ADS4122_16 [TI]

Ultra Low-Power ADC;
ADS4122_16
型号: ADS4122_16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ultra Low-Power ADC

文件: 总81页 (文件大小:2771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
14-/12-Bit, 65/125MSPS, Ultralow-Power ADC  
Check for Samples: ADS4122, ADS4125, ADS4142, ADS4145  
1
FEATURES  
DESCRIPTION  
The ADS412x/4x are lower sampling speed variants  
23  
Ultralow Power with 1.8V Single Supply:  
of the ADS41xx family of analog-to-digital converters  
(ADCs). These devices use innovative design  
techniques to achieve high dynamic performance,  
while consuming extremely low power at 1.8V supply.  
The devices are well-suited for multi-carrier, wide  
bandwidth communications applications.  
103mW Total Power at 65MSPS  
153mW Total Power at 125MSPS  
High Dynamic Performance:  
SNR: 72.2dBFS at 170MHz  
SFDR: 81dBc at 170MHz  
The ADS412x/4x have fine gain options that can be  
used to improve SFDR performance at lower  
full-scale input ranges, especially at high input  
frequencies. They include a dc offset correction loop  
that can be used to cancel the ADC offset. At lower  
sampling rates, the ADC automatically operates at  
scaled down power with no loss in performance.  
Dynamic Power Scaling with Sample Rate  
Output Interface:  
Double Data Rate (DDR) LVDS with  
Programmable Swing and Strength  
Standard Swing: 350mV  
Low Swing: 200mV  
The ADS412x/4x are available in a compact QFN-48  
pacakge and are specified over the industrial  
temperature range (40°C to +85°C).  
Default Strength: 100Ω Termination  
2x Strength: 50Ω Termination  
1.8V Parallel CMOS Interface Also  
Supported  
Programmable Gain up to 6dB for SNR/SFDR  
Trade-Off  
DC Offset Correction  
Supports Low Input Clock Amplitude Down To  
200mVPP  
Package: QFN-48 (7mm × 7mm)  
ADS412x/ADS414x Family Comparison  
WITH ANALOG INPUT BUFFERS  
FAMILY  
65MSPS  
125MSPS  
160MSPS  
250MSPS  
200MSPS  
250MSPS  
ADS412x  
12-Bit Family  
ADS4122  
ADS4125  
ADS4126  
ADS4129  
ADS41B29  
ADS414x  
14-Bit Family  
ADS4142  
ADS4145  
ADS4146  
ADS4149  
ADS41B49  
9-Bit  
ADS58B19  
11-Bit  
ADS58B18  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments Incorporated.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
LEAD/BALL PACKAGE  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
ECO PLAN(2)  
FINISH  
MARKING  
ADS4122IRGZR  
ADS4122IRGZT  
ADS4125IRGZR  
ADS4125IRGZT  
ADS4142IRGZR  
ADS4142IRGZT  
ADS4145IRGZR  
ADS4145IRGZT  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
GREEN (RoHS,  
no Sb/Br)  
ADS4122  
QFN-48  
QFN-48  
QFN-48  
QFN-48  
RGZ  
RGZ  
RGZ  
RGZ  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Cu/NiPdAu  
AZ4122  
GREEN (RoHS,  
no Sb/Br)  
ADS4125  
ADS4142  
ADS4145  
Cu/NiPdAu  
Cu/NiPdAu  
Cu/NiPdAu  
AZ4125  
AZ4142  
AZ4145  
GREEN (RoHS,  
no Sb/Br)  
GREEN (RoHS,  
no Sb/Br)  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
(2) Eco Plan is the planned eco-friendly classification. Green (RoHS, no Sb/Br): TI defines Green to mean Pb-Free (RoHS compatible) and  
free of Bromine- (Br) and Antimony- (Sb) based flame retardants. Refer to the Quality and Lead-Free (Pb-Free) Data web site for more  
information.  
The ADS412x/4x family is pin-compatible to the previous generation ADS6149 family; this architecture enables  
easy migration. However, there are some important differences between the generations, summarized in Table 1.  
Table 1. MIGRATING FROM THE ADS6149 FAMILY  
ADS6149 FAMILY  
ADS4145 FAMILY  
PINS  
Pin 21 is NC (not connected)  
Pin 23 is MODE  
Pin 21 is NC (not connected)  
Pin 23 is RESERVED in the ADS4145 family. It is reserved as a digital control pin for an (as yet) undefined function in the  
next-generation ADC series.  
SUPPLY  
AVDD is 3.3V  
AVDD is 1.8V  
No change  
DRVDD is 1.8V  
INPUT COMMON-MODE VOLTAGE  
VCM is 1.5V  
VCM is 0.95V  
SERIAL INTERFACE  
Protocol: 8-bit register address and 8-bit register data  
No change in protocol  
New serial register map  
EXTERNAL REFERENCE MODE  
Supported  
Not supported  
ADS61B49 FAMILY  
PINS  
ADS41B29/B49/ADS58B18 FAMILY  
Pin 21 is NC (not connected)  
Pin 21 is 3.3V AVDD_BUF (supply for the analog input buffers)  
Pin 23 is a digital control pin for the RESERVED function.  
Pin 23 functions as SNR Boost enable (B18 only).  
Pin 23 is MODE  
SUPPLY  
AVDD is 3.3V  
AVDD is 1.8V, AVDD_BUF is 3.3V  
No change  
DRVDD is 1.8V  
INPUT COMMON-MODE VOLTAGE  
VCM is 1.5V  
VCM is 1.7V  
SERIAL INTERFACE  
No change in protocol  
New serial register map  
Protocol: 8-bit register address and 8-bit register data  
EXTERNAL REFERENCE MODE  
Supported  
Not supported  
2
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
VALUE  
UNIT  
V
Supply voltage range, AVDD  
0.3 to 2.1  
Supply voltage range, DRVDD  
0.3 to 2.1  
V
Voltage between AGND and DRGND  
Voltage between AVDD to DRVDD (when AVDD leads DRVDD)  
Voltage between DRVDD to AVDD (when DRVDD leads AVDD)  
INP, INM  
0.3 to 0.3  
V
0 to 2.1  
V
0 to 2.1  
V
0.3 to minimum (1.9, AVDD + 0.3)  
V
Voltage applied to input pins  
CLKP, CLKM(2), DFS, OE  
0.3 to AVDD + 0.3  
0.3 to 3.9  
40 to +85  
+125  
V
RESET, SCLK, SDATA, SEN  
V
Operating free-air temperature range, TA  
Operating junction temperature range, TJ  
Storage temperature range, TSTG  
°C  
°C  
°C  
kV  
65 to +150  
2
ESD, human body model (HBM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|.  
This prevents the ESD protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS4122/25/42/45  
THERMAL METRIC(1)  
RGZ  
48 PINS  
29  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
n/a  
10  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
9
θJCbot  
1.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
Over operating free-air temperature range, unless otherwise noted.  
ADS4122/5, ADS4142/5  
MIN  
TYP  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
Digital supply voltage  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
ANALOG INPUTS  
Differential input voltage range(1)  
2
VPP  
V
Input common-mode voltage  
V
CM ± 0.05  
Maximum analog input frequency with 2VPP input amplitude(2)  
Maximum analog input frequency with 1VPP input amplitude(2)  
CLOCK INPUT  
400  
MHz  
MHz  
800  
Input clock sample rate  
ADS4122/ADS4142, low-speed mode enabled by default  
ADS4125/ADS4145, low-speed mode enabled  
ADS4125/ADS4145, low-speed mode disabled  
20  
20  
65  
80  
MSPS  
MSPS  
MSPS  
>80  
125  
Input clock amplitude differential (VCLKP VCLKM  
Sine wave, ac-coupled  
)
0.2  
1.5  
1.6  
0.7  
1.8  
VPP  
VPP  
VPP  
V
LVPECL, ac-coupled  
LVDS, ac-coupled  
LVCMOS, single-ended, ac-coupled  
Input clock duty cycle  
Low-speed enabled  
Low-speed disabled  
40  
35  
50  
50  
60  
65  
%
%
DIGITAL OUTPUTS  
CLOAD  
RLOAD  
TA  
Maximum external load capacitance from each output pin to DRGND  
5
pF  
Ω
Differential load resistance between the LVDS output pairs (LVDS  
mode)  
100  
Operating free-air temperature  
40  
+85  
°C  
HIGH PERFORMANCE MODES(3)(4)(5)  
Set the MODE 1 register bits to get best performance across sample  
clock and input signal frequencies.  
Mode 1  
Register address = 03h, register data = 03h  
Set the MODE 2 register bit to get best performance at high input  
signal frequencies greater than 230MHz.  
Mode 2  
Register address = 4Ah, register data = 01h  
(1) With 0dB gain. See the Gain section in the Application Information for relation between input voltage range and gain.  
(2) See the Theory of Operation section in the Application Information.  
(3) It is recommended to use these modes to obtain best performance. These modes can be set using the serial interface only.  
(4) See the Serial Interface section for details on register programming.  
(5) Note that these modes cannot be set when the serial interface is not used (when the RESET pin is tied high); see the Device  
Configuration section.  
4
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
ELECTRICAL CHARACTERISTICS: ADS4122/ADS4125  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain,  
and DDR LVDS interface, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4122 (65MSPS)  
ADS4125 (125MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
Bits  
Resolution  
12  
12  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
71.1  
70.9  
70.7  
70.2  
68.8  
70.8  
70.8  
70.6  
70.1  
68  
71  
70.8  
70.6  
70.1  
69.6  
70.7  
70.7  
70.3  
69.8  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR (signal-to-noise ratio), LVDS  
67  
66  
68  
67  
SINAD (signal-to-noise and distortion ratio),  
LVDS  
86.5  
86  
86  
86  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
SFDR  
THD  
HD2  
HD3  
87  
82  
dBc  
70  
85  
71  
81  
dBc  
72.5  
82.5  
84  
77  
dBc  
82  
dBc  
83.5  
80.5  
79.5  
75.5  
87  
dBc  
84  
dBc  
69.5  
81  
69.5  
dBc  
72  
dBc  
87  
dBc  
88  
86  
dBc  
88  
82  
dBc  
70  
86  
71  
83  
dBc  
72.5  
86.5  
86  
77  
dBc  
86  
dBc  
88  
dBc  
Third-harmonic distortion  
87  
85  
dBc  
70  
85  
71  
81  
dBc  
85  
82  
dBc  
96  
95  
dBc  
96  
95  
dBc  
Worst spur  
(other than second and third harmonics)  
94  
95  
dBc  
76.5  
92  
76.5  
91  
dBc  
88  
88  
dBc  
Two-tone intermodulation  
distortion  
f1 = 100MHz, f2 = 105MHz,  
each tone at 7dBFS  
IMD  
90  
1
87.5  
1
dBFS  
Recovery to within 1% (of final  
value) for 6dB overload with  
sine-wave input  
Clock  
cycles  
Input overload recovery  
For 100mVPP signal on AVDD  
supply, up to 10MHz  
AC power-supply rejection ratio  
PSRR  
> 30  
> 30  
dB  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
ENOB  
DNL  
INL  
fIN = 170MHz  
fIN = 170MHz  
fIN = 170MHz  
11.2  
±0.2  
±0.3  
11.2  
±0.2  
LSBs  
LSBs  
LSBs  
0.85  
1.5  
3.5  
0.85  
1.5  
3.5  
±0.35  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS4142/ADS4145  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain,  
and DDR LVDS interface, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4142 (65MSPS)  
ADS4145 (125MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
Bits  
Resolution  
14  
14  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 10MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
73.9  
73.5  
73.2  
72.4  
70.5  
73.5  
73.3  
73  
73.7  
73.4  
73.1  
72.2  
71.3  
73.2  
73  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR (signal-to-noise ratio), LVDS  
69  
68  
70  
SINAD (signal-to-noise and distortion ratio),  
LVDS  
72.6  
71.8  
70.6  
86  
72.3  
69.2  
87  
69  
86.5  
87  
85.5  
82  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
SFDR  
THD  
HD2  
HD3  
dBc  
71  
85  
72.5  
70.5  
72.5  
72.5  
78.5  
81.5  
77  
dBc  
72.5  
84  
dBc  
83  
dBc  
84  
83.5  
81  
dBc  
84  
dBc  
69.5  
82.5  
72.5  
88  
80  
dBc  
75.5  
87  
dBc  
dBc  
87  
85.5  
82  
dBc  
88  
dBc  
71  
87  
84  
dBc  
72.5  
87  
77  
dBc  
86  
dBc  
86.5  
87  
87  
dBc  
Third-harmonic distortion  
85  
dBc  
71  
85  
81.5  
84  
dBc  
85  
dBc  
96  
95  
dBc  
95  
95  
dBc  
Worst spur  
(other than second and third harmonics)  
94  
95  
dBc  
77.5  
92  
91  
dBc  
87  
88  
dBc  
Two-tone intermodulation  
distortion  
f1 = 100MHz, f2 = 105MHz,  
each tone at 7dBFS  
IMD  
88.5  
1
87.5  
1
dBFS  
Recovery to within 1% (of final  
value) for 6dB overload with  
sine-wave input  
Clock  
cycles  
Input overload recovery  
For 100mVPP signal on AVDD  
supply, up to 10MHz  
AC power-supply rejection ratio  
PSRR  
> 30  
> 30  
dB  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
ENOB  
DNL  
INL  
fIN = 170MHz  
fIN = 170MHz  
fIN = 170MHz  
11.5  
±0.5  
±1.5  
11.3  
±0.5  
±1.5  
LSBs  
LSBs  
LSBs  
0.95  
1.7  
0.95  
1.7  
±4.5  
±4.5  
6
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
ELECTRICAL CHARACTERISTICS: GENERAL  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, and 0dB gain, unless otherwise noted.  
Minimum and maximum values are across the full temperature range: TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and  
DRVDD = 1.8V.  
ADS4122/ADS4142 (65MSPS)  
ADS4125/ADS4145 (125MSPS)  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Differential input voltage range  
Differential input resistance (at dc); see Figure 102  
Differential input capacitance; see Figure 103  
Analog input bandwidth  
2.0  
> 1  
4
2.0  
> 1  
4
VPP  
MΩ  
pF  
550  
0.6  
0.95  
4
550  
0.6  
0.95  
4
MHz  
µA/MSPS  
V
Analog input common-mode current (per input pin)  
Common-mode output voltage  
VCM output current capability  
VCM  
mA  
DC ACCURACY  
Offset error  
15  
2  
2.5  
15  
2
15  
2  
2.5  
15  
mV  
Temperature coefficient of offset error  
0.003  
0.003  
mV/°C  
Gain error as a result of internal reference  
inaccuracy alone  
EGREF  
2
%FS  
Gain error of channel alone  
Temperature coefficient of EGCHAN  
POWER SUPPLY  
EGCHAN  
0.2  
0.2  
1  
%FS  
0.001  
0.001  
Δ%/°C  
IAVDD  
Analog supply current  
IDRVDD(1)  
Output buffer supply current  
LVDS interface with 100Ω external termination  
Low LVDS swing (200mV)  
42  
55  
53  
62  
75  
57  
mA  
mA  
28.5  
35.5  
IDRVDD  
Output buffer supply current  
LVDS interface with 100Ω external termination  
Standard LVDS swing (350mV)  
40  
15  
48  
23  
mA  
mA  
IDRVDD output buffer supply current(1)(2)  
CMOS interface(2)  
8pF external load capacitance  
fIN = 2.5MHz  
Analog power  
76  
52  
112  
mW  
mW  
Digital power, LVDS interface, low LVDS swing  
66.5  
Digital power  
CMOS interface(2)  
8pF external load capacitance  
fIN = 2.5MHz  
27  
41.5  
mW  
Global power-down  
Standby  
10  
15  
10  
15  
mW  
mW  
105  
130  
(1) The maximum DRVDD current with CMOS interface depends on the actual load capacitance on the digital output lines. Note that the  
maximum recommended load capacitance on each digital output line is 10pF.  
(2) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the  
supply voltage (see the CMOS Interface Power Dissipation section in the Application Information).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
DIGITAL CHARACTERISTICS  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, and 50% clock duty cycle, unless otherwise noted. Minimum and  
maximum values are across the full temperature range: TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4122, ADS4125, ADS4142, ADS4145  
PARAMETER  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, OE)  
High-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESET, SCLK, SDATA, and  
SEN support 1.8V and 3.3V  
CMOS logic levels  
1.3  
V
V
Low-level input voltage  
0.4  
0.4  
High-level input voltage  
1.3  
V
OE only supports 1.8V CMOS  
logic levels  
Low-level input voltage  
V
High-level input current: SDATA, SCLK(1)  
High-level input current: SEN  
Low-level input current: SDATA, SCLK  
Low-level input current: SEN  
VHIGH = 1.8V  
VHIGH = 1.8V  
VLOW = 0V  
10  
0
µA  
µA  
µA  
µA  
0
VLOW = 0V  
10  
DIGITAL OUTPUTS (CMOS INTERFACE: D0 TO D13, OVR_SDOUT)  
High-level output voltage  
DRVDD 0.1  
DRVDD  
0
V
V
Low-level output voltage  
0.1  
DIGITAL OUTPUTS (LVDS INTERFACE: DA0P/M TO DA13P/M, DB0P/M TO DB13P/M, CLKOUTP/M)  
High-level output voltage(2)  
Low-level output voltage(2)  
High-level output voltage(2)  
Low-level output voltage(2)  
Output common-mode voltage  
VODH  
VODL  
VODH  
VODL  
VOCM  
Standard swing LVDS  
Standard swing LVDS  
Low swing LVDS  
270  
+350  
350  
+200  
200  
1.05  
430  
mV  
mV  
mV  
mV  
V
430  
270  
Low swing LVDS  
0.85  
1.25  
(1) SDATA and SCLK have an internal 180kΩ pull-down resistor.  
(2) With an external 100Ω termination.  
8
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
PIN CONFIGURATION (LVDS MODE)  
RGZ PACKAGE(1)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
CLKOUTM  
CLKOUTP  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 NC  
33 NC  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
26 AVDD  
25 AGND  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
13 14 15 16 17 18 19 20 21 22 23 24  
(1) The PowerPAD is connected to DRGND.  
Figure 1. ADS412x LVDS Pinout  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
RGZ PACKAGE(2)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
CLKOUTM  
CLKOUTP  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 D0_D1_P  
33 D0_D1_M  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
26 AVDD  
25 AGND  
13 14 15 16 17 18 19 20 21 22 23 24  
(2) The PowerPADis connected to DRGND.  
Figure 2. ADS414x LVDS Pinout  
10  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
ADS414x, ADS412x Pin Assignments (LVDS Mode)  
PIN NAME  
AVDD  
AGND  
CLKP  
CLKM  
INP  
PIN NUMBER  
# OF PINS  
FUNCTION  
DESCRIPTION  
8, 18, 20, 22, 24, 26  
6
6
1
1
1
1
1
I
I
1.8V analog power supply  
Analog ground  
9, 12, 14, 17, 19, 25  
10  
11  
15  
16  
13  
I
Differential clock input, positive  
Differential clock input, negative  
Differential analog input, positive  
Differential analog input, negative  
I
I
INM  
I
VCM  
O
Outputs the common-mode voltage (0.95V) that can be used externally to bias the analog input pins.  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must initialize through hardware RESET by  
applying a high pulse on this pin or by using the software reset option; refer to the Serial Interface  
section.  
RESET  
30  
1
I
When RESET is tied high, the internal registers are reset to the default values. In this condition, SEN  
can be used as an analog control pin.  
RESET has an internal 180kΩ pull-down resistor.  
This pin functions as a serial interface clock input when RESET is low. When RESET is high, SCLK  
has no function and should be tied to ground. This pin has an internal 180kΩ pull-down resistor.  
SCLK  
29  
28  
1
1
I
I
This pin functions as a serial interface data input when RESET is low. When RESET is high, SDATA  
functions as a STANDBY control pin (see Table 7). This pin has an internal 180kΩ pull-down resistor.  
SDATA  
This pin functions as a serial interface enable input when RESET is low. When RESET is high, SEN  
has no function and should be tied to AVDD. This pin has an internal 180kΩ pull-up resistor to AVDD.  
SEN  
OE  
27  
7
1
1
1
I
I
I
Output buffer enable input, active high; this pin has an internal 180kΩ pull-up resistor to DRVDD.  
Data format select input. This pin sets the DATA FORMAT (twos complement or offset binary) and the  
LVDS/CMOS output interface type. See Table 5 for detailed information.  
DFS  
6
RESERVED  
CLKOUTP  
CLKOUTM  
23  
5
1
1
1
I
Digital control pin, reserved for future use  
Differential output clock, true  
O
O
4
Differential output clock, complement  
Refer to Figure 1 and  
Figure 2  
D0_D1_P  
D0_D1_M  
D2_D3_P  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential output data D0 and D1 multiplexed, true  
Differential output data D0 and D1 multiplexed, complement  
Differential output data D2 and D3 multiplexed, true  
Differential output data D2 and D3 multiplexed, complement  
Differential output data D4 and D5 multiplexed, true  
Differential output data D4 and D5 multiplexed, complement  
Differential output data D6 and D7 multiplexed, true  
Differential output data D6 and D7 multiplexed, complement  
Differential output data D8 and D9 multiplexed, true  
Differential output data D8 and D9 multiplexed, complement  
Differential output data D10 and D11 multiplexed, true  
Differential output data D10 and D11 multiplexed, complement  
Differential output data D12 and D13 multiplexed, true  
Differential output data D12 and D13 multiplexed, complement  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
D2_D3_M  
D4_D5_P  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
D4_D5_M  
D6_D7_P  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
D6_D7_M  
D8_D9_P  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
D8_D9_M  
D10_D11_P  
D10_D11_M  
D12_D13_P  
D12_D13_M  
OVR_SDOUT  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
Refer to Figure 1 and  
Figure 2  
This pin functions as an out-of-range indicator after reset, when register bit  
READOUT = 0, and functions as a serial register readout pin when READOUT = 1.  
3
DRVDD  
DRGND  
2, 35  
2
2
I
I
1.8V digital and output buffer supply  
Digital and output buffer ground  
1, 36, PAD  
Refer to Figure 1 and  
Figure 2  
NC  
Do not connect  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
PIN CONFIGURATION (CMOS MODE)  
RGZ PACKAGE(3)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
UNUSED  
CLKOUT  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 NC  
33 NC  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
26 AVDD  
25 AGND  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
13 14 15 16 17 18 19 20 21 22 23 24  
(3) The PowerPAD is connected to DRGND.  
Figure 3. ADS412x CMOS Pinout  
12  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
RGZ PACKAGE(4)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
UNUSED  
CLKOUT  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 D1  
33 D0  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
26 AVDD  
25 AGND  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
13 14 15 16 17 18 19 20 21 22 23 24  
(4) The PowerPAD is connected to DRGND.  
Figure 4. ADS414x CMOS Pinout  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
ADS414x, ADS412x Pin Assignments (CMOS Mode)  
PIN NAME  
AVDD  
AGND  
CLKP  
CLKM  
INP  
PIN NUMBER  
# OF PINS  
FUNCTION  
DESCRIPTION  
8, 18, 20, 22, 24, 26  
6
6
1
1
1
1
1
I
I
1.8V analog power supply  
Analog ground  
9, 12, 14, 17, 19, 25  
10  
11  
15  
16  
13  
I
Differential clock input, positive  
Differential clock input, negative  
Differential analog input, positive  
Differential analog input, negative  
I
I
INM  
I
VCM  
O
Outputs the common-mode voltage (0.95V) that can be used externally to bias the analog input pins.  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must initialize through hardware RESET by  
applying a high pulse on this pin or by using the software reset option; refer to the Serial Interface  
section.  
RESET  
30  
1
I
When RESET is tied high, the internal registers are reset to the default values. In this condition, SEN  
can be used as an analog control pin.  
RESET has an internal 180kΩ pull-down resistor.  
This pin functions as a serial interface clock input when RESET is low. When RESET is high, SCLK  
has no function and should be tied to ground. This pin has an internal 180kΩ pull-down resistor.  
SCLK  
29  
28  
1
1
I
I
This pin functions as a serial interface data input when RESET is low. When RESET is high, SDATA  
functions as a STANDBY control pin (see Table 7). This pin has an internal 180kΩ pull-down resistor.  
SDATA  
This pin functions as a serial interface enable input when RESET is low. When RESET is high, SEN  
has no function and should be tied to AVDD. This pin has an internal 180kΩ pull-up resistor to AVDD.  
SEN  
OE  
27  
7
1
1
1
I
I
I
Output buffer enable input, active high; this pin has an internal 180kΩ pull-up resistor to DRVDD.  
Data format select input. This pin sets the DATA FORMAT (twos complement or offset binary) and the  
LVDS/CMOS output interface type. See Table 5 for detailed information.  
DFS  
6
RESERVED  
CLKOUT  
23  
5
1
1
I
Digital control pin, reserved for future use  
CMOS output clock  
O
Refer to Figure 3 and  
Figure 4  
D0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
Refer to Figure 3 and  
Figure 4  
D1  
Refer to Figure 3 and  
Figure 4  
D2  
Refer to Figure 3 and  
Figure 4  
D3  
Refer to Figure 3 and  
Figure 4  
D4  
Refer to Figure 3 and  
Figure 4  
D5  
Refer to Figure 3 and  
Figure 4  
D6  
Refer to Figure 3 and  
Figure 4  
D7  
D8  
Refer to Figure 3 and  
Figure 4  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
Refer to Figure 3 and  
Figure 4  
D9  
Refer to Figure 3 and  
Figure 4  
D10  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
12-bit/14-bit CMOS output data  
Refer to Figure 3 and  
Figure 4  
D11  
Refer to Figure 3 and  
Figure 4  
D12  
Refer to Figure 3 and  
Figure 4  
D13  
This pin functions as an out-of-range indicator after reset, when register bit  
READOUT = 0, and functions as a serial register readout pin when READOUT = 1.  
OVR_SDOUT  
3
DRVDD  
DRGND  
UNUSED  
2, 35  
1, 36, PAD  
4
2
2
1
I
I
1.8V digital and output buffer supply  
Digital and output buffer ground  
Unused pin in CMOS mode  
Refer to Figure 3 and  
Figure 4  
NC  
Do not connect  
14  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
FUNCTIONAL BLOCK DIAGRAM  
DDR LVDS  
Interface  
AVDD  
AGND  
DRVDD DRGND  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
CLOCKGEN  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
Low-Latency Mode  
(Default After Reset)  
D4_D5_P  
D4_D5_M  
INP  
INM  
12-Bit  
ADC  
DDR  
Serializer  
Sampling  
Circuit  
Common  
Digital Functions  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
Control  
Interface  
VCM  
Reference  
D10_D11_P  
D10_D11_M  
OVR_SDOUT  
ADS412x  
OE  
Figure 5. ADS412x Block Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
DDR LVDS  
Interface  
AVDD  
AGND  
DRVDD DRGND  
CLKP  
CLKM  
CLKOUTP  
CLOCKGEN  
CLKOUTM  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
Low-Latency Mode  
(Default After Reset)  
D6_D7_P  
D6_D7_M  
INP  
INM  
14-Bit  
ADC  
DDR  
Serializer  
Sampling  
Circuit  
Common  
Digital Functions  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
Control  
Interface  
D12_D13_P  
D12_D13_M  
VCM  
Reference  
OVR_SDOUT  
ADS414x  
OE  
Figure 6. ADS414x Block Diagram  
16  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TIMING CHARACTERISTICS  
Dn_Dn + 1_P  
Logic 0  
VODL  
Logic 1  
VODH  
Dn_Dn + 1_M  
VOCM  
GND  
(1) With external 100Ω termination.  
Figure 7. LVDS Output Voltage Levels  
TIMING REQUIREMENTS: LVDS and CMOS Modes(1)  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, sampling frequency = 125 MSPS, sine wave input clock,  
CLOAD = 5pF(2), and RLOAD = 100Ω(3), unless otherwise noted. Minimum and maximum values are across the full temperature  
range: TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.7V to 1.9V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tA  
Aperture delay  
0.6  
0.8  
1.2  
ns  
Variation of aperture  
delay  
Between two devices at the same temperature and  
DRVDD supply  
±100  
100  
5
ps  
fS rms  
µs  
tJ  
Aperture jitter  
Time to valid data after coming out of STANDBY  
mode  
25  
Wakeup time  
Time to valid data after coming out of PDN GLOBAL  
mode  
100  
10  
500  
µs  
Clock  
cycles  
Low-latency mode (default after reset)  
Low-latency mode disabled (gain enabled, offset  
correction disabled)  
Clock  
cycles  
ADC latency(4)  
16  
Low-latency mode disabled (gain and offset  
correction enabled)  
Clock  
cycles  
17  
DDR LVDS MODE(5)(6)  
tSU  
Data setup time(3)  
Data valid(7) to zero-crossing of CLKOUTP  
2.3  
3.0  
ns  
ns  
Zero-crossing of CLKOUTP to data becoming  
invalid(7)  
tH  
Data hold time(3)  
0.35  
0.60  
Input clock rising edge cross-over to output clock  
rising edge cross-over  
Clock propagation  
delay  
tPDI  
3
4.2  
5.4  
ns  
ns  
Sampling frequency 125MSPS  
Between two devices at the same temperature and  
DRVDD supply  
Variation of tPDI  
±0.6  
(1) Timing parameters are ensured by design and characterization but are not production tested.  
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.  
(3) RLOAD is the differential load resistance between the LVDS output pair.  
(4) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.  
(5) Measurements are done with a transmission line of 100Ω characteristic impedance between the device and the load. Setup and hold  
time specifications take into account the effect of jitter on the output data and clock.  
(6) The LVDS timings are unchanged for low latency disabled and enabled.  
(7) Data valid refers to a logic high of +100mV and a logic low of 100mV.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TIMING REQUIREMENTS: LVDS and CMOS Modes(1) (continued)  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, sampling frequency = 125 MSPS, sine wave input clock,  
CLOAD = 5pF(2), and RLOAD = 100Ω(3), unless otherwise noted. Minimum and maximum values are across the full temperature  
range: TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.7V to 1.9V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DDR LVDS MODE (continued)  
Duty cycle of differential clock, (CLKOUTP –  
CLKOUTM)  
LVDS bit clock duty  
cycle  
48  
%
Sampling frequency 125MSPS  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
Sampling frequency 125MSPS  
Data rise time,  
tRISE, tFALL  
0.14  
ns  
Data fall time  
Output clock rise  
time,  
Output clock fall time  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
Sampling frequency 125MSPS  
tCLKRISE  
tCLKFALL  
,
0.14  
50  
ns  
ns  
Output enable (OE) to  
data delay  
tOE  
Time to valid data after OE becomes active  
100  
PARALLEL CMOS MODE(8)  
tSETUP  
Data setup time  
Data valid(9) to 50% of CLKOUT rising edge  
3.1  
3.2  
3.7  
4.0  
ns  
ns  
50% of of CLKOUT rising edge to data becoming  
invalid(9)  
tHOLD  
Data hold time  
Input clock rising edge cross-over to 50% of output  
clock rising edge  
Clock propagation  
delay  
tPDI  
4
5.5  
47  
7
ns  
%
Sampling frequency 125MSPS  
Output clock duty  
cycle  
Duty cycle of output clock, CLKOUT  
Sampling frequency 125MSPS  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
Sampling frequency 125MSPS  
Data rise time,  
Data fall time  
tRISE, tFALL  
0.35  
ns  
Output clock rise  
time,  
Output clock fall time  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
Sampling frequency 125MSPS  
tCLKRISE  
tCLKFALL  
,
0.35  
20  
ns  
ns  
Output enable (OE) to  
data delay  
tOE  
Time to valid data after OE becomes active  
40  
(8) Low latency mode enabled.  
(9) Data valid refers to a logic high of 1.25V and a logic low of 0.54V.  
18  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Table 2. LVDS Timing Across Sampling Frequencies  
SAMPLING  
SETUP TIME (ns)  
HOLD TIME (ns)  
FREQUENCY  
(MSPS)  
MIN  
5.5  
TYP  
6.5  
MAX  
MIN  
0.35  
0.35  
TYP  
0.60  
0.60  
MAX  
65  
80  
4.50  
5.20  
Table 3. CMOS Timing Across Sampling Frequencies (Low Latency Enabled)  
TIMING SPECIFIED WITH RESPECT TO OUTPUT CLOCK  
SAMPLING  
FREQUENCY  
(MSPS)  
tSETUP (ns)  
TYP  
tHOLD (ns)  
TYP  
tPDI (ns)  
TYP  
5.5  
MIN  
6.5  
MAX  
MIN  
6.5  
MAX  
MIN  
4.0  
MAX  
65  
80  
7.5  
7.5  
7.0  
7.0  
5.4  
6.0  
5.4  
6.0  
4.0  
5.5  
Table 4. CMOS Timing Across Sampling Frequencies (Low Latency Disabled)  
TIMING SPECIFIED WITH RESPECT TO OUTPUT CLOCK  
SAMPLING  
FREQUENCY  
(MSPS)  
tSETUP (ns)  
tHOLD (ns)  
tPDI (ns)  
TYP  
5.5  
MIN  
6
TYP  
7
MAX  
MIN  
7
TYP  
8
MAX  
MIN  
4.0  
4.0  
4.0  
MAX  
7.0  
65  
80  
4.8  
2.5  
5.5  
3.2  
5.7  
3.5  
6.5  
4.3  
5.5  
7.0  
125  
5.5  
7.0  
N + 12  
N + 3  
N + 4  
N + 11  
N + 2  
N + 1  
N + 10  
Sample N  
Input Signal  
Input Clock  
tA  
CLKP  
CLKM  
CLKOUTM  
CLKOUTP  
tPDI  
tH  
10 Clock Cycles(1)  
tSU  
DDR LVDS  
Output Data(2)  
(DXP, DXM)  
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
N - 10  
N - 9  
N - 8  
N - 7  
N - 6  
N + 1  
N + 2  
N
tPDI  
CLKOUT  
tSU  
Parallel CMOS  
10 Clock Cycles(1)  
tH  
Output Data  
N - 10  
N - 9  
N - 8  
N - 7  
N - 1  
N
N + 1  
(1) ADC latency in low-latency mode. At higher sampling frequencies, tDPI is greater than one clock cycle which then makes the overall  
latency = ADC latency + 1.  
(2) E = Even bits (D0, D2, D4, etc). O = Odd bits (D1, D3, D5, etc).  
Figure 8. Latency Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
CLKM  
Input  
Clock  
CLKP  
tPDI  
CLKOUTP  
Output  
Clock  
CLKOUTM  
tSU  
tH  
tSU  
tH  
Dn_Dn + 1_P  
Dn_Dn + 1_M  
Output  
Data Pair  
Dn(1)  
Dn + 1(1)  
(1) Dn = bits D0, D2, D4, etc. Dn + 1 = Bits D1, D3, D5, etc.  
Figure 9. LVDS Mode Timing  
CLKM  
Input  
Clock  
CLKP  
tPDI  
Output  
Clock  
CLKOUT  
tSU  
tH  
Output  
Data  
Dn(1)  
Dn  
CLKM  
CLKP  
Input  
Clock  
tSTART  
tDV  
Output  
Data  
Dn(1)  
Dn  
Dn = bits D0, D1, D2, etc.  
Figure 10. CMOS Mode Timing  
20  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
DEVICE CONFIGURATION  
The ADS412x/4x have several modes that can be configured using a serial programming interface, as described  
in Table 5, Table 6, and Table 7. In addition, the devices have two dedicated parallel pins for quickly configuring  
commonly used functions. The parallel pins are DFS (analog 4-level control pin) and OE (digital control pin). The  
analog control pins can be easily configured using a simple resistor divider (with 10% tolerance resistors).  
Table 5. DFS: Analog Control Pin  
DESCRIPTION  
VOLTAGE APPLIED ON DFS  
0, +100mV/0mV  
(Data Format/Output Interface)  
Twos complement/DDR LVDS  
Twos complement/parallel CMOS  
Offset binary/parallel CMOS  
Offset binary/DDR LVDS  
(3/8) AVDD ± 100mV  
(5/8) AVDD ± 100mV  
AVDD, +0mV/100mV  
Table 6. OE: Digital Control Pin  
VOLTAGE APPLIED ON OE  
DESCRIPTION  
0
Output data buffers disabled  
Output data buffers enabled  
AVDD  
When the serial interface is not used, the SDATA pin can also be used as a digital control pin to place the device  
in standby mode. To enable this, the RESET pin must be tied high. In this mode, SEN and SCLK do not have  
any alternative functions. Keep SEN tied high and SCLK tied low on the board.  
Table 7. SDATA: Digital Control Pin  
VOLTAGE APPLIED ON SDATA  
DESCRIPTION  
Normal operation  
0
Logic high  
Device enters standby  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
(3/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
To Parallel Pin  
Figure 11. Simplified Diagram to Configure DFS Pin  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
SERIAL INTERFACE  
The analog-to-digital converter (ADC) has a set of internal registers that can be accessed by the serial interface  
formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data)  
pins. Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA are latched at every  
falling edge of SCLK when SEN is active (low). The serial data are loaded into the register at every 16th SCLK  
falling edge when SEN is low. If the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data  
can be loaded in multiples of 16-bit words within a single active SEN pulse. The first eight bits form the register  
address and the remaining eight bits are the register data. The interface can work with SCLK frequency from  
20MHz down to very low speeds (a few hertz) and also with non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one of two ways:  
1. Either through hardware reset by applying a high pulse on RESET pin (of width greater than 10ns), as shown  
in Figure 12; or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D7 in register 00h) high.  
This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In  
this case, the RESET pin is kept low.  
Register Address  
A4  
A3  
Register Data  
SDATA  
SCLK  
A7  
A6  
A5  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
tDH  
D1  
D0  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
SEN  
RESET  
Figure 12. Serial Interface Timing  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at +25°C, minimum and maximum values across the full temperature range: TMIN = 40°C to TMAX = +85°C,  
AVDD = 1.8V, and DRVDD = 1.8V, unless otherwise noted.  
PARAMETER  
SCLK frequency (equal to 1/tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
MIN  
> DC  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
20  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
22  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Serial Register Readout  
The serial register readout function allows the contents of the internal registers to be read back on the  
OVR_SDOUT pin. This readback may be useful as a diagnostic check to verify the serial interface  
communication between the external controller and the ADC.  
After power-up and device reset, the OVR_SDOUT pin functions as an over-range indicator pin by default. When  
the readout mode is enabled, OVR_SDOUT outputs the contents of the selected register serially:  
1. Set the READOUT register bit to '1'. This setting puts the device in serial readout mode and disables any  
further writes to the internal registers except the register at address 0. Note that the READOUT bit itself is  
also located in register 0. The device can exit readout mode by writing READOUT = 0. Only the contents of  
the register at address 0 cannot be read in the register readout mode.  
2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be  
read.  
3. The device serially outputs the contents (D7 to D0) of the selected register on the OVR_SDOUT pin.  
4. The external controller can latch the contents at the falling edge of SCLK.  
5. To exit the serial readout mode, the reset register bit READOUT = 0 enables writes into all registers of the  
device. At this point, the OVR_SDOUT pin becomes an over-range indicator pin.  
Register Address A[7:0] = 0x00  
Register Data D[7:0] = 0x01  
SDATA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SCLK  
SEN  
OVR_SDOUT(1)  
a) Enable Serial Readout (READOUT = 1)  
Register Address A[7:0] = 0x43  
A4 A2  
A5 A3  
Register Data D[7:0] = XX (don’t care)  
D4 D2 D1  
D6 D5 D3  
SDATA  
SCLK  
A7  
A6  
A1  
A0  
D7  
D0  
SEN  
OVR_SDOUT(2)  
0
1
0
0
0
0
0
0
b) Read Contents of Register 0x43. This Register Has Been Initialized with 0x40 (device is put into global power-down mode).  
(1) The OVR_SDOUT pin finctions as OVR (READOUT = 0).  
(2) The OVR_SDOUT pin finctions as a serial readout (READOUT = 1).  
Figure 13. Serial Readout Timing Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
RESET TIMING CHARACTERISTICS  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high pulse on the RESET pin is required in the serial interface mode in case of initialization through hardware reset. For parallel  
interface operation, RESET must be permanently tied high.  
Figure 14. Reset Timing Diagram  
RESET TIMING REQUIREMENTS  
Typical values at +25°C and minimum and maximum values across the full temperature range: TMIN = 40°C to TMAX = +85°C,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
UNIT  
Delay from power-up of AVDD and DRVDD to RESET  
pulse active  
t1  
Power-on delay  
ms  
10  
ns  
µs  
ns  
Pulse width of active RESET signal that resets the  
serial registers  
t2  
t3  
Reset pulse width  
1(1)  
Delay from RESET disable to SEN active  
100  
(1) The reset pulse is needed only when using the serial interface configuration. If the pulse width is greater than 1µs, the device could  
enter the parallel configuration mode briefly and then return back to serial interface mode.  
24  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
SERIAL REGISTER MAP  
Table 8 summarizes the functions supported by the serial interface.  
Table 8. Serial Interface Register Map(1)  
REGISTER  
ADDRESS  
DEFAULT VALUE  
AFTER RESET  
REGISTER DATA  
A[7:0] (Hex)  
D[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET  
0
D0  
READOUT  
0
00  
01  
03  
00  
00  
00  
0
0
0
0
0
0
LVDS SWING  
0
0
0
0
0
0
0
0
0
HIGH PERF MODE 1  
TEST PATTERNS  
DISABLE  
GAIN  
25  
26  
00  
00  
GAIN  
LVDS  
CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
0
0
0
0
0
0
EN  
OFFSET  
CORR  
3D  
00  
DATA FORMAT  
0
0
0
3F  
40  
00  
00  
CUSTOM PATTERN HIGH D[13:6]  
CUSTOM PATTERN D[5:0]  
0
EN  
CLKOUT  
RISE  
EN  
CLKOUT  
FALL  
CMOS CLKOUT  
STRENGTH  
41  
00  
LVDS CMOS  
CLKOUT RISE POSN  
DIS LOW  
LATENCY  
42  
43  
00  
00  
CLKOUT FALL POSN  
0
0
0
0
STBY  
0
0
PDN  
GLOBAL  
0
PDN OBUF  
0
0
0
0
0
EN LVDS SWING  
HIGH PERF  
MODE 2  
4A  
BF  
00  
00  
0
0
0
0
OFFSET PEDESTAL  
OFFSET CORR TIME CONSTANT  
LOW SPEED  
0
FREEZE  
OFFSET  
CORR  
CF  
DF  
00  
00  
0
0
0
0
0
0
0
0
0
(1) Multiple functions in a register can be programmed in a single write operation.  
DESCRIPTION OF SERIAL REGISTERS  
For best performance, two special mode register bits must be enabled: HI PERF MODE 1 and HI PERF MODE  
2.  
Register Address 00h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
RESET  
READOUT  
Bits[7:2]  
Bit 1  
Always write '0'  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to 0 (default = 1).  
READOUT: Serial readout  
Bit 0  
This bit sets the serial readout of the registers.  
0 = Serial readout of registers disabled; the OVR_SDOUT pin functions as an over-voltage  
indicator.  
1 = Serial readout enabled; the OVR_SDOUT pin functions as a serial data readout.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Register Address 01h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
LVDS SWING  
Bits[7:2]  
LVDS SWING: LVDS swing programmability(1)  
000000 = Default LVDS swing; ±350mV with external 100Ω termination  
011011 = LVDS swing increases to ±410mV  
110010 = LVDS swing increases to ±465mV  
010100 = LVDS swing increases to ±570mV  
111110 = LVDS swing decreases to ±200mV  
001111 = LVDS swing decreases to ±125mV  
Bits[1:0]  
Always write '0'  
(1) The EN LVDS SWING register bits must be set to enable LVDS swing control.  
Register Address 03h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
HI PERF MODE 1  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
HI PERF MODE 1: High performance mode 1  
00 = Default performance after reset  
01 = Do not use  
10 = Do not use  
11 = For best performance across sampling clock and input signal frequencies, set the HIGH PERF  
MODE 1 bits  
26  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Register Address 25h (Default = 00h)  
7
6
5
4
3
2
1
0
GAIN  
DISABLE GAIN  
TEST PATTERNS  
Bits[7:4]  
GAIN: Gain programmability  
These bits set the gain programmability in 0.5dB steps.  
0000 = 0dB gain (default after reset)  
0001 = 0.5dB gain  
0010 = 1.0dB gain  
0011 = 1.5dB gain  
0100 = 2.0dB gain  
0111 = 3.5dB gain  
1000 = 4.0dB gain  
1001 = 4.5dB gain  
1010 = 5.0dB gain  
1011 = 5.5dB gain  
1100 = 6dB gain  
0101 = 2.5dB gain  
0110 = 3.0dB gain  
Bit 3  
DISABLE GAIN: Gain setting  
This bit sets the gain.  
0 = Gain enabled; gain is set by the GAIN bits only if low-latency mode is disabled  
1 = Gain disabled  
Bits[2:0]  
TEST PATTERNS: Data capture  
These bits verify data capture.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
In the ADS4122/25, output data D[11:0] is an alternating sequence of 010101010101 and  
101010101010.  
In the ADS4142/45, output data D[13:0] is an alternating sequence of 01010101010101 and  
10101010101010.  
100 = Outputs digital ramp  
In ADS4122/25, output data increments by one LSB (12-bit) every fourth clock cycle from code 0  
to code 4095  
In ADS4142/45, output data increments by one LSB (14-bit) every clock cycle from code 0 to  
code 16383  
101 = Output custom pattern (use registers 3Fh and 40h for setting the custom pattern)  
110 = Unused  
111 = Unused  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Register Address 26h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
LVDS CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
0
0
Bits[7:2]  
Bit 1  
Always write '0'  
LVDS CLKOUT STRENGTH: LVDS output clock buffer strength  
This bit determines the external termination to be used with the LVDS output clock buffer.  
0 = 100Ω external termination (default strength)  
1 = 50Ω external termination (2x strength)  
Bit 0  
LVDS DATA STRENGTH: LVDS data buffer strength  
This bit determines the external termination to be used with all of the LVDS data buffers.  
0 = 100Ω external termination (default strength)  
1 = 50Ω external termination (2x strength)  
Register Address 3Dh (Default = 00h)  
7
6
5
4
3
2
0
1
0
0
0
EN OFFSET  
CORR  
DATA FORMAT  
0
0
Bits[7:6]  
DATA FORMAT: Data format selection  
These bits selects the data format.  
00 = The DFS pin controls data format selection  
10 = Twos complement  
11 = Offset binary  
Bit 5  
ENABLE OFFSET CORR: Offset correction setting  
This bit sets the offset correction.  
0 = Offset correction disabled  
1 = Offset correction enabled  
Bits[4:0]  
Always write '0'  
Register Address 3Fh (Default = 00h)  
7
6
5
4
3
2
1
0
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D13 PATTERN D12 PATTERN D11 PATTERN D10 PATTERN D9  
PATTERN D8  
PATTERN D7  
PATTERN D6  
Bits[7:0]  
CUSTOM PATTERN(1)  
These bits set the custom pattern.  
(1) For the ADS414x, output data bits 13 to 0 are CUSTOM PATTERN D[13:0]. For the ADS412x, output data bits 11 to 0 are CUSTOM  
PATTERN D[13:2].  
Register Address 40h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
CUSTOM  
PATTERN D5  
CUSTOM  
PATTERN D4  
CUSTOM  
PATTERN D3  
CUSTOM  
PATTERN D2  
CUSTOM  
PATTERN D1  
CUSTOM  
PATTERN D0  
Bits[7:2]  
CUSTOM PATTERN(1)  
These bits set the custom pattern.  
Bits[1:0]  
Always write '0'  
(1) For the ADS414x, output data bits 13 to 0 are CUSTOM PATTERN D[13:0]. For the ADS412x, output data bits 11 to 0 are CUSTOM  
PATTERN D[13:2].  
28  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Register Address 41h (Default = 00h)  
7
6
5
4
3
2
1
0
EN CLKOUT  
RISE  
EN CLKOUT  
FALL  
LVDS CMOS  
CMOS CLKOUT STRENGTH  
CLKOUT RISE POSN  
Bits[7:6]  
LVDS CMOS: Interface selection  
These bits select the interface.  
00 = The DFS pin controls the selection of either LVDS or CMOS interface  
10 = The DFS pin controls the selection of either LVDS or CMOS interface  
01 = DDR LVDS interface  
11 = Parallel CMOS interface  
Bits[5:4]  
CMOS CLKOUT STRENGTH  
Controls strength of CMOS output clock only.  
00 = Maximum strength (recommended and used for specified timings)  
01 = Medium strength  
10 = Low strength  
11 = Very low strength  
Bit 3  
ENABLE CLKOUT RISE  
0 = Disables control of output clock rising edge  
1 = Enables control of output clock rising edge  
Bits[2:1]  
CLKOUT RISE POSN: CLKOUT rise control  
Controls position of output clock rising edge  
LVDS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 500ps, hold increases by 500ps  
10 = Data transition is aligned with rising edge  
11 = Setup reduces by 200ps, hold increases by 200ps  
CMOS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 100ps, hold increases by 100ps  
10 = Setup reduces by 200ps, hold increases by 200ps  
11 = Setup reduces by 1.5ns, hold increases by 1.5ns  
Bit 0  
ENABLE CLKOUT FALL  
0 = Disables control of output clock fall edge  
1 = Enables control of output clock fall edge  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Register Address 42h (Default = 00h)  
7
6
5
0
4
3
2
1
0
0
0
DIS LOW  
LATENCY  
CLKOUT FALL CTRL  
0
STBY  
Bits[7:6]  
CLKOUT FALL CTRL  
Controls position of output clock falling edge  
LVDS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 400ps, hold increases by 400ps  
10 = Data transition is aligned with rising edge  
11 = Setup reduces by 200ps, hold increases by 200ps  
CMOS interface:  
00 = Default position (timings are specified in this condition)  
01 = Falling edge is advanced by 100ps  
10 = Falling edge is advanced by 200ps  
11 = Falling edge is advanced by 1.5ns  
Bits[5:4]  
Bit 3  
Always write '0'  
DIS LOW LATENCY: Disable low latency  
This bit disables low-latency mode,  
0 = Low-latency mode is enabled. Digital functions such as gain, test patterns and offset correction  
are disabled  
1 = Low-latency mode is disabled. This setting enables the digital functions. See the Digital  
Functions and Low Latency Mode section.  
Bit 2  
STBY: Standby mode  
This bit sets the standby mode.  
0 = Normal operation  
1 = Only the ADC and output buffers are powered down; internal reference is active; wake-up time  
from standby is fast  
Bits[1:0]  
Always write '0'  
30  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Register Address 43h (Default = 00h)  
7
0
6
5
0
4
3
2
0
1
0
PDN GLOBAL  
PDN OBUF  
0
EN LVDS SWING  
Bit 0  
Bit 6  
Always write '0'  
PDN GLOBAL: Power-down  
This bit sets the state of operation.  
0 = Normal operation  
1 = Total power down; the ADC, internal references, and output buffers are powered down; slow  
wake-up time.  
Bit 5  
Bit 4  
Always write '0'  
PDN OBUF: Power-down output buffer  
This bit set the output data and clock pins.  
0 = Output data and clock pins enabled  
1 = Output data and clock pins powered down and put in high- impedance state  
Bits[3:2]  
Bits[1:0]  
Always write '0'  
EN LVDS SWING: LVDS swing control  
00 = LVDS swing control using LVDS SWING register bits is disabled  
01 = Do not use  
10 = Do not use  
11 = LVDS swing control using LVDS SWING register bits is enabled  
Register Address 4Ah (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
HI PERF  
MODE 2  
0
0
Bits[7:1]  
Bit[0]  
Always write '0'  
HI PERF MODE 2: High performance mode 2  
This bit is recommended for high input signal frequencies greater than 230MHz.  
0 = Default performance after reset  
1 = For best performance with high-frequency input signals, set the HIGH PERF MODE 2 bit  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Register Address BFh (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
OFFSET PEDESTAL  
Bits[7:2]  
OFFSET PEDESTAL  
These bits set the offset pedestal.  
When the offset correction is enabled, the final converged value after the offset is corrected is the  
ADC mid-code value. A pedestal can be added to the final converged value by programming these  
bits.  
ADS414x VALUE  
PEDESTAL  
011111  
011110  
011101  
31LSB  
30LSB  
29LSB  
000000  
0LSB  
111111  
111110  
1LSB  
2LSB  
100000  
32LSB  
Bits[1:0]  
Always write '0'  
32  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Register Address CFh (Default = 00h)  
7
6
0
5
4
3
2
1
0
0
0
FREEZE  
OFFSET  
CORR  
OFFSET CORR TIME CONSTANT  
Bit 7  
FREEZE OFFSET CORR  
This bit sets the freeze offset correction.  
0 = Estimation of offset correction is not frozen (bit EN OFFSET CORR must be set)  
1 = Estimation of offset correction is frozen (bit EN OFFSET CORR must be set). When frozen, the  
last estimated value is used for offset correction every clock cycle. See the Offset Correction  
section.  
Bit 6  
Always write '0'  
Bits[5:2]  
OFFSET CORR TIME CONSTANT  
These bits set the offset correction time constant for the correction loop time constant in number of  
clock cycles.  
VALUE  
TIME CONSTANT (Number of Clock Cycles)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1M  
2M  
4M  
8M  
16M  
32M  
64M  
128M  
256M  
512M  
1G  
2G  
Bits[1:0]  
Always write '0'  
Register Address DFh (Default = 00h)  
7
0
6
0
5
4
3
2
0
1
0
0
0
LOW SPEED  
0
Bits[7:6]  
Bits[5:4]  
Always write '0'  
LOW SPEED: Low-speed mode  
For the ADS4122/42, the low-speed mode is enabled by default after reset.  
00, 01, 10, 11 = Do not use  
For the ADS4125/55 only:  
00, 01, 10 = Low-speed mode disabled (default state after reset); this setting is recommended for  
sampling rates greater than 80MSPS.  
11 = Low-speed mode enabled; this setting is recommended for sampling rates less than or equal  
to 80MSPS.  
Bits[3:0]  
Always write '0'  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4122  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 85.1dBc  
SFDR = 84.3dBc  
SNR = 71.3dBFS  
SINAD = 71.1dBFS  
THD = 83dBc  
SNR = 70.5dBFS  
SINAD = 70.3dBFS  
THD = 82.7dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 15.  
Figure 16.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 71.9dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
SNR = 69.3dBFS  
SINAD = 67.7dBFS  
THD = 71.7dBc  
Two−Tone IMD = 90.1dBFS  
SFDR = 97.3dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 17.  
Figure 18.  
34  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4122 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
88  
83  
78  
73  
68  
63  
58  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
Two−Tone IMD = 99.5dBFS  
SFDR = 106.9dBFS  
−40  
−60  
−80  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 19.  
Figure 20.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
71.5  
71  
98  
94  
90  
86  
82  
78  
74  
70  
66  
62  
58  
High Perf MODE1 Enabled  
Default  
170MHz  
220MHz  
300MHz  
400MHz  
70.5  
70  
69.5  
69  
68.5  
68  
67.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Frequency (MHz)  
Gain (dB)  
Figure 21.  
Figure 22.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4122 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
120  
110  
100  
90  
74  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
Input Frequency = 40MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
170MHz  
220MHz  
300MHz  
400MHz  
73.5  
73  
72.5  
72  
80  
70  
71.5  
71  
60  
50  
70.5  
70  
40  
30  
69.5  
69  
20  
−45 −40 −35 −30 −25 −20 −15 −10  
−5  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Gain (dB)  
Figure 23.  
Figure 24.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
74  
94  
71.5  
Input Frequency = 150MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
Input Frequency = 150MHz  
SFDR  
SNR  
73.5  
73  
90  
86  
82  
78  
74  
71  
72.5  
72  
80  
70.5  
70  
70  
71.5  
71  
60  
50  
70.5  
70  
40  
69.5  
30  
69.5  
69  
20  
69  
1.1  
−45 −40 −35 −30 −25 −20 −15 −10  
−5  
0
0.8  
0.85  
0.9  
0.95  
1
1.05  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 25.  
Figure 26.  
36  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4122 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
73  
72  
71  
70  
69  
68  
67  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 27.  
Figure 28.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
94  
72  
89  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Input Frequency =150MHz  
SNR  
SFDR  
Input Frequency = 40MHz  
SFDR  
SNR  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
92  
90  
88  
86  
84  
82  
71.5  
71  
70.5  
70  
69.5  
69  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 29.  
Figure 30.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4122 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
PERFORMANCE ACROSS INPUT CLOCK DUTY CYCLE  
95  
75  
73  
71  
69  
67  
65  
63  
61  
59  
57  
55  
94  
72  
Input Frequency = 150MHz  
SFDR  
SNR  
Input Frequency = 10MHz  
THD  
SNR  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
90  
86  
82  
78  
71.5  
71  
70.5  
70  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
40  
45  
50  
55  
60  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 31.  
Figure 32.  
38  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4125  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 86.9dBc  
SFDR = 82.4dBc  
SNR = 71.2dBFS  
SINAD = 71dBFS  
THD = 83.9dBc  
SNR = 70.5dBFS  
SINAD = 70.1dBFS  
THD = 80.5dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 33.  
Figure 34.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 79.7dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
SNR = 70dBFS  
SINAD = 69.5dBFS  
THD = 78.3dBc  
Two−Tone IMD = 87.7dBFS  
SFDR = 96.7dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 35.  
Figure 36.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4125 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
60  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
Two−Tone IMD = 99.4dBFS  
SFDR = 106.3dBFS  
−40  
−60  
−80  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 37.  
Figure 38.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
71.5  
71  
96  
92  
88  
84  
80  
76  
72  
68  
64  
High Perf MODE1 Enabled  
Default  
170MHz  
220MHz  
300MHz  
400MHz  
70.5  
70  
69.5  
69  
68.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Frequency (MHz)  
Gain (dB)  
Figure 39.  
Figure 40.  
40  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4125 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
120  
110  
100  
90  
74  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Input Frequency = 40MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
170MHz  
220MHz  
300MHz  
400MHz  
73.5  
73  
72.5  
72  
80  
70  
71.5  
71  
60  
50  
70.5  
70  
40  
30  
69.5  
69  
20  
10  
68.5  
−45 −40 −35 −30 −25 −20 −15 −10  
−5  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Gain (dB)  
Figure 41.  
Figure 42.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
74  
90  
71  
Input Frequency = 150MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
Input Frequency = 150MHz  
SFDR  
SNR  
73.5  
73  
86  
82  
78  
74  
70  
70.5  
70  
72.5  
72  
80  
70  
71.5  
71  
60  
69.5  
69  
50  
70.5  
70  
40  
30  
69.5  
69  
20  
68.5  
1.1  
−45 −40 −35 −30 −25 −20 −15 −10  
−5  
0
0.8  
0.85  
0.9  
0.95  
1
1.05  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 43.  
Figure 44.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4125 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
73  
72  
71  
70  
69  
68  
67  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 45.  
Figure 46.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
88  
72  
89  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
Input Frequency =150MHz  
SNR  
SFDR  
Input Frequency = 40MHz  
SFDR  
SNR  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
86  
84  
82  
80  
78  
76  
71.5  
71  
70.5  
70  
69.5  
69  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 47.  
Figure 48.  
42  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4125 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
SNR ACROSS INPUT CLOCK DUTY CYCLE  
95  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Input Frequency = 150MHz  
SFDR  
SNR  
Default  
Low−Speed Mode Enabled  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Input Frequency = 10MHz  
Differential Clock Amplitude (VPP  
)
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Figure 49.  
Figure 50.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4142  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 83.4dBc  
SFDR = 83dBc  
SNR = 74.3dBFS  
SINAD = 73.7dBFS  
THD = 82dBc  
SNR = 72.8dBFS  
SINAD = 72.4dBFS  
THD = 81.6dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 51.  
Figure 52.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 70.7dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
SNR = 68.4dBFS  
SINAD = 66.3dBFS  
THD = 69.3dBc  
Two−Tone IMD = 88.7dBFS  
SFDR = 96.6dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 53.  
Figure 54.  
44  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4142 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
93  
88  
83  
78  
73  
68  
63  
58  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
Two−Tone IMD = 99dBFS  
SFDR = 105.3dBFS  
−40  
−60  
−80  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 55.  
Figure 56.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
74  
73.5  
73  
98  
94  
90  
86  
82  
78  
74  
70  
66  
62  
58  
High Perf MODE1 Enabled  
Default  
170MHz  
220MHz  
300MHz  
400MHz  
72.5  
72  
71.5  
71  
70.5  
70  
69.5  
69  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Frequency (MHz)  
Gain (dB)  
Figure 57.  
Figure 58.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4142 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
120  
110  
100  
90  
77  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
Input Frequency = 40MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
170MHz  
220MHz  
300MHz  
400MHz  
76.5  
76  
75.5  
75  
80  
70  
74.5  
74  
60  
50  
73.5  
73  
40  
30  
72.5  
72  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Gain (dB)  
Figure 59.  
Figure 60.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
77  
90  
74  
Input Frequency = 150MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
Input Frequency = 150MHz  
SFDR  
SNR  
76.5  
76  
86  
82  
78  
74  
70  
73.5  
73  
75.5  
75  
80  
70  
74.5  
74  
60  
72.5  
72  
50  
73.5  
73  
40  
30  
72.5  
72  
20  
−70  
71.5  
1.1  
−60  
−50  
−40  
−30  
−20  
−10  
0
0.8  
0.85  
0.9  
0.95  
1
1.05  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 61.  
Figure 62.  
46  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4142 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
75  
74  
73  
72  
71  
70  
69  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 63.  
Figure 64.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
94  
74  
90  
76  
75  
74  
73  
72  
71  
70  
69  
68  
Input Frequency =150MHz  
SNR  
SFDR  
Input Frequency = 40MHz  
SFDR  
SNR  
89  
88  
87  
86  
85  
84  
83  
82  
92  
90  
88  
86  
84  
82  
73.5  
73  
72.5  
72  
71.5  
71  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 65.  
Figure 66.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4142 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
PERFORMANCE ACROSS INPUT CLOCK DUTY CYCLE  
91  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
94  
74.5  
Input Frequency = 150MHz  
SFDR  
SNR  
Input Frequency = 10MHz  
THD  
SNR  
89  
87  
85  
83  
81  
79  
77  
75  
73  
90  
86  
82  
78  
74  
73.5  
73  
72.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
40  
45  
50  
55  
60  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 67.  
Figure 68.  
OUTPUT NOISE HISTOGRAM  
(with Inputs Shorted to VCM)  
INTEGRAL NONLINEARITY  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
8168 8169 8170 8171 8172 8173 8174 8175 8176  
Output Code (LSB)  
Figure 69.  
Figure 70.  
48  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4145  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 86dBc  
SFDR = 82.5dBc  
SNR = 74dBFS  
SINAD =73.7dBFS  
THD = 83.5dBc  
SNR = 72.8dBFS  
SINAD = 72.2dBFS  
THD = 80.1dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 71.  
Figure 72.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 80dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
SNR = 72dBFS  
SINAD = 71.3dBFS  
THD = 78.5dBc  
Two−Tone IMD = 87.7dBFS  
SFDR = 97.5dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 73.  
Figure 74.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4145 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
60  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 100MHz  
fIN2 = 105MHz  
Two−Tone IMD = 99.2dBFS  
SFDR = 106.6dBFS  
−40  
−60  
−80  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 75.  
Figure 76.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
74  
73.5  
73  
96  
92  
88  
84  
80  
76  
72  
68  
64  
High Perf MODE1 Enabled  
Default  
170MHz  
220MHz  
300MHz  
400MHz  
72.5  
72  
71.5  
71  
70.5  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Frequency (MHz)  
Gain (dB)  
Figure 77.  
Figure 78.  
50  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4145 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
120  
110  
100  
90  
76.5  
76  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
Input Frequency = 40MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
170MHz  
220MHz  
300MHz  
400MHz  
75.5  
75  
80  
74.5  
74  
70  
60  
73.5  
73  
50  
40  
72.5  
72  
30  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Gain (dB)  
Figure 79.  
Figure 80.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
76.5  
90  
74  
Input Frequency = 150MHz  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
Input Frequency = 150MHz  
SFDR  
SNR  
76  
75.5  
75  
86  
82  
78  
74  
70  
73.5  
73  
80  
74.5  
74  
70  
60  
73.5  
73  
72.5  
72  
50  
40  
72.5  
72  
30  
20  
−70  
71.5  
71.5  
1.1  
−60  
−50  
−40  
−30  
−20  
−10  
0
0.8  
0.85  
0.9  
0.95  
1
1.05  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 81.  
Figure 82.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4145 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
75  
74  
73  
72  
71  
70  
69  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
Input Frequency = 150MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 83.  
Figure 84.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
90  
73  
90  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
Input Frequency =150MHz  
SNR  
SFDR  
Input Frequency = 40MHz  
SFDR  
SNR  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
88  
86  
84  
82  
80  
78  
72.5  
72  
71.5  
71  
70.5  
70  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 85.  
Figure 86.  
52  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: ADS4145 (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
SNR ACROSS INPUT CLOCK DUTY CYCLE  
92  
76  
74  
72  
70  
68  
66  
64  
62  
60  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
Input Frequency = 150MHz  
SFDR  
SNR  
Default  
Low−Speed Mode Enabled  
89  
86  
83  
80  
77  
74  
71  
68  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Input Frequency = 10MHz  
Differential Clock Amplitude (VPP  
)
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Figure 87.  
Figure 88.  
OUTPUT NOISE HISTOGRAM  
(with Inputs Shorted to VCM)  
INTEGRAL NONLINEARITY  
35  
30  
25  
20  
15  
10  
5
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179  
Output Code (LSB)  
Figure 89.  
Figure 90.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: COMMON  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
CMRR vs FREQUENCY  
PSRR vs FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
0
−10  
−20  
−30  
−40  
−50  
−60  
Input Frequency = 70MHz  
50mVPP Signal Superimposed  
on Input Common−Mode Voltage (0.95V)  
PSRR on AVDD Supply 50mVPP  
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency of Input Common−Mode Signal (MHz)  
Frequency of Signal on Supply (MHz)  
Figure 91.  
Figure 92.  
POWER vs SAMPLE RATE  
DRVDD CURRENT vs SAMPLE RATE  
130  
120  
110  
100  
90  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
AVDD Power  
DRVDD Power 200mV Swing  
DRVDD Power 350mV Swing  
LVDS, 200mV Swing  
LVDS, 350mV Swing  
CMOS, 6pF Load Capacitance  
CMOS, 8pF Load Capacitance  
80  
70  
60  
50  
40  
30  
0
5
25  
45  
65  
85  
105  
125  
5
25  
45  
65  
85  
105  
125  
Sampling Frequency (MSPS)  
Sampling Frequency (MSPS)  
Figure 93.  
Figure 94.  
54  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: CONTOUR  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
SFDR ACROSS INPUT AND SAMPLING FREQUENCIES (0dB Gain)  
125  
120  
84  
67  
110  
100  
90  
80  
70  
60  
50  
40  
30  
75  
71  
84  
81  
87  
78  
63  
84  
84  
87  
87  
81  
75  
67  
71  
78  
84  
63  
84  
87  
84  
75  
71  
84  
78  
81  
87  
59  
63  
75  
67  
84  
55  
20  
20  
50  
55  
100  
150  
200  
250  
300  
350  
400  
Input Frequency (MHz)  
70  
60  
65  
75  
80  
85  
SFDR (dBc)  
Figure 95.  
SFDR ACROSS INPUT AND SAMPLING FREQUENCIES (6dB Gain)  
125  
120  
87  
87  
87  
87  
84  
110  
100  
90  
80  
70  
60  
50  
40  
30  
77  
90  
73  
81  
87  
90  
69  
84  
73  
77  
87  
69  
87  
87  
81  
73  
81  
87  
50  
77  
65  
69  
84  
87  
61  
20  
20  
100  
65  
150  
200  
250  
300  
350  
400  
90  
Input Frequency (MHz)  
75  
60  
70  
80  
85  
SFDR (dBc)  
Figure 96.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
ADS414x: SNR ACROSS INPUT AND SAMPLING FREQUENCIES (0dB Gain)  
125  
120  
73  
72.5  
72  
73.5  
110  
100  
90  
80  
70  
60  
50  
40  
30  
71  
70  
72  
72.5  
73  
73.5  
71  
69  
70  
69  
72  
68  
72.5  
70  
71  
73.5  
50  
67  
69  
68  
300  
73  
66  
20  
20  
100  
67  
150  
68  
200  
250  
350  
400  
Input Frequency (MHz)  
66  
69  
70  
71  
72  
73  
SNR (dBFS)  
Figure 97.  
ADS414x: SNR ACROSS INPUT AND SAMPLING FREQUENCIES (6dB Gain)  
125  
120  
67.5  
67  
110  
100  
90  
80  
70  
60  
50  
40  
30  
67  
68  
67.5  
66.5  
67  
66.5  
66  
67  
67.5  
68  
66.5  
65.5  
65  
66  
300  
20  
20  
64  
50  
100  
150  
200  
250  
350  
400  
68  
Input Frequency (MHz)  
66 66.5  
64.5  
65  
65.5  
67  
67.5  
SNR (dBFS)  
Figure 98.  
56  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential clock  
amplitude, 50% clock duty cycle, 1dBFS differential analog input, 0dB gain, low-latency mode, DDR LVDS output interface,  
and 32k-point FFT, unless otherwise noted.  
ADS412x SNR ACROSS INPUT AND SAMPLING FREQUENCIES (0dB Gain)  
125  
120  
70.5  
71  
70  
110  
100  
90  
80  
70  
60  
50  
40  
30  
69.5  
69  
69.5  
69  
70.5  
71  
70  
68  
69.5  
69  
67  
66  
68  
70  
70.5  
100  
71  
65  
67  
20  
20  
50  
150  
200  
250  
300  
350  
400  
71  
Input Frequency (MHz)  
68  
66  
67  
69  
70  
SNR (dBFS)  
Figure 99.  
ADS412x SNR ACROSS INPUT AND SAMPLING FREQUENCIES (6dB Gain)  
125  
120  
66.5  
110  
100  
90  
80  
70  
60  
50  
40  
30  
67  
67  
66  
66.5  
65.5  
66  
65.5  
300  
65  
67  
66.5  
66  
64.5  
64  
20  
20  
50  
100  
150  
200  
250  
350  
400  
Input Frequency (MHz)  
65.5  
64  
64.5  
65  
66  
66.5  
67  
SNR (dBFS)  
Figure 100.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS412x/4x are lower sampling speed members of the ADS41xx family of ultralow power analog-to-digital  
converters (ADCs). The conversion process is initiated by a rising edge of the external input clock and the analog  
input signal is sampled. The sampled signal is sequentially converted by a series of small resolution stages, with  
the outputs combined in a digital correction logic block. At every clock edge the sample propagates through the  
pipeline, resulting in a data latency of 10 clock cycles. The output is available as 14-bit data or 12-bit data, in  
DDR LVDS mode or CMOS mode, and coded in either straight offset binary or binary twos complement format.  
ANALOG INPUT  
The analog input consists of a switched-capacitor-based, differential, sample-and-hold architecture. This  
differential topology results in very good ac performance even for high input frequencies at high sampling rates.  
The INP and INM pins must be externally biased around a common-mode voltage of 0.95V, available on the  
VCM pin. For a full-scale differential input, each input INP and INM pin must swing symmetrically between (VCM  
+ 0.5V) and (VCM 0.5V), resulting in a 2VPP differential input swing. The input sampling circuit has a high 3dB  
bandwidth that extends up to 550MHz (measured from the input pins to the sampled voltage). Figure 101 shows  
an equivalent circuit for the analog input.  
Sampling  
Switch  
LPKG  
Sampling  
Capacitor  
2nH  
10W  
RCR Filter  
INP  
RON  
CBOND  
1pF  
CPAR2  
1pF  
CSAMP  
2pF  
100W  
15W  
RESR  
3pF  
200W  
CPAR1  
0.5pF  
RON  
15W  
3pF  
LPKG  
2nH  
CSAMP  
2pF  
100W  
RON  
15W  
INM  
CBOND  
1pF  
CPAR2  
1pF  
Sampling  
Capacitor  
RESR  
Sampling  
Switch  
200W  
Figure 101. Analog Input Equivalent Circuit  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This technique improves the  
common-mode noise immunity and even-order harmonic rejection. A 5Ω to 15Ω resistor in series with each input  
pin is recommended to damp out ringing caused by package parasitics. It is also necessary to present low  
impedance (less than 50Ω) for the common-mode switching currents. This impedance can be achieved by using  
two resistors from each input terminated to the common-mode voltage (VCM).  
Note that the device includes an internal R-C filter from each input to ground. The purpose of this filter is to  
absorb the glitches caused by the opening and closing of the sampling capacitors. The cutoff frequency of the  
R-C filter involves a trade-off. A lower cutoff frequency (larger C) absorbs glitches better, but also reduces the  
input bandwidth and the maximum input frequency that can be supported. On the other hand, with no internal  
R-C filter, high input frequency can be supported but now the sampling glitches must be supplied by the external  
driving circuit. The inductance of the package bond wires limits the ability of the external driving circuit to support  
the sampling glitches.  
58  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
In the ADS412x/4x, the R-C component values have been optimized while supporting high input bandwidth  
(550MHz). However, in applications where very high input frequency support is not required, filtering of the  
glitches can be improved further with an external R-C-R filter; see Figure 104 and Figure 105).  
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency  
range and matched impedance to the source. While designing the drive circuit, the ADC impedance must be  
considered. Figure 102 and Figure 103 show the impedance (ZIN = RIN || CIN) looking into the ADC input pins.  
100.00  
10.00  
1.00  
0.10  
0.01  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Input Frequency (GHz)  
Figure 102. ADC Analog Input Resistance (RIN) Across Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Input Frequency (GHz)  
Figure 103. ADC Analog Input Capacitance (CIN) Across Frequency  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Driving Circuit  
Two example driving circuit configurations are shown in Figure 104 and Figure 105one optimized for low  
bandwidth (tlow input frequencies) and the other one for high bandwidth to support higher input frequencies. In  
Figure 104, an external R-C-R filter with 3.3pF is used to help absorb sampling glitches. The R-C-R filter limits  
the bandwidth of the drive circuit, making it suitable for low input frequencies (up to 250MHz). Transformers such  
as ADT1-1WT or WBC1-1 can be used up to 250MHz.  
For higher input frequencies, the R-C-R filter can be dropped. Together with the lower series resistors (5Ω to  
10Ω), this drive circuit provides higher bandwidth to support frequencies up to 500MHz (as shown in Figure 105).  
A transmission line transformer such as ADTL2-18 can be used.  
Note that both the drive circuits have been terminated by 50Ω near the ADC side. The termination is  
accomplished by a 25Ω resistor from each input to the 0.95V common-mode (VCM) from the device. This  
termination allows the analog inputs to be biased around the required common-mode voltage.  
3.6nH  
10W to 15W  
INP  
T2  
T1  
0.1mF  
25W  
25W  
50W  
0.1mF  
RIN  
CIN  
3.3pF  
50W  
INM  
VCM  
1:1  
1:1  
10W to 15W  
3.6nH  
ADS41xx  
Figure 104. Drive Circuit with Low Bandwidth (for Low Input Frequencies)  
5W to 10W  
INP  
T2  
T1  
0.1mF  
25W  
25W  
0.1mF  
RIN  
CIN  
INM  
1:1  
1:1  
5W to 10W  
VCM  
ADS41xx  
Figure 105. Drive Circuit with High Bandwidth (for High Input Frequencies)  
60  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and  
good performance is obtained for high-frequency input signals. An additional termination resistor pair may be  
required between the two transformers, as shown in Figure 104 and Figure 105. The center point of this  
termination is connected to ground to improve the balance between the P (positive) and M (negative) sides. The  
values of the terminations between the transformers and on the secondary side must be chosen to obtain an  
effective 50Ω (for a 50Ω source impedance).  
Figure 104 and Figure 105 use 1:1 transformers with a 50Ω source. As explained in the Drive Circuit  
Requirements section, this architecture helps to present a low source impedance to absorb sampling glitches.  
With a 1:4 transformer, the source impedance is 200Ω. The higher source impedance is unable to absorb the  
sampling glitches effectively and can lead to degradation in performance (compared to using 1:1 transformers).  
In almost all cases, either a bandpass or low-pass filter is needed to obtain the desired dynamic performance, as  
shown in Figure 106. Such a filter presents low source impedance at the high frequencies corresponding to the  
sampling glitch and helps avoid the performance loss with the high source impedance.  
10W  
INP  
100W  
0.1mF  
Bandpass or  
Low-Pass  
Filter  
Differential  
Input Signal  
ADS41xx  
100W  
INM  
10W  
VCM  
Figure 106. Drive Circuit with 1:4 Transformer  
Input Common-Mode  
To ensure a low-noise, common-mode reference, the VCM pin is filtered with a 0.1µF low-inductance capacitor  
connected to ground. The VCM pin is designed to directly drive the ADC inputs. Each ADC input pin sinks a  
common-mode current of approximately 0.6µA per MSPS of clock frequency.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
CLOCK INPUT  
The ADS412x/4x clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS),  
with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
VCM using internal 5kΩ resistors. This setting allows the use of transformer-coupled drive circuits for sine-wave  
clock or ac-coupling for LVPECL and LVDS clock sources. Figure 107 shows an equivalent circuit for the input  
clock.  
Clock Buffer  
LPKG  
1nH  
20W  
CLKP  
CBOND  
CEQ  
CEQ  
5kW  
1pF  
RESR  
100W  
2pF  
VCM  
LPKG  
1nH  
5kW  
20W  
CLKM  
CBOND  
1pF  
RESR  
100W  
NOTE: CEQ is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.  
Figure 107. Input Clock Equivalent Circuit  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1μF  
capacitor, as shown in Figure 108. For best performance, the clock inputs must be driven differentially, reducing  
susceptibility to common-mode noise. For high input frequency sampling, it is recommended to use a clock  
source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no  
change in performance with a non-50% duty cycle clock input. Figure 109 shows a differential circuit.  
0.1mF  
CMOS  
0.1mF  
CLKP  
Clock Input  
CLKP  
Differential Sine-Wave,  
PECL, or LVDS  
Clock Input  
VCM  
0.1mF  
0.1mF  
CLKM  
CLKM  
Figure 108. Single-Ended Clock Driving Circuit  
Figure 109. Differential Clock Driving Circuit  
62  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
DIGITAL FUNCTIONS AND LOW LATENCY MODE  
The device has several useful digital functions such as test patterns, gain, and offset correction. All of these  
functions require extra clock cycles for operation and increase the overall latency and power of the device.  
Alternately, the device has a low-latency mode in which the raw ADC output is routed to the output data pins with  
a latency of 10 clock cycles. In this mode, the digital functions are bypassed. Figure 110 shows more details of  
the processing after the ADC.  
The device is in low-latency mode after reset. In order to use any of the digital functions, the low-latency mode  
must first be disabled by setting the DIS LOW LATENCY register bit to '1'. After this, the respective register bits  
must be programmed as described in the following sections and in the Serial Register Map section.  
Output  
Interface  
14-Bit  
ADC  
14b  
14b  
Digital Functions  
(Gain, Offset Correction, Test Patterns)  
DDR LVDS  
or CMOS  
DIS LOW LATENCY Pin  
Figure 110. Digital Processing Block Diagram  
GAIN FOR SFDR/SNR TRADE-OFF  
The ADS412x/4x include gain settings that can be used to improve SFDR performance. The gain is  
programmable from 0dB to 6dB (in 0.5dB steps) using the GAIN register bits. For each gain setting, the analog  
input full-scale range scales proportionally, as shown in Table 9.  
The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades  
approximately between 0.5dB and 1dB. The SNR degradation is reduced at high input frequencies. As a result,  
the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal  
degradation in SNR. Therefore, the gain can be used to trade-off between SFDR and SNR.  
After a reset, the device is in low-latency mode and gain function is disabled. To use gain:  
First, disable the low-latency mode (DIS LOW LATENCY = 1).  
This setting enables the gain and puts the device in a 0dB gain mode.  
For other gain settings, program the GAIN bits.  
Table 9. Full-Scale Range Across Gains  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
1
2
3
4
5
6
Default after reset  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
2
1.78  
1.59  
1.42  
1.26  
1.12  
1.00  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
OFFSET CORRECTION  
The ADS412x/4x has an internal offset corretion algorithm that estimates and corrects dc offset up to ±10mV.  
The correction can be enabled using the EN OFFSET CORR serial register bit. Once enabled, the algorithm  
estimates the channel offset and applies the correction every clock cycle. The time constant of the correction  
loop is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET CORR  
TIME CONSTANT register bits, as described in Table 10.  
Table 10. Time Constant of Offset Correction Loop  
TIME CONSTANT, TCCLK  
(Number of Clock Cycles)  
OFFSET CORR TIME CONSTANT  
TIME CONSTANT, TCCLK × 1/fS (sec)(1)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1M  
2M  
8ms  
16ms  
33.4ms  
67ms  
134ms  
268ms  
537ms  
1.08s  
2.15s  
4.3s  
4M  
8M  
16M  
32M  
64M  
128M  
256M  
512M  
1G  
8.6s  
2G  
17.2s  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Sampling frequency, fS = 125MSPS.  
After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR = 1. Once frozen,  
the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is  
disabled by a default after reset.  
After a reset, the device is in low-latency mode and offset correction is disabled. To use offset correction:  
First, disable the low-latency mode (DIS LOW LATENCY = 1).  
Then set EN OFFSET CORR to '1' and program the required time constant.  
Figure 111 shows the time response of the offset correction algorithm after it is enabled.  
OFFSET CORRECTION  
Time Response  
8200  
8190  
8181  
Offset of  
10 LSBs  
8192  
8180  
8170  
8160  
8150  
8140  
8130  
8120  
8110  
8100  
8090  
8080  
8070  
8060  
8050  
Final converged value  
Offset correction  
converges to output  
code of 8192  
Offset correction  
begins  
-5  
5
15 25 35 45 55 65 75 85 95 105  
Time (ms)  
Figure 111. Time Response of Offset Correction  
64  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
POWER DOWN  
The ADS412x/4x has three power-down modes: power-down global, standby, and output buffer disable.  
Power-Down Global  
In this mode, the entire chip (including the ADC, internal reference, and the output buffers) are powered down,  
resulting in reduced total power dissipation of about 10mW. The output buffers are in a high-impedance state.  
The wake-up time from the global power-down to data becoming valid in normal mode is typically 100µs. To  
enter the global power-down mode, set the PDN GLOBAL register bit.  
Standby  
In this mode, only the ADC is powered down and the internal references are active, resulting in a fast wake-up  
time of 5µs. The total power dissipation in standby mode is approximately 130mW at 125MSPS. To enter the  
standby mode, set the STBY register bit.  
Output Buffer Disable  
The output buffers can be disabled and put in a high-impedance state; wakeup time from this mode is fast,  
approximately 100ns. This can be controlled using the PDN OBUF register bit or using the OE pin.  
Input Clock Stop  
In addition, the converter enters a low-power mode when the input clock frequency falls below 1MSPS. The  
power dissipation is approximately 80mW.  
POWER-SUPPLY SEQUENCE  
During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are  
separated in the device. Externally, they can be driven from separate supplies or from a single supply.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
DIGITAL OUTPUT INFORMATION  
The ADS412x/4x provide either 14-bit data or 12-bit data, respectively, and an output clock synchronized with the  
data.  
Output Interface  
Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be  
selected using the LVDS CMOS serial interface register bit or using the DFS pin.  
DDR LVDS Outputs  
In this mode, the data bits and clock are output using low voltage differential signal (LVDS) levels. Two data bits  
are multiplexed and output on each LVDS differential pair, as shown in Figure 112 and Figure 113.  
Pins  
Pins  
CLKOUTP  
Output Clock  
CLKOUTP  
CLKOUTM  
Output Clock  
CLKOUTM  
D0_D1_P  
D0_D1_M  
Data Bits D0, D1  
Data Bits D2, D3  
Data Bits D4, D5  
Data Bits D6, D7  
Data Bits D8, D9  
Data Bits D10, D11  
D0_D1_P  
D0_D1_M  
Data Bits D0, D1  
Data Bits D2, D3  
Data Bits D4, D5  
Data Bits D6, D7  
Data Bits D8, D9  
Data Bits D10, D11  
Data Bits D12, D13  
D2_D3_P  
D2_D3_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
D4_D5_P  
D4_D5_M  
12-Bit  
ADC Data  
14-Bit  
ADC Data  
D6_D7_P  
D6_D7_M  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
D10_D11_P  
D10_D11_M  
ADS412x  
D12_D13_P  
D12_D13_M  
Figure 112. ADS412x LVDS Data Outputs  
ADS414x  
Figure 113. ADS414x LVDS Data Outputs  
66  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Even data bits (D0, D2, D4, etc.) are output at the falling edge of CLKOUTP and the odd data bits (D1, D3, D5,  
etc.) are output at the rising edge of CLKOUTP. Both the rising and falling edges of CLKOUTP must be used to  
capture all 14 data bits, as shown in Figure 114.  
CLKOUTP  
CLKOUTM  
D0_D1_P,  
D0_D1_M  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
D2_D3_P,  
D2_D3_M  
D4_D5_P,  
D4_D5_M  
D6_D7_P,  
D6_D7_M  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
D8_D9_P,  
D8_D9_M  
D10_D11_P,  
D10_D11_M  
D10  
D11  
D10  
D11  
D12_D13_P,  
D12_D13_M  
D12  
D13  
D12  
D13  
Sample N  
Sample N + 1  
Figure 114. DDR LVDS Interface  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
LVDS Output Data and Clock Buffers  
The equivalent circuit of each LVDS output buffer is shown in Figure 115. After reset, the buffer presents an  
output impedance of 100Ω to match with the external 100Ω termination.  
The VDIFF voltage is nominally 350mV, resulting in an output swing of ±350mV with 100Ω external termination.  
The VDIFF voltage is programmable using the LVDS SWING register bits from ±125mV to ±570mV.  
Additionally, a mode exists to double the strength of the LVDS buffer to support 50Ω differential termination. This  
mode can be used when the output LVDS signal is routed to two separate receiver chips, each using a 100Ω  
termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS CLKOUT STRENGTH  
register bits for data and output clock buffers, respectively.  
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing  
reflections from the receiver end, it helps to improve signal integrity.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100W Load  
1.1V  
ROUT  
VDIFF  
High  
Low  
NOTE: Use the default buffer strength to match 100Ω external termination (ROUT = 100Ω). To match with a 50Ω external termination, set the  
LVDS STRENGTH bit (ROUT = 50Ω).  
Figure 115. LVDS Buffer Equivalent Circuit  
68  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Parallel CMOS Interface  
In CMOS mode, each data bit is output on a separate pin as the CMOS voltage level, for every clock cycle. The  
rising edge of the output clock CLKOUT can be used to latch data in the receiver. Figure 116 depicts the CMOS  
output interface.  
Switching noise (caused by CMOS output data transitions) can couple into the analog inputs and degrade SNR.  
The coupling and SNR degradation increases as the output buffer drive is made stronger. To minimize this  
degradation, the CMOS output buffers are designed with controlled drive strength. The default drive strength  
ensures a wide data stable window. It is recommended to use short traces (one to two inches or 2,54cm to  
5,08cm) terminated with less than 5pF load capacitance, as shown in Figure 117.  
Pins  
OVR  
CLKOUT  
D0  
D1  
D2  
D3  
14-Bit  
ADC Data  
D11  
D12  
D13  
ADS414x  
Figure 116. CMOS Output Interface  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
 
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
Use External Clock Buffer  
(> 200MSPS)  
Input Clock  
Receiver (FPGA, ASIC, etc.)  
Flip-Flops  
CLKOUT  
CLKIN  
D0  
D1  
D2  
D0_In  
D1_In  
D2_In  
14-Bit ADC Data  
D12  
D13  
D12_In  
D13_In  
ADS414x  
Use short traces between  
ADC output and receiver pins (1 to 2 inches).  
Figure 117. Using the CMOS Data Outputs  
CMOS Interface Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output pin. The maximum DRVDD current occurs when each output bit toggles between '0' and '1' every clock  
cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined  
by the average number of output bits switching, which is a function of the sampling frequency and the nature of  
the analog input signal.  
Digital Current as a Result of CMOS Output Switching = CL × DRVDD × (N × fAVG  
)
where:  
CL = load capacitance,  
N × FAVG = average number of output bits switching.  
(1)  
Figure 94 details the current across sampling frequencies at 2 MHz analog input frequency.  
70  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Input Over-Voltage Indication (OVR Pin)  
The device has an OVR pin that provides information about analog input overload. At any clock cycle, if the  
sampled input voltage exceeds the positive or negative full-scale range, the OVR pin goes high. The OVR  
remains high as long as the overload condition persists. The OVR pin is a CMOS output buffer (running off  
DRVDD supply), independent of the type of output data interface (DDR LVDS or CMOS).  
For a positive overload, the D[13:0] output data bits are 3FFFh in offset binary output format and 1FFFh in twos  
complement output format. For a negative input overload, the output code is 0000h in offset binary output format  
and 2000h in twos complement output format.  
Output Data Format  
Two output data formats are supported: twos complement and offset binary. Each mode can be selected using  
the DATA FORMAT serial interface register bit or controlling the DFS pin in parallel configuration mode. In the  
event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level.  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the ADS414x, ADS412x EVM User Guide (SLWU067) for details on layout  
and grounding.  
Supply Decoupling  
Because the ADS412x/4x already include internal decoupling, minimal external decoupling can be used without  
loss in performance. Note that decoupling capacitors can help filter external power-supply noise, so the optimum  
number of capacitors depends on the actual application. The decoupling capacitors should be placed very close  
to the converter supply pins.  
Exposed Pad  
In addition to providing a path for heat dissipation, the PowerPAD is also electrically internally connected to the  
digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and  
electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and  
QFN/SON PCB Attachment (SLUA271), both available for download at the TI web site (www.ti.com).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
www.ti.com  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) The INL is the deviation of the ADC transfer function from a best fit line determined  
by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as  
EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX TMIN  
.
Signal-to-Noise Ratio SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(2)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(3)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
72  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
ADS4122, ADS4125  
ADS4142, ADS4145  
www.ti.com  
SBAS520A FEBRUARY 2011REVISED MARCH 2011  
Effective Number of Bits (ENOB) ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(4)  
Total Harmonic Distortion (THD) THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(5)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 f2 or 2f2 f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR) DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR) AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the  
ADC output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(6)  
Voltage Overload Recovery The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR) CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(7)  
Crosstalk (only for multi-channel ADCs) This is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. It is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually  
measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. It is typically expressed in dBc.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Link(s): ADS4122 ADS4125 ADS4142 ADS4145  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS4122IRGZR  
ADS4122IRGZT  
ADS4125IRGZR  
ADS4125IRGZT  
ADS4142IRGZR  
ADS4142IRGZT  
ADS4145IRGZ25  
ADS4145IRGZR  
ADS4145IRGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
48  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
25  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Mar-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS4122IRGZR  
ADS4122IRGZT  
ADS4125IRGZR  
ADS4125IRGZT  
ADS4142IRGZR  
ADS4142IRGZT  
ADS4145IRGZR  
ADS4145IRGZT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Mar-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS4122IRGZR  
ADS4122IRGZT  
ADS4125IRGZR  
ADS4125IRGZT  
ADS4142IRGZR  
ADS4142IRGZT  
ADS4145IRGZR  
ADS4145IRGZT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
2500  
250  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

ADS4125

12-Bit, 200-MSPS, Ultralow-Power ADC
TI

ADS4125IRGZR

14-/12-Bit, 65/125MSPS, Ultralow-Power ADC
TI

ADS4125IRGZT

14-/12-Bit, 65/125MSPS, Ultralow-Power ADC
TI

ADS4126

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126IRGZ25

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126IRGZR

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126IRGZT

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126_1004

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126_101

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4126_14

12-/14-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS4128

12-Bit, 200-MSPS, Ultralow-Power ADC
TI

ADS4128IRGZ25

12-Bit, 200-MSPS, Ultralow-Power ADC
TI