESERVED  
SPARE[1:0]  
RESERVED  
RESERVED  
SPARE[1:0]  
RESERVED  
E1h  
SPARE[15:0]  
SPARE[15:0]  
SPARE[7:0]  
RESERVED  
SPARE[15:0]  
SPARE[15:0]  
E2h  
E3h  
FEh  
REGISTER_MAP3_  
CRC  
REG_MAP3_CRC_VALUE[15:0]  
REG_MAP3_CRC_VALUE[15:0]  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.1 ID Register (Address = 00h) [Reset = X]  
Return to the Summary Table.  
8-46. ID Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
REV[7:0]  
R-X  
7
6
5
4
3
2
DEVICE_ID[4:0]  
R-X  
ADC_COUNT[2:0]  
R-011b  
8-25. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
REV[7:0]  
R
X
Revision ID  
Values are subject to change without notice  
7:5  
ADC_COUNT[2:0]  
DEVICE_ID[4:0]  
R
R
011b  
X
ADC count  
011b = 3 (ADC1A, ADC1B, ADC2A)  
4:0  
Device ID  
Values are subject to change without notice  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.2 STATUS_MSB Register (Address = 01h) [Reset = 7FC8h]  
Return to the Summary Table.  
8-47. STATUS_MSB Register  
15  
14  
13  
12  
11  
10  
9
8
RESETn  
SUPPLY_FAULTn  
ADC_FAULTn  
DIGITAL_FAULTn  
OCC_FAULTn  
SPI_CRC_FAULTn  
SPI_TIMEOUTn  
SCLK_COUNT_FAU  
LTn  
R/W-0b  
7
R/W-1b  
6
R/W-1b  
5
R/W-1b  
4
R/W-1b  
3
R-1b  
R-1b  
R-1b  
2
1
0
REG_ACCESS_FAU  
LTn  
COMMAND_RESPONSE[3:0]  
LOCK  
CLOCK  
MODE  
R-1b  
R-1001b  
R-0b  
R-0b  
R-0b  
8-26. STATUS_MSB Register Field Descriptions  
Bit  
Field  
RESETn  
Type  
Reset  
Description  
15  
R/W  
0b  
RESET flag  
Indicates a device reset occurred. Write 1b to clear this bit to 1b.  
0b = Reset occurred  
1b = No reset occurred  
14  
SUPPLY_FAULTn  
R/W  
1b  
Supply fault flag  
Indicates that one or more of the unmasked supply fault flags in the SUPPLY_STATUS  
register is set. Write 1b to clear this bit to 1b after all set unmasked supply fault flags are  
cleared.  
0b = One or more of the unmasked supply fault flags is set  
1b = None of the unmasked supply fault flags are set  
13  
12  
ADC_FAULTn  
R/W  
R/W  
1b  
1b  
ADC fault flag  
Indicates that one or more of the unmasked ADC fault flags in the ADC_STATUS register is  
set. Write 1b to clear this bit to 1b after all set unmasked ADC fault flags are cleared.  
0b = One or more of the unmasked ADC fault flags is set  
1b = None of the unmasked supply ADC fault flags are set  
DIGITAL_FAULTn  
Digital fault flag  
Indicates that one or more of the unmasked digital fault flags in the DIGITAL_STATUS  
register is set. Write 1b to clear this bit to 1b after all set unmasked digital fault flags are  
cleared.  
0b = One or more of the unmasked digital fault flags is set  
1b = None of the unmasked digital fault flags are set  
11  
OCC_FAULTn  
R/W  
1b  
Overcurrent comparator fault flag  
Indicates that one or more of the unmasked overcurrent comparator fault flags in the  
OCC_STATUS register is set. Write 1b to clear this bit to 1b after all set unmasked  
overcurrent comparator fault flags are cleared.  
0b = One or more of the unmasked overcurrent comparator fault flags is set  
1b = None of the unmasked overcurrent comparator fault flags are set  
10  
9
SPI_CRC_FAULTn  
SPI_TIMEOUTn  
R
R
R
1b  
1b  
1b  
SPI CRC fault flag  
Indicates an SPI CRC fault occurred in the previous SPI frame. This bit clears automatically  
to 1b in each new SPI frame.  
0b = SPI CRC fault occurred  
1b = No SPI CRC fault occurred  
SPI timeout fault flag  
Indicates an SPI timeout fault occurred in the previous SPI frame. This bit clears  
automatically to 1b in each new SPI frame.  
0b = SPI timeout fault occurred  
1b = No SPI timeout fault occurred  
8
SCLK_COUNT_FAULTn  
SCLK counter fault flag  
Indicates an SCLK counter fault occurred in the previous SPI frame (that is, fewer or more  
SCLKs than required for the previous frame were sent). This bit clears automatically to 1b in  
each new SPI frame.  
0b = SCLK counter fault occurred  
1b = No SCLK counter fault occurred  
7
REG_ACCESS_FAULTn  
R
1b  
Register access fault flag  
Indicates a read or write access to an invalid register address (register address FFh or  
beyond) occurred. This flag sets to 0b in the subsequent frame following the frame where a  
read or write operation to a register with an invalid register address was attempted. This bit  
clears automatically to 1b in each new SPI frame.  
0b = Register access fault occurred  
1b = No register access fault occurred  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-26. STATUS_MSB Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6:3  
COMMAND_RESPONSE[3:0]  
R
1001b  
Command response indication  
Indicates which command was executed in the previous SPI frame.  
0000b = Invalid response that does not occur under normal circumstances. Can indicate a  
stuck-at SDO signal or that the device is held in reset.  
0001b = NULL command  
0010b = LOCK command  
0011b = UNLOCK command  
0100b = RREG command  
0101b = NULL command (because a NULL command was correctly sent as the second  
frame after a RREG command). This response serves as the frame counter for the two-  
frame RREG command.  
0110b = WREG command  
0111b = Invalid response that does not occur under normal circumstances.  
1000b = Invalid response that does not occur under normal circumstances.  
1001b = NULL command (first frame after power-up or reset). This response is only sent in  
the first frame after reset or power-up, the second frame has the response based on the  
command sent in the first frame.  
1010b = NULL command (resulting from one of the following errors: a timeout occurred  
before a complete command CRC was received, insufficient SCLKs were sent to complete a  
command, a CRC mismatch between the command word and command CRC word, or a  
CRC mismatch between data words and the data CRC word in a WREG command). For the  
NULL, RREG, LOCK, and UNLOCK commands, the command and command CRC words  
must be sent to complete the command. For the RESET command, the STATUS word, all  
ADC data words, and the output CRC word must be read to complete the command. For the  
WREG command, the command and command CRC words, as well as the data and data  
CRC words must be sent to complete the command.  
1011b = NULL command (resulting from an invalid command word with a matching CRC  
between the command word and command CRC word).  
1100b = NULL command (resulting from a command other than the NULL command was  
sent in the second frame after the RREG command and ignored). This response serves as  
the frame counter for the two-frame RREG command.  
1101b = NULL command (the RESET or WREG commands are ignored because the device  
is locked).  
1110b = Invalid response that does not occur under normal circumstances.  
1111b = Invalid response that does not occur under normal circumstances. Can indicate a  
stuck-at SDO signal.  
2
1
0
LOCK  
R
R
R
0b  
0b  
0b  
Lock state indication  
Indicates if the device is locked or unlocked.  
0b = Device is unlocked  
1b = Device is locked  
CLOCK  
MODE  
Clock source indication  
Indicates which clock source the device is currently using.  
0b = Internal oscillator  
1b = External clock  
Operating mode indication  
Indicates which operating mode the device is currently in.  
0b = Active mode  
1b = Standby or power-down mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.3 STATUS_LSB Register (Address = 02h) [Reset = 0000h]  
Return to the Summary Table.  
8-48. STATUS_LSB Register  
15  
14  
13  
12  
11  
CONV1A_COUNT[1:0]  
R-00b  
10  
9
8
SEQ2A_COUNT[1:0]  
RESERVED  
R-00b  
CONV1B_COUNT[1:0]  
R-00b  
R-00b  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
SEQ2A_ACTIVE  
R-0b  
RESERVED  
R-0b  
8-27. STATUS_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
SEQ2A_COUNT[1:0]  
R
00b  
ADC2A sequence counter  
Circular counter that increments each time a new sequence on ADC2A completes. This  
counter resets to 00b when ADC2A is disabled, when the device is put in standby or power-  
down mode, or after a device reset.  
13:12  
11:10  
RESERVED  
R
R
00b  
00b  
Reserved  
Always reads 00b.  
CONV1A_COUNT[1:0]  
ADC1A conversion counter  
Circular counter that increments each time a new conversion on ADC1A completes. This  
counter resets to 00b when ADC1A is disabled, when the device is put in standby or power-  
down mode, or after a device reset.  
9:8  
CONV1B_COUNT[1:0]  
R
00b  
ADC1B conversion counter  
Circular counter that increments each time a new conversion on ADC1B completes. This  
counter resets to 00b when ADC1B is disabled, when the device is put in standby or power-  
down mode, or after a device reset.  
7:2  
1
RESERVED  
R
R
000000b  
0b  
Reserved  
Always reads 000000b.  
SEQ2A_ACTIVE  
ADC2A sequence in progress indication  
Indicates that a sequence on ADC2A is currently in progress. Changes to registers from  
address 8Ch to 9Fh of ADC2A must only be made when ADC2A is disabled.  
0b = No sequence in progress  
1b = Sequence in progress  
0
RESERVED  
R
0b  
Reserved  
Always reads 0b.  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.4 SUPPLY_STATUS Register (Address = 03h) [Reset = FFFFh]  
Return to the Summary Table.  
8-49. SUPPLY_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
AVDD_OVn  
R/W-1b  
AVDD_UVn  
R/W-1b  
IOVDD_OVn  
R/W-1b  
IOVDD_UVn  
R/W-1b  
DVDD_OVn  
R/W-1b  
DVDD_UVn  
R/W-1b  
AVDD_OSCn  
R/W-1b  
IOVDD_OSCn  
R/W-1b  
7
6
5
4
3
2
1
0
DVDD_OSCn  
R/W-1b  
AVDD_OTWn  
R/W-1b  
IOVDD_OTWn  
R/W-1b  
AVDD_CLn  
R/W-1b  
IOVDD_CLn  
R/W-1b  
AGNDA_DISCn  
R/W-1b  
AGNDB_DISCn  
R/W-1b  
DGND_DISCn  
R/W-1b  
8-28. SUPPLY_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AVDD_OVn  
R/W  
1b  
AVDD overvoltage fault flag  
Indicates the AVDD supply voltage exceeded the AVDD overvoltage threshold. See the  
AVDD monitor description for details regarding the AVDD LDO shutdown during  
overvoltage. Write 1b to clear this bit to 1b.  
0b = Overvoltage fault occurred  
1b = No overvoltage fault occurred  
14  
13  
AVDD_UVn  
IOVDD_OVn  
R/W  
R/W  
1b  
1b  
AVDD undervoltage fault flag  
Indicates the AVDD supply voltage dropped below the AVDD undervoltage threshold. Write  
1b to clear this bit to 1b.  
0b = Undervoltage fault occurred  
1b = No undervoltage fault occurred  
IOVDD overvoltage fault flag  
Indicates the IOVDD supply voltage exceeded the IOVDD overvoltage threshold. See the  
IOVDD monitor description for details regarding the IOVDD LDO shutdown during  
overvoltage. Write 1b to clear this bit to 1b.  
0b = Overvoltage fault occurred  
1b = No overvoltage fault occurred  
12  
11  
IOVDD_UVn  
DVDD_OVn  
R/W  
R/W  
1b  
1b  
IOVDD undervoltage fault flag  
Indicates the IOVDD supply voltage dropped below the IOVDD undervoltage threshold.  
Write 1b to clear this bit to 1b.  
0b = Undervoltage fault occurred  
1b = No undervoltage fault occurred  
DVDD overvoltage fault flag  
Indicates the DVDD supply voltage exceeded the DVDD overvoltage threshold. See the  
DVDD monitor description for details regarding the DVDD LDO shutdown during  
overvoltage. Write 1b to clear this bit to 1b.  
0b = Overvoltage fault occurred  
1b = No overvoltage fault occurred  
10  
DVDD_UVn  
R/W  
1b  
DVDD undervoltage fault flag  
Indicates the DVDD supply voltage dropped below the DVDD undervoltage threshold. Write  
1b to clear this bit to 1b.  
0b = Undervoltage fault occurred  
1b = No undervoltage fault occurred  
9
8
7
6
AVDD_OSCn  
IOVDD_OSCn  
DVDD_OSCn  
AVDD_OTWn  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
AVDD oscillation fault flag  
Indicates the AVDD supply voltage is oscillating. Write 1b to clear this bit to 1b.  
0b = Oscillation fault occurred  
1b = No oscillation fault occurred  
IOVDD oscillation fault flag  
Indicates the IOVDD supply voltage is oscillating. Write 1b to clear this bit to 1b.  
0b = Oscillation fault occurred  
1b = No oscillation fault occurred  
DVDD oscillation fault flag  
Indicates the DVDD supply voltage is oscillating. Write 1b to clear this bit to 1b.  
0b = Oscillation fault occurred  
1b = No oscillation fault occurred  
AVDD overtemperature warning flag  
Indicates the AVDD LDO temperature exceeded the AVDD overtemperature warning  
threshold. Write 1b to clear this bit to 1b.  
0b = Overtemperature warning  
1b = No overtemperature warning  
5
4
IOVDD_OTWn  
AVDD_CLn  
R/W  
R/W  
1b  
1b  
IOVDD overtemperature warning flag  
Indicates the IOVDD LDO temperature exceeded the IOVDD overtemperature warning  
threshold. Write 1b to clear this bit to 1b.  
0b = Overtemperature warning  
1b = No overtemperature warning  
AVDD current limit flag  
Indicates the AVDD LDO current limit is active. Write 1b to clear this bit to 1b.  
0b = Current limit  
1b = No current limit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-28. SUPPLY_STATUS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
IOVDD_CLn  
R/W  
1b  
IOVDD current limit flag  
Indicates the IOVDD LDO current limit is active. Write 1b to clear this bit to 1b.  
0b = Current limit  
1b = No current limit  
2
1
0
AGNDA_DISCn  
AGNDB_DISCn  
DGND_DISCn  
R/W  
R/W  
R/W  
1b  
1b  
1b  
AGNDA pin disconnect detection flag  
Indicates the AGNDA pin is disconnected. Write 1b to clear this bit to 1b.  
0b = AGNDA pin disconnected  
1b = AGNDA pin connected  
AGNDB pin disconnect detection flag  
Indicates the AGNDB pin is disconnected. Write 1b to clear this bit to 1b.  
0b = AGNDB pin disconnected  
1b = AGNDB pin connected  
DGND pin disconnect detection flag  
Indicates the DGND pin is disconnected. Write 1b to clear this bit to 1b.  
0b = DGND pin disconnected  
1b = DGND pin connected  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.5 ADC_STATUS Register (Address = 04h) [Reset = FC07h]  
Return to the Summary Table.  
8-50. ADC_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
ADC1A_ORn  
R/W-1b  
ADC1B_ORn  
R/W-1b  
ADC2A_ORn  
R/W-1b  
RESERVED  
R-1110000000b  
7
6
5
4
3
2
1
0
RESERVED  
R-1110000000b  
MCLK_FAULTn  
R/W-1b  
OSCD_WDn  
R/W-1b  
MCLK_WDn  
R/W-1b  
8-29. ADC_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ADC1A_ORn  
ADC1B_ORn  
ADC2A_ORn  
R/W  
1b  
ADC1A modulator overrange fault flag  
Indicates the ADC1A modulator was overranged. Write 1b to clear this bit to 1b.  
0b = Overrange fault occurred  
1b = No overrange fault occurred  
14  
13  
R/W  
R/W  
1b  
1b  
ADC1B modulator overrange fault flag  
Indicates the ADC1B modulator was overranged. Write 1b to clear this bit to 1b.  
0b = Overrange fault occurred  
1b = No overrange fault occurred  
ADC2A modulator overrange fault flag  
Indicates the ADC2A modulator was overranged. Write 1b to clear this bit to 1b.  
0b = Overrange fault occurred  
1b = No overrange fault occurred  
12:3  
2
RESERVED  
R
1110000000b  
1b  
Reserved  
Always reads 1110000000b.  
MCLK_FAULTn  
R/W  
MCLK frequency too high or too low fault flag  
Indicates the main clock frequency of the selected clock source either exceeded the clock  
frequency high threshold or dropped below the clock frequency low threshold. Write 1b to  
clear this bit to 1b.  
0b = MCLK frequency too high or too low fault occurred  
1b = No MCLK frequency too high or too low fault occurred  
1
0
OSCD_WDn  
MCLK_WDn  
R/W  
R/W  
1b  
1b  
Diagnostic oscillator watchdog fault flag  
Indicates a diagnostic oscillator watchdog fault occurred. Write 1b to clear this bit to 1b.  
0b = Watchdog fault occurred  
1b = No watchdog fault occurred  
Main clock watchdog fault flag  
Indicates a main clock watchdog fault occurred. Write 1b to clear this bit to 1b.  
0b = Watchdog fault occurred  
1b = No watchdog fault occurred  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.6 DIGITAL_STATUS Register (Address = 05h) [Reset = EC00h]  
Return to the Summary Table.  
8-51. DIGITAL_STATUS Register  
15  
14  
13  
12  
11  
10  
9
1
8
REG_MAP1_CRC_F REG_MAP2_CRC_F REG_MAP3_CRC_F  
RESERVED  
MEM_MAP_CRC_FA  
ULTn  
OTP_BANK  
RESERVED  
AULTn  
AULTn  
AULTn  
R/W-1b  
R/W-1b  
R/W-1b  
R-0b  
4
R/W-1b  
3
R-1b  
2
R-0000000000b  
7
6
5
0
RESERVED  
R-0000000000b  
8-30. DIGITAL_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
REG_MAP1_CRC_FAULTn  
REG_MAP2_CRC_FAULTn  
REG_MAP3_CRC_FAULTn  
R/W  
1b  
Register map section 1 CRC fault flag  
Indicates a register map CRC fault in section 1 (register address space from 40h to 59h)  
occurred. Write 1b to clear this bit to 1b.  
0b = Register map CRC fault occurred  
1b = No register map CRC fault occurred  
14  
13  
R/W  
R/W  
1b  
1b  
Register map section 2 CRC fault flag  
Indicates a register map CRC fault in section 2 (register address space from 80h to A3h)  
occurred. Write 1b to clear this bit to 1b.  
0b = Register map CRC fault occurred  
1b = No register map CRC fault occurred  
Register map section 3 CRC fault flag  
Indicates a register map CRC fault in section 3 (register address space from C0h to E3h)  
occurred. Write 1b to clear this bit to 1b.  
0b = Register map CRC fault occurred  
1b = No register map CRC fault occurred  
12  
11  
RESERVED  
R
0b  
1b  
Reserved  
Always reads 0b.  
MEM_MAP_CRC_FAULTn  
R/W  
Memory map CRC fault flag  
Indicates a memory map CRC fault in the internal memory occurred. Write 1b to clear this  
bit to 1b. Reset the device in case the flag continues to set to 0b.  
0b = Memory map CRC fault occurred  
1b = No memory map CRC fault occurred  
10  
OTP_BANK  
RESERVED  
R
R
1b  
OTP bank indication  
Indicates which OTP bank the device selected after reset. The OTP_BANK bit does not  
trigger the DIGITAL_FAULTn bit in the STATUS_MSB register. Reset the device in case the  
flag indicates that the backup OTP bank is used.  
0b = Backup OTP bank (bank 1)  
1b = Primary OTP bank (bank 0)  
9:0  
0000000000b  
Reserved  
Always reads 0000000000b.  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.7 OCC_STATUS Register (Address = 06h) [Reset = 000Fh]  
Return to the Summary Table.  
8-52. OCC_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-000000000000b  
7
6
5
4
3
2
1
0
RESERVED  
OCCA_HTn  
R/W-1b  
OCCA_LTn  
R/W-1b  
OCCB_HTn  
R/W-1b  
OCCB_LTn  
R/W-1b  
R-000000000000b  
8-31. OCC_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:4  
RESERVED  
R
000000000000b Reserved  
Always reads 000000000000b.  
ADC1A overcurrent comparator high threshold fault flag  
Indicates the ADC1A digital fast filter output exceeded the set high threshold for the set  
amount of conversions. Write 1b to clear this bit to 1b.  
0b = High threshold fault occurred  
3
OCCA_HTn  
OCCA_LTn  
OCCB_HTn  
OCCB_LTn  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
1b = No high threshold fault occurred  
2
1
0
ADC1A overcurrent comparator low threshold fault flag  
Indicates the ADC1A digital fast filter output dropped below the set low threshold for the set  
amount of conversions. Write 1b to clear this bit to 1b.  
0b = Low threshold fault occurred  
1b = No low threshold fault occurred  
ADC1B overcurrent comparator high threshold fault flag  
Indicates the ADC1B digital fast filter output exceeded the set high threshold for the set  
amount of conversions. Write 1b to clear this bit to 1b.  
0b = High threshold fault occurred  
1b = No high threshold fault occurred  
ADC1B overcurrent comparator low threshold fault flag  
Indicates the ADC1B digital fast filter output dropped below the set low threshold for the set  
amount of conversions. Write 1b to clear this bit to 1b.  
0b = Low threshold fault occurred  
1b = No low threshold fault occurred  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.8 GPI_DATA Register (Address = 07h) [Reset = 0000h]  
Return to the Summary Table.  
8-53. GPI_DATA Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
RESERVED  
R-000000b  
GPI4_DAT[1:0]  
R-00b  
4
3
0
GPI3_DAT[1:0]  
R-00b  
GPI2_DAT[1:0]  
R-00b  
GPI1_DAT[1:0]  
R-00b  
GPI0_DAT[1:0]  
R-00b  
8-32. GPI_DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:10  
RESERVED  
R
000000b  
Reserved  
Always reads 000000b.  
9:8  
GPI4_DAT[1:0]  
GPI3_DAT[1:0]  
GPI2_DAT[1:0]  
GPI1_DAT[1:0]  
GPI0_DAT[1:0]  
R
R
R
R
R
00b  
00b  
00b  
00b  
00b  
GPIO4 data readback  
Readback value of GPIO4 when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
7:6  
5:4  
3:2  
1:0  
GPIO3 data readback  
Readback value of GPIO3 when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
GPIO2 data readback  
Readback value of GPIO2 when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
GPIO1 data readback  
Readback value of GPIO1 when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
GPIO0 data readback  
Readback value of GPIO0 when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.9 GPIA_GPIB_DATA Register (Address = 08h) [Reset = 0000h]  
Return to the Summary Table.  
8-54. GPIA_GPIB_DATA Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0000b  
GPI1A_DAT[1:0]  
R-00b  
GPI0A_DAT[1:0]  
R-00b  
7
6
5
4
3
RESERVED  
R-0000b  
GPI1B_DAT[1:0]  
R-00b  
GPI0B_DAT[1:0]  
R-00b  
8-33. GPIA_GPIB_DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
11:10  
GPI1A_DAT[1:0]  
R
00b  
GPIO1A data readback  
Readback value of GPIO1A when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
9:8  
GPI0A_DAT[1:0]  
R
00b  
GPIO0A data readback  
Readback value of GPIO0A when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
7:4  
3:2  
RESERVED  
R
R
0000b  
00b  
Reserved  
Always reads 0000b.  
GPI1B_DAT[1:0]  
GPIO1B data readback  
Readback value of GPIO1B when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
1:0  
GPI0B_DAT[1:0]  
R
00b  
GPIO0B data readback  
Readback value of GPIO0B when configured as a digital input or output.  
00b = Low (static low or PWM with a low period >66.6%)  
01b = Weak low (PWM with a low period 50% but 66.6%)  
10b = Weak high (PWM with a high period >50% but 66.6%)  
11b = High (static high or PWM with a high period >66.6%)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.10 CONVERSION_CTRL Register (Address = 09h) [Reset = 0000h]  
Return to the Summary Table.  
8-55. CONVERSION_CTRL Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0b  
STARTA  
R/W-0b  
RESERVED  
R-0b  
STARTB  
R/W-0b  
RESERVED  
R-0b  
STOPA  
R/W-0b  
RESERVED  
R-0b  
STOPB  
R/W-0b  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
SEQ2A_START  
R/W-0b  
RESERVED  
R-000b  
SEQ2A_STOP  
R/W-0b  
RESERVED  
R-00b  
8-34. CONVERSION_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
0b  
Reserved  
Always reads 0b.  
14  
13  
12  
11  
10  
STARTA  
R/W  
R
0b  
0b  
0b  
0b  
0b  
Start or re-start ADC1A conversions  
Write 1b to start or restart conversions of enabled ADC1A. Always reads back 0b.  
RESERVED  
STARTB  
Reserved  
Always reads 0b.  
R/W  
R
Start or restart ADC1B conversions  
Write 1b to start or restart conversions of enabled ADC1B. Always reads back 0b.  
RESERVED  
STOPA  
Reserved  
Always reads 0b.  
R/W  
Stop ADC1A conversions  
Write 1b to stop conversions of ADC1A in continuous-conversion mode. Ongoing  
conversions are allowed to complete. The STOPA bit has no effect in single-shot conversion  
mode. The STARTA bit takes priority over the STOPA bit if both bits are set during the same  
WREG command frame. The STOPA bit clears to 0b after the ongoing conversion finishes  
or when the STARTA bit is set before the ongoing conversion finishes, which aborts the  
ongoing conversion and restarts new conversions.  
9
8
RESERVED  
STOPB  
R
0b  
0b  
Reserved  
Always reads 0b.  
R/W  
Stop ADC1B conversions  
Write 1b to stop conversions of ADC1B in continuous-conversion mode. Ongoing  
conversions are allowed to complete. The STOPB bit has no effect in single-shot conversion  
mode. The STARTB bit takes priority over the STOPB bit if both bits are set during the same  
WREG command frame. The STOPB bit clears to 0b after the ongoing conversion finishes  
or when the STARTB bit is set before the ongoing conversion finishes, which aborts the  
ongoing conversion and restarts new conversions.  
7
6
RESERVED  
R
0b  
Reserved  
Always reads 0b.  
SEQ2A_START  
RESERVED  
R/W  
R
0b  
Start ADC2A sequence  
Write 1b to start or restart sequence of ADC2A. Always reads back 0b.  
5:3  
2
000b  
0b  
Reserved  
Always reads 000b.  
SEQ2A_STOP  
R/W  
Stop ADC2A sequence  
Write 1b to stop ADC2A sequence. A sequence in progress is allowed to finish. The  
SEQ2A_START bit takes priority over the SEQ2A_STOP bit if both bits are set during the  
same WREG command frame. The SEQ2A_STOP bit clears to 0b after the ongoing  
sequence finishes or when the SEQ2A_START bit is set before the ongoing sequence  
finishes, which aborts the ongoing sequence and restarts a new sequence.  
1:0  
RESERVED  
R
00b  
Reserved  
Always reads 00b.  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.11 SEQ2A_STEP0_DATA Register (Address = 10h) [Reset = 0000h]  
Return to the Summary Table.  
8-56. SEQ2A_STEP0_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP0_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP0_DAT[15:0]  
R-0000000000000000b  
8-35. SEQ2A_STEP0_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP0_DAT[15:0]  
R
0000000000000 ADC2A sequence step 0 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.12 SEQ2A_STEP1_DATA Register (Address = 11h) [Reset = 0000h]  
Return to the Summary Table.  
8-57. SEQ2A_STEP1_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP1_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP1_DAT[15:0]  
R-0000000000000000b  
8-36. SEQ2A_STEP1_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP1_DAT[15:0]  
R
0000000000000 ADC2A sequence step 1 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.13 SEQ2A_STEP2_DATA Register (Address = 12h) [Reset = 0000h]  
Return to the Summary Table.  
8-58. SEQ2A_STEP2_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP2_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP2_DAT[15:0]  
R-0000000000000000b  
8-37. SEQ2A_STEP2_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP2_DAT[15:0]  
R
0000000000000 ADC2A sequence step 2 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.14 SEQ2A_STEP3_DATA Register (Address = 13h) [Reset = 0000h]  
Return to the Summary Table.  
8-59. SEQ2A_STEP3_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP3_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP3_DAT[15:0]  
R-0000000000000000b  
8-38. SEQ2A_STEP3_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP3_DAT[15:0]  
R
0000000000000 ADC2A sequence step 3 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.15 SEQ2A_STEP4_DATA Register (Address = 14h) [Reset = 0000h]  
Return to the Summary Table.  
8-60. SEQ2A_STEP4_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP4_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP4_DAT[15:0]  
R-0000000000000000b  
8-39. SEQ2A_STEP4_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP4_DAT[15:0]  
R
0000000000000 ADC2A sequence step 4 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.16 SEQ2A_STEP5_DATA Register (Address = 15h) [Reset = 0000h]  
Return to the Summary Table.  
8-61. SEQ2A_STEP5_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP5_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP5_DAT[15:0]  
R-0000000000000000b  
8-40. SEQ2A_STEP5_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP5_DAT[15:0]  
R
0000000000000 ADC2A sequence step 5 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.17 SEQ2A_STEP6_DATA Register (Address = 16h) [Reset = 0000h]  
Return to the Summary Table.  
8-62. SEQ2A_STEP6_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP6_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP6_DAT[15:0]  
R-0000000000000000b  
8-41. SEQ2A_STEP6_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP6_DAT[15:0]  
R
0000000000000 ADC2A sequence step 6 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.18 SEQ2A_STEP7_DATA Register (Address = 17h) [Reset = 0000h]  
Return to the Summary Table.  
8-63. SEQ2A_STEP7_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP7_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP7_DAT[15:0]  
R-0000000000000000b  
8-42. SEQ2A_STEP7_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP7_DAT[15:0]  
R
0000000000000 ADC2A sequence step 7 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.19 SEQ2A_STEP8_DATA Register (Address = 18h) [Reset = 0000h]  
Return to the Summary Table.  
8-64. SEQ2A_STEP8_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP8_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP8_DAT[15:0]  
R-0000000000000000b  
8-43. SEQ2A_STEP8_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP8_DAT[15:0]  
R
0000000000000 ADC2A sequence step 8 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.20 SEQ2A_STEP9_DATA Register (Address = 19h) [Reset = 0000h]  
Return to the Summary Table.  
8-65. SEQ2A_STEP9_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP9_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP9_DAT[15:0]  
R-0000000000000000b  
8-44. SEQ2A_STEP9_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP9_DAT[15:0]  
R
0000000000000 ADC2A sequence step 9 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.21 SEQ2A_STEP10_DATA Register (Address = 1Ah) [Reset = 0000h]  
Return to the Summary Table.  
8-66. SEQ2A_STEP10_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP10_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP10_DAT[15:0]  
R-0000000000000000b  
8-45. SEQ2A_STEP10_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP10_DAT[15:0]  
R
0000000000000 ADC2A sequence step 10 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.22 SEQ2A_STEP11_DATA Register (Address = 1Bh) [Reset = 0000h]  
Return to the Summary Table.  
8-67. SEQ2A_STEP11_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP11_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP11_DAT[15:0]  
R-0000000000000000b  
8-46. SEQ2A_STEP11_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP11_DAT[15:0]  
R
0000000000000 ADC2A sequence step 11 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.23 SEQ2A_STEP12_DATA Register (Address = 1Ch) [Reset = 0000h]  
Return to the Summary Table.  
8-68. SEQ2A_STEP12_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP12_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP12_DAT[15:0]  
R-0000000000000000b  
8-47. SEQ2A_STEP12_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP12_DAT[15:0]  
R
0000000000000 ADC2A sequence step 12 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.24 SEQ2A_STEP13_DATA Register (Address = 1Dh) [Reset = 0000h]  
Return to the Summary Table.  
8-69. SEQ2A_STEP13_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP13_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP13_DAT[15:0]  
R-0000000000000000b  
8-48. SEQ2A_STEP13_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP13_DAT[15:0]  
R
0000000000000 ADC2A sequence step 13 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.25 SEQ2A_STEP14_DATA Register (Address = 1Eh) [Reset = 0000h]  
Return to the Summary Table.  
8-70. SEQ2A_STEP14_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP14_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP14_DAT[15:0]  
R-0000000000000000b  
8-49. SEQ2A_STEP14_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP14_DAT[15:0]  
R
0000000000000 ADC2A sequence step 14 conversion data  
000b Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.26 SEQ2A_STEP15_DATA Register (Address = 1Fh) [Reset = 0000h]  
Return to the Summary Table.  
8-71. SEQ2A_STEP15_DATA Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP15_DAT[15:0]  
R-0000000000000000b  
7
6
5
4
3
2
SEQ2A_STEP15_DAT[15:0]  
R-0000000000000000b  
8-50. SEQ2A_STEP15_DATA Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SEQ2A_STEP15_DAT[15:0]  
R
0000000000000 ADC2A sequence step 15 conversion data  
000b  
Value provided in two's complement format.  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.27 DEVICE_MONITOR_CFG Register (Address = 40h) [Reset = 3000h]  
Return to the Summary Table.  
8-72. DEVICE_MONITOR_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
REG_MAP1_CRC_E  
N
CRC_TYPE  
SCLK_COUNTER_E  
N
TIMEOUT_EN  
RESERVED  
FAULT_POL  
R/W-0b  
7
R/W-0b  
6
R/W-1b  
R/W-1b  
4
R-000b  
R/W-0b  
0
5
3
2
RESERVED  
R-00000b  
MHD_POL  
R/W-0b  
MHD_CFG[1:0]  
R/W-00b  
8-51. DEVICE_MONITOR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
REG_MAP1_CRC_EN  
R/W  
0b  
Register map section 1 CRC enable  
Enables the register map CRC for section 1 (register address space from 40h to 59h).  
0b = Disabled  
1b = Enabled  
14  
13  
12  
CRC_TYPE  
R/W  
R/W  
R/W  
0b  
1b  
1b  
CRC type selection  
Selects the CRC polynomial that is used for the SPI and register map CRC calculation.  
0b = 16-bit CCITT  
1b = 16-bit ANSI  
SCLK_COUNTER_EN  
TIMEOUT_EN  
SCLK counter enable  
Enables the SCLK counter.  
0b = Disabled  
1b = Enabled  
SPI timeout enable  
Enables the SPI timeout. When enabled the timeout checks that a rising edge of CSn  
happens within 214 tOSCD cycles after a CSn falling edge. When a timeout occurs, the  
remainder of the SPI frame on SDI is ignored before the rising edge of CSn. A new SPI  
transaction starts at the next CSn falling edge.  
0b = Disabled  
1b = Enabled  
11:9  
8
RESERVED  
FAULT_POL  
R
000b  
0b  
Reserved  
Always reads back 000b.  
R/W  
FAULT pin polarity selection  
Selects the polarity of the FAULT pin. The actual output behavior of the GPIO2/FAULT pin,  
when configured as a FAULT output in the GPIO2_SRC bit, depends on the GPIO2_FMT  
setting. A FAULT is active when any of the non-masked STATUS_MSB[14:7] bits are active.  
0b = Active low. In case of a fault a logic low level is driven.  
1b = Active high. In case of a fault a logic high level is driven.  
7:3  
2
RESERVED  
MHD_POL  
R
00000b  
0b  
Reserved  
Always reads back 00000b.  
R/W  
Missing host detection fault pin polarity selection  
Selects the polarity of the MHD pin. The actual output behavior of the GPIO0/MHD pin,  
when configured as an MHD output in the GPIO0_SRC bit, depends on the GPIO0_FMT  
setting.  
0b = Active low. In case of a fault a logic low level is driven.  
1b = Active high. In case of a fault a logic high level is driven.  
1:0  
MHD_CFG[1:0]  
R/W  
00b  
Missing host detection configuration  
Detects when the host is not communicating with the device anymore. A watchdog timer  
checks the time between two valid commands with a valid CRC. If a valid command with a  
valid CRC is not received within the watchdog time window, the host is considered missing.  
When the watchdog times out, the GPIO0/MHD pin is set to active. To use the missing host  
detection mode, configure the GPIO0/MHD pin as an output using the GPIO0_DIR bit and  
the source for missing host detection mode using the GPIO0_SRC bit. To reset the  
GPIO0/MHD output after a missing host was detected, disable the missing host detection  
mode by setting MHD_CFG = 00b.  
00b = Disabled  
01b = 5120 x tOSCD (= 0.625 ms for fOSCD = 8.192 MHz)  
10b = 10240 x tOSCD (= 1.25 ms for fOSCD = 8.192 MHz)  
11b = 20480 x tOSCD (= 2.5 ms for fOSCD = 8.192 MHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.28 SUPPLY_MONITOR_CFG1 Register (Address = 41h) [Reset = FFFFh]  
Return to the Summary Table.  
8-73. SUPPLY_MONITOR_CFG1 Register  
15  
14  
13  
12  
11  
10  
9
8
AVDD_OV_EN  
R/W-1b  
AVDD_UV_EN  
R/W-1b  
IOVDD_OV_EN  
R/W-1b  
IOVDD_UV_EN  
R/W-1b  
DVDD_OV_EN  
R/W-1b  
DVDD_UV_EN  
R/W-1b  
AVDD_OSC_EN  
R/W-1b  
IOVDD_OSC_EN  
R/W-1b  
7
6
5
4
3
2
1
0
DVDD_OSC_EN  
R/W-1b  
AVDD_OTW_EN  
R/W-1b  
IOVDD_OTW_EN  
R/W-1b  
AVDD_CL_EN  
R/W-1b  
IOVDD_CL_EN  
R/W-1b  
AGNDA_DISC_EN  
R/W-1b  
AGNDB_DISC_EN  
R/W-1b  
DGND_DISC_EN  
R/W-1b  
8-52. SUPPLY_MONITOR_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AVDD_OV_EN  
R/W  
1b  
AVDD LDO overvoltage monitor enable  
Enables the AVDD LDO output overvoltage monitor.  
0b = Disabled  
1b = Enabled  
14  
13  
12  
11  
10  
9
AVDD_UV_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
AVDD LDO undervoltage monitor enable  
Enables the AVDD LDO output undervoltage monitor.  
0b = Disabled  
1b = Enabled  
IOVDD_OV_EN  
IOVDD_UV_EN  
DVDD_OV_EN  
DVDD_UV_EN  
AVDD_OSC_EN  
IOVDD_OSC_EN  
DVDD_OSC_EN  
AVDD_OTW_EN  
IOVDD_OTW_EN  
AVDD_CL_EN  
IOVDD LDO overvoltage monitor enable  
Enables the IOVDD LDO output overvoltage monitor.  
0b = Disabled  
1b = Enabled  
IOVDD LDO undervoltage monitor enable  
Enables the IOVDD LDO output undervoltage monitor.  
0b = Disabled  
1b = Enabled  
DVDD LDO overvoltage monitor enable  
Enables the DVDD LDO output overvoltage monitor.  
0b = Disabled  
1b = Enabled  
DVDD LDO undervoltage monitor enable  
Enables the DVDD LDO output undervoltage monitor.  
0b = Disabled  
1b = Enabled  
AVDD LDO oscillation monitor enable  
Enables the AVDD LDO output oscillation monitor.  
0b = Disabled  
1b = Enabled  
8
IOVDD LDO oscillation monitor enable  
Enables the IOVDD LDO output oscillation monitor.  
0b = Disabled  
1b = Enabled  
7
DVDD LDO oscillation monitor enable  
Enables the DVDD LDO output oscillation monitor.  
0b = Disabled  
1b = Enabled  
6
AVDD LDO overtemperature warning monitor enable  
Enables the AVDD LDO overtemperature warning monitor.  
0b = Disabled  
1b = Enabled  
5
IOVDD LDO overtemperature warning monitor enable  
Enables the IOVDD LDO overtemperature warning monitor.  
0b = Disabled  
1b = Enabled  
4
AVDD LDO current limit enable  
Enables the AVDD LDO current limit.  
0b = Disabled  
1b = Enabled  
3
IOVDD_CL_EN  
AGNDA_DISC_EN  
AGNDB_DISC_EN  
IOVDD LDO current limit enable  
Enables the IOVDD LDO current limit.  
0b = Disabled  
1b = Enabled  
2
AGNDA disconnect monitor enable  
Enables the AGNDA disconnect monitor.  
0b = Disabled  
1b = Enabled  
1
AGNDB disconnect monitor enable  
Enables the AGNDB disconnect monitor.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-52. SUPPLY_MONITOR_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
DGND_DISC_EN  
R/W  
1b  
DGND disconnect monitor enable  
Enables the DGND disconnect monitor.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.29 SUPPLY_MONITOR_CFG2 Register (Address = 42h) [Reset = 10F0h]  
Return to the Summary Table.  
8-74. SUPPLY_MONITOR_CFG2 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
IOVDD_OV_TH  
R/W-0b  
IOVDD_UV_TH  
R/W-1b  
RESERVED  
R-0000b  
7
6
5
4
3
2
AVDD_OTW_CFG[1:0]  
R/W-11b  
IOVDD_OTW_CFG[1:0]  
R/W-11b  
RESERVED  
R-0000b  
8-53. SUPPLY_MONITOR_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
RESERVED  
R
00b  
Reserved  
Always reads back 00b.  
13  
12  
IOVDD_OV_TH  
IOVDD_UV_TH  
RESERVED  
R/W  
R/W  
0b  
1b  
IOVDD overvoltage threshold selection  
Selects the threshold for the IOVDD LDO output overvoltage monitor.  
0b = 5.7 V  
1b = 3.9 V  
IOVDD undervoltage threshold selection  
Selects the threshold for the IOVDD LDO output undervoltage monitor.  
0b = 4.3 V  
1b = 2.95 V  
11:8  
7:6  
R
0000b  
11b  
Reserved  
Always reads back 0000b.  
AVDD_OTW_CFG[1:0]  
R/W  
AVDD LDO overtemperature warning threshold selection  
Selects the threshold for AVDD LDO overtemperature warning.  
00b = #dash<deg#C  
01b = 100°C  
10b = 120°C  
11b = 140°C  
5:4  
3:0  
IOVDD_OTW_CFG[1:0]  
R/W  
11b  
IOVDD LDO overtemperature warning threshold selection  
Selects the threshold for IOVDD LDO overtemperature warning.  
00b = #dash<deg#C  
01b = 100°C  
10b = 120°C  
11b = 140°C  
RESERVED  
R
0000b  
Reserved  
Always reads back 0000b.  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.30 ADC_MONITOR_CFG Register (Address = 43h) [Reset = FC07h]  
Return to the Summary Table.  
8-75. ADC_MONITOR_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
ADC1A_OR_EN  
R/W-1b  
ADC1B_OR_EN  
R/W-1b  
ADC2A_OR_EN  
R/W-1b  
SPARE[2:0]  
R/W-111b  
RESERVED  
R-0000000b  
7
6
5
4
3
2
0
RESERVED  
R-0000000b  
MCLK_MON_EN  
R/W-1b  
OSCD_WD_EN  
R/W-1b  
MCLK_WD_EN  
R/W-1b  
8-54. ADC_MONITOR_CFG Register Field Descriptions  
Bit  
Field  
ADC1A_OR_EN  
Type  
Reset  
Description  
15  
R/W  
1b  
ADC1A modulator overrange detection monitor enable  
Enables the ADC1A modulator overrange detection monitor.  
0b = Disabled  
1b = Enabled  
14  
13  
ADC1B_OR_EN  
ADC2A_OR_EN  
SPARE[2:0]  
R/W  
R/W  
R/W  
1b  
ADC1B modulator overrange detection monitor enable  
Enables the ADC1B modulator overrange detection monitor.  
0b = Disabled  
1b = Enabled  
1b  
ADC2A modulator overrange detection monitor enable  
Enables the ADC2A modulator overrange detection monitor.  
0b = Disabled  
1b = Enabled  
12:10  
111b  
Spare bits  
Provided as R/W bits as a means to check the register map section 1 CRC. Bit settings  
have no effect.  
9:3  
2
RESERVED  
R
0000000b  
1b  
Reserved  
Always reads back 0000000b.  
MCLK_MON_EN  
R/W  
MCLK monitor enable  
Enables the main clock frequency monitor.  
0b = Disabled  
1b = Enabled  
1
0
OSCD_WD_EN  
MCLK_WD_EN  
R/W  
R/W  
1b  
1b  
Diagnostic oscillator watchdog enable  
Enables the diagnostic oscillator watchdog.  
0b = Disabled  
1b = Enabled  
Main clock watchdog enable  
Enables the main clock watchdog.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.31 SUPPLY_MONITOR_DIAGNOSTIC_CFG Register (Address = 44h) [Reset = 0000h]  
Return to the Summary Table.  
8-76. SUPPLY_MONITOR_DIAGNOSTIC_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
AVDD_OV_DIAG_EN AVDD_UV_DIAG_EN IOVDD_OV_DIAG_E IOVDD_UV_DIAG_E DVDD_OV_DIAG_E DVDD_UV_DIAG_E AVDD_OSC_DIAG_E IOVDD_OSC_DIAG_  
N
N
N
N
N
EN  
R/W-0b  
7
R/W-0b  
6
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
5
4
3
2
1
0
DVDD_OSC_DIAG_  
EN  
RESERVED  
R-0000b  
AGNDA_DISC_DIAG AGNDB_DISC_DIAG DGND_DISC_DIAG_  
_EN  
_EN  
EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-55. SUPPLY_MONITOR_DIAGNOSTIC_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AVDD_OV_DIAG_EN  
AVDD_UV_DIAG_EN  
IOVDD_OV_DIAG_EN  
IOVDD_UV_DIAG_EN  
DVDD_OV_DIAG_EN  
DVDD_UV_DIAG_EN  
AVDD_OSC_DIAG_EN  
IOVDD_OSC_DIAG_EN  
DVDD_OSC_DIAG_EN  
RESERVED  
R/W  
0b  
AVDD LDO overvoltage monitor diagnostic enable  
Enables the AVDD LDO output overvoltage monitor diagnostic. AVDD_OV_EN must be set  
for the diagnostic to work. The AVDD_OVn fault flag sets within tp(AVDD_OV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
14  
13  
12  
11  
10  
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0b  
AVDD LDO undervoltage monitor diagnostic enable  
Enables the AVDD LDO output undervoltage monitor diagnostic. AVDD_UV_EN must be set  
for the diagnostic to work. The AVDD_UVn fault flag sets within tp(AVDD_UV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
0b  
IOVDD LDO overvoltage monitor diagnostic enable  
Enables the IOVDD LDO output overvoltage monitor diagnostic. IOVDD_OV_EN must be  
set for the diagnostic to work. The IOVDD_OVn fault flag sets within tp(IOVDD._OV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
0b  
IOVDD LDO undervoltage monitor diagnostic enable  
Enables the IOVDD LDO output undervoltage monitor diagnostic. IOVDD_UV_EN must be  
set for the diagnostic to work. The IOVDD_UVn fault flag sets within tp(IOVDD_UV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
0b  
DVDD LDO overvoltage monitor diagnostic enable  
Enables the DVDD LDO output overvoltage monitor diagnostic. DVDD_OV_EN must be set  
for the diagnostic to work. The DVDD_OVn fault flag sets within tp(DVDD_OV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
0b  
DVDD LDO undervoltage monitor diagnostic enable  
Enables the DVDD LDO output undervoltage monitor diagnostic. DVDD_UV_EN must be  
set for the diagnostic to work. The DVDD_UVn fault flag sets within tp(DVDD_UV) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
0b  
AVDD LDO oscillation monitor diagnostic enable  
Enables the AVDD LDO output oscillation monitor diagnostic. AVDD_OSC_EN must be set  
for the diagnostic to work. The AVDD_OSCn fault flag sets within tp(AVDD_OSC) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
8
0b  
IOVDD LDO oscillation monitor diagnostic enable  
Enables the IOVDD LDO output oscillation monitor diagnostic. IOVDD_OSC_EN must be  
set for the diagnostic to work. The IOVDD_OSCn fault flag sets within tp(IOVDD_OSC) when  
the diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
7
0b  
DVDD LDO oscillation monitor diagnostic enable  
Enables the DVDD LDO output oscillation monitor diagnostic. DVDD_OSC_EN must be set  
for the diagnostic to work. The DVDD_OSCn fault flag sets within tp(DVDD_OSC) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
6:3  
0000b  
Reserved  
Always reads back 0000b.  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-55. SUPPLY_MONITOR_DIAGNOSTIC_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
AGNDA_DISC_DIAG_EN  
R/W  
0b  
AGNDA disconnect monitor diagnostic enable  
Enables the AGNDA disconnect monitor diagnostic. AGNDA_DISC_EN must be set for the  
diagnostic to work. The AGNDA_DISCn fault flag sets within tp(AGNDA_OPEN) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
1
0
AGNDB_DISC_DIAG_EN  
DGND_DISC_DIAG_EN  
R/W  
R/W  
0b  
0b  
AGNDB disconnect monitor diagnostic enable  
Enables the AGNDB disconnect monitor diagnostic. AGNDB_DISC_EN must be set for the  
diagnostic to work. The AGNDB_DISCn fault flag sets within tp(AGNDB_OPEN) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
DGND disconnect monitor diagnostic enable  
Enables the DGND disconnect monitor diagnostic. DGND_DISC_EN must be set for the  
diagnostic to work. The DGND_DISCn fault flag sets within tp(DGND_OPEN) when the  
diagnostic completed successfully.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.32 ADC_MONITOR_DIAGNOSTIC_CFG Register (Address = 45h) [Reset = 0000h]  
Return to the Summary Table.  
8-77. ADC_MONITOR_DIAGNOSTIC_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
0
SPARE[11:0]  
R/W-000000000000b  
7
6
5
4
3
2
1
SPARE[11:0]  
MCLK_HI_DIAG_EN MCLK_LO_DIAG_EN OSCD_WD_DIAG_E MCLK_WD_DIAG_E  
N
N
R/W-000000000000b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-56. ADC_MONITOR_DIAGNOSTIC_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:4  
SPARE[11:0]  
R/W  
000000000000b Spare bits  
Provided as R/W bits as a means to check the register map section 1 CRC. Bit settings  
have no effect.  
3
MCLK_HI_DIAG_EN  
MCLK_LO_DIAG_EN  
R/W  
R/W  
0b  
0b  
MCLK frequency too high monitor diagnostic enable  
Enables the main clock frequency too high monitor diagnostic. MCLK_MON_EN must be set  
for the diagnostic to work. The MCLK_FAULTn fault flag sets within tp(MCLK_FAULT) when the  
diagnostic completed successfully. Do not enable the MCLK_LO_DIAG_EN at the same  
time. Execute the MCLK_HI_DIAG_EN and MCLK_LO_DIAG_EN sequentially.  
0b = Disabled  
1b = Enabled  
2
MCLK frequency too low monitor diagnostic enable  
Enables the main clock frequency too low monitor diagnostic. MCLK_MON_EN must be set  
for the diagnostic to work. The MCLK_FAULTn fault flag sets within tp(MCLK_FAULT) when the  
diagnostic completed successfully. Do not enable the MCLK_HI_DIAG_EN at the same  
time. Execute the MCLK_HI_DIAG_EN and MCLK_LO_DIAG_EN sequentially.  
0b = Disabled  
1b = Enabled  
1
0
OSCD_WD_DIAG_EN  
MCLK_WD_DIAG_EN  
R/W  
R/W  
0b  
0b  
Diagnostic oscillator watchdog diagnostic enable  
Enables the diagnostic oscillator watchdog diagnostic. OSCD_WD_EN must be set for the  
diagnostic to work. The OSCD_WDn fault flag sets within tp(OSCD_WD) when the diagnostic  
completed successfully.  
0b = Disabled  
1b = Enabled  
Main clock watchdog diagnostic enable  
Enables the main clock watchdog diagnostic. MCLK_WD_EN must be set for the diagnostic  
to work. The MCLK_WDn fault flag sets within tp(MCLK_WD) when the diagnostic completed  
successfully.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.33 DIGITAL_MONITOR_DIAGNOSTIC_CFG Register (Address = 46h) [Reset = 0000h]  
Return to the Summary Table.  
8-78. DIGITAL_MONITOR_DIAGNOSTIC_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-000000b  
MEM_MAP_CRC_DIAG[1:0]  
R/W-00b  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
GPIOA_DIAG_EN  
R/W-0b  
GPIOB_DIAG_EN  
R/W-0b  
GPIO_DIAG_EN  
R/W-0b  
8-57. DIGITAL_MONITOR_DIAGNOSTIC_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:10  
RESERVED  
R
000000b  
Reserved  
Always reads back 000000b.  
9:8  
MEM_MAP_CRC_DIAG[1:0]  
R/W  
00b  
Memory map CRC diagnostic bit pattern selection  
Selects the bit pattern to use for the memory map CRC diagnostic. The  
MEM_MAP_CRC_FAULTn fault flag sets within tp(MEM_MAP_CRC) when the diagnostic  
completed successfully. Any of the three available bit patterns can be used for the  
diagnostic.  
00b = Disabled  
01b = Pattern 1  
10b = Pattern 2  
11b = Pattern 3  
7:3  
2
RESERVED  
R
00000b  
0b  
Reserved  
Always reads back 00000b.  
GPIOA_DIAG_EN  
R/W  
GPIOA readback diagnostic enable  
Inverts the readback value of the GPIxA_DAT[1:0] bits if GPIOxA_DIR is configured as a  
digital output.  
0b = Disabled  
1b = Enabled  
1
0
GPIOB_DIAG_EN  
GPIO_DIAG_EN  
R/W  
R/W  
0b  
0b  
GPIOB readback diagnostic enable  
Inverts the readback value of the GPIxB_DAT[1:0] bits if GPIOxB_DIR is configured as a  
digital output.  
0b = Disabled  
1b = Enabled  
GPIO readback diagnostic enable  
Inverts the readback value of the GPIx_DAT[1:0] bits if GPIOx_DIR is configured as a digital  
output.  
0b = Disabled  
1b = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.34 SUPPLY_FAULT_MASK Register (Address = 47h) [Reset = 0000h]  
Return to the Summary Table.  
8-79. SUPPLY_FAULT_MASK Register  
15  
14  
13  
12  
11  
10  
9
8
AVDD_OV_MASK  
R/W-0b  
AVDD_UV_MASK  
R/W-0b  
IOVDD_OV_MASK  
R/W-0b  
IOVDD_UV_MASK  
R/W-0b  
DVDD_OV_MASK  
R/W-0b  
DVDD_UV_MASK  
R/W-0b  
AVDD_OSC_MASK IOVDD_OSC_MASK  
R/W-0b  
1
R/W-0b  
0
7
6
5
4
3
2
DVDD_OSC_MASK AVDD_OTW_MASK IOVDD_OTW_MASK  
AVDD_CL_MASK  
IOVDD_CL_MASK  
AGNDA_DISC_MAS AGNDB_DISC_MAS DGND_DISC_MASK  
K
K
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-58. SUPPLY_FAULT_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AVDD_OV_MASK  
AVDD_UV_MASK  
IOVDD_OV_MASK  
IOVDD_UV_MASK  
DVDD_OV_MASK  
DVDD_UV_MASK  
AVDD_OSC_MASK  
IOVDD_OSC_MASK  
DVDD_OSC_MASK  
AVDD_OTW_MASK  
IOVDD_OTW_MASK  
AVDD_CL_MASK  
R/W  
0b  
AVDD overvoltage fault flag mask  
Masks the AVDD overvoltage fault flag (AVDD_OVn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
14  
13  
12  
11  
10  
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
AVDD undervoltage fault flag mask  
Masks the AVDD undervoltage fault flag (AVDD_UVn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
IOVDD overvoltage fault flag mask  
Masks the IOVDD overvoltage fault flag (IOVDD_OVn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
IOVDD undervoltage fault flag mask  
Masks the IOVDD undervoltage fault flag (IOVDD_UVn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
DVDD overvoltage fault flag mask  
Masks the DVDD overvoltage fault flag (DVDD_OVn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
DVDD undervoltage fault flag mask  
Masks the DVDD undervoltage fault flag (DVDD_UVn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
AVDD oscillation fault flag mask  
Masks the AVDD oscillation fault flag (AVDD_OSCn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
8
IOVDD oscillation fault flag mask  
Masks the IOVDD oscillation fault flag (IOVDD_OSCn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
7
DVDD oscillation fault flag mask  
Masks the DVDD oscillation fault flag (DVDD_OSCn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
6
AVDD overtemperature warning flag mask  
Masks the AVDD LDO overtemperature warning flag (AVDD_OTWn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
5
IOVDD overtemperature warning flag mask  
Masks the IOVDD LDO overtemperature warning flag (IOVDD_OTWn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
4
AVDD current limit flag mask  
Masks the AVDD LDO current limit flag (AVDD_CLn) from triggering the SUPPLY_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-58. SUPPLY_FAULT_MASK Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
IOVDD_CL_MASK  
R/W  
0b  
IOVDD current limit flag mask  
Masks the IOVDD LDO current limit flag (IOVDD_CLn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
2
1
0
AGNDA_DISC_MASK  
AGNDB_DISC_MASK  
DGND_DISC_MASK  
R/W  
R/W  
R/W  
0b  
0b  
0b  
AGNDA pin disconnect detection flag mask  
Masks the AGNDA pin disconnect detection flag (AGNDA_DISCn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
AGNDB pin disconnect detection flag mask  
Masks the AGNDB pin disconnect detection flag (AGNDB_DISCn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
DGND pin disconnect detection flag mask  
Masks the DGND pin disconnect detection flag (DGND_DISCn) from triggering the  
SUPPLY_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.35 ADC_FAULT_MASK Register (Address = 48h) [Reset = 0000h]  
Return to the Summary Table.  
8-80. ADC_FAULT_MASK Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
ADC1A_OR_MASK  
R/W-0b  
ADC1B_OR_MASK  
R/W-0b  
ADC2A_OR_MASK  
R/W-0b  
SPARE[2:0]  
R/W-000b  
RESERVED  
R-0000000b  
7
6
5
4
3
0
RESERVED  
MCLK_FAULT_MAS  
K
OSCD_WD_MASK  
MCLK_WD_MASK  
R-0000000b  
R/W-0b  
R/W-0b  
R/W-0b  
8-59. ADC_FAULT_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ADC1A_OR_MASK  
ADC1B_OR_MASK  
ADC2A_OR_MASK  
SPARE[2:0]  
R/W  
0b  
ADC1A modulator overrange fault flag mask  
Masks the ADC1A modulator overrange fault flag (ADC1A_ORn) from triggering the  
ADC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
14  
13  
R/W  
R/W  
R/W  
0b  
ADC1B modulator overrange fault flag mask  
Masks the ADC1B modulator overrange fault flag (ADC1B_ORn) from triggering the  
ADC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
0b  
ADC2A modulator overrange fault flag mask  
Masks the ADC2A modulator overrange fault flag (ADC2A_ORn) from triggering the  
ADC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
12:10  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 1 CRC. Bit settings  
have no effect.  
9:3  
2
RESERVED  
R
0000000b  
0b  
Reserved  
Always reads back 0000000b.  
MCLK_FAULT_MASK  
R/W  
MCLK frequency too high or too low fault flag mask  
Masks the MCLK frequency too high or too low fault flag (MCLK_FAULTn) from triggering  
the ADC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
1
0
OSCD_WD_MASK  
MCLK_WD_MASK  
R/W  
R/W  
0b  
0b  
Diagnostic oscillator watchdog fault flag mask  
Masks the diagnostic oscillator watchdog fault flag (OSCD_WDn) from triggering the  
ADC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Main clock watchdog fault flag mask  
Masks the main clock watchdog fault flag (MCLK_WDn) from triggering the ADC_FAULTn  
flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.36 DIGITAL_FAULT_MASK Register (Address = 49h) [Reset = 0000h]  
Return to the Summary Table.  
8-81. DIGITAL_FAULT_MASK Register  
15  
14  
13  
12  
11  
10  
9
8
0
REG_MAP1_CRC_F REG_MAP2_CRC_F REG_MAP3_CRC_F  
RESERVED  
MEM_MAP_CRC_FA  
ULT_MASK  
RESERVED  
AULT_MASK  
R/W-0b  
AULT_MASK  
R/W-0b  
AULT_MASK  
R/W-0b  
R-0b  
4
R/W-0b  
3
R-00000000000b  
1
7
6
5
2
RESERVED  
R-00000000000b  
8-60. DIGITAL_FAULT_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
REG_MAP1_CRC_FAULT_MASK R/W  
REG_MAP2_CRC_FAULT_MASK R/W  
REG_MAP3_CRC_FAULT_MASK R/W  
0b  
Register map section 1 CRC fault flag mask  
Masks the register map section 1 CRC fault flag (REG_MAP1_CRC_FAULTn) from  
triggering the DIGITAL_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
14  
13  
0b  
0b  
Register map section 2 CRC fault flag mask  
Masks the register map section 2 CRC fault flag (REG_MAP2_CRC_FAULTn) from  
triggering the DIGITAL_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Register map section 3 CRC fault flag mask  
Masks the register map section 3 CRC fault flag (REG_MAP3_CRC_FAULTn) from  
triggering the DIGITAL_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
12  
11  
RESERVED  
R
0b  
0b  
Reserved  
Always reads back 0b.  
MEM_MAP_CRC_FAULT_MASK  
R/W  
Memory map CRC fault flag mask  
Masks the memory map CRC fault flag (MEM_MAP_CRC_FAULTn) from triggering the  
DIGITAL_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
10:0  
RESERVED  
R
00000000000b  
Reserved  
Always reads back 00000000000b.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.37 OCC_FAULT_MASK Register (Address = 4Ah) [Reset = 0000h]  
Return to the Summary Table.  
8-82. OCC_FAULT_MASK Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-000000000000b  
7
6
5
4
3
2
1
0
RESERVED  
OCCA_HT_MASK  
R/W-0b  
OCCA_LT_MASK  
R/W-0b  
OCCB_HT_MASK  
R/W-0b  
OCCB_LT_MASK  
R/W-0b  
R-000000000000b  
8-61. OCC_FAULT_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:4  
RESERVED  
R
000000000000b Reserved  
Always reads back 000000000000b.  
ADC1A overcurrent comparator high threshold fault flag mask  
Masks the ADC1A overcurrent comparator high threshold fault flag (OCCA_HTn) from  
triggering the OCC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
3
OCCA_HT_MASK  
OCCA_LT_MASK  
OCCB_HT_MASK  
OCCB_LT_MASK  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
2
1
0
ADC1A overcurrent comparator low threshold fault flag mask  
Masks the ADC1A overcurrent comparator low threshold fault flag (OCCA_LTn) from  
triggering the OCC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
ADC1B overcurrent comparator high threshold fault flag mask  
Masks the ADC1B overcurrent comparator high threshold fault flag (OCCB_HTn) from  
triggering the OCC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
ADC1B overcurrent comparator low threshold fault flag mask  
Masks the ADC1B overcurrent comparator low threshold fault flag (OCCB_LTn) from  
triggering the OCC_FAULTn flag in the STATUS_MSB register.  
0b = Unmasked  
1b = Masked  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.38 FAULT_PIN_MASK Register (Address = 4Bh) [Reset = 0780h]  
Return to the Summary Table.  
8-83. FAULT_PIN_MASK Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
SUPPLY_FAULT_MA ADC_FAULT_MASK DIGITAL_FAULT_MA OCC_FAULT_MASK SPI_CRC_FAULT_M SPI_TIMEOUT_MAS SCLK_COUNT_FAU  
SK  
SK  
ASK  
K
LT_MASK  
R/W-1b  
R-0b  
7
R/W-0b  
R/W-0b  
5
R/W-0b  
R/W-0b  
R/W-1b  
R/W-1b  
6
4
3
2
1
0
REG_ACCESS_FAU  
LT_MASK  
RESERVED  
R/W-1b  
R-0000000b  
8-62. FAULT_PIN_MASK Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15  
R
0b  
Reserved  
Always reads back 0b.  
14  
13  
12  
11  
10  
9
SUPPLY_FAULT_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0b  
Supply fault flag mask  
Masks the supply fault flag (SUPPLY_FAULTn) in the STATUS_MSB register from triggering  
the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
ADC_FAULT_MASK  
0b  
ADC fault flag mask  
Masks the ADC fault flag (ADC_FAULTn) in the STATUS_MSB register from triggering the  
FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
DIGITAL_FAULT_MASK  
OCC_FAULT_MASK  
0b  
Digital fault flag mask  
Masks the digital fault flag (DIGITAL_FAULTn) in the STATUS_MSB register from triggering  
the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
0b  
Overcurrent comparator fault flag mask  
Masks the overcurrent comparator fault flag (OCC_FAULTn) in the STATUS_MSB register  
from triggering the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
SPI_CRC_FAULT_MASK  
SPI_TIMEOUT_MASK  
SCLK_COUNT_FAULT_MASK  
REG_ACCESS_FAULT_MASK  
RESERVED  
1b  
SPI CRC fault flag mask  
Masks the SPI CRC fault flag (SPI_CRC_FAULTn) in the STATUS_MSB register from  
triggering the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
1b  
SPI timeout fault flag mask  
Masks the SPI timeout fault flag (SPI_TIMEOUTn) in the STATUS_MSB register from  
triggering the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
8
1b  
SCLK counter fault flag mask  
Masks the SCLK counter fault flag (SCLK_COUNT_FAULTn) in the STATUS_MSB register  
from triggering the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
7
1b  
Register access fault flag mask  
Masks the register access fault flag (REG_ACCESS_FAULTn) in the STATUS_MSB register  
from triggering the FAULT pin when the GPIO2/FAULT pin is configured as a FAULT output.  
0b = Unmasked  
1b = Masked  
6:0  
0000000b  
Reserved  
Always reads back 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.39 DEVICE_CFG Register (Address = 4Ch) [Reset = 0000h]  
Return to the Summary Table.  
8-84. DEVICE_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0b  
DRDY_CTRL  
R/W-0b  
RESERVED  
R/W-0b  
CLK_SOURCE  
R/W-0b  
WORD_LENGTH  
R/W-0b  
RESERVED  
R-0b  
OP_MODE[1:0]  
R/W-00b  
7
6
5
4
3
2
0
RESERVED  
R-00000000b  
8-63. DEVICE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
0b  
Reserved  
Always reads back 0b.  
14  
DRDY_CTRL  
R/W  
0b  
DRDYn pin control selection  
Selects which ADC controls the DRDYn pin indication.  
0b = ADC1A  
1b = ADC1B  
13  
12  
RESERVED  
R/W  
R/W  
0b  
0b  
Reserved  
Always write 0b.  
CLK_SOURCE  
MCLK clock source selection  
Selects the main clock source of the device. Before changing this bit, all ADCs must be  
disabled or the device placed in standby or power-down mode. When switching from an  
external clock to the internal oscillator, the external clock must be provided until after the  
switch-over is complete.  
0b = Internal oscillator  
1b = External clock  
11  
WORD_LENGTH  
R/W  
0b  
Data word length selection  
Selects the length of every word in the SPI frame.  
0b = 24 bits  
1b = 32 bits; LSB zero padding  
10  
RESERVED  
R
0b  
Reserved  
Always reads back 0b.  
9:8  
OP_MODE[1:0]  
R/W  
00b  
Operating mode selection  
Selects the operating mode for the device.  
00b = Active mode  
01b = Standby mode (Disables all ADCs)  
10b = Power-down mode  
11b = Power-down mode  
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads back 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.40 GPIO_CFG Register (Address = 4Dh) [Reset = 0000h]  
Return to the Summary Table.  
8-85. GPIO_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0b  
GPIO4_FMT  
R/W-0b  
GPIO3_FMT  
R/W-0b  
GPIO2_FMT  
R/W-0b  
GPIO1_FMT  
R/W-0b  
GPIO0_FMT  
R/W-0b  
GPIO4_DIR  
R/W-0b  
GPIO3_DIR  
R/W-0b  
7
6
5
4
3
2
1
0
GPIO2_DIR  
R/W-0b  
GPIO1_DIR  
R/W-0b  
GPIO0_DIR  
R/W-0b  
GPIO4_SRC  
R/W-0b  
GPIO3_SRC  
R/W-0b  
GPIO2_SRC  
R/W-0b  
RESERVED  
R-0b  
GPIO0_SRC  
R/W-0b  
8-64. GPIO_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
0b  
Reserved  
Always reads back 0b.  
14  
13  
12  
11  
10  
GPIO4_FMT  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
GPIO4 format  
Configures GPIO4 for static input and output levels or for PWM input and output levels  
0b = When GPIO4 is configured as a digital input: Logic levels are based on static input  
levels. When GPIO4 is configured as a digital output: Output with static output levels.  
(GPIO4_LL_PWM_CFG and GPIO4_LH_PWM_CFG registers are ignored in this case). For  
parallel GPO readback purposes the readback path is configured for logic levels based on  
static input levels in this case.  
1b = When GPIO4 is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO4 is configured as a digital output: Output with PWM output defined  
by the GPIO4_LL_PWM_CFG and GPIO4_LH_PWM_CFG registers. For parallel GPO  
readback purposes the readback path is configured for logic levels based on PWM decoding  
using the time base configured in GPIO4_PWM_TB in this case.  
GPIO3_FMT  
GPIO2_FMT  
GPIO1_FMT  
GPIO0_FMT  
GPIO3 format  
Configures GPIO3 for static input and output levels or for PWM input and output levels  
0b = When GPIO3 is configured as a digital input: Logic levels are based on static input  
levels. When GPIO3 is configured as a digital output: Output with static output levels.  
(GPIO3_LL_PWM_CFG and GPIO3_LH_PWM_CFG registers are ignored in this case). For  
parallel GPO readback purposes the readback path is configured for logic levels based on  
static input levels in this case.  
1b = When GPIO3 is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO3 is configured as a digital output: Output with PWM output defined  
by the GPIO3_LL_PWM_CFG and GPIO3_LH_PWM_CFG registers. For parallel GPO  
readback purposes the readback path is configured for logic levels based on PWM decoding  
using the time base configured in GPIO3_PWM_TB in this case.  
GPIO2 format  
Configures GPIO2 for static input and output levels or for PWM input and output levels  
0b = When GPIO2 is configured as a digital input: Logic levels are based on static input  
levels. When GPIO2 is configured as a digital output: Output with static output levels.  
(GPIO2_LL_PWM_CFG and GPIO2_LH_PWM_CFG registers are ignored in this case). For  
parallel GPO readback purposes the readback path is configured for logic levels based on  
static input levels in this case.  
1b = When GPIO2 is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO2 is configured as a digital output: Output with PWM output defined  
by the GPIO2_LL_PWM_CFG and GPIO2_LH_PWM_CFG registers. For parallel GPO  
readback purposes the readback path is configured for logic levels based on PWM decoding  
using the time base configured in GPIO2_PWM_TB in this case.  
GPIO1 format  
Configures GPIO1 for static input and output levels or for PWM input and output levels  
0b = When GPIO1 is configured as a digital input: Logic levels are based on static input  
levels. When GPIO1 is configured as a digital output: Output with static output levels.  
(GPIO1_LL_PWM_CFG and GPIO1_LH_PWM_CFG registers are ignored in this case). For  
parallel GPO readback purposes the readback path is configured for logic levels based on  
static input levels in this case.  
1b = When GPIO1 is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO1 is configured as a digital output: Output with PWM output defined  
by the GPIO1_LL_PWM_CFG and GPIO1_LH_PWM_CFG registers. For parallel GPO  
readback purposes the readback path is configured for logic levels based on PWM decoding  
using the time base configured in GPIO1_PWM_TB in this case.  
GPIO0 format  
Configures GPIO0 for static input and output levels or for PWM input and output levels  
0b = When GPIO0 is configured as a digital input: Logic levels are based on static input  
levels. When GPIO0 is configured as a digital output: Output with static output levels.  
(GPIO0_LL_PWM_CFG and GPIO0_LH_PWM_CFG registers are ignored in this case). For  
parallel GPO readback purposes the readback path is configured for logic levels based on  
static input levels in this case.  
1b = When GPIO0 is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO0 is configured as a digital output: Output with PWM output defined  
by the GPIO0_LL_PWM_CFG and GPIO0_LH_PWM_CFG registers. For parallel GPO  
readback purposes the readback path is configured for logic levels based on PWM decoding  
using the time base configured in GPIO0_PWM_TB in this case.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-64. GPIO_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
9
GPIO4_DIR  
R/W  
0b  
GPIO4 direction  
Configures GPIO4 as a digital input or output. Configure as a digital output when used as  
OCCB output.  
0b = Digital input  
1b = Digital output  
8
7
GPIO3_DIR  
GPIO2_DIR  
R/W  
R/W  
0b  
0b  
GPIO3 direction  
Configures GPIO3 as a digital input or output. Configure as a digital output when used as  
OCCA output.  
0b = Digital input  
1b = Digital output  
GPIO2 direction  
Configures GPIO2 as a digital input or output. Configure as a digital output when used as  
FAULT output.  
0b = Digital input  
1b = Digital output  
6
5
GPIO1_DIR  
GPIO0_DIR  
R/W  
R/W  
0b  
0b  
GPIO1 direction  
Configures GPIO1 as a digital input or output.  
0b = Digital input  
1b = Digital output  
GPIO0 direction  
Configures GPIO0 as a digital input or output. Configure as a digital output when used as  
MHD output.  
0b = Digital input  
1b = Digital output  
4
3
2
GPIO4_SRC  
GPIO3_SRC  
GPIO2_SRC  
R/W  
R/W  
R/W  
0b  
0b  
0b  
GPIO4 data source selection  
Selects the data source of the GPIO4/OCCB pin when GPIO4 is configured as an output.  
0b = OCCB  
1b = GPIO  
GPIO3 data source selection  
Selects the data source of the GPIO3/OCCA pin when GPIO3 is configured as an output.  
0b = OCCA  
1b = GPIO  
GPIO2 data source selection  
Selects the data source of the GPIO2/FAULT pin when GPIO2 is configured as an output.  
0b = FAULT  
1b = GPIO  
1
0
RESERVED  
GPIO0_SRC  
R
0b  
0b  
Reserved  
Always reads back 0b.  
R/W  
GPIO0 data source selection  
Selects the data source of the GPIO0/MHD pin when GPIO0 is configured as an output.  
0b = Missing host detection (MHD)  
1b = GPIO  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.41 GPO_DATA Register (Address = 4Eh) [Reset = 0000h]  
Return to the Summary Table.  
8-86. GPO_DATA Register  
15  
14  
13  
12  
11  
10  
9
8
SPARE[10:0]  
R/W-00000000000b  
7
6
5
4
3
2
1
0
SPARE[10:0]  
GPO4_DAT  
R/W-0b  
GPO3_DAT  
R/W-0b  
GPO2_DAT  
R/W-0b  
GPO1_DAT  
R/W-0b  
GPO0_DAT  
R/W-0b  
R/W-00000000000b  
8-65. GPO_DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:5  
SPARE[10:0]  
R/W  
00000000000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 1 CRC. Bit settings  
have no effect.  
4
GPO4_DAT  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
GPIO4 output data  
Output value of GPIO4 when configured as a digital output. Bit setting has not effect when  
GPIO4 is configured as an input or as OCCB output.  
0b = Low  
1b = High  
3
2
1
0
GPO3_DAT  
GPO2_DAT  
GPO1_DAT  
GPO0_DAT  
GPIO3 output data  
Output value of GPIO3 when configured as a digital output. Bit setting has not effect when  
GPIO3 is configured as an input or as OCCA output.  
0b = Low  
1b = High  
GPIO2 output data  
Output value of GPIO2 when configured as a digital output. Bit setting has not effect when  
GPIO2 is configured as an input or as FAULT output.  
0b = Low  
1b = High  
GPIO1 output data  
Output value of GPIO1 when configured as a digital output. Bit setting has not effect when  
GPIO1 is configured as an input.  
0b = Low  
1b = High  
GPIO0 output data  
Output value of GPIO0 when configured as a digital output. Bit setting has not effect when  
GPIO0 is configured as an input or as MHD output.  
0b = Low  
1b = High  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.42 GPIO0_LL_PWM_CFG Register (Address = 4Fh) [Reset = 007Fh]  
Return to the Summary Table.  
8-87. GPIO0_LL_PWM_CFG Register  
15  
GPIO0_PWM_TB[1:0]  
R/W-00b  
14  
13  
12  
11  
10  
9
1
8
0
GPIO0_LL_PWM_HC[6:0]  
R/W-0000000b  
7
6
5
4
3
2
GPIO0_LL_PWM_H  
C[6:0]  
GPIO0_LL_PWM_LC[6:0]  
R/W-0000000b  
R/W-1111111b  
8-66. GPIO0_LL_PWM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPIO0_PWM_TB[1:0]  
R/W  
00b  
GPIO0/MHD PWM time base selection  
Selects the time base used for the GPIO0/MHD PWM generation when the GPIO0/MHD pin  
is configured as an output as well as the time base used for the PWM encoder.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
13:7  
GPIO0_LL_PWM_HC[6:0]  
GPIO0_LL_PWM_LC[6:0]  
R/W  
R/W  
0000000b  
1111111b  
GPIO0/MHD logic low level PWM high counter  
Sets the high period of the PWM for a logic low level of GPIO0/MHD.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO0/MHD logic low level  
as static low. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO0/MHD logic low level as static low.  
6:0  
GPIO0/MHD logic low level PWM low counter  
Sets the low period of the PWM for a logic low level of GPIO0/MHD.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO0/MHD logic low level  
as static high. Setting both the PWM high and low counter values to 0000000b configures  
the GPIO0/MHD logic low level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.43 GPIO0_LH_PWM_CFG Register (Address = 50h) [Reset = 3F80h]  
Return to the Summary Table.  
8-88. GPIO0_LH_PWM_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
GPIO0_LH_PWM_HC[6:0]  
R/W-1111111b  
7
6
5
4
3
2
GPIO0_LH_PWM_H  
C[6:0]  
GPIO0_LH_PWM_LC[6:0]  
R/W-1111111b  
R/W-0000000b  
8-67. GPIO0_LH_PWM_CFG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15:14  
R
00b  
Reserved  
Always reads 00b.  
13:7  
GPIO0_LH_PWM_HC[6:0]  
R/W  
1111111b  
GPIO0/MHD logic high level PWM high counter  
Sets the high period of the PWM for a logic high level of GPIO0/MHD.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO0/MHD logic high  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO0/MHD logic high level as static low.  
6:0  
GPIO0_LH_PWM_LC[6:0]  
R/W  
0000000b  
GPIO0/MHD logic high level PWM low counter  
Sets the low period of the PWM for a logic high level of GPIO0/MHD.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO0/MHD logic high level  
as static high. Setting both the PWM high and low counter values to 0000000b configures  
the GPIO0/MHD logic high level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.44 GPIO1_LL_PWM_CFG Register (Address = 51h) [Reset = 007Fh]  
Return to the Summary Table.  
8-89. GPIO1_LL_PWM_CFG Register  
15  
GPIO1_PWM_TB[1:0]  
R/W-00b  
14  
13  
12  
11  
10  
9
1
8
0
GPIO1_LL_PWM_HC[6:0]  
R/W-0000000b  
7
6
5
4
3
2
GPIO1_LL_PWM_H  
C[6:0]  
GPIO1_LL_PWM_LC[6:0]  
R/W-0000000b  
R/W-1111111b  
8-68. GPIO1_LL_PWM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPIO1_PWM_TB[1:0]  
R/W  
00b  
GPIO1 PWM time base selection  
Selects the time base used for the GPIO1 PWM generation when the GPIO1 pin is  
configured as an output as well as the time base used for the PWM encoder.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
13:7  
GPIO1_LL_PWM_HC[6:0]  
GPIO1_LL_PWM_LC[6:0]  
R/W  
R/W  
0000000b  
1111111b  
GPIO1 logic low level PWM high counter  
Sets the high period of the PWM for a logic low level of GPIO1.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO1 logic low level as  
static low. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO1 logic low level as static low.  
6:0  
GPIO1 logic low level PWM low counter  
Sets the low period of the PWM for a logic low level of GPIO1.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO1 logic low level as  
static high. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO1 logic low level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.45 GPIO1_LH_PWM_CFG Register (Address = 52h) [Reset = 3F80h]  
Return to the Summary Table.  
8-90. GPIO1_LH_PWM_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
GPIO1_LH_PWM_HC[6:0]  
R/W-1111111b  
7
6
5
4
3
2
GPIO1_LH_PWM_H  
C[6:0]  
GPIO1_LH_PWM_LC[6:0]  
R/W-1111111b  
R/W-0000000b  
8-69. GPIO1_LH_PWM_CFG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15:14  
R
00b  
Reserved  
Always reads 00b.  
13:7  
GPIO1_LH_PWM_HC[6:0]  
R/W  
1111111b  
GPIO1 logic high level PWM high counter  
Sets the high period of the PWM for a logic high level of GPIO1.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO1 logic high level as  
static low. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO1 logic high level as static low.  
6:0  
GPIO1_LH_PWM_LC[6:0]  
R/W  
0000000b  
GPIO1 logic high level PWM low counter  
Sets the low period of the PWM for a logic high level of GPIO1.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO1 logic high level as  
static high. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO1 logic high level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.46 GPIO2_LL_PWM_CFG Register (Address = 53h) [Reset = 007Fh]  
Return to the Summary Table.  
8-91. GPIO2_LL_PWM_CFG Register  
15  
GPIO2_PWM_TB[1:0]  
R/W-00b  
14  
13  
12  
11  
10  
9
1
8
0
GPIO2_LL_PWM_HC[6:0]  
R/W-0000000b  
7
6
5
4
3
2
GPIO2_LL_PWM_H  
C[6:0]  
GPIO2_LL_PWM_LC[6:0]  
R/W-0000000b  
R/W-1111111b  
8-70. GPIO2_LL_PWM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPIO2_PWM_TB[1:0]  
R/W  
00b  
GPIO2/FAULT PWM time base selection  
Selects the time base used for the GPIO2/FAULT PWM generation when the GPIO2/FAULT  
pin is configured as an output as well as the time base used for the PWM encoder.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
13:7  
GPIO2_LL_PWM_HC[6:0]  
GPIO2_LL_PWM_LC[6:0]  
R/W  
R/W  
0000000b  
1111111b  
GPIO2/FAULT logic low level PWM high counter  
Sets the high period of the PWM for a logic low level of GPIO2/FAULT.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO2/FAULT logic low  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/FAULT logic low level as static low.  
6:0  
GPIO2/FAULT logic low level PWM low counter  
Sets the low period of the PWM for a logic low level of GPIO2/FAULT.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO2/FAULT logic low  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/FAULT logic low level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.47 GPIO2_LH_PWM_CFG Register (Address = 54h) [Reset = 3F80h]  
Return to the Summary Table.  
8-92. GPIO2_LH_PWM_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
GPIO2_LH_PWM_HC[6:0]  
R/W-1111111b  
7
6
5
4
3
2
GPIO2_LH_PWM_H  
C[6:0]  
GPIO2_LH_PWM_LC[6:0]  
R/W-1111111b  
R/W-0000000b  
8-71. GPIO2_LH_PWM_CFG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15:14  
R
00b  
Reserved  
Always reads 00b.  
13:7  
GPIO2_LH_PWM_HC[6:0]  
R/W  
1111111b  
GPIO2/FAULT logic high level PWM high counter  
Sets the high period of the PWM for a logic high level of GPIO2/FAULT.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO2/FAULT logic high  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/FAULT logic high level as static low.  
6:0  
GPIO2_LH_PWM_LC[6:0]  
R/W  
0000000b  
GPIO2/FAULT logic high level PWM low counter  
Sets the low period of the PWM for a logic high level of GPIO2/FAULT.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO2/FAULT logic high  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/FAULT logic high level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.48 GPIO3_LL_PWM_CFG Register (Address = 55h) [Reset = 007Fh]  
Return to the Summary Table.  
8-93. GPIO3_LL_PWM_CFG Register  
15  
GPIO3_PWM_TB[1:0]  
R/W-00b  
14  
13  
12  
11  
10  
9
1
8
0
GPIO3_LL_PWM_HC[6:0]  
R/W-0000000b  
7
6
5
4
3
2
GPIO3_LL_PWM_H  
C[6:0]  
GPIO3_LL_PWM_LC[6:0]  
R/W-0000000b  
R/W-1111111b  
8-72. GPIO3_LL_PWM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPIO3_PWM_TB[1:0]  
R/W  
00b  
GPIO3/OCCA PWM time base selection  
Selects the time base used for the GPIO3/OCCA PWM generation when the GPIO3/OCCA  
pin is configured as an output as well as the time base used for the PWM encoder.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
13:7  
GPIO3_LL_PWM_HC[6:0]  
GPIO3_LL_PWM_LC[6:0]  
R/W  
R/W  
0000000b  
1111111b  
GPIO3/OCCA logic low level PWM high counter  
Sets the high period of the PWM for a logic low level of GPIO3/OCCA.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO3/OCCA logic low  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO3/OCCA logic low level as static low.  
6:0  
GPIO3/OCCA logic low level PWM low counter  
Sets the low period of the PWM for a logic low level of GPIO3/OCCA.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO3/OCCA logic low  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO3/OCCA logic low level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.49 GPIO3_LH_PWM_CFG Register (Address = 56h) [Reset = 3F80h]  
Return to the Summary Table.  
8-94. GPIO3_LH_PWM_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
GPIO3_LH_PWM_HC[6:0]  
R/W-1111111b  
7
6
5
4
3
2
GPIO3_LH_PWM_H  
C[6:0]  
GPIO3_LH_PWM_LC[6:0]  
R/W-1111111b  
R/W-0000000b  
8-73. GPIO3_LH_PWM_CFG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15:14  
R
00b  
Reserved  
Always reads 00b.  
13:7  
GPIO3_LH_PWM_HC[6:0]  
R/W  
1111111b  
GPIO3/OCCA logic high level PWM high counter  
Sets the high period of the PWM for a logic high level of GPIO3/OCCA.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO3/OCCA logic high  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/OCCA logic high level as static low.  
6:0  
GPIO3_LH_PWM_LC[6:0]  
R/W  
0000000b  
GPIO3/OCCA logic high level PWM low counter  
Sets the low period of the PWM for a logic high level of GPIO3/OCCA.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO3/OCCA logic high  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO2/OCCA logic high level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.50 GPIO4_LL_PWM_CFG Register (Address = 57h) [Reset = 007Fh]  
Return to the Summary Table.  
8-95. GPIO4_LL_PWM_CFG Register  
15  
GPIO4_PWM_TB[1:0]  
R/W-00b  
14  
13  
12  
11  
10  
9
1
8
0
GPIO4_LL_PWM_HC[6:0]  
R/W-0000000b  
7
6
5
4
3
2
GPIO4_LL_PWM_H  
C[6:0]  
GPIO4_LL_PWM_LC[6:0]  
R/W-0000000b  
R/W-1111111b  
8-74. GPIO4_LL_PWM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
GPIO4_PWM_TB[1:0]  
R/W  
00b  
GPIO4/OCCB PWM time base selection  
Selects the time base used for the GPIO4/OCCB PWM generation when the GPIO4/OCCB  
pin is configured as an output as well as the time base used for the PWM encoder  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
13:7  
GPIO4_LL_PWM_HC[6:0]  
GPIO4_LL_PWM_LC[6:0]  
R/W  
R/W  
0000000b  
1111111b  
GPIO4/OCCB logic low level PWM high counter  
Sets the high period of the PWM for a logic low level of GPIO4/OOCB.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO4/OCCB logic low  
level as static low. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO4/OCCB logic low level as static low.  
6:0  
GPIO4/OCCB logic low level PWM low counter  
Sets the low period of the PWM for a logic low level of GPIO4/OCCB.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO4/OCCB logic low  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO4/OCCB logic low level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.51 GPIO4_LH_PWM_CFG Register (Address = 58h) [Reset = 3F80h]  
Return to the Summary Table.  
8-96. GPIO4_LH_PWM_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-00b  
GPIO4_LH_PWM_HC[6:0]  
R/W-1111111b  
7
6
5
4
3
2
GPIO4_LH_PWM_H  
C[6:0]  
GPIO4_LH_PWM_LC[6:0]  
R/W-1111111b  
R/W-0000000b  
8-75. GPIO4_LH_PWM_CFG Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15:14  
R
00b  
Reserved  
Always reads 00b.  
13:7  
GPIO4_LH_PWM_HC[6:0]  
R/W  
1111111b  
GPIO4BOCCB logic high level PWM high counter  
Sets the high period of the PWM for a logic high level of GPIO4.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM high time = (PWM high counter value x PWM time base)  
Setting the PWM high counter value to 0000000b configures the GPIO4 logic high level as  
static low. Setting both the PWM high and low counter values to 0000000b configures the  
GPIO4/OCCB logic high level as static low.  
6:0  
GPIO4_LH_PWM_LC[6:0]  
R/W  
0000000b  
GPIO4/OCCB logic high level PWM low counter  
Sets the low period of the PWM for a logic high level of GPIO4/OCCB.  
PWM period = (PWM high counter value + PWM low counter value) x PWM time base  
PWM low time = (PWM low counter value x PWM time base)  
Setting the PWM low counter value to 0000000b configures the GPIO4/OCCB logic high  
level as static high. Setting both the PWM high and low counter values to 0000000b  
configures the GPIO4/OCCB logic high level as static low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.52 SPARE_59h Register (Address = 59h) [Reset = 5555h]  
Return to the Summary Table.  
8-97. SPARE_59h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0101010101010101b  
7
6
5
4
3
SPARE[15:0]  
R/W-0101010101010101b  
8-76. SPARE_59h Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0101010101010 Spare bits  
101b  
Provided as R/W bits as a means to check the register map section 1 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.53 REGISTER_MAP1_CRC Register (Address = 7Eh) [Reset = 0000h]  
Return to the Summary Table.  
8-98. REGISTER_MAP1_CRC Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
REG_MAP1_CRC_VALUE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
2
REG_MAP1_CRC_VALUE[15:0]  
R/W-0000000000000000b  
8-77. REGISTER_MAP1_CRC Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
REG_MAP1_CRC_VALUE[15:0]  
R/W  
0000000000000 Register map CRC value for section 1  
000b Register map CRC value for section 1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.54 REGMAP2_TDACA_CFG Register (Address = 80h) [Reset = 0000h]  
Return to the Summary Table.  
8-99. REGMAP2_TDACA_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
0
REG_MAP2_CRC_E  
N
RESERVED  
R/W-0b  
7
R-000000000000b  
3
6
5
4
2
1
RESERVED  
TDACA_VALUE[2:0]  
R/W-000b  
R-000000000000b  
8-78. REGMAP2_TDACA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
REG_MAP2_CRC_EN  
R/W  
0b  
Register map section 2 CRC enable  
Enables the register map CRC for section 2 (register address space from 80h to A3h).  
0b = Disabled  
1b = Enabled  
14:3  
2:0  
RESERVED  
R
000000000000b Reserved  
Always reads 000000000000b.  
TDACA_VALUE[2:0]  
R/W  
000b  
Test DAC A output value  
Selects the output value of Test DAC A.  
000b = 1 x VREFA/40  
001b = 2 x VREFA/40  
010b = 4 x VREFA/40  
011b = 9 x VREFA/40  
100b = 18 x VREFA/40  
101b = 36 x VREFA/40  
110b = 4 x VREFA/40  
111b = 9 x VREFA/40  
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.55 GPIOA_CFG Register (Address = 81h) [Reset = 8000h]  
Return to the Summary Table.  
8-100. GPIOA_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-1b  
SPARE[2:0]  
R/W-000b  
GPIO1A_FMT  
R/W-0b  
GPIO0A_FMT  
R/W-0b  
GPIO1A_DIR  
R/W-0b  
GPIO0A_DIR  
R/W-0b  
7
6
5
4
3
2
1
0
GPIO1A_PWM_TB[1:0]  
GPIO0A_PWM_TB[1:0]  
R/W-00b  
SPARE[1:0]  
R/W-00b  
GPO1A_DAT  
R/W-0b  
GPO0A_DAT  
R/W-0b  
R/W-00b  
8-79. GPIOA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
1b  
Reserved  
Always reads 1b.  
14:12  
11  
SPARE[2:0]  
R/W  
R/W  
000b  
0b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
GPIO1A_FMT  
GPIO1A format  
Configures GPIO1A for static input and output levels or for PWM input levels.  
0b = When GPIO1A is configured as a digital input: Logic levels are based on static input  
levels. When GPIO1A is configured as a digital output: Output with static output levels.  
1b = When GPIO1A is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO1A is configured as a digital output: Output with static output levels.  
GPIO1A does not have PWM output capability.  
10  
GPIO0A_FMT  
R/W  
0b  
GPIO0A format  
Configures GPIO0A for static input and output levels or for PWM input levels.  
0b = When GPIO0A is configured as a digital input: Logic levels are based on static input  
levels. When GPIO0A is configured as a digital output: Output with static output levels.  
1b = When GPIO0A is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO0A is configured as a digital output: Output with static output levels.  
GPIO0A does not have PWM output capability.  
9
8
GPIO1A_DIR  
R/W  
R/W  
R/W  
0b  
GPIO1A direction  
Configures GPIO1A as a digital input or digital output.  
0b = Digital input  
1b = Digital output  
GPIO0A_DIR  
0b  
GPIO0A direction  
Configures GPIO0A as a digital input or digital output.  
0b = Digital input  
1b = Digital output  
7:6  
GPIO1A_PWM_TB[1:0]  
00b  
GPIO1A PWM time base selection  
Selects the time base used for the PWM encoder when GPIO1A is configured as a digital  
input.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
5:4  
GPIO0A_PWM_TB[1:0]  
R/W  
00b  
GPIO0A PWM time base selection  
Selects the time base used for the PWM encoder when GPIO0A is configured as a digital  
input.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
3:2  
1
SPARE[1:0]  
R/W  
R/W  
00b  
0b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
GPO1A_DAT  
GPIO1A output data  
Output value of GPIO1A when configured as a digital output. Bit setting has not effect when  
GPIO1A is configured as a digital input.  
0b = Low  
1b = High  
0
GPO0A_DAT  
R/W  
0b  
GPIO0A output data  
Output value of GPIO0A when configured as a digital output. Bit setting has not effect when  
GPIO0A is configured as a digital input.  
0b = Low  
1b = High  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.56 ADC1A_CFG1 Register (Address = 82h) [Reset = 0400h]  
Return to the Summary Table.  
8-101. ADC1A_CFG1 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0000b  
CONV_MODE1A  
R/W-0b  
OSR1A[2:0]  
R/W-100b  
7
6
5
4
3
1
RESERVED  
R-0000b  
GC1A_EN  
R/W-0b  
GC1A_DELAY[2:0]  
R/W-000b  
8-80. ADC1A_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
11  
CONV_MODE1A  
OSR1A[2:0]  
R/W  
R/W  
0b  
Conversion mode selection  
Selects the conversion mode for ADC1A.  
0b = Continuous-conversion mode  
1b = Single-shot conversion mode  
10:8  
100b  
Oversampling ratio selection  
Selects the oversampling ratio for ADC1A. The data rate calculates to fMOD / OSR.  
000b = 64  
001b = 128  
010b = 256  
011b = 512  
100b = 1024  
101b = 2048  
110b = 4096  
111b = 8192  
7:4  
3
RESERVED  
GC1A_EN  
R
0000b  
0b  
Reserved  
Always reads 0000b.  
R/W  
Global-chop mode enable  
Enables the global-chop mode for ADC1A.  
0b = Disabled  
1b = Enabled  
2:0  
GC1A_DELAY[2:0]  
R/W  
000b  
Global-chop mode delay time selection  
Selects the delay time in global-chop mode for ADC1A.  
000b = 2 x tMOD  
001b = 4 x tMOD  
010b = 8 x tMOD  
011b = 16 x tMOD  
100b = 32 x tMOD  
101b = 64 x tMOD  
110b = 128 x tMOD  
111b = 256 x tMOD  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.57 ADC1A_CFG2 Register (Address = 83h) [Reset = 8010h]  
Return to the Summary Table.  
8-102. ADC1A_CFG2 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
ADC1A_EN  
R/W-1b  
RESERVED  
R-000b  
GAIN1A[1:0]  
R/W-00b  
MUX1A[1:0]  
R/W-00b  
7
6
5
4
3
RESERVED  
R-00b  
OWD1A_SOURCE_ OWD1A_SINK_MUX  
MUX  
OWD1A_SOURCE_VALUE[1:0]  
OWD1A_SINK_VALUE[1:0]  
R/W-0b  
R/W-1b  
R/W-00b  
R/W-00b  
8-81. ADC1A_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ADC1A_EN  
R/W  
1b  
ADC1A enable  
Enables ADC1A.  
The conversion data of ADC1A reset to 000000h and the conversion counter  
CONV1A_COUNT[1:0] resets to 00b when ADC1A is disabled or when the device is put in  
standby or power-down mode.  
0b = Disabled  
1b = Enabled  
14:12  
11:10  
RESERVED  
GAIN1A[1:0]  
R
000b  
00b  
Reserved  
Always reads 000b.  
R/W  
ADC1A gain selection  
Selects the gain (FSR = full scale range) of ADC1A. Gains 16 and 32 are digital gains using  
analog gain = 8.  
00b = 4  
01b = 8  
10b = 16  
11b = 32  
9:8  
MUX1A[1:0]  
RESERVED  
R/W  
00b  
ADC1A multiplexer channel selection  
Selects the multiplexer channel for ADC1A.  
00b = AINp = CPA, AINn = CNA  
01b = AINp = CNA, AINn = CPA  
10b = Internal short to AGNDA. Analog inputs CPA, CNA disconnected from ADC1A.  
11b = Test DAC B output  
7:6  
5
R
00b  
0b  
Reserved  
Always reads 00b.  
OWD1A_SOURCE_MUX  
R/W  
ADC1A current source multiplexer selection  
Selects the multiplexer channel for the ADC1A current source.  
0b = CPA  
1b = CNA  
4
OWD1A_SINK_MUX  
R/W  
R/W  
1b  
ADC1A current sink multiplexer selection  
Selects the multiplexer channel for the ADC1A current sink.  
0b = CPA  
1b = CNA  
3:2  
OWD1A_SOURCE_VALUE[1:0]  
00b  
ADC1A current source value selection  
Selects the current value for the ADC1A current source.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
1:0  
OWD1A_SINK_VALUE[1:0]  
R/W  
00b  
ADC1A current sink value selection  
Selects the current value for the ADC1A current sink.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.58 ADC1A_OCAL_MSB Register (Address = 84h) [Reset = 0000h]  
Return to the Summary Table.  
8-103. ADC1A_OCAL_MSB Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCAL1A[23:8]  
R/W-0000000000000000b  
7
6
5
4
3
2
OCAL1A[23:8]  
R/W-0000000000000000b  
8-82. ADC1A_OCAL_MSB Register Field Descriptions  
Bit  
15:0  
Field  
OCAL1A[23:8]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC1A offset calibration bits [23:8]  
000b  
Value provided in two's complement format.  
LSB size = (2 x VREFA) / (GAIN1A x 224  
)
Copyright © 2023 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.59 ADC1A_OCAL_LSB Register (Address = 85h) [Reset = 0000h]  
Return to the Summary Table.  
8-104. ADC1A_OCAL_LSB Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCAL1A[7:0]  
R/W-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
8-83. ADC1A_OCAL_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
OCAL1A[7:0]  
R/W  
00000000b  
ADC1A offset calibration bits [7:0]  
Value provided in two's complement format.  
LSB size = (2 x VREFA) / (GAIN1A x 224  
)
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.60 ADC1A_GCAL Register (Address = 86h) [Reset = 0000h]  
Return to the Summary Table.  
8-105. ADC1A_GCAL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
GCAL1A[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
GCAL1A[15:0]  
R/W-0000000000000000b  
8-84. ADC1A_GCAL Register Field Descriptions  
Bit  
15:0  
Field  
GCAL1A[15:0]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC1A gain calibration bits [15:0]  
000b  
Value provided in two's complement format.  
LSB size = 1/216 = 0.000015  
Mapping:  
0111111111111111b = 1.499985  
0000000000000001b = 1.000015  
0000000000000000b = 1  
1111111111111111b = 0.999985  
1000000000000000b = 0.5  
Copyright © 2023 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.61 OCCA_CFG Register (Address = 87h) [Reset = 0000h]  
Return to the Summary Table.  
8-106. OCCA_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCCA_EN  
R/W-0b  
OCCA_POL  
R/W-0b  
RESERVED  
R/W-0b  
OCCA_NUM[4:0]  
R/W-00000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
8-85. OCCA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
OCCA_EN  
R/W  
0b  
ADC1A overcurrent comparator enable  
Enables the digital fast filter and digital comparator on ADC1A. ADC1A must be enabled to  
use the overcurrent comparator. The fast filter is not affected by the STARTA and STOPA  
bits.  
0b = Disabled  
1b = Enabled  
14  
OCCA_POL  
R/W  
0b  
OCCA pin polarity selection  
Selects the polarity of the OCCA pin. The actual output behavior of the GPIO3/OCCA pin,  
when configured as OCCA output in the GPIO3_SRC bit, depends on the GPIO3_FMT  
setting. An OCCA fault is active when any of the OCCA_HTn or OCCA_LTn bits are active.  
0b = Active low. In case of a fault a logic low level is driven.  
1b = Active high. In case of a fault a logic high level is driven.  
13  
RESERVED  
R/W  
R/W  
0b  
Reserved  
Always write 0b.  
12:8  
OCCA_NUM[4:0]  
00000b  
ADC1A overcurrent comparator deglitch filter selection  
Selects the number of conversions the output of the ADC1A digital fast filter must exceed  
the set high or low thresholds to trip the OCCA_HTn or OCCA_LTn comparator output. The  
fast filter path uses a SINC3 filter with a fixed OSR = 64. The counter starts again whenever  
the digital fast filter output falls below the threshold, means there is no hysteresis.  
00000b = 1  
00001b = 2  
00010b = 3  
00011b = 4  
00100b = 5  
00101b = 6  
00110b = 7  
00111b = 8  
01000b = 9  
01001b = 10  
01010b = 12  
01011b = 14  
01100b = 16  
01101b = 18  
01110b = 20  
01111b = 22  
10000b = 24  
10001b = 26  
10010b = 28  
10011b = 32  
10100b = 40  
10101b = 48  
10110b = 56  
10111b = 64  
11000b = 72  
11001b = 80  
11010b = 88  
11011b = 96  
11100b = 104  
11101b = 112  
11110b = 120  
11111b = 128  
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.62 OCCA_HIGH_THRESHOLD Register (Address = 88h) [Reset = 7FFFh]  
Return to the Summary Table.  
8-107. OCCA_HIGH_THRESHOLD Register  
15  
14  
13  
12  
OCCA_HIGH_TH[15:0]  
R/W-0111111111111111b  
11  
10  
9
1
8
0
7
6
5
4
3
2
OCCA_HIGH_TH[15:0]  
R/W-0111111111111111b  
8-86. OCCA_HIGH_THRESHOLD Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
OCCA_HIGH_TH[15:0]  
R/W  
011111111111111 ADC1A overcurrent comparator high threshold bits [15:0]  
1b Value provided in two's complement format.  
LSB size = (2 x VREFA) / (GAIN1A x 216  
)
Values larger than the high threshold trigger an OCCA_HTn event. Setting the value to +FS  
(= 7FFFh) disables the high threshold detection.  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.63 OCCA_LOW_THRESHOLD Register (Address = 89h) [Reset = 8000h]  
Return to the Summary Table.  
8-108. OCCA_LOW_THRESHOLD Register  
15  
14  
13  
12  
OCCA_LOW_TH[15:0]  
R/W-1000000000000000b  
11  
10  
9
1
8
0
7
6
5
4
3
2
OCCA_LOW_TH[15:0]  
R/W-1000000000000000b  
8-87. OCCA_LOW_THRESHOLD Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
OCCA_LOW_TH[15:0]  
R/W  
1000000000000 ADC1A overcurrent comparator low threshold bits [15:0]  
000b Value provided in two's complement format.  
LSB size = (2 x VREFA) / (GAIN1A x 216  
)
Values smaller than the low threshold trigger an OCCA_LTn event. Setting the value to FS  
(= 8000h) disables the low threshold detection.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.64 SPARE_8Ah Register (Address = 8Ah) [Reset = 5555h]  
Return to the Summary Table.  
8-109. SPARE_8Ah Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0101010101010101b  
7
6
5
4
3
SPARE[15:0]  
R/W-0101010101010101b  
8-88. SPARE_8Ah Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0101010101010 Spare bits  
101b  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.65 ADC2A_CFG1 Register (Address = 8Bh) [Reset = 8010h]  
Return to the Summary Table.  
8-110. ADC2A_CFG1 Register  
15  
14  
13  
12  
11  
10  
9
8
ADC2A_EN  
R/W-1b  
RESERVED  
R-0000b  
VCMA_EN  
R/W-0b  
OWD2A_SOURCE_MUX[2:0]  
R/W-000b  
7
6
5
4
3
2
1
0
OWD2A_SOURCE_  
MUX[2:0]  
OWD2A_SINK_MUX[2:0]  
R/W-001b  
OWD2A_SOURCE_VALUE[1:0]  
OWD2A_SINK_VALUE[1:0]  
R/W-000b  
R/W-00b  
R/W-00b  
8-89. ADC2A_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ADC2A_EN  
R/W  
1b  
ADC2A enable  
Enables ADC2A.  
Only change settings of registers from address 8Ch to 9Fh of ADC2A when ADC2A is  
disabled.  
The conversion data of ADC2A reset to 0000h and the sequence counter  
SEQ2A_COUNT[1:0] resets to 00b when ADC2A is disabled or when the device is put in  
standby or power-down mode.  
0b = Disabled  
1b = Enabled  
14:11  
10  
RESERVED  
VCMA_EN  
R
0000b  
0b  
Reserved  
Always reads 0000b.  
R/W  
Common-mode output buffer VCMA enable  
Enables the common-mode output buffer VCMA on analog input V7A.  
0b = Disabled  
1b = Enabled  
9:7  
OWD2A_SOURCE_MUX[2:0]  
R/W  
000b  
ADC2A current source multiplexer selection  
Selects the multiplexer channel for the ADC2A current source.  
000b = V0A  
001b = V1A  
010b = V2A  
011b = V3A  
100b = V4A  
101b = V5A  
110b = V6A  
111b = V7A  
6:4  
OWD2A_SINK_MUX[2:0]  
R/W  
001b  
ADC2A current sink multiplexer selection  
Selects the multiplexer channel for the ADC2A current sink.  
000b = V0A  
001b = V1A  
010b = V2A  
011b = V3A  
100b = V4A  
101b = V5A  
110b = V6A  
111b = V7A  
3:2  
1:0  
OWD2A_SOURCE_VALUE[1:0]  
OWD2A_SINK_VALUE[1:0]  
R/W  
R/W  
00b  
00b  
ADC2A current source value selection  
Selects the current value for the ADC2A current source.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
ADC2A current sink value selection  
Selects the current value for the ADC2A current sink.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.66 ADC2A_CFG2 Register (Address = 8Ch) [Reset = 0000h]  
Return to the Summary Table.  
8-111. ADC2A_CFG2 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
SEQ2A_MODE[1:0]  
R/W-00b  
RESERVED  
R-000b  
MUX2A_DELAY[2:0]  
R/W-000b  
7
6
5
4
3
1
RESERVED  
R-000000b  
OSR2A[1:0]  
R/W-00b  
8-90. ADC2A_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
SEQ2A_MODE[1:0]  
R/W  
00b  
ADC2A sequencer mode selection  
Selects the way the ADC2A sequencer starts a new sequence. Setting the SEQ2A_START  
bit always aborts and restarts an ongoing sequence in all modes.  
00b = Single-shot sequence mode based on SEQ2A_START bit (ADC2A runs one time  
through the sequence after the SEQ2A_START bit is set)  
01b = Single-shot sequence mode based on ADC1A conversion starts or SEQ2A_START  
bit. This setting is only useful when ADC1A is configured for continuous-conversion mode.  
Sequences are started at the falling edge of DRDYAn or when the SEQ2A_START bit is set.  
Conversion starts triggered by the DRDYAn signal are ignored, that is do not abort and  
restart a sequence, while a sequence is ongoing.  
10b = Continuous sequence mode based on SEQ2A_START bit  
11b = Continuous sequence mode based on SEQ2A_START bit  
13:11  
10:8  
RESERVED  
R
000b  
000b  
Reserved  
Always reads 00b.  
MUX2A_DELAY[2:0]  
R/W  
ADC2A multiplexer delay time selection  
Selects the delay time before starting conversion on the next sequence step.  
000b = 16 x tMCLK (= 2 µs for fMCLK = 8.192 MHz)  
001b = 64 x tMCLK (= 7.8 µs for fMCLK = 8.192 MHz)  
010b = 128 x tMCLK (= 15.6 µs for fMCLK = 8.192 MHz)  
011b = 256 x tMCLK (= 31.2 µs for fMCLK = 8.192 MHz)  
100b = 512 x tMCLK (= 62.5 µs for fMCLK = 8.192 MHz)  
101b = 1024 x tMCLK (= 124.9 µs for fMCLK = 8.192 MHz)  
110b = 2048 x tMCLK (= 249.9 µs for fMCLK = 8.192 MHz)  
111b = 4096 x tMCLK (= 499.7 µs for fMCLK = 8.192 MHz)  
7:2  
1:0  
RESERVED  
OSR2A[1:0]  
R
000000b  
00b  
Reserved  
Always reads 000000b.  
R/W  
ADC2A oversampling ratio selection  
Selects the oversampling ratio for ADC2A.  
00b = 64 (SINC3 OSR = 64, conversion time = 384 x tMCLK  
)
01b = 128 (SINC3 OSR = 64, SINC1 OSR = 2, conversion time = 512 x tMCLK  
10b = 256 (SINC3 OSR = 64, SINC1 OSR = 4, conversion time = 768 x tMCLK  
)
)
11b = 512 (SINC3 OSR = 64, SINC1 OSR = 8, conversion time = 1280 x tMCLK  
)
Copyright © 2023 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.67 SPARE_8Dh Register (Address = 8Dh) [Reset = 0000h]  
Return to the Summary Table.  
8-112. SPARE_8Dh Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-00000000b  
7
6
5
4
3
SPARE[7:0]  
R/W-00000000b  
8-91. SPARE_8Dh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
7:0  
SPARE[7:0]  
R/W  
00000000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.68 ADC2A_OCAL Register (Address = 8Eh) [Reset = 0000h]  
Return to the Summary Table.  
8-113. ADC2A_OCAL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
OCAL2A[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
OCAL2A[15:0]  
R/W-0000000000000000b  
8-92. ADC2A_OCAL Register Field Descriptions  
Bit  
15:0  
Field  
OCAL2A[15:0]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC2A offset calibration bits [15:0]  
000b  
Value provided in two's complement format.  
GAIN2A = 1: LSB size = (2 x VREFA) / 216  
GAIN2A = 2, 4: LSB size = (2 x VREFA) / (2 x 216  
)
Copyright © 2023 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.69 ADC2A_GCAL Register (Address = 8Fh) [Reset = 0000h]  
Return to the Summary Table.  
8-114. ADC2A_GCAL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
GCAL2A[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
GCAL2A[15:0]  
R/W-0000000000000000b  
8-93. ADC2A_GCAL Register Field Descriptions  
Bit  
15:0  
Field  
GCAL2A[15:0]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC2A gain calibration bits [15:0]  
000b  
Value provided in two's complement format.  
LSB size = 1/216 = 0.000015  
Mapping:  
0111111111111111b = 1.499985  
0000000000000001b = 1.000015  
0000000000000000b = 1  
1111111111111111b = 0.999985  
1000000000000000b = 0.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.70 SEQ2A_STEP0_CFG Register (Address = 90h) [Reset = 0000h]  
Return to the Summary Table.  
8-115. SEQ2A_STEP0_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP0_EN  
R/W-0b  
SEQ2A_STEP0_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP0_CH_  
N
SEQ2A_STEP0_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0000b  
8-94. SEQ2A_STEP0_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP0_EN  
R/W  
0b  
ADC2A sequence step 0 enable  
Enables sequence step 0 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP0_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 0 gain selection  
Selects the gain of ADC2A for sequence step 0.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP0_CH_N  
R/W  
ADC2A sequence step 0 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 0.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP0_CH_P[3:0]  
R/W  
0000b  
ADC2A sequence step 0 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 0. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP0_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.71 SEQ2A_STEP1_CFG Register (Address = 91h) [Reset = 0001h]  
Return to the Summary Table.  
8-116. SEQ2A_STEP1_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP1_EN  
R/W-0b  
SEQ2A_STEP1_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP1_CH_  
N
SEQ2A_STEP1_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0001b  
8-95. SEQ2A_STEP1_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP1_EN  
R/W  
0b  
ADC2A sequence step 1 enable  
Enables sequence step 1 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP1_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 1 gain selection  
Selects the gain of ADC2A for sequence step 1.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP1_CH_N  
R/W  
ADC2A sequence step 1 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 1.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP1_CH_P[3:0]  
R/W  
0001b  
ADC2A sequence step 1 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 1. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP1_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.72 SEQ2A_STEP2_CFG Register (Address = 92h) [Reset = 0002h]  
Return to the Summary Table.  
8-117. SEQ2A_STEP2_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP2_EN  
R/W-0b  
SEQ2A_STEP2_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP2_CH_  
N
SEQ2A_STEP2_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0010b  
8-96. SEQ2A_STEP2_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP2_EN  
R/W  
0b  
ADC2A sequence step 2 enable  
Enables sequence step 2 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP2_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 2 gain selection  
Selects the gain of ADC2A for sequence step 2.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP2_CH_N  
R/W  
ADC2A sequence step 2 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 2.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP2_CH_P[3:0]  
R/W  
0010b  
ADC2A sequence step 2 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 2. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP2_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.73 SEQ2A_STEP3_CFG Register (Address = 93h) [Reset = 0003h]  
Return to the Summary Table.  
8-118. SEQ2A_STEP3_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP3_EN  
R/W-0b  
SEQ2A_STEP3_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP3_CH_  
N
SEQ2A_STEP3_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0011b  
8-97. SEQ2A_STEP3_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP3_EN  
R/W  
0b  
ADC2A sequence step 3 enable  
Enables sequence step 3 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP3_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 3 gain selection  
Selects the gain of ADC2A for sequence step 3.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP3_CH_N  
R/W  
ADC2A sequence step 3 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 3.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP3_CH_P[3:0]  
R/W  
0011b  
ADC2A sequence step 3 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 3. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP3_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.74 SEQ2A_STEP4_CFG Register (Address = 94h) [Reset = 0004h]  
Return to the Summary Table.  
8-119. SEQ2A_STEP4_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP4_EN  
R/W-0b  
SEQ2A_STEP4_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP4_CH_  
N
SEQ2A_STEP4_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0100b  
8-98. SEQ2A_STEP4_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP4_EN  
R/W  
0b  
ADC2A sequence step 4 enable  
Enables sequence step 4 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP4_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 4 gain selection  
Selects the gain of ADC2A for sequence step 4.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP4_CH_N  
R/W  
ADC2A sequence step 4 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 4.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP4_CH_P[3:0]  
R/W  
0100b  
ADC2A sequence step 4 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 4. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP4_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.75 SEQ2A_STEP5_CFG Register (Address = 95h) [Reset = 0005h]  
Return to the Summary Table.  
8-120. SEQ2A_STEP5_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP5_EN  
R/W-0b  
SEQ2A_STEP5_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP5_CH_  
N
SEQ2A_STEP5_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0101b  
8-99. SEQ2A_STEP5_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP5_EN  
R/W  
0b  
ADC2A sequence step 5 enable  
Enables sequence step 5 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP5_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 5 gain selection  
Selects the gain of ADC2A for sequence step 5.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP5_CH_N  
R/W  
ADC2A sequence step 5 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 5.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP5_CH_P[3:0]  
R/W  
0101b  
ADC2A sequence step 5 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 5. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP5_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.76 SEQ2A_STEP6_CFG Register (Address = 96h) [Reset = 0006h]  
Return to the Summary Table.  
8-121. SEQ2A_STEP6_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP6_EN  
R/W-0b  
SEQ2A_STEP6_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP6_CH_  
N
SEQ2A_STEP6_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0110b  
8-100. SEQ2A_STEP6_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP6_EN  
R/W  
0b  
ADC2A sequence step 6 enable  
Enables sequence step 6 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP6_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 6 gain selection  
Selects the gain of ADC2A for sequence step 6.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP6_CH_N  
R/W  
ADC2A sequence step 6 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 6.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP6_CH_P[3:0]  
R/W  
0110b  
ADC2A sequence step 6 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 6. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP6_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.77 SEQ2A_STEP7_CFG Register (Address = 97h) [Reset = 0007h]  
Return to the Summary Table.  
8-122. SEQ2A_STEP7_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP7_EN  
R/W-0b  
SEQ2A_STEP7_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP7_CH_  
N
SEQ2A_STEP7_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-0111b  
8-101. SEQ2A_STEP7_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP7_EN  
R/W  
0b  
ADC2A sequence step 7 enable  
Enables sequence step 7 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP7_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 7 gain selection  
Selects the gain of ADC2A for sequence step 7.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP7_CH_N  
R/W  
ADC2A sequence step 7 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 7.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP7_CH_P[3:0]  
R/W  
0111b  
ADC2A sequence step 7 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 7. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP7_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.78 SEQ2A_STEP8_CFG Register (Address = 98h) [Reset = 0008h]  
Return to the Summary Table.  
8-123. SEQ2A_STEP8_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP8_EN  
R/W-0b  
SEQ2A_STEP8_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP8_CH_  
N
SEQ2A_STEP8_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1000b  
8-102. SEQ2A_STEP8_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP8_EN  
R/W  
0b  
ADC2A sequence step 8 enable  
Enables sequence step 8 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP8_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 8 gain selection  
Selects the gain of ADC2A for sequence step 8.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP8_CH_N  
R/W  
ADC2A sequence step 8 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 8.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP8_CH_P[3:0]  
R/W  
1000b  
ADC2A sequence step 8 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 8. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP8_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.79 SEQ2A_STEP9_CFG Register (Address = 99h) [Reset = 0009h]  
Return to the Summary Table.  
8-124. SEQ2A_STEP9_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP9_EN  
R/W-0b  
SEQ2A_STEP9_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP9_CH_  
N
SEQ2A_STEP9_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1001b  
8-103. SEQ2A_STEP9_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP9_EN  
R/W  
0b  
ADC2A sequence step 9 enable  
Enables sequence step 9 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP9_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 9 gain selection  
Selects the gain of ADC2A for sequence step 9.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP9_CH_N  
R/W  
ADC2A sequence step 9 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 9.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP9_CH_P[3:0]  
R/W  
1001b  
ADC2A sequence step 9 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 9. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP9_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.80 SEQ2A_STEP10_CFG Register (Address = 9Ah) [Reset = 000Ah]  
Return to the Summary Table.  
8-125. SEQ2A_STEP10_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP10_EN  
R/W-0b  
SEQ2A_STEP10_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP10_CH  
_N  
SEQ2A_STEP10_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1010b  
8-104. SEQ2A_STEP10_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP10_EN  
R/W  
0b  
ADC2A sequence step 10 enable  
Enables sequence step 10 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP10_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 10 gain selection  
Selects the gain of ADC2A for sequence step 10.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP10_CH_N  
R/W  
ADC2A sequence step 10 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 10.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP10_CH_P[3:0]  
R/W  
1010b  
ADC2A sequence step 10 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 10. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP10_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.81 SEQ2A_STEP11_CFG Register (Address = 9Bh) [Reset = 000Bh]  
Return to the Summary Table.  
8-126. SEQ2A_STEP11_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP11_EN  
R/W-0b  
SEQ2A_STEP11_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP11_CH  
_N  
SEQ2A_STEP11_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1011b  
8-105. SEQ2A_STEP11_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP11_EN  
R/W  
0b  
ADC2A sequence step 11 enable  
Enables sequence step 11 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP11_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 11 gain selection  
Selects the gain of ADC2A for sequence step 11.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP11_CH_N  
R/W  
ADC2A sequence step 11 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 11.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP11_CH_P[3:0]  
R/W  
1011b  
ADC2A sequence step 11 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 11. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP11_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.82 SEQ2A_STEP12_CFG Register (Address = 9Ch) [Reset = 000Ch]  
Return to the Summary Table.  
8-127. SEQ2A_STEP12_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP12_EN  
R/W-0b  
SEQ2A_STEP12_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP12_CH  
_N  
SEQ2A_STEP12_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1100b  
8-106. SEQ2A_STEP12_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP12_EN  
R/W  
0b  
ADC2A sequence step 12 enable  
Enables sequence step 12 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP12_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 12 gain selection  
Selects the gain of ADC2A for sequence step 12.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP12_CH_N  
R/W  
ADC2A sequence step 12 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 12.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP12_CH_P[3:0]  
R/W  
1100b  
ADC2A sequence step 12 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 12. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP12_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.83 SEQ2A_STEP13_CFG Register (Address = 9Dh) [Reset = 000Dh]  
Return to the Summary Table.  
8-128. SEQ2A_STEP13_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP13_EN  
R/W-0b  
SEQ2A_STEP13_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP13_CH  
_N  
SEQ2A_STEP13_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1101b  
8-107. SEQ2A_STEP13_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP13_EN  
R/W  
0b  
ADC2A sequence step 13 enable  
Enables sequence step 13 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP13_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 13 gain selection  
Selects the gain of ADC2A for sequence step 13.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP13_CH_N  
R/W  
ADC2A sequence step 13 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 13.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP13_CH_P[3:0]  
R/W  
1101b  
ADC2A sequence step 13 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 13. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP13_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.84 SEQ2A_STEP14_CFG Register (Address = 9Eh) [Reset = 000Eh]  
Return to the Summary Table.  
8-129. SEQ2A_STEP14_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP14_EN  
R/W-0b  
SEQ2A_STEP14_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP14_CH  
_N  
SEQ2A_STEP14_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1110b  
8-108. SEQ2A_STEP14_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP14_EN  
R/W  
0b  
ADC2A sequence step 14 enable  
Enables sequence step 14 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP14_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 14 gain selection  
Selects the gain of ADC2A for sequence step 14.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP14_CH_N  
R/W  
ADC2A sequence step 14 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 14.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP14_CH_P[3:0]  
R/W  
1110b  
ADC2A sequence step 14 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 14. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP14_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.85 SEQ2A_STEP15_CFG Register (Address = 9Fh) [Reset = 000Fh]  
Return to the Summary Table.  
8-130. SEQ2A_STEP15_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SEQ2A_STEP15_EN  
R/W-0b  
SEQ2A_STEP15_GAIN[1:0]  
R/W-00b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
SEQ2A_STEP15_CH  
_N  
SEQ2A_STEP15_CH_P[3:0]  
R-00000000b  
R/W-0b  
R/W-1111b  
8-109. SEQ2A_STEP15_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SEQ2A_STEP15_EN  
R/W  
0b  
ADC2A sequence step 15 enable  
Enables sequence step 15 of the ADC2A sequencer.  
0b = Disabled  
1b = Enabled  
14:13  
SEQ2A_STEP15_GAIN[1:0]  
R/W  
00b  
ADC2A sequence step 15 gain selection  
Selects the gain of ADC2A for sequence step 15.  
00b = 1  
01b = 2  
10b = 4  
11b = 4  
12:5  
4
RESERVED  
R
00000000b  
0b  
Reserved  
Always reads 00000000b.  
SEQ2A_STEP15_CH_N  
R/W  
ADC2A sequence step 15 negative input channel selection  
Selects the negative ADC2A analog input for sequence step 15.  
0b = AGNDA  
1b = V7A  
3:0  
SEQ2A_STEP15_CH_P[3:0]  
R/W  
1111b  
ADC2A sequence step 15 positive input channel selection  
Selects the positive ADC2A analog input for sequence step 15. For settings where the  
negative ADC input is automatically selected, the SEQ2A_STEP15_CH_N bit has no effect.  
0000b = V0A  
0001b = V1A  
0010b = V2A  
0011b = V3A  
0100b = V4A  
0101b = V5A  
0110b = V6A  
0111b = V7A  
1000b = Temperature sensor A (negative ADC input is automatically selected)  
1001b = Internal short to AGNDA, disconnected from inputs (negative ADC input is  
automatically selected)  
1010b = Test DAC B (negative ADC input is automatically selected)  
1011b = AVDD/4 (negative ADC input is automatically selected)  
1100b = IOVDD/4 (negative ADC input is automatically selected)  
1101b = DVDD/2 (negative ADC input is automatically selected)  
1110b = APWR/103 (negative ADC input is automatically selected)  
1111b = DPWR/103 (negative ADC input is automatically selected)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.86 SPARE_A0h Register (Address = A0h) [Reset = 0210h]  
Return to the Summary Table.  
8-131. SPARE_A0h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
RESERVED  
R-0000b  
SPARE[1:0]  
R/W-00b  
RESERVED  
R-1000b  
7
6
5
4
3
0
RESERVED  
R-1000b  
SPARE[1:0]  
R/W-01b  
RESERVED  
R-0000b  
8-110. SPARE_A0h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
11:10  
SPARE[1:0]  
R/W  
00b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
9:6  
5:4  
RESERVED  
SPARE[1:0]  
R
1000b  
01b  
Reserved  
Always reads 1000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
3:0  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
Copyright © 2023 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.87 SPARE_A1h Register (Address = A1h) [Reset = 0000h]  
Return to the Summary Table.  
8-132. SPARE_A1h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-111. SPARE_A1h Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.88 SPARE_A2h Register (Address = A2h) [Reset = 0000h]  
Return to the Summary Table.  
8-133. SPARE_A2h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[7:0]  
R/W-00000000b  
7
6
5
4
3
RESERVED  
R-00000000b  
8-112. SPARE_A2h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
SPARE[7:0]  
R/W  
00000000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.89 SPARE_A3h Register (Address = A3h) [Reset = 0000h]  
Return to the Summary Table.  
8-134. SPARE_A3h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-113. SPARE_A3h Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.90 REGISTER_MAP2_CRC Register (Address = BEh) [Reset = 0000h]  
Return to the Summary Table.  
8-135. REGISTER_MAP2_CRC Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
REG_MAP2_CRC_VALUE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
2
REG_MAP2_CRC_VALUE[15:0]  
R/W-0000000000000000b  
8-114. REGISTER_MAP2_CRC Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
REG_MAP2_CRC_VALUE[15:0]  
R/W  
0000000000000 Register map CRC value for section 2  
000b Register map CRC value for section 2.  
Copyright © 2023 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.91 REGMAP3_TDACB_CFG Register (Address = C0h) [Reset = 0000h]  
Return to the Summary Table.  
8-136. REGMAP3_TDACB_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
0
REG_MAP3_CRC_E  
N
RESERVED  
R/W-0b  
7
R-000000000000b  
3
6
5
4
2
1
RESERVED  
TDACB_VALUE[2:0]  
R/W-000b  
R-000000000000b  
8-115. REGMAP3_TDACB_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
REG_MAP3_CRC_EN  
R/W  
0b  
Register map section 3 CRC enable  
Enables the register map CRC for section 3 (register address space from C0h to E3h).  
0b = Disabled  
1b = Enabled  
14:3  
2:0  
RESERVED  
R
000000000000b Reserved  
Always reads 000000000000b.  
TDACB_VALUE[2:0]  
R/W  
000b  
Test DAC B output value  
Selects the output value of Test DAC B.  
000b = 1 x VREFB/40  
001b = 2 x VREFB/40  
010b = 4 x VREFB/40  
011b = 9 x VREFB/40  
100b = 18 x VREFB/40  
101b = 36 x VREFB/40  
110b = 4 x VREFB/40  
111b = 9 x VREFB/40  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.92 GPIOB_CFG Register (Address = C1h) [Reset = 8000h]  
Return to the Summary Table.  
8-137. GPIOB_CFG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-1b  
SPARE[2:0]  
R/W-000b  
GPIO1B_FMT  
R/W-0b  
GPIO0B_FMT  
R/W-0b  
GPIO1B_DIR  
R/W-0b  
GPIO0B_DIR  
R/W-0b  
7
6
5
4
3
2
1
0
GPIO1B_PWM_TB[1:0]  
GPIO0B_PWM_TB[1:0]  
R/W-00b  
SPARE[1:0]  
R/W-00b  
GPO1B_DAT  
R/W-0b  
GPO0B_DAT  
R/W-0b  
R/W-00b  
8-116. GPIOB_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
1b  
Reserved  
Always reads 1b.  
14:12  
11  
SPARE[2:0]  
R/W  
R/W  
000b  
0b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
GPIO1B_FMT  
GPIO1B format  
Configures GPIO1B for static input and output levels or for PWM input levels.  
0b = When GPIO1B is configured as a digital input: Logic levels are based on static input  
levels. When GPIO1B is configured as a digital output: Output with static output levels.  
1b = When GPIO1B is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO1B is configured as a digital output: Output with static output levels.  
GPIO1B does not have PWM output capability.  
10  
GPIO0B_FMT  
R/W  
0b  
GPIO0B format  
Configures GPIO0B for static input and output levels or for PWM input levels.  
0b = When GPIO0B is configured as a digital input: Logic levels are based on static input  
levels. When GPIO0B is configured as a digital output: Output with static output levels.  
1b = When GPIO0B is configured as a digital input: Logic levels are based on PWM input  
decoding. When GPIO0B is configured as a digital output: Output with static output levels.  
GPIO0B does not have PWM output capability.  
9
8
GPIO1B_DIR  
R/W  
R/W  
R/W  
0b  
GPIO1B direction  
Configures GPIO1B as a digital input or digital output.  
0b = Digital input  
1b = Digital output  
GPIO0B_DIR  
0b  
GPIO0B direction  
Configures GPIO0B as a digital input or digital output.  
0b = Digital input  
1b = Digital output  
7:6  
GPIO1B_PWM_TB[1:0]  
00b  
GPIO1B PWM time base selection  
Selects the time base used for the PWM encoder when GPIO1B is configured as a digital  
input.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
5:4  
GPIO0B_PWM_TB[1:0]  
R/W  
00b  
GPIO0B PWM time base selection  
Selects the time base used for the PWM encoder when GPIO0B is configured as a digital  
input.  
00b = 16 x tMCLK (= 1/512 kHz for fMCLK = 8.192 MHz)  
01b = 64 x tMCLK (= 1/128 kHz for fMCLK = 8.192 MHz)  
10b = 256 x tMCLK (= 1/32 kHz for fMCLK = 8.192 MHz)  
11b = 1024 x tMCLK (= 1/8 kHz for fMCLK = 8.192 MHz)  
3:2  
1
SPARE[1:0]  
R/W  
R/W  
00b  
0b  
Spare bits  
Provided as R/W bits as a means to check the register map section 2 CRC. Bit settings  
have no effect.  
GPO1B_DAT  
GPIO1B output data  
Output value of GPIO1B when configured as an output. Bit setting has not effect when  
GPIO1B is configured as a digital input.  
0b = Low  
1b = High  
0
GPO0B_DAT  
R/W  
0b  
GPIO0B output data  
Output value of GPIO0B when configured as an output. Bit setting has not effect when  
GPIO0B is configured as a digital input.  
0b = Low  
1b = High  
Copyright © 2023 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.93 ADC1B_CFG1 Register (Address = C2h) [Reset = 0400h]  
Return to the Summary Table.  
8-138. ADC1B_CFG1 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0000b  
CONV_MODE1B  
R/W-0b  
OSR1B[2:0]  
R/W-100b  
7
6
5
4
3
1
RESERVED  
R-0000b  
GC1B_EN  
R/W-0b  
GC1B_DELAY[2:0]  
R/W-000b  
8-117. ADC1B_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
11  
CONV_MODE1B  
OSR1B[2:0]  
R/W  
R/W  
0b  
Conversion mode selection  
Selects the conversion mode for ADC1B.  
0b = Continuous-conversion mode  
1b = Single-shot conversion mode  
10:8  
100b  
Oversampling ratio selection  
Selects the oversampling ratio for ADC1B. The data rate calculates to fMOD / OSR.  
000b = 64  
001b = 128  
010b = 256  
011b = 512  
100b = 1024  
101b = 2048  
110b = 4096  
111b = 8192  
7:4  
3
RESERVED  
GC1B_EN  
R
0000b  
0b  
Reserved  
Always reads 0000b.  
R/W  
Global-chop mode enable  
Enables the global-chop mode for ADC1B.  
0b = Disabled  
1b = Enabled  
2:0  
GC1B_DELAY[2:0]  
R/W  
000b  
Global-chop mode delay time selection  
Selects the delay time in global-chop mode for ADC1B.  
000b = 2 x tMOD  
001b = 4 x tMOD  
010b = 8 x tMOD  
011b = 16 x tMOD  
100b = 32 x tMOD  
101b = 64 x tMOD  
110b = 128 x tMOD  
111b = 256 x tMOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.94 ADC1B_CFG2 Register (Address = C3h) [Reset = 8010h]  
Return to the Summary Table.  
8-139. ADC1B_CFG2 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
ADC1B_EN  
R/W-1b  
RESERVED  
R-000b  
GAIN1B[1:0]  
R/W-00b  
MUX1B[1:0]  
R/W-00b  
7
6
5
4
3
0
RESERVED  
R-00b  
OWD1B_SOURCE_ OWD1B_SINK_MUX  
MUX  
OWD1B_SOURCE_VALUE[1:0]  
OWD1B_SINK_VALUE[1:0]  
R/W-0b  
R/W-1b  
R/W-00b  
R/W-00b  
8-118. ADC1B_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ADC1B_EN  
R/W  
1b  
ADC1B enable  
Enables ADC1B.  
The conversion data of ADC1B reset to 000000h and the conversion counter  
CONV1B_COUNT[1:0] resets to 00b when ADC1B is disabled or when the device is put in  
standby or power-down mode..  
0b = Disabled  
1b = Enabled  
14:12  
11:10  
RESERVED  
GAIN1B[1:0]  
R
000b  
00b  
Reserved  
Always reads 000b.  
R/W  
ADC1B gain selection  
Selects the gain (FSR = full scale range) of ADC1B. Gains 16 and 32 are digital gains using  
analog gain = 8.  
00b = 4  
01b = 8  
10b = 16  
11b = 32  
9:8  
MUX1B[1:0]  
RESERVED  
R/W  
00b  
ADC1B multiplexer channel selection  
Selects the multiplexer channel for ADC1B.  
00b = AINp = CPB, AINn = CNB  
01b = AINp = CNB, AINn = CPB  
10b = Internal short to AGNDB. Analog inputs CPB, CNB disconnected from ADC1B.  
11b = Test DAC A output  
7:6  
5
R
00b  
0b  
Reserved  
Always reads 00b.  
OWD1B_SOURCE_MUX  
R/W  
ADC1B current source multiplexer selection  
Selects the multiplexer channel for the ADC1B current source.  
0b = CPB  
1b = CNB  
4
OWD1B_SINK_MUX  
R/W  
R/W  
1b  
ADC1B current sink multiplexer selection  
Selects the multiplexer channel for the ADC1B current sink.  
0b = CPB  
1b = CNB  
3:2  
OWD1B_SOURCE_VALUE[1:0]  
00b  
ADC1B current source value selection  
Selects the current value for the ADC1B current source.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
1:0  
OWD1B_SINK_VALUE[1:0]  
R/W  
00b  
ADC1B current sink value selection  
Selects the current value for the ADC1B current sink.  
00b = Off  
01b = 4 µA  
10b = 40 µA  
11b = 240 µA  
Copyright © 2023 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.95 ADC1B_OCAL_MSB Register (Address = C4h) [Reset = 0000h]  
Return to the Summary Table.  
8-140. ADC1B_OCAL_MSB Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCAL1B[23:8]  
R/W-0000000000000000b  
7
6
5
4
3
2
OCAL1B[23:8]  
R/W-0000000000000000b  
8-119. ADC1B_OCAL_MSB Register Field Descriptions  
Bit  
15:0  
Field  
OCAL1B[23:8]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC1B offset calibration bits [23:8]  
000b Value provided in two's complement format.  
LSB size = (2 x VREFB) / (GAIN1B x 224  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.96 ADC1B_OCAL_LSB Register (Address = C5h) [Reset = 0000h]  
Return to the Summary Table.  
8-141. ADC1B_OCAL_LSB Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCAL1B[7:0]  
R/W-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
8-120. ADC1B_OCAL_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
OCAL1B[7:0]  
R/W  
00000000b  
ADC1B offset calibration bits [7:0]  
Value provided in two's complement format.  
LSB size = (2 x VREFB) / (GAIN1B x 224  
)
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.97 ADC1B_GCAL Register (Address = C6h) [Reset = 0000h]  
Return to the Summary Table.  
8-142. ADC1B_GCAL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
GCAL1B[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
GCAL1B[15:0]  
R/W-0000000000000000b  
8-121. ADC1B_GCAL Register Field Descriptions  
Bit  
15:0  
Field  
GCAL1B[15:0]  
Type  
Reset  
Description  
R/W  
0000000000000 ADC1B gain calibration bits [15:0]  
000b  
Value provided in two's complement format.  
LSB size = 1/216 = 0.000015  
Mapping:  
0111111111111111b = 1.499985  
0000000000000001b = 1.000015  
0000000000000000b = 1  
1111111111111111b = 0.999985  
1000000000000000b = 0.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.98 OCCB_CFG Register (Address = C7h) [Reset = 0000h]  
Return to the Summary Table.  
8-143. OCCB_CFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
OCCB_EN  
R/W-0b  
OCCB_POL  
R/W-0b  
RESERVED  
R/W-0b  
OCCB_NUM[4:0]  
R/W-00000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
8-122. OCCB_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
OCCB_EN  
R/W  
0b  
ADC1B overcurrent comparator enable  
Enables the digital fast filter and digital comparator on ADC1B. ADC1B must be enabled to  
use the overcurrent comparator. The fast filter is not affected by the STARTB and STOPB  
bits.  
0b = Disabled  
1b = Enabled  
14  
OCCB_POL  
R/W  
0b  
OCCB pin polarity selection  
Selects the polarity of the OCCB pin. The actual output behavior of the GPIO4/OCCB pin,  
when configured as OCCB output in the GPIO4_SRC bit, depends on the GPIO4_FMT  
setting. An OCCB fault is active when any of the OCCB_HTn or OCCB_LTn bits are active.  
0b = Active low. In case of a fault a logic low level is driven.  
1b = Active high. In case of a fault a logic high level is driven.  
13  
RESERVED  
R/W  
R/W  
0b  
Reserved  
Always write 0b.  
12:8  
OCCB_NUM[4:0]  
00000b  
ADC1B overcurrent comparator deglitch filter selection  
Selects the number of conversions the output of the ADC1B digital fast filter must exceed  
the set high or low thresholds to trip the OCCB_HTn or OCCB_LTn comparator output. The  
fast filter path uses a SINC3 filter with a fixed OSR = 64. The counter starts again whenever  
the digital fast filter output falls below the threshold, means there is no hysteresis.  
00000b = 1  
00001b = 2  
00010b = 3  
00011b = 4  
00100b = 5  
00101b = 6  
00110b = 7  
00111b = 8  
01000b = 9  
01001b = 10  
01010b = 12  
01011b = 14  
01100b = 16  
01101b = 18  
01110b = 20  
01111b = 22  
10000b = 24  
10001b = 26  
10010b = 28  
10011b = 32  
10100b = 40  
10101b = 48  
10110b = 56  
10111b = 64  
11000b = 72  
11001b = 80  
11010b = 88  
11011b = 96  
11100b = 104  
11101b = 112  
11110b = 120  
11111b = 128  
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
Copyright © 2023 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.99 OCCB_HIGH_THRESHOLD Register (Address = C8h) [Reset = 7FFFh]  
Return to the Summary Table.  
8-144. OCCB_HIGH_THRESHOLD Register  
15  
14  
13  
12  
OCCB_HIGH_TH[15:0]  
R/W-0111111111111111b  
11  
10  
9
1
8
0
7
6
5
4
3
2
OCCB_HIGH_TH[15:0]  
R/W-0111111111111111b  
8-123. OCCB_HIGH_THRESHOLD Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
OCCB_HIGH_TH[15:0]  
R/W  
011111111111111 ADC1B overcurrent comparator high threshold bits [15:0]  
1b Value provided in two's complement format.  
LSB size = (2 x VREFB) / (GAIN1B x 216  
)
Values larger than the high threshold trigger an OCCB_HTn event. Setting the value to +FS  
(= 7FFFh) disables the high threshold detection.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.100 OCCB_LOW_THRESHOLD Register (Address = C9h) [Reset = 8000h]  
Return to the Summary Table.  
8-145. OCCB_LOW_THRESHOLD Register  
15  
14  
13  
12  
OCCB_LOW_TH[15:0]  
R/W-1000000000000000b  
11  
10  
9
1
8
0
7
6
5
4
3
2
OCCB_LOW_TH[15:0]  
R/W-1000000000000000b  
8-124. OCCB_LOW_THRESHOLD Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
OCCB_LOW_TH[15:0]  
R/W  
1000000000000 ADC1B overcurrent comparator low threshold bits [15:0]  
000b Value provided in two's complement format.  
LSB size = (2 x VREFB) / (GAIN1B x 216  
)
Values smaller than the low threshold trigger an OCCB_LTn event. Setting the value to FS  
(= 8000h) disables the low threshold detection.  
Copyright © 2023 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.101 SPARE_CAh Register (Address = CAh) [Reset = 5555h]  
Return to the Summary Table.  
8-146. SPARE_CAh Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0101010101010101b  
7
6
5
4
3
SPARE[15:0]  
R/W-0101010101010101b  
8-125. SPARE_CAh Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0101010101010 Spare bits  
101b  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.102 SPARE_CBh Register (Address = CBh) [Reset = 0010h]  
Return to the Summary Table.  
8-147. SPARE_CBh Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-00000b  
SPARE[6:0]  
R/W-0000001b  
7
6
5
4
3
1
SPARE[6:0]  
R/W-0000001b  
RESERVED  
R-0000b  
8-126. SPARE_CBh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
RESERVED  
R
00000b  
Reserved  
Always reads 00000b.  
10:4  
SPARE[6:0]  
RESERVED  
R/W  
R
0000001b  
0000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
3:0  
Reserved  
Always reads 0000b.  
Copyright © 2023 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.103 SPARE_CCh Register (Address = CCh) [Reset = 0000h]  
Return to the Summary Table.  
8-148. SPARE_CCh Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
SPARE[1:0]  
R/W-00b  
RESERVED  
R-000b  
SPARE[2:0]  
R/W-000b  
7
6
5
4
3
1
RESERVED  
R-000000b  
SPARE[1:0]  
R/W-00b  
8-127. SPARE_CCh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
SPARE[1:0]  
R/W  
00b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
13:11  
10:8  
RESERVED  
SPARE[2:0]  
R
000b  
000b  
Reserved  
Always reads 00b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
7:2  
1:0  
RESERVED  
SPARE[1:0]  
R
000000b  
00b  
Reserved  
Always reads 000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.104 SPARE_CDh Register (Address = CDh) [Reset = 0000h]  
Return to the Summary Table.  
8-149. SPARE_CDh Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-00000000b  
7
6
5
4
3
SPARE[7:0]  
R/W-00000000b  
8-128. SPARE_CDh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
RESERVED  
R
00000000b  
Reserved  
Always reads 00000000b.  
7:0  
SPARE[7:0]  
R/W  
00000000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.105 SPARE_CEh Register (Address = CEh) [Reset = 0000h]  
Return to the Summary Table.  
8-150. SPARE_CEh Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-129. SPARE_CEh Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.106 SPARE_CFh Register (Address = CFh) [Reset = 0000h]  
Return to the Summary Table.  
8-151. SPARE_CFh Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-130. SPARE_CFh Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.107 SPARE_D0h Register (Address = D0h) [Reset = 0000h]  
Return to the Summary Table.  
8-152. SPARE_D0h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00000b  
8-131. SPARE_D0h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00000b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.108 SPARE_D1h Register (Address = D1h) [Reset = 0001h]  
Return to the Summary Table.  
8-153. SPARE_D1h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00001b  
8-132. SPARE_D1h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00001b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.109 SPARE_D2h Register (Address = D2h) [Reset = 0002h]  
Return to the Summary Table.  
8-154. SPARE_D2h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00010b  
8-133. SPARE_D2h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00010b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.110 SPARE_D3h Register (Address = D3h) [Reset = 0003h]  
Return to the Summary Table.  
8-155. SPARE_D3h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00011b  
8-134. SPARE_D3h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00011b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.111 SPARE_D4h Register (Address = D4h) [Reset = 0004h]  
Return to the Summary Table.  
8-156. SPARE_D4h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00100b  
8-135. SPARE_D4h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00100b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.112 SPARE_D5h Register (Address = D5h) [Reset = 0005h]  
Return to the Summary Table.  
8-157. SPARE_D5h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00101b  
8-136. SPARE_D5h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00101b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.113 SPARE_D6h Register (Address = D6h) [Reset = 0006h]  
Return to the Summary Table.  
8-158. SPARE_D6h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00110b  
8-137. SPARE_D6h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00110b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.114 SPARE_D7h Register (Address = D7h) [Reset = 0007h]  
Return to the Summary Table.  
8-159. SPARE_D7h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-00111b  
8-138. SPARE_D7h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
00111b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.115 SPARE_D8h Register (Address = D8h) [Reset = 0008h]  
Return to the Summary Table.  
8-160. SPARE_D8h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01000b  
8-139. SPARE_D8h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01000b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.116 SPARE_D9h Register (Address = D9h) [Reset = 0009h]  
Return to the Summary Table.  
8-161. SPARE_D9h Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01001b  
8-140. SPARE_D9h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01001b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.117 SPARE_DAh Register (Address = DAh) [Reset = 000Ah]  
Return to the Summary Table.  
8-162. SPARE_DAh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01010b  
8-141. SPARE_DAh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01010b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.118 SPARE_DBh Register (Address = DBh) [Reset = 000Bh]  
Return to the Summary Table.  
8-163. SPARE_DBh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01011b  
8-142. SPARE_DBh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01011b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.119 SPARE_DCh Register (Address = DCh) [Reset = 000Ch]  
Return to the Summary Table.  
8-164. SPARE_DCh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01100b  
8-143. SPARE_DCh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01100b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.120 SPARE_DDh Register (Address = DDh) [Reset = 000Dh]  
Return to the Summary Table.  
8-165. SPARE_DDh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01101b  
8-144. SPARE_DDh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01101b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.121 SPARE_DEh Register (Address = DEh) [Reset = 000Eh]  
Return to the Summary Table.  
8-166. SPARE_DEh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01110b  
8-145. SPARE_DEh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01110b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.122 SPARE_DFh Register (Address = DFh) [Reset = 000Fh]  
Return to the Summary Table.  
8-167. SPARE_DFh Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
SPARE[2:0]  
R/W-000b  
RESERVED  
R-00000000b  
7
6
5
4
3
2
RESERVED  
R-00000000b  
SPARE[4:0]  
R/W-01111b  
8-146. SPARE_DFh Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:13  
SPARE[2:0]  
R/W  
000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
12:5  
4:0  
RESERVED  
SPARE[4:0]  
R
00000000b  
01111b  
Reserved  
Always reads 00000000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.123 SPARE_E0h Register (Address = E0h) [Reset = 0210h]  
Return to the Summary Table.  
8-168. SPARE_E0h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0000b  
SPARE[1:0]  
R/W-00b  
RESERVED  
R-1000b  
7
6
5
4
3
RESERVED  
R-1000b  
SPARE[1:0]  
R/W-01b  
RESERVED  
R-0000b  
8-147. SPARE_E0h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
11:10  
SPARE[1:0]  
R/W  
00b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
9:6  
5:4  
RESERVED  
SPARE[1:0]  
R
1000b  
01b  
Reserved  
Always reads 1000b.  
R/W  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
3:0  
RESERVED  
R
0000b  
Reserved  
Always reads 0000b.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.124 SPARE_E1h Register (Address = E1h) [Reset = 0000h]  
Return to the Summary Table.  
8-169. SPARE_E1h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-148. SPARE_E1h Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.125 SPARE_E2h Register (Address = E2h) [Reset = 0000h]  
Return to the Summary Table.  
8-170. SPARE_E2h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[7:0]  
R/W-00000000b  
7
6
5
4
3
RESERVED  
R-00000000b  
8-149. SPARE_E2h Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
SPARE[7:0]  
R/W  
00000000b  
Spare bits  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
7:0  
RESERVED  
R
00000000b  
Reserved  
Always reads 0x00.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.126 SPARE_E3h Register (Address = E3h) [Reset = 0000h]  
Return to the Summary Table.  
8-171. SPARE_E3h Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
SPARE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
SPARE[15:0]  
R/W-0000000000000000b  
8-150. SPARE_E3h Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SPARE[15:0]  
R/W  
0000000000000 Spare bits  
000b  
Provided as R/W bits as a means to check the register map section 3 CRC. Bit settings  
have no effect.  
Copyright © 2023 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1.127 REGISTER_MAP3_CRC Register (Address = FEh) [Reset = 0000h]  
Return to the Summary Table.  
8-172. REGISTER_MAP3_CRC Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
REG_MAP3_CRC_VALUE[15:0]  
R/W-0000000000000000b  
7
6
5
4
3
2
REG_MAP3_CRC_VALUE[15:0]  
R/W-0000000000000000b  
8-151. REGISTER_MAP3_CRC Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
REG_MAP3_CRC_VALUE[15:0]  
R/W  
0000000000000 Register map CRC value for section 3  
000b Register map CRC value for section 3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Unused Inputs and Outputs  
Follow the guidelines below for the connection of unused device pins:  
Leave any unused ADCxy analog inputs floating or connect the unused analog inputs to AGNDy.  
Tie unused GPIO pins (GPIO0 to GPIO4, GPIO0A, GPIO1A, GPIO0B, and GPIO1B) to DGND when  
configured as digital inputs because excessive power-supply current can result when digital inputs are left  
floating.  
Tie the CLK pin to DGND if the internal main oscillator is used.  
Tie the RESETn pin to IOVDD if the host does not drive the RESETn pin. The RESETn pin does, however,  
also have an internal pullup resistor to IOVDD.  
Leave the DRDYn pin unconnected if unused or connect the pin to IOVDD using a weak pullup resistor.  
9.1.2 Minimum Interface Connections  
The ADS131B23 requires at a minimum four pins for communication with a host microcontroller: CSn, SCLK,  
SDI, and SDO. CSn cannot be tied low permanently.  
The following pins are optional, but connecting these pins to the host helps with device operation:  
DRDYn: Helps determine exactly when new conversion data on ADC1A or ADC1B are available.  
RESETn: If the SPI communication is corrupted (that is, if the RESET command cannot be sent), a hardware  
reset is required to recover the device. Without controlling the RESETn pin, the only way to perform a  
hardware reset on the device is through cycling the power supplies.  
GPIOs: The different special functions available on the various GPIO pins, such as FAULT, MHD, OCCA, and  
OCCB, help alert the host of device or system faults.  
9.2 Typical Application  
This section describes a typical battery management system (BMS) application circuit using the ADS131B23.  
The device serves the following primary functions in this BMS:  
Measure battery current redundantly through ADC1A and ADC1B with high resolution and accuracy using a  
low-side current shunt sensor.  
Measure peak battery currents and detect overcurrent or short-circuit conditions.  
Measure battery-pack voltage through ADC2A using a high-voltage resistor divider  
Measure shunt temperature through ADC2A using a linear positive temperature coefficient (PTC) thermistor,  
the TMP61  
9-1 illustrates the front-end for the battery management system circuit design.  
Copyright © 2023 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
HV_BAT+  
R1  
2M  
R2  
2M  
R3  
2M  
AVDD  
R4  
2M  
R6  
34k  
V0A  
V1A  
R5  
12k  
C1  
10nF  
C2  
100nF  
TMP61  
+5V0  
U1  
C3  
38  
37  
34  
28  
SCLK  
30  
APWR  
HV_BAT-  
AGND  
SDI  
1µF  
IOVDD  
29  
DPWR  
IOVDD  
SDO  
31  
AGND  
C4  
CSn  
To host  
27  
DRDYn  
1µF  
AVDD  
C5  
DGND  
40  
23  
AVDD  
RESETn  
1µF  
AGND  
3
4
33 R7  
26 R8  
10k  
10k  
10k  
10k  
10k  
GPIO0A  
GPIO1A  
GPIO0/MHD  
GPIO1  
GPIO2/FAULT  
GPIO3/OCCA  
GPIO4/OCCB  
R9  
R10  
R11  
25  
24  
22  
V0A  
V1A  
2
1
V0A  
V1A  
V2A  
V3A  
V4A  
V5A  
V6A  
V7A  
HV_BAT+  
48  
47  
46  
45  
44  
43  
32 R12  
10k  
CLK  
DCAP  
R_LOAD  
R13  
100  
DGND  
C8  
C6  
36  
41  
20  
47nF  
5
6
CPA  
CNA  
R14 100  
R15 100  
220nF  
C9  
DGND  
AGND  
AGND  
R_SHUNT  
HV_BAT-  
10  
9
CPB  
CNB  
RCAPA  
RCAPB  
1µF  
C10  
C7  
47nF  
11  
12  
13  
14  
15  
16  
17  
18  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
R16  
100  
1µF  
21  
39  
AGND  
AGND  
8
7
GPIO0B  
GPIO1B  
42  
19  
35  
49  
AGNDA  
AGNDB  
DGND  
AGND  
ADS131B23  
Thermal_Pad  
DGND  
NT1  
AGND  
Net-Tie  
AGND  
HV_BAT-  
NT2  
Net-Tie  
AGND  
DGND  
9-1. The ADS131B23 in a Typical Battery Management System Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: ADS131B23  
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
Current Measurement  
Current measurement range  
Current shunt value  
±3 kA  
50 μΩ  
1 ms  
Update rate  
Battery-Pack Voltage Measurement  
Voltage measurement range  
Shunt Temperature Measurement  
Temperature measurement range  
Thermistor type  
0 V to 800 V  
40°C to +125°C  
TMP61 (10-kΩPTC)  
9.2.2 Detailed Design Procedure  
The following sections provide guidelines for selecting the external components and the configuration of the  
ADS131B23 for the various measurements in this application example.  
9.2.2.1 Current Shunt Measurement  
In a typical BMS, the current through the shunt resistor must be measured in both directions for charging and  
discharging the battery pack. In an overcurrent or short-circuit condition, the current can be as high as IBAT_MAX  
=
±3 kA in this example application. Therefore, the maximum voltage drop across the shunt is up to VSHUNT  
=
RSHUNT × IBAT_MAX = 50 μ× ±3 kA = ±150 mV.  
To measure this shunt voltage, ADC1A is configured for gain = 8, which allows differential voltage  
measurements of VIN1A = VCPA VCNA = ±VREFA / 8 = ±1.25 V / 8 = ±156 mV. The integrated charge pump in  
the device allows voltage measurements 312.5 mV below AGNDA while using a unipolar analog power supply.  
This bipolar voltage measurement capability is important because one side of the shunt is connected to the  
same GND potential as the AGNDA pin of the ADS131B23, which means that the absolute voltage that the  
device must measure is up to 150 mV below AGNDA.  
To enable fast overcurrent detection within 1 ms while providing high accuracy and resolution, the ADS131B23 is  
operated at 4 kSPS (OSR = 1024)) using global-chop mode. Global-chop mode enables measurements with  
minimal offset error over temperature and time. The conversion time using these settings is 0.75 ms according to  
方程20. The input-referred noise is approximately 1.28 μVRMS / 2 = 0.91 μVRMS following the explanations  
in the Global-Chop Mode section. Thus, currents as small as 0.91 μVRMS / 50 μ= 18 mA can be resolved.  
The resolution can be further improved by averaging the conversion results over a longer period of time in the  
microcontroller that interfaces with the ADS131B23.  
The 3-dB corner frequency of the differential antialiasing filter on the analog inputs (R13, R14, and C6) is set  
to 1 / (2 × × 2 × 100 × 47 nF) = 16.9 kHz to provide more then 40-dB attenuation at the ADC1A modulator  
frequency. Keep the series resistor values (R13 and R14) small to avoid additional offset errors created by the  
voltage drop across the resistors because of the ADC1A input currents.  
ADC1B is configured identical to ADC1A to allow for simultaneous sampling of the shunt voltage with the same  
digital filter response.  
9.2.2.2 Battery Pack Voltage Measurement  
The 800-V battery-pack voltage is divided down to the voltage range of ADC2A using a high-voltage resistor  
divider, consisting of R1, R2, R3, R4, and R5. Gain = 1 is used for ADC2A in this case to allow differential  
voltage measurements of VIN2A = VV0A VAGNDA = ±1.25 V. The battery-pack voltage measurement is a  
unipolar, single-ended measurement with the negative multiplexer channel of ADC2A internally connected to  
AGNDA. Thus, only the voltage range from 0 V to 1.25 V of ADC2A is used. 方程式 22 calculates the resistor  
divider ratio.  
Copyright © 2023 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: ADS131B23  
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VV0A / VBAT_MAX = 1.25 V / 800 V = R5 / (R1 + R2 + R3 + R4 + R5)  
(22)  
The leakage current drawn by the resistor divider should be less than 100 μA in this example to avoid  
unnecessarily draining the battery. The resistance of the divider must therefore be larger than RTOTAL  
VBAT_MAX / ILEAKAGE = 800 V / 100 μA = 8 MΩ. The resistor values are chosen as R1 = R2 = R3 = R4 = 2 MΩ  
and R5 = 12 kΩ. Thus, the maximum voltage across R5 is 1.2 V at VBAT_MAX = 800 V, leaving some headroom to  
the maximum input voltage of 1.25 V of ADC2A.  
The maximum resistance of a single resistor that can be used in an automotive circuit design is often limited to a  
certain value. Also, the maximum voltage a single resistor can withstand is limited. These reasons are why the  
high-side resistor of the divider is split into multiple resistors (R1, R2, R3, and R4). Another reason is that in case  
a single resistor has a short-circuit fault, the remaining resistors still limit the current into the ADC2A analog input  
pin, V0A, to safe levels.  
9.2.2.3 Shunt Temperature Measurement  
The shunt temperature in this example is measured using the TMP61, a linear 10-kΩ PTC, in a typical voltage  
divider configuration using the analog supply (AVDD) as excitation. The PTC resistance is calculated using 方程  
24, which is derived from 方程23:  
VPTC = VV1A VAGNDA = AVDD × RPTC / (R6 + RPTC  
)
(23)  
(24)  
RPTC = R6 × VPTC / (AVDD VPTC  
)
The maximum input voltage on V1A is limited to 1.25 V when using gain = 1 for ADC2A with the negative  
multiplexer channel of ADC2A internally connected to AGNDA. Therefore, the value of the precision resistor, R6,  
must be chosen so that the voltage on V1A stays below 1.25 V for the value range of the PTC across the  
temperature range to be measured. The TMP61 has the largest resistance at the most positive temperature,  
approximately 18 kΩ at +125°C. Following 方程式 24, that means R6 29.5 kΩ. A value of 34 kΩ is chosen  
for R6 to allow variation in the AVDD supply voltage up to 3.6 V without exceeding the maximum V1A voltage of  
1.25 V.  
9.2.3 Application Curves  
9-2 shows the measurement accuracy of the current measurement (ADC1A, ADC1B) over temperature for a  
0-A current through the shunt. 9-3 shows the gain error of the current measurement (ADC1A, ADC1B) over  
temperature excluding the error of the shunt. The offset and gain error are calibrated at 25°C.  
15  
10  
5
0.3  
0.2  
0.1  
0.0  
0
-0.1  
-0.2  
-0.3  
-5  
-10  
-15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
9-3. Gain Error vs Temperature  
9-2. Offset Current Error vs Temperature  
(ADC1A, ADC1B)  
(ADC1A, ADC1B)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: ADS131B23  
 
 
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.3 Power Supply Recommendations  
9.3.1 Power-Supply Options  
The ADS131B23 power-supply architecture shown in 9-4 allows multiple ways to power the device to support  
different application requirements.  
AVDD  
APWR  
AGND  
IOVDD  
DPWR  
DGND  
DCAP  
AVDD  
LDO  
IOVDD  
LDO  
Negative  
Charge-  
Pump A  
DVDD  
LDO  
VNCPA  
VNCPB  
Negative  
Charge-  
Pump B  
AVDD  
IOVDD  
DVDD = 1.8 V  
9-4. Power-Supply Architecture  
The AVDD LDO accepts unregulated voltages between 4 V and 16 V on the APWR pin and outputs a regulated  
3.3-V AVDD supply that is available at the AVDD pin to power external circuitry. The AVDD supply powers all  
analog circuitry in the device. If a regulated 3.3-V supply is available in the application, the AVDD LDO can be  
bypassed by shorting the APWR and AVDD pins.  
The negative charge pumps in section A and section B provide a negative supply voltage for the various gain  
stages of every ADC to allow input voltage measurements below GND.  
The IOVDD LDO accepts unregulated voltages between 4 V and 16 V on the DPWR pin and outputs a regulated  
3.3-V IOVDD supply that is available at the IOVDD pin to power external circuitry. The IOVDD supply sets the  
voltage for the digital I/Os of the device. If a regulated 3.3-V or 5-V supply is available in the application, the  
IOVDD LDO can be bypassed by shorting the DPWR and IOVDD pins.  
The DVDD LDO creates the 1.8-V supply for the digital core of the device.  
The following sections show the three most commonly used external power-supply options, however other  
combinations are possible as well.  
Copyright © 2023 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.3.1.1 Single Unregulated External 4-V to 16-V Supply (3.3-V Digital I/O Levels)  
A single unregulated 4-V to 16-V supply (as shown in 9-5) connected to both the APWR and DPWR pins can  
be used to power the device. No external supply is provided at the AVDD and IOVDD pins in this case. The  
AVDD LDO creates the internal 3.3-V AVDD supply, and the IOVDD LDO creates the 3.3-V I/O supply.  
4 V to 16 V  
1 µF  
1 µF  
40  
39  
38  
37  
DCAP  
DGND  
IOVDD  
36  
35  
34  
220 nF  
1 µF  
9-5. Single Unregulated External 4-V to 16-V Supply  
9.3.1.2 Single Regulated External 3.3-V Supply (3.3-V Digital IO Levels)  
A single regulated 3.3-V supply connected to both the APWR and DPWR pins (as shown in 9-6) can be used  
to power the device. In this case the APWR and AVDD pins must be shorted externally, as well as the DPWR  
and IOVDD pins. That way the AVDD and IOVDD LDOs are bypassed. The external 3.3-V supply is directly used  
as the AVDD and IOVDD supplies.  
3.3 V  
1 µF  
40  
39  
38  
37  
DCAP  
DGND  
IOVDD  
36  
35  
34  
220 nF  
1 µF  
9-6. Single Regulated External 3.3-V Supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.3.1.3 Single Regulated External 5-V Supply (5-V Digital I/O Levels)  
To allow operation of the digital I/Os with 5-V levels, a single regulated 5-V supply (shown in 9-7) connected  
to both the APWR and DPWR pins can be used to power the device. No external supply is provided at the AVDD  
pin in this case. The AVDD LDO creates the internal 3.3-V AVDD supply. The DPWR and IOVDD pins must be  
shorted externally. That way the IOVDD LDO is bypassed. The external 5-V supply is directly used as the  
IOVDD supply.  
5 V  
1 µF  
1 µF  
40  
39  
38  
37  
DCAP  
DGND  
IOVDD  
36  
35  
34  
220 nF  
1 µF  
9-7. Single Regulated External 5-V Supply  
9.3.2 Power-Supply Sequencing  
The power supplies can be sequenced in any order but the analog and digital inputs must never exceed the  
respective analog or digital power-supply voltage limits.  
9.3.3 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve optimum performance.  
APWR and AVDD must each be decoupled with a 1-µF capacitor to AGND.  
If APWR and AVDD are shorted together, a single 1-µF decoupling capacitor placed close to the AVDD pin is  
sufficient.  
DPWR and IOVDD must each be decoupled with a 1-µF capacitor to DGND.  
If DPWR and IOVDD are shorted together, a single 1-µF decoupling capacitor placed close to the IOVDD pin  
is sufficient.  
If APWR and DPWR are shorted together, a single 1-µF decoupling capacitor for the two supplies is  
sufficient.  
The DVDD LDO output at the DCAP pin must be decoupled with a 220-nF capacitor to DGND.  
Place the bypass capacitors as close to the power-supply pins of the device as possible with low-impedance  
connections. Using multilayer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR)  
and inductance (ESL) characteristics are recommended for power-supply decoupling purposes. For very  
sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the  
capacitors to the device pins can offer superior noise immunity. The use of multiple vias in parallel lowers the  
overall inductance and is beneficial for connections to ground planes.  
Copyright © 2023 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.4 Layout  
9.4.1 Layout Guidelines  
For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces  
on this layer. However, depending on restrictions imposed by specific end equipment, a dedicated ground plane  
may not be practical. If ground plane separation is necessary, make a direct connection of the planes at the  
device. Do not connect individual ground planes at multiple locations because this configuration creates ground  
loops.  
Route digital traces away from all analog inputs and associated components in order to minimize interference.  
Use C0G capacitors on the analog inputs. Use ceramic capacitors (for example, X7R grade) for the power-  
supply decoupling capacitors. High-K capacitors (Y5V) are not recommended. Place the required capacitors as  
close as possible to the device pins using short, direct traces. For optimum performance, use low-impedance  
connections on the ground-side connections of the bypass capacitors.  
When applying an external clock, be sure the clock is free of overshoot and glitches. A source-termination  
resistor placed at the clock buffer often helps reduce overshoot. Glitches present on the clock input can lead to  
noise within the conversion data.  
9.4.2 Layout Example  
9-8 shows an example layout for the ADS131B23, referencing the components of the circuit in 9-1. In  
general, analog signals are partitioned to the left and digital signals to the right.  
Vias connect  
to GND plane  
+5V0  
To high-voltage  
resistor divider  
V1A  
V0A  
DCAP  
DGND  
IOVDD  
GPIO0  
CLK  
CPA  
CNA  
CSn  
SDI  
To shunt  
SDO  
To host  
To host  
CNB  
CPB  
SCLK  
DRDYn  
GPIO1  
GPIO2  
9-8. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: ADS131B23  
 
 
ADS131B23  
ZHCSR89 DECEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TMP61 ±1% 10-kΩLinear Thermistor data sheet  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: ADS131B23  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS131B23PHPR  
ACTIVE  
HTQFP  
PHP  
48  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
131B23  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS131B26-Q1

用于检测电流和电压的汽车类、六个 ADC 通道、高压 SPI 电池包监视器
TI

ADS131E04

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04IPAG

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04IPAGR

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04_14

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E06

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E06IPAG

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E06IPAGR

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E08

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E08IPAG

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E08IPAGR

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E08S

用于电源监控和保护、具有快速启动功能的 24 位 64kSPS 8 通道同步采样 Δ-Σ ADC
TI