ADS41B29IRGZR [TI]

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers; 14位/ 12位, 250MSPS ,超低功耗ADC模拟缓冲器
ADS41B29IRGZR
型号: ADS41B29IRGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
14位/ 12位, 250MSPS ,超低功耗ADC模拟缓冲器

文件: 总64页 (文件大小:1724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
14-/12-Bit, 250MSPS, Ultralow-Power ADC  
with Analog Buffers  
Check for Samples: ADS41B29, ADS41B49  
1
FEATURES  
DESCRIPTION  
23  
ADS41B49: 14-Bit, 250MSPS  
ADS41B29: 12-Bit, 250MSPS  
The ADS41B29/B49 are members of the  
ultralow-power ADS4xxx analog-to-digital converter  
(ADC) family, featuring integrated analog input  
buffers. These devices use innovative design  
techniques to achieve high dynamic performance,  
while consuming extremely low power. The analog  
input pins have buffers, with benefits of constant  
performance and input impedance across a wide  
frequency range. The devices are well-suited for  
Integrated High-Impedance  
Analog Input Buffer:  
Input Capacitance: 2pF  
200MHz Input Resistance: 3kΩ  
Maximum Sample Rate: 250MSPS  
Ultralow Power:  
multi-carrier,  
wide  
bandwidth  
communications  
1.8V Analog Power: 180mW  
3.3V Buffer Power: 96mW  
applications such as PA linearization.  
The ADS41B49/29 have features such as digital gain  
and offset correction. The gain option can be used to  
improve SFDR performance at lower full-scale input  
ranges, especially at high input frequencies. The  
integrated dc offset correction loop can be used to  
estimate and cancel the ADC offset. At lower  
sampling rates, the ADC automatically operates at  
scaled-down power with no loss in performance.  
I/O Power: 135mW (DDR LVDS)  
High Dynamic Performance:  
SNR: 69dBFS at 170MHz  
SFDR: 82.5dBc at 170MHz  
Output Interface:  
Double Data Rate (DDR) LVDS with  
Programmable Swing and Strength:  
The devices support both double data rate (DDR)  
low-voltage differential signaling (LVDS) and parallel  
CMOS digital output interfaces. The low data rate of  
the DDR LVDS interface (maximum 500MBPS)  
makes it possible to use low-cost field-programmable  
gate array (FPGA)-based receivers. The devices  
have a low-swing LVDS mode that can be used to  
further reduce the power consumption. The strength  
of the LVDS output buffers can also be increased to  
support 50Ω differential termination.  
Standard Swing: 350mV  
Low Swing: 200mV  
Default Strength: 100Ω Termination  
2x Strength: 50Ω Termination  
1.8V Parallel CMOS Interface Also  
Supported  
Programmable Gain for SNR/SFDR Trade-Off  
DC Offset Correction  
The devices are available in a compact QFN-48  
package and are specified over the industrial  
temperature range (–40°C to +85°C).  
Supports Low Input Clock Amplitude  
Package: QFN-48 (7mm × 7mm)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments, Incorporated.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2010, Texas Instruments Incorporated  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
LEAD/BALL PACKAGE  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
ECO PLAN(2)  
FINISH  
MARKING  
ADS41B29IRGZR  
ADS41B29IRGZT  
ADS41B49IRGZR  
ADS41B49IRGZT  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
GREEN (RoHS,  
no Sb/Br)  
ADS41B29  
QFN-48  
QFN-48  
RGZ  
RGZ  
–40°C to +85°C  
–40°C to +85°C  
Cu/NiPdAu  
AZ41B29  
GREEN (RoHS,  
no Sb/Br)  
ADS41B49  
Cu/NiPdAu  
AZ41B49  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
(2) Eco Plan is the planned eco-friendly classification. Green (RoHS, no Sb/Br): TI defines Green to mean Pb-Free (RoHS compatible) and  
free of Bromine- (Br) and Antimony- (Sb) based flame retardants. Refer to the Quality and Lead-Free (Pb-Free) Data web site for more  
information.  
ABSOLUTE MAXIMUM RATINGS(1)  
ADS41B29, ADS41B49  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–2.4  
–2.4  
–4.2  
MAX  
2.1  
3.9  
2.1  
0.3  
2.4  
2.4  
4.2  
UNIT  
V
Supply voltage range, AVDD  
Supply voltage range, AVDD_BUF  
V
Supply voltage range, DRVDD  
V
Voltage between AGND and DRGND  
V
Voltage between AVDD to DRVDD (when AVDD leads DRVDD)  
Voltage between DRVDD to AVDD (when DRVDD leads AVDD)  
Voltage between AVDD_BUF to DRVDD/AVDD  
V
V
V
Minimum  
(1.9, AVDD + 0.3)  
INP, INM  
–0.3  
V
V
Voltage applied to input pins  
CLKP, CLKM(2), RESET, SCLK,  
SDATA, SEN, DFS  
–0.3  
–40  
AVDD + 0.3  
Operating free-air temperature range, TA  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
+85  
+125  
+150  
2
°C  
°C  
°C  
kV  
–65  
ESD, human body model (HBM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|.  
Doing so prevents the ESD protection diodes at the clock input pins from turning on.  
2
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
THERMAL INFORMATION  
ADS41B29,  
ADS41B49  
THERMAL METRIC(1)  
UNITS  
RGZ  
48 PINS  
29  
qJA  
Junction-to-ambient thermal resistance  
qJCtop  
qJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
n/a  
10  
°C/W  
0.3  
yJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
yJB  
9
qJCbot  
1.13  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
ADS41B29, ADS41B49  
MIN  
TYP  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
Analog buffer supply voltage  
Digital supply voltage  
1.7  
3
1.8  
3.3  
1.8  
1.9  
3.6  
1.9  
V
V
V
AVDD_BUF  
DRVDD  
1.7  
ANALOG INPUTS  
Differential input voltage range(1)  
1.5  
1.7 ± 0.05  
400  
VPP  
V
Input common-mode voltage  
Maximum analog input frequency with 1.5VPP input amplitude(2)  
Maximum analog input frequency with 1VPP input amplitude(2)  
CLOCK INPUT  
MHz  
MHz  
600  
Low-speed mode enabled(3)  
Low-speed mode disabled(3)  
ADS41B49  
20  
80  
MSPS  
MSPS  
ADS41B29/  
> 80  
250  
Input clock amplitude differential (VCLKP – VCLKM  
)
Sine wave, ac-coupled  
0.2  
1.5  
1.6  
0.7  
1.8  
50  
VPP  
VPP  
VPP  
V
LVPECL, ac-coupled  
LVDS, ac-coupled  
LVCMOS, single-ended, ac-coupled  
Low-speed mode enabled  
40  
35  
60  
65  
%
Input clock duty  
cycle  
Low-speed mode disabled  
50  
%
DIGITAL OUTPUTS  
CLOAD  
RLOAD  
TA  
Maximum external load capacitance from each output pin to DRGND  
5
pF  
Ω
Differential load resistance between the LVDS output pairs  
(LVDS mode)  
100  
Operating free-air temperature  
–40  
+85  
°C  
HIGH-PERFORMANCE MODES(4)(5)(6)  
Set the MODE 1 register bits to get the best performance across sample  
MODE 1  
MODE 2  
clock and input signal frequencies.  
Register address = 03h, register data = 03h.  
Set the MODE 2 register bit to get the best performance at high input signal  
frequencies greater than 230MHz.  
Register address = 4Ah, register data = 01h.  
(1) With 0dB gain. See the Gain for SFDR/SNR Trade-Off section in Application Information for the relationship between input voltage range  
and gain.  
(2) See the Theory of Operation section in the Application Information.  
(3) See the Serial Interface section for details on the low-speed mode.  
(4) It is recommended to use these modes to get best performance. These modes can only be set with the serial interface.  
(5) See the Serial Interface section for details on register programming.  
(6) Note that these modes cannot be set when the serial interface is not used (when the RESET pin is tied high); see the Device  
Configuration section.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS41B29, ADS41B49  
Typical values are at +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, 1.5VPP clock amplitude, 50% clock duty  
cycle, –1dBFS differential analog input, and DDR LVDS interface, unless otherwise noted. Minimum and maximum values are  
across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8V, AVDD_BUF = 3.3V, and DRVDD = 1.8V.  
ADS41B29  
ADS41B49  
PARAMETER  
TEST CONDITIONS  
MIN  
65.5  
65  
TYP  
MAX  
MIN  
66.5  
66  
TYP  
MAX  
UNIT  
Bits  
Resolution  
12  
14  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
68.4  
68.3  
68.3  
68  
69.7  
69.5  
69.5  
69.1  
68.4  
69.5  
69.3  
69.3  
68.8  
67.4  
89  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR (signal-to-noise ratio), LVDS  
67.5  
68.3  
68.1  
68.2  
67.8  
66.5  
89  
SINAD  
(signal-to-noise and distortion ratio), LVDS  
85  
85  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
SFDR  
THD  
HD2  
HD3  
87  
87  
dBc  
71  
82  
72  
82  
dBc  
75  
75  
dBc  
85  
85  
dBc  
82  
82  
dBc  
83  
83  
dBc  
68  
79.5  
72  
69  
79.5  
72  
dBc  
dBc  
93  
93  
dBc  
85  
85  
dBc  
87  
87  
dBc  
71  
87  
72  
87  
dBc  
80  
80  
dBc  
93  
93  
dBc  
88  
88  
dBc  
Third-harmonic distortion  
88  
88  
dBc  
71  
82  
72  
82  
dBc  
75  
75  
dBc  
89  
89  
dBc  
90  
90  
dBc  
Worst spur  
90  
90  
dBc  
(other than second and third harmonics)  
76  
88  
77.5  
88  
dBc  
88  
88  
dBc  
Two-tone intermodulation  
distortion  
f1 = 185MHz, f2 = 190MHz,  
each tone at –7dBFS  
IMD  
–86  
1
–86  
1
dBFS  
Recovery to within 1% (of final  
value) for 6dB overload with  
sine-wave input  
Clock  
cycles  
Input overload recovery  
For 100mVPP signal on AVDD  
supply, up to 10MHz  
AC power-supply rejection ratio  
PSRR  
> 30  
> 30  
dB  
Effective number of bits  
Integrated nonlinearity  
ENOB  
INL  
fIN = 170MHz  
fIN = 170MHz  
11  
11.2  
±2.5  
LSBs  
LSBs  
±1.5  
±3.5  
±5  
4
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
ELECTRICAL CHARACTERISTICS: GENERAL  
Typical values are at +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, and 50% clock duty cycle, unless otherwise  
noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8V,  
AVDD_BUF = 3.3V, and DRVDD = 1.8V.  
ADS41B29, ADS41B49  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Differential input voltage range  
1.5  
10  
2
VPP  
kΩ  
Differential input resistance, at dc (see Figure 60)  
Differential input capacitance (see Figure 61)  
Analog input bandwidth  
pF  
800  
2
MHz  
µA  
Analog input common-mode current (per input pin)  
Common-mode output voltage  
VCM output current capability  
VCM  
1.7  
4
V
mA  
DC ACCURACY  
Offset error  
–15  
–2  
2.5  
15  
2
mV  
Temperature coefficient of offset error  
0.003  
mV/°C  
Gain error as a result of  
internal reference inaccuracy alone  
EGREF  
%FS  
%FS  
Gain error of channel alone  
EGCHAN  
2.5  
POWER SUPPLY  
IAVDD  
Analog supply current  
99.5  
29  
115  
42  
mA  
mA  
IAVDD_BUF  
Analog input buffer supply current  
IDRVDD(1)  
Output buffer supply current  
LVDS interface with 100Ω external termination  
Low LVDS swing (200mV)  
63  
75  
35  
mA  
mA  
mA  
IDRVDD  
Output buffer supply current  
LVDS interface with 100Ω external termination  
Standard LVDS swing (350mV)  
90  
25  
IDRVDD output buffer supply current(1)(2)  
CMOS interface(2)  
8pF external load capacitance  
fIN = 2.5MHz  
Global power-down  
Standby  
10  
mW  
mW  
200  
(1) The maximum DRVDD current with CMOS interface depends on the actual load capacitance on the digital output lines. Note that the  
maximum recommended load capacitance on each digital output line is 10pF.  
(2) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the  
supply voltage (see the CMOS Interface Power Dissipation section in the Application Information).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
DIGITAL CHARACTERISTICS  
Typical values are at +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, and DRVDD = 1.8V, unless otherwise noted. Minimum and  
maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8V, AVDD_BUF = 3.3V,  
and DRVDD = 1.8V.  
ADS41B29, ADS41B49  
PARAMETER  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, OE)  
High-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESET, SCLK, SDATA, and  
SEN support 1.8V and 3.3V  
CMOS logic levels  
1.3  
V
V
Low-level input voltage  
0.4  
0.4  
High-level input voltage  
1.3  
V
OE only supports 1.8V CMOS  
logic levels  
Low-level input voltage  
V
High-level input current: SDATA, SCLK(1)  
High-level input current: SEN(2)  
Low-level input current: SDATA, SCLK  
Low-level input current: SEN  
VHIGH = 1.8V  
VHIGH = 1.8V  
VLOW = 0V  
10  
0
µA  
µA  
µA  
µA  
0
VLOW = 0V  
–10  
DIGITAL OUTPUTS (CMOS INTERFACE: D0 TO D13, OVR_SDOUT)  
High-level output voltage  
DRVDD – 0.1  
DRVDD  
0
V
V
Low-level output voltage  
0.1  
DIGITAL OUTPUTS (LVDS INTERFACE: D0_D1_P/M to D12_D13_P/M, CLKOUTP/M)  
High-level output voltage(3)  
Low-level output voltage(3)  
High-level output voltage(3)  
Low-level output voltage(3)  
Output common-mode voltage  
VODH  
VODL  
VODH  
VODL  
VOCM  
Standard swing LVDS  
Standard swing LVDS  
Low swing LVDS  
270  
+350  
–350  
+200  
–200  
1.05  
430  
mV  
mV  
mV  
mV  
V
–430  
–270  
Low swing LVDS  
0.85  
1.25  
(1) SDATA and SCLK have an internal 180kΩ pull-down resistor.  
(2) SEN has an internal 180kΩ pull-up resistor to AVDD.  
(3) With an external 100Ω termination.  
6
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
PIN CONFIGURATION (LVDS MODE)  
RGZ PACKAGE(1)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
CLKOUTM  
CLKOUTP  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 D0_D1_P  
33 D0_D1_M  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
26 AVDD  
25 AGND  
13 14 15 16 17 18 19 20 21 22 23 24  
(1) The PowerPAD is connected to DRGND.  
Figure 1. ADS41B49 LVDS Pinout  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
RGZ PACKAGE(2)  
QFN-48  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
DRGND  
DRVDD  
OVR_SDOUT  
CLKOUTM  
CLKOUTP  
DFS  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 NC  
33 NC  
32 NC  
31 NC  
OE  
30 RESET  
29 SCLK  
28 SDATA  
27 SEN  
26 AVDD  
25 AGND  
AVDD  
AGND  
CLKP 10  
CLKM 11  
AGND 12  
13 14 15 16 17 18 19 20 21 22 23 24  
(2) The PowerPAD™ is connected to DRGND.  
Figure 2. ADS41B29 LVDS Pinout  
ADS41B49, ADS41B29 Pin Descriptions (LVDS Mode)  
# OF  
PIN NAME  
AVDD  
PIN NUMBER  
PINS  
FUNCTION  
DESCRIPTION  
8, 18, 20, 22, 24, 26  
6
1
6
1
1
1
1
I
I
I
I
I
I
I
1.8V analog power supply  
3.3V input buffer supply  
AVDD_BUF  
AGND  
CLKP  
21  
9, 12, 14, 17, 19, 25  
Analog ground  
10  
11  
15  
16  
Differential clock input, positive  
Differential clock input, negative  
Differential analog input, positive  
Differential analog input, negative  
CLKM  
INP  
INM  
Outputs the common-mode voltage that can be used externally to bias the analog  
input pins.  
VCM  
13  
1
O
Serial interface RESET input.  
When using the serial interface mode, the internal registers must initialize through  
hardware RESET by applying a high pulse on this pin or by using the software  
reset option; refer to the Serial Interface section.  
RESET  
30  
1
I
When RESET is tied high, the internal registers are reset to the default values. In  
this condition, SDATA can be used as a control pin.  
RESET has an internal 100kΩ pull-down resistor.  
This pin functions as a serial interface clock input when RESET is low. When  
RESET is high, SCLK has no function and should be tied to ground. This pin has  
an internal 180kΩ pull-down resistor  
SCLK  
29  
28  
1
1
I
I
This pin functions as a serial interface data input when RESET is low. When  
RESET is high, SDATA functions as a STANDBY control pin (see Table 7). This  
pin has an internal 180kΩ pull-down resistor.  
SDATA  
8
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
ADS41B49, ADS41B29 Pin Descriptions (LVDS Mode) (continued)  
# OF  
PINS  
PIN NAME  
PIN NUMBER  
FUNCTION  
DESCRIPTION  
This pin functions as a serial interface enable input when RESET is low. When  
RESET is high, SEN has no function and should be tied to AVDD. This pin has an  
internal 180kΩ pull-up resistor to AVDD.  
SEN  
27  
1
I
Output buffer enable input, active high; this pin has an internal 100kΩ pull-up  
resistor to DRVDD.  
OE  
7
6
1
1
I
I
Data format select input. This pin sets the DATA FORMAT (twos complement or  
offset binary) and the LVDS/CMOS output interface type.  
DFS  
RESERVED  
CLKOUTP  
CLKOUTM  
D0_D1_P  
23  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
Digital control pin, reserved for future use  
5
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential output clock, true  
4
Differential output clock, complement  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Refer to Figure 1  
Differential output data D0 and D1 multiplexed, true  
Differential output data D0 and D1 multiplexed, complement  
Differential output data D2 and D3 multiplexed, true  
Differential output data D2 and D3 multiplexed, complement  
Differential output data D4 and D5 multiplexed, true  
Differential output data D4 and D5 multiplexed, complement  
Differential output data D6 and D7 multiplexed, true  
Differential output data D6 and D7 multiplexed, complement  
Differential output data D8 and D9 multiplexed, true  
Differential output data D8 and D9 multiplexed, complement  
Differential output data D10 and D11 multiplexed, true  
Differential output data D10 and D11 multiplexed, complement  
Differential output data D12 and D13 multiplexed, true  
Differential output data D12 and D13 multiplexed, complement  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
D12_D13_P  
D12_D13_M  
This pin functions as an out-of-range indicator after reset, when register bit  
READOUT = 0, and functions as a serial register readout pin when  
READOUT = 1. This pin is a 1.8V CMOS output pin (running off of DRVDD).  
OVR_SDOUT  
3
1
O
DRVDD  
DRGND  
NC  
2, 35  
2
2
I
I
1.8V digital and output buffer supply  
Digital and output buffer ground  
Do not connect  
1, 36, PAD  
Refer to Figure 1  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
DDR LVDS  
Interface  
AVDD  
AGND  
DRVDD DRGND  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
CLOCKGEN  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
AVDD_BUF  
D4_D5_P  
D4_D5_M  
INP  
INM  
Common  
Digital Functions  
14-Bit  
ADC  
DDR  
Serializer  
Sampling  
Circuit  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
Analog Buffers  
Control  
Interface  
VCM  
Reference  
D10_D11_P  
D10_D11_M  
D12_D13_P  
D12_D13_M  
OVR_SDOUT  
ADS41B49  
OE  
Figure 3. ADS41B49 Block Diagram  
TIMING CHARACTERISTICS  
Dn_Dn + 1_P  
Logic 0  
VODL  
Logic 1  
VODH  
Dn_Dn + 1_M  
VOCM  
GND  
(1) With external 100Ω termination.  
Figure 4. LVDS Output Voltage Levels  
10  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TIMING REQUIREMENTS: LVDS and CMOS Modes(1)  
Typical values are at +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, sampling frequency = 250 MSPS, sine wave  
input clock, CLOAD = 5pF(2), and RLOAD = 100Ω(3), unless otherwise noted. Minimum and maximum values are across the full  
temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8V, AVDD_BUF = 3.3V, and DRVDD = 1.7V to 1.9V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tA  
Aperture delay  
0.6  
0.8  
1.2  
ns  
Variation of  
aperture delay  
Between two devices at  
the same temperature and DRVDD supply  
±100  
ps  
tJ  
Aperture jitter  
100  
5
fS rms  
µs  
Time to valid data after coming out of STANDBY mode  
Time to valid data after coming out of PDN GLOBAL mode  
25  
Wakeup time  
100  
500  
µs  
Clock  
cycles  
Gain enabled (default after reset)  
Gain and offset correction enabled  
21  
22  
ADC latency(4)  
Clock  
cycles  
DDR LVDS MODE  
tSU  
Data setup time(5)  
tH  
Data valid(6) to zero-crossing of CLKOUTP  
Zero-crossing of CLKOUTP to data becoming invalid(6)  
0.75  
0.35  
1.1  
0.6  
ns  
ns  
Data hold time(5)  
Input clock rising edge cross-over to  
output clock rising edge cross-over  
1MSPS sampling frequency 250MSPS  
tPDI  
Clock propagation delay  
3
4.2  
5.4  
54  
ns  
Between two devices at  
the same temperature and DRVDD supply  
Variation of tPDI  
±0.6  
48  
ns  
%
LVDS bit  
clock duty cycle  
Duty cycle of differential clock, (CLKOUTP – CLKOUTM)  
42  
1MSPS sampling frequency 250MSPS  
Rise time measured from –100mV to +100mV  
Fall time measured from +100mV to –100mV  
1MSPS sampling frequency 250MSPS  
Data rise time,  
Data fall time  
tRISE, tFALL  
0.14  
ns  
Rise time measured from –100mV to +100mV  
Fall time measured from +100mV to –100mV  
1MSPS sampling frequency 250MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time,  
Output clock fall time  
0.14  
50  
ns  
ns  
Output enable (OE) to  
data delay  
tOE  
Time to valid data after OE becomes active  
100  
1.6  
PARALLEL CMOS MODE(7)  
tSTART Input clock to data delay  
tDV  
Input clock rising edge cross-over to start of data valid(6)  
Time interval of valid data(6)  
ns  
ns  
Data valid time  
2.5  
4
3.2  
5.5  
Input clock rising edge cross-over to  
output clock rising edge cross-over  
1MSPS sampling frequency 200MSPS  
tPDI  
Clock propagation delay  
7
ns  
%
Duty cycle of output clock, CLKOUT  
1MSPS sampling frequency 200MSPS  
Output clock duty cycle  
47  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1 sampling frequency 250MSPS  
Data rise time,  
Data fall time  
tRISE, tFALL  
0.35  
ns  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1 sampling frequency 200MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time,  
Output clock fall time  
0.35  
20  
ns  
ns  
Output enable (OE) to  
data delay  
tOE  
Time to valid data after OE becomes active  
40  
(1) Timing parameters are ensured by design and characterization but are not production tested.  
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.  
(3) RLOAD is the differential load resistance between the LVDS output pair.  
(4) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.  
(5) RLOAD is the differential load resistance between the LVDS output pair.  
(6) Data valid refers to a logic high of 1.26V and a logic low of 0.54V.  
(7) For fS > 200MSPS, it is recommended to use an external clock for data capture instead of the device output clock signal (CLKOUT).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Table 1. LVDS Timing Across Sampling Frequencies  
SAMPLING  
FREQUENCY  
(MSPS)  
SETUP TIME (ns)  
HOLD TIME (ns)  
MIN  
0.85  
1.05  
1.1  
TYP  
MAX  
MIN  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
TYP  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
MAX  
230  
200  
185  
160  
125  
80  
1.25  
1.55  
1.7  
2.1  
3
1.6  
2.3  
4.5  
5.2  
Table 2. CMOS Timing Across Sampling Frequencies  
TIMING SPECIFIED WITH RESPECT TO OUTPUT CLOCK  
tHOLD (ns)  
SAMPLING  
FREQUENCY  
(MSPS)  
tSETUP (ns)  
tPDI (ns)  
TYP  
5.5  
MIN  
1
TYP  
1.6  
2
MAX  
MIN  
2
TYP  
2.8  
3
MAX  
MIN  
4
MAX  
200  
185  
160  
125  
80  
7
7
7
7
7
1.3  
1.8  
2.5  
4.8  
2.2  
2.5  
3.5  
5.7  
4
5.5  
2.5  
3.2  
5.5  
3.3  
4.3  
6.5  
4
5.5  
4
5.5  
4
5.5  
Table 3. CMOS Timing Across Sampling Frequencies  
TIMING SPECIFIED WITH RESPECT TO INPUT CLOCK  
tSTART (ns)  
TYP  
tDV (ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
MAX  
1.6  
1.1  
0.3  
0
MIN  
2.5  
2.9  
3.5  
3.9  
4.3  
TYP  
3.2  
3.5  
4.2  
4.5  
5
MAX  
250  
230  
200  
185  
170  
–1.3  
12  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
N + 23  
N + 22  
N + 3  
N + 4  
N + 2  
N + 1  
N + 21  
Sample N  
Input Signal  
Input Clock  
tA  
CLKP  
CLKM  
CLKOUTM  
CLKOUTP  
tPDI  
tH  
21 Clock Cycles(1)  
tSU  
DDR LVDS  
Output Data(2)  
(DXP, DXM)  
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
N - 21  
N - 21  
N - 19  
N - 18  
N - 17  
N + 1  
N + 2  
N
tPDI  
CLKOUT  
tSU  
Parallel CMOS  
21 Clock Cycles(1)  
tH  
Output Data  
N - 21  
N - 20  
N - 19  
N - 18  
N - 1  
N
N + 1  
(1) At higher sampling frequencies, tDPI is greater than one clock cycle which then makes the overall latency = ADC latency + 1.  
(2) E = Even bits (D0, D2, D4, etc). O = Odd bits (D1, D3, D5, etc).  
Figure 5. Latency Diagram  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
CLKM  
CLKP  
Input  
Clock  
tPDI  
CLKOUTP  
Output  
Clock  
CLKOUTM  
tSU  
tH  
tSU  
tH  
Dn_Dn + 1_P  
Dn_Dn + 1_M  
Output  
Data Pair  
Dn(1)  
Dn + 1(1)  
(1) Dn = bits D0, D2, D4, etc. Dn + 1 = Bits D1, D3, D5, etc.  
Figure 6. LVDS Mode Timing  
CLKM  
Input  
Clock  
CLKP  
tPDI  
Output  
Clock  
CLKOUT  
tSU  
tH  
Output  
Data  
Dn(1)  
Dn  
CLKM  
CLKP  
Input  
Clock  
tSTART  
tDV  
Output  
Data  
Dn(1)  
Dn  
Dn = bits D0, D1, D2, etc.  
Figure 7. CMOS Mode Timing  
14  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
DEVICE CONFIGURATION  
The ADS41B29/49 have several modes that can be configured using a serial programming interface, as  
described in Table 4, Table 5, and Table 6. In addition, the devices have two dedicated parallel pins for quickly  
configuring commonly used functions. The parallel pins are DFS (analog 4-level control pin) and OE (digital  
control pin). The analog control pins can be easily configured using a simple resistor divider (with 10% tolerance  
resistors).  
Table 4. DFS: Analog Control Pin  
DESCRIPTION  
VOLTAGE APPLIED ON DFS  
0, +100mV/0mV  
(Data Format/Output Interface)  
Twos complement/DDR LVDS  
Twos complement/parallel CMOS  
Offset binary/parallel CMOS  
Offset binary/DDR LVDS  
(3/8) AVDD ± 100mV  
(5/8) AVDD ± 100mV  
AVDD, 0mV/–100mV  
Table 5. OE: Digital Control Pin  
VOLTAGE APPLIED ON OE  
DESCRIPTION  
0
Output data buffers disabled  
Output data buffers enabled  
AVDD  
When the serial interface is not used, the SDATA pin can also be used as a digital control pin to place the device  
in standby mode. To enable this, the RESET pin must be tied high. In this mode, SEN and SCLK do not have  
any alternative functions. Keep SEN tied high and SCLK tied low on the board.  
Table 6. SDATA: Digital Control Pin  
VOLTAGE APPLIED ON SDATA  
DESCRIPTION  
Normal operation  
0
Logic high  
Device enters standby  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
(3/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
To Parallel Pin  
Figure 8. Simplified Diagram to Configure DFS Pin  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
SERIAL INTERFACE  
The analog-to-digital converter (ADC) has a set of internal registers that can be accessed by the serial interface  
formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data)  
pins. Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA are latched at every  
falling edge of SCLK when SEN is active (low). The serial data are loaded into the register at every 16th SCLK  
falling edge when SEN is low. In case the word length exceeds a multiple of 16 bits, the excess bits are ignored.  
Data can be loaded in multiples of 16-bit words within a single active SEN pulse. The first eight bits form the  
register address and the remaining eight bits are the register data. The interface can work with SCLK frequency  
from 20MHz down to very low speeds (a few Hertz) and also with non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one of two ways:  
1. Either through hardware reset by applying a high pulse on RESET pin (of width greater than 10ns), as shown  
in Figure 9; or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D7 in register 0x00) high.  
This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In  
this case, the RESET pin is kept low.  
Register Address  
A4  
A3  
Register Data  
SDATA  
SCLK  
A7  
A6  
A5  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
tDH  
D1  
D0  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
SEN  
RESET  
Figure 9. Serial Interface Timing  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at +25°C, minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C,  
AVDD = 1.8V, and DRVDD = 1.8V, unless otherwise noted.  
PARAMETER  
SCLK frequency (equal to 1/tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
MIN  
> DC  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
20  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
16  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Serial Register Readout  
The serial register readout function allows the contents of the internal registers to be read back on the  
OVR_SDOUT pin. This readback may be useful as a diagnostic check to verify the serial interface  
communication between the external controller and the ADC.  
After power-up and device reset, the OVR_SDOUT pin functions as an over-range indicator pin by default. When  
the readout mode is enabled, OVR_SDOUT outputs the contents of the selected register serially:  
1. Set the READOUT register bit to '1'. This setting puts the device in serial readout mode and disables any  
further writes to the internal registers except the register at address 0. Note that the READOUT bit itself is  
also located in register 0. The device can exit readout mode by writing READOUT = 0. Only the contents of  
the register at address 0 cannot be read in the register readout mode.  
2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be  
read.  
3. The device serially outputs the contents (D7 to D0) of the selected register on the OVR_SDOUT pin.  
4. The external controller can latch the contents at the falling edge of SCLK.  
5. To exit the serial readout mode, the reset register bit READOUT = 0 enables writes into all registers of the  
device. At this point, the OVR_SDOUT pin becomes an over-range indicator pin.  
Register Address A[7:0] = 0x00  
Register Data D[7:0] = 0x01  
SDATA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SCLK  
SEN  
OVR_SDOUT(1)  
a) Enable Serial Readout (READOUT = 1)  
Register Address A[7:0] = 0x43  
A4 A2  
A5 A3  
Register Data D[7:0] = XX (don’t care)  
D4 D2 D1  
D6 D5 D3  
SDATA  
SCLK  
A7  
A6  
A1  
A0  
D7  
D0  
SEN  
OVR_SDOUT(2)  
0
1
0
0
0
0
0
0
b) Read Contents of Register 0x43. This Register Has Been Initialized with 0x40 (device is put in global power-down mode).  
(1) The OVR_SDOUT pin functions as OVR (READOUT = 0).  
(2) The OVR_SDOUT pin functions as a serial readout (READOUT = 1).  
Figure 10. Serial Readout Timing Diagram  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
RESET TIMING CHARACTERISTICS  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high pulse on the RESET pin is required in the serial interface mode in case of initialization through hardware reset. For parallel  
interface operation, RESET must be permanently tied high.  
Figure 11. Reset Timing Diagram  
RESET TIMING REQUIREMENTS  
Typical values at +25°C and minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from power-up of AVDD and DRVDD to RESET  
pulse active  
t1  
Power-on delay  
1
ms  
10  
ns  
µs  
ns  
Pulse width of active RESET signal that resets the  
serial registers  
t2  
t3  
Reset pulse width  
1(1)  
Delay from RESET disable to SEN active  
100  
(1) The reset pulse is needed only when using the serial interface configuration. If the pulse width is greater than 1µs, the device could  
enter the parallel configuration mode briefly and then return back to serial interface mode.  
18  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
SERIAL REGISTER MAP  
Table 7 summarizes the functions supported by the serial interface.  
Table 7. Serial Interface Register Map(1)  
REGISTER  
ADDRESS  
DEFAULT VALUE  
AFTER RESET  
REGISTER DATA  
A[7:0] (Hex)  
D[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET  
0
D0  
READOUT  
0
00  
01  
03  
25  
00  
00  
00  
00  
0
0
0
0
0
0
LVDS SWING  
0
0
0
0
0
0
0
0
0
HIGH PERF MODE 1  
TEST PATTERNS  
GAIN  
LVDS  
CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
26  
00  
00  
0
0
0
0
0
0
0
EN  
OFFSET  
CORR  
3D  
DATA FORMAT  
0
0
3F  
40  
00  
00  
0
0
CUSTOM PATTERN D[13:8]  
CUSTOM PATTERN D[7:0]  
EN  
EN  
CLKOUT  
FALL  
CMOS CLKOUT  
STRENGTH  
41  
00  
LVDS CMOS  
CLKOUT  
RISE  
CLKOUT RISE POSN  
42  
43  
00  
00  
CLKOUT FALL POSN  
0
0
0
0
0
STBY  
0
0
0
PDN  
0
PDN OBUF  
EN LVDS SWING  
GLOBAL  
HIGH PERF  
MODE 2  
4A  
BF  
00  
00  
0
0
0
0
0
0
0
0
0
OFFSET PEDESTAL  
OFFSET CORR TIME CONSTANT  
LOW SPEED  
0
FREEZE  
OFFSET  
CORR  
CF  
DF  
00  
00  
0
0
0
0
0
0
0
0
(1) Multiple functions in a register can be programmed in a single write operation.  
DESCRIPTION OF SERIAL REGISTERS  
For best performance, two special mode register bits must be enabled: HI PERF MODE 1 and HI PERF MODE  
2.  
Register Address 00h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
RESET  
READOUT  
Bits[7:2]  
Bit 1  
Always write '0'  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to 0 (default = 1).  
READOUT: Serial readout  
Bit 0  
This bit sets the serial readout of the registers.  
0 = Serial readout of registers disabled; the OVR_SDOUT pin functions as an over-voltage  
indicator.  
1 = Serial readout enabled; the OVR_SDOUT pin functions as a serial data readout.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Register Address 01h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
LVDS SWING  
Bits[7:2]  
LVDS SWING: LVDS swing programmability(1)  
000000 = Default LVDS swing; ±350mV with external 100Ω termination  
011011 = LVDS swing increases to ±410mV  
110010 = LVDS swing increases to ±465mV  
010100 = LVDS swing increases to ±570mV  
111110 = LVDS swing decreases to ±200mV  
001111 = LVDS swing decreases to ±125mV  
Bits[1:0]  
Always write '0'  
(1) The EN LVDS SWING register bits must be set to enable LVDS swing control.  
Register Address 03h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
HI PERF MODE 1  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
HI PERF MODE 1: High performance mode 1  
00 = Default performance after reset  
01 = Do not use  
10 = Do not use  
11 = For best performance across sampling clock and input signal frequencies, set the HIGH PERF  
MODE 1 bits  
20  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Register Address 25h (Default = 00h)  
7
6
5
4
3
2
1
0
GAIN  
0
TEST PATTERNS  
Bits[7:4]  
GAIN: Gain programmability  
These bits set the gain programmability in 0.5dB steps.  
0000, 0001, 0010, 0011, 0100 = Do not use  
0101 = 0dB gain (default after reset)  
0110 = 0.5dB gain  
0111 = 1dB gain  
1000 = 1.5dB gain  
1001 = 2dB gain  
1010 = 2.5dB gain  
1011 = 3dB gain  
1100 = 3.5dB gain  
Bit 3  
Always write '0'  
Bits[2:0]  
TEST PATTERNS: Data capture  
These bits verify data capture.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern  
In the ADS41B49, output data D[13:0] is an alternating sequence of 01010101010101 and  
10101010101010.  
In the ADS41B29, output data D[11:0] is an alternating sequence of 010101010101 and  
101010101010.  
100 = Outputs digital ramp  
In ADS41B46, output data increments by one LSB (14-bit) every clock cycle from code 0 to  
code 16383  
In ADS41B26, output data increments by one LSB (12-bit) every 4th clock cycle from code 0 to  
code 4095  
101 = Output custom pattern (use registers 0x3F and 0x40 for setting the custom pattern)  
110 = Unused  
111 = Unused  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Register Address 26h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
LVDS CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
0
0
Bits[7:2]  
Bit 1  
Always write '0'  
LVDS CLKOUT STRENGTH: LVDS output clock buffer strength  
This bit determines the external termination to be used with the LVDS output clock buffer.  
0 = 100Ω external termination (default strength)  
1 = 50Ω external termination (2x strength)  
Bit 0  
LVDS DATA STRENGTH: LVDS data buffer strength  
This bit determines the external termination to be used with all of the LVDS data buffers.  
0 = 100Ω external termination (default strength)  
1 = 50Ω external termination (2x strength)  
Register Address 3Dh (Default = 00h)  
7
6
5
4
3
2
0
1
0
0
0
EN OFFSET  
CORR  
DATA FORMAT  
0
0
Bits[7:6]  
DATA FORMAT: Data format selection  
These bits selects the data format.  
00 = The DFS pin controls data format selection  
10 = Twos complement  
11 = Offset binary  
Bit 5  
ENABLE OFFSET CORR: Offset correction setting  
This bit sets the offset correction.  
0 = Offset correction disabled  
1 = Offset correction enabled  
Bits[4:0]  
Always write '0'  
Register Address 3Fh (Default = 00h)  
7
0
6
0
5
4
3
2
1
0
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D8  
PATTERN D13 PATTERN D12 PATTERN D11 PATTERN D10 PATTERN D9  
Bits[7:6]  
Bits[5:0]  
Always write '0'  
CUSTOM PATTERN(1)  
These bits set the custom pattern.  
(1) For the ADS41B4x, output data bits 13 to 0 are CUSTOM PATTERN D[13:0]. For the ADS41B2x, output data bits 11 to 0 are CUSTOM  
PATTERN D[13:2].  
Register Address 40h (Default = 00h)  
7
6
5
4
3
2
1
0
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D7  
PATTERN D6  
PATTERN D5  
PATTERN D4  
PATTERN D3  
PATTERN D2  
PATTERN D1  
PATTERN D0  
Bits[7:0]  
CUSTOM PATTERN(1)  
These bits set the custom pattern.  
(1) For the ADS41B4x, output data bits 13 to 0 are CUSTOM PATTERN D[13:0]. For the ADS41B2x, output data bits 11 to 0 are CUSTOM  
PATTERN D[13:2].  
22  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Register Address 41h (Default = 00h)  
7
6
5
4
3
2
1
0
EN CLKOUT  
RISE  
EN CLKOUT  
FALL  
LVDS CMOS  
CMOS CLKOUT STRENGTH  
CLKOUT RISE POSN  
Bits[7:6]  
LVDS CMOS: Interface selection  
These bits select the interface.  
00, 10 = The DFS pin controls the selection of either LVDS or CMOS interface  
01 = DDR LVDS interface  
11 = Parallel CMOS interface  
Bits[5:4]  
CMOS CLKOUT STRENGTH  
Controls strength of CMOS output clock only.  
00 = Maximum strength (recommended and used for specified timings)  
01 = Medium strength  
10 = Low strength  
11 = Very low strength  
Bit 3  
ENABLE CLKOUT RISE  
0 = Disables control of output clock rising edge  
1 = Enables control of output clock rising edge  
Bits[2:1]  
CLKOUT RISE POSN: CLKOUT rise control  
Controls position of output clock rising edge  
LVDS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 500ps, hold increases by 500ps  
10 = Data transition is aligned with rising edge  
11 = Setup reduces by 200ps, hold increases by 200ps  
CMOS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 100ps, hold increases by 100ps  
10 = Setup reduces by 200ps, hold increases by 200ps  
11 = Setup reduces by 1.5ns, hold increases by 1.5ns  
Bit 0  
ENABLE CLKOUT FALL  
0 = Disables control of output clock fall edge  
1 = Enables control of output clock fall edge  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Register Address 42h (Default = 00h)  
7
6
5
0
4
3
2
1
0
0
0
CLKOUT FALL POSN  
0
0
STBY  
Bits[7:6]  
CLKOUT FALL POSN  
Controls position of output clock falling edge  
LVDS interface:  
00 = Default position (timings are specified in this condition)  
01 = Setup reduces by 400ps, hold increases by 400ps  
10 = Data transition is aligned with rising edge  
11 = Setup reduces by 200ps, hold increases by 200ps  
CMOS interface:  
00 = Default position (timings are specified in this condition)  
01 = Falling edge is advanced by 100ps  
10 = Falling edge is advanced by 200ps  
11 = Falling edge is advanced by 1.5ns  
Bits[5:3]  
Bit 2  
Always write '0'  
STBY: Standby mode  
This bit sets the standby mode.  
0 = Normal operation  
1 = Only the ADC and output buffers are powered down; internal reference is active; wake-up time  
from standby is fast  
Bits[1:0]  
Always write '0'  
24  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Register Address 43h (Default = 00h)  
7
0
6
5
0
4
3
2
0
1
0
PDN GLOBAL  
PDN OBUF  
0
EN LVDS SWING  
Bit 0  
Bit 6  
Always write '0'  
PDN GLOBAL: Power-down  
This bit sets the state of operation.  
0 = Normal operation  
1 = Total power down; the ADC, internal references, and output buffers are powered down; slow  
wake-up time.  
Bit 5  
Bit 4  
Always write '0'  
PDN OBUF: Power-down output buffer  
This bit set the output data and clock pins.  
0 = Output data and clock pins enabled  
1 = Output data and clock pins powered down and put in high- impedance state  
Bits[3:2]  
Bits[1:0]  
Always write '0'  
EN LVDS SWING: LVDS swing control  
00 = LVDS swing control using LVDS SWING register bits is disabled  
01, 10 = Do not use  
11 = LVDS swing control using LVDS SWING register bits is enabled  
Register Address 4Ah (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
HI PERF  
MODE 2  
0
0
Bits[7:1]  
Bit[0]  
Always write '0'  
HI PERF MODE 2: High performance mode 2  
This bit is recommended for high input signal frequencies greater than 230MHz.  
0 = Default performance after reset  
1 = For best performance with high-frequency input signals, set the HIGH PERF MODE 2 bit  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Register Address BFh (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
OFFSET PEDESTAL  
Bits[7:2]  
OFFSET PEDESTAL  
These bits set the offset pedestal.  
When the offset correction is enabled, the final converged value after the offset is corrected is the  
ADC mid-code value. A pedestal can be added to the final converged value by programming these  
bits.  
ADS414x VALUE  
PEDESTAL  
011111  
011110  
011101  
31LSB  
30LSB  
29LSB  
000000  
0LSB  
111111  
111110  
–1LSB  
–2LSB  
100000  
–32LSB  
Bits[1:0]  
Always write '0'  
26  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Register Address CFh (Default = 00h)  
7
6
0
5
4
3
2
1
0
0
0
FREEZE  
OFFSET  
CORR  
OFFSET CORR TIME CONSTANT  
Bit 7  
FREEZE OFFSET CORR  
This bit sets the freeze offset correction.  
0 = Estimation of offset correction is not frozen (bit EN OFFSET CORR must be set)  
1 = Estimation of offset correction is frozen (bit EN OFFSET CORR must be set). When frozen, the  
last estimated value is used for offset correction every clock cycle; see the OFFSET  
CORRECTION section.  
Bit 6  
Always write '0'  
Bits[5:2]  
OFFSET CORR TIME CONSTANT  
These bits set the offset correction time constant for the correction loop time constant in number of  
clock cycles.  
VALUE  
TIME CONSTANT (Number of Clock Cycles)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1M  
2M  
4M  
8M  
16M  
32M  
64M  
128M  
256M  
512M  
1G  
2G  
Bits[1:0]  
Always write '0'  
Register Address DFh (Default = 00h)  
7
0
6
0
5
4
3
2
0
1
0
0
0
LOW SPEED  
0
Bits[7:6]  
Bits[5:4]  
Always write '0'  
LOW SPEED: Low-speed mode  
00, 01, 10 = Low-speed mode disabled (default state after reset); this setting is recommended for  
sampling rates greater than 80MSPS.  
11 = Low-speed mode enabled; this setting is recommended for sampling rates less than or equal  
to 80MSPS.  
Bits[3:0]  
Always write '0'  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS41B49  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 90.3dBc  
SFDR = 82.9dBc  
SNR = 69.9dBFS  
SINAD = 69.8dBFS  
THD = 85.2dBc  
SNR = 69.3dBFS  
SINAD = 69dBFS  
THD = 80.3dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
Figure 12.  
Figure 13.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
0
−20  
SFDR = 70.7dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185MHz  
fIN2 = 190MHz  
2−Tone IMD = 87.3dBFS  
SFDR = 96.0dBFS  
SNR = 68.4dBFS  
SINAD = 66.3dBFS  
THD = 69.3dBc  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
Figure 14.  
Figure 15.  
28  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: ADS41B49 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
95  
90  
85  
80  
75  
70  
65  
60  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 185MHz  
fIN2 = 190MHz  
2−Tone IMD = 89.7dBFS  
SFDR = 106.4dBFS  
−40  
−60  
−80  
−100  
−120  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 16.  
Figure 17.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
70  
69.5  
69  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
68.5  
68  
67.5  
67  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Input Frequency (MHz)  
Gain (dB)  
Figure 18.  
Figure 19.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS41B49 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
73  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
Input Frequency = 40MHz  
SFDR(dBFS)  
SFDR(dBc)  
SNR  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
72.5  
72  
71.5  
71  
70.5  
70  
69.5  
69  
68.5  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Gain (dB)  
Figure 20.  
Figure 21.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
73  
92  
70  
Input Frequency = 170MHz  
SFDR(dBFS)  
SFDR(dBc)  
SNR  
Input Frequency = 170MHz  
SFDR  
SNR  
72.5  
72  
88  
84  
80  
76  
72  
68  
69.5  
69  
71.5  
71  
80  
70  
70.5  
70  
68.5  
68  
60  
50  
69.5  
69  
40  
67.5  
67  
30  
68.5  
68  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 22.  
Figure 23.  
30  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: ADS41B49 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
90  
88  
86  
84  
82  
80  
78  
76  
69.6  
69.2  
68.8  
68.4  
68  
Input Frequency = 170MHz  
−40  
−25  
25  
55  
85  
Input Frequency = 170MHz  
−40  
−25  
25  
55  
85  
67.6  
67.2  
1.7  
1.75  
1.8  
1.85  
1.9  
1.7  
1.75  
1.8  
1.85  
1.9  
AVDD Supply (V)  
AVDD Supply (V)  
Figure 24.  
Figure 25.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
92  
69  
95  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
Input Frequency = 170MHz  
SNR  
SFDR  
Input Frequency = 170MHz  
SFDR  
SNR  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
90  
88  
86  
84  
82  
68.6  
68.2  
67.8  
67.4  
67  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 26.  
Figure 27.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS41B49 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK DUTY CYCLE  
INTEGRAL NONLINEARITY  
92  
71  
2.5  
2
Input Frequency = 10MHz  
THD  
SNR  
1.5  
1
88  
84  
80  
76  
70.5  
70  
0.5  
0
−0.5  
−1  
69.5  
69  
−1.5  
−2  
35  
40  
45  
50  
55  
60  
65  
−2.5  
Input Clock Duty Cycle (%)  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
Figure 28.  
Figure 29.  
32  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: ADS41B29  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.6dBc  
SFDR = 82.3dBc  
SNR = 68.6dBFS  
SINAD = 68.5dBFS  
THD = 85.2dBc  
SNR = 68.1dBFS  
SINAD = 67.8dBFS  
THD = 79.9dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
Figure 30.  
Figure 31.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
0
−20  
SFDR = 70.8dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185MHz  
fIN2 = 190MHz  
2−Tone IMD = 87.3dBFS  
SFDR = 85.9 dBFS  
SNR = 67.4dBFS  
SINAD = 65.7dBFS  
THD = 69.4dBc  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
Figure 32.  
Figure 33.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS41B29 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
95  
90  
85  
80  
75  
70  
65  
60  
Each Tone at  
−36dBFS Amplitude  
fIN1 = 185MHz  
fIN2 = 190MHz  
2−Tone IMD = 89.8dBFS  
SFDR = 98.5dBFS  
−40  
−60  
−80  
−100  
−120  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Input Frequency (MHz)  
Figure 34.  
Figure 35.  
SNR vs INPUT FREQUENCY  
SFDR ACROSS GAIN AND INPUT FREQUENCY  
69  
68.5  
68  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
67.5  
67  
66.5  
66  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Input Frequency (MHz)  
Gain (dB)  
Figure 36.  
Figure 37.  
34  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: ADS41B29 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
SINAD ACROSS GAIN AND INPUT FREQUENCY  
(Single Tone)  
120  
110  
100  
90  
71.5  
71  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
Input Frequency = 170MHz  
SFDR(dBFS)  
SFDR(dBc)  
SNR  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
70.5  
70  
80  
69.5  
69  
70  
60  
68.5  
68  
50  
40  
67.5  
67  
30  
20  
−70  
66.5  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Gain (dB)  
Figure 38.  
Figure 39.  
PERFORMANCE ACROSS INPUT AMPLITUDE  
(Single Tone)  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
120  
110  
100  
90  
72.5  
92  
69  
Input Frequency = 40MHz  
SFDR(dBFS)  
SFDR(dBc)  
SNR  
Input Frequency = 170MHz  
SFDR  
SNR  
72  
88  
84  
80  
76  
72  
68  
68.5  
68  
71.5  
71  
80  
70.5  
70  
70  
67.5  
67  
60  
69.5  
69  
50  
40  
68.5  
68  
66.5  
66  
30  
20  
−70  
67.5  
−60  
−50  
−40  
−30  
−20  
−10  
0
1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95  
Amplitude (dBFS)  
Input Common−Mode Voltage (V)  
Figure 40.  
Figure 41.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS41B29 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
SFDR ACROSS TEMPERATURE vs AVDD SUPPLY  
SNR ACROSS TEMPERATURE vs AVDD SUPPLY  
90  
88  
86  
84  
82  
80  
78  
76  
68.6  
68.2  
67.8  
67.4  
67  
Input Frequency = 170MHz  
−40  
−25  
25  
55  
85  
Input Frequency = 170MHz  
−40  
−25  
25  
55  
85  
66.6  
66.2  
1.7  
1.75  
1.8  
1.85  
1.9  
1.7  
1.75  
1.8  
1.85  
1.9  
AVDD Supply (V)  
AVDD Supply (V)  
Figure 42.  
Figure 43.  
PERFORMANCE ACROSS DRVDD SUPPLY VOLTAGE  
PERFORMANCE ACROSS INPUT CLOCK AMPLITUDE  
90  
88  
86  
84  
82  
80  
94  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
Input Frequency = 170MHz  
SNR  
SFDR  
Input Frequency = 170MHz  
SFDR  
SNR  
68.3  
67.9  
67.5  
67.1  
66.7  
66.3  
65.9  
65.5  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
1.7  
1.75  
1.8  
1.85  
1.9  
0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 44.  
Figure 45.  
36  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: ADS41B29 (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
PERFORMANCE ACROSS INPUT CLOCK DUTY CYCLE  
95  
90  
85  
80  
75  
69  
Input Frequency = 10MHz  
THD  
SNR  
68.5  
68  
67.5  
67  
35  
40  
45  
50  
55  
60  
65  
Input Clock Duty Cycle (%)  
Figure 46.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: GENERAL  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
CMRR ACROSS FREQUENCY  
CMRR FFT  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
Input Frequency = 170MHz  
50mVPP Signal Superimposed  
on Input Common−Mode Voltage (1.7V)  
fIN = 170MHz  
fIN = 170MHz  
fCM = 10MHz, 50mVPP  
SFDR = 77.69dB  
-20  
Amplitude (fIN) = -1dBFS  
Amplitude (fCM) = -93.8  
Amplitude (fIN + fCM) = -78.8  
Amplitude (fIN - fCM) = -81  
-40  
-60  
fIN + fCM  
=
fIN - fCM  
=
180MHz  
160MHz  
fCM = 10MHz  
-80  
-100  
-120  
0
50  
100  
150  
200  
250  
300  
0
25  
50  
75  
100  
125  
Frequency of Input Common−Mode Signal (MHz)  
Frequency (MHz)  
Figure 47.  
Figure 48.  
PSRR ACROSS FREQUENCY  
PSRR FFT  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
fIN = 10MHz  
PSRR on AVDD Supply 50mVPP  
PSRR on AVDD 3V Supply 100mVPP  
fPSRR = 1MHz, 50mVPP  
Amplitude (fIN) = -1dBFS  
-20  
-40  
Amplitude (fPSRR) = -65.6  
Amplitude (fIN + fPSRR) = -67.5  
Amplitude (fIN - fPSRR) = -68.3  
fIN  
-60  
fIN - fPSRR  
fIN + fPSRR  
-80  
fPSRR  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Frequency of Signal on Supply (MHz)  
Frequency (MHz)  
Figure 49.  
Figure 50.  
38  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: GENERAL (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
POWER ACROSS SAMPLING FREQUENCY  
DRVDD CURRENT ACROSS SAMPLING FREQUENCY  
290  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
80  
Analog Power  
DRVDD Power  
70  
60  
50  
40  
30  
20  
70  
50  
0
25  
50  
75 100 125 150 175 200 225 250  
Sampling Speed (MSPS)  
0
25  
50  
75 100 125 150 175 200 225 250  
Sampling Speed (MSPS)  
Figure 51.  
Figure 52.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
SFDR CONTOUR  
(0dB Gain, Applies to ADS41B29/B49)  
250  
240  
220  
200  
180  
160  
140  
120  
100  
83  
86  
76  
60  
64  
68  
72  
86  
80  
83  
89  
76  
60  
64  
80  
68  
72  
86  
89  
83  
89  
89  
86  
83  
80  
65  
80  
76  
72  
300  
64  
400  
60  
68  
20  
50  
100  
150  
200  
250  
Input Frequency (MHz)  
70 75  
350  
450  
500  
60  
65  
80  
85  
SFDR (dBc)  
Figure 53.  
SFDR CONTOUR  
(3.5dB Gain, Applies to ADS41B29/B49)  
250  
240  
64  
80  
83  
86  
220  
200  
180  
160  
140  
120  
100  
76  
72  
68  
86  
83  
80  
86  
86  
72  
76  
68  
89  
89  
89  
80  
65  
80  
83  
76  
72  
350  
68  
400  
86  
250  
64  
20  
50  
100  
150  
200  
300  
450  
500  
Input Frequency (MHz)  
75  
65  
70  
80  
85  
SFDR (dBc)  
Figure 54.  
40  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
SNR CONTOUR  
(0dB Gain, Applies to ADS41B49)  
250  
240  
220  
200  
180  
160  
140  
120  
100  
69  
68  
69.5  
67  
69  
69.5  
70  
68  
67  
69  
66  
69.5  
80  
65  
67  
68  
65  
66  
70  
64  
69  
20  
50  
100  
150  
65  
200  
250  
Input Frequency (MHz)  
66 67  
300  
350  
400  
450  
500  
70  
64  
68  
69  
SNR (dBFS)  
Figure 55.  
SNR CONTOUR  
(3.5dB Gain, Applies to ADS41B49)  
250  
240  
220  
200  
180  
160  
140  
120  
100  
66.5  
66  
65  
66.5  
66  
65  
66.5  
80  
65  
67  
64  
65  
66  
63  
20  
50  
100  
150  
200  
250  
Input Frequency (MHz)  
64.5 65  
300  
350  
400  
450  
500  
67  
62.5  
63  
63.5  
64  
65.5  
66  
66.5  
SNR (dBFS)  
Figure 56.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8V, AVDD_BUF = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, DDR LVDS output interface, and  
32k-point FFT, unless otherwise noted.  
SNR CONTOUR  
(0dB Gain, Applies to ADS41B29)  
250  
240  
220  
67  
68.5  
68  
67.5  
200  
180  
160  
140  
120  
100  
66  
68  
68.5  
67  
67.5  
66  
65  
68  
80  
65  
67  
64  
450  
66  
67.5  
20  
50  
100  
150  
200  
65  
250  
Input Frequency (MHz)  
65.5 66  
300  
350  
400  
500  
63  
63.5  
64  
64.5  
66.5  
67  
67.5  
68  
68.5  
SNR (dBFS)  
Figure 57.  
SNR CONTOUR  
(0dB Gain, Applies to ADS41B29)  
250  
240  
65  
220  
200  
180  
160  
140  
120  
100  
66  
65.5  
66  
65  
66  
65.5  
65  
80  
65  
66  
150  
65.5  
65  
64  
400  
63  
20  
50  
100  
63  
200  
250  
Input Frequency (MHz)  
64 64.5  
300  
350  
450  
500  
66  
62.5  
63.5  
65  
65.5  
SNR (dBFS)  
Figure 58.  
42  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS41B49/29 is a family of buffered analog input and ultralow power ADCs with maximum sampling rates  
up to 250MSPS. The conversion process is initiated by a rising edge of the external input clock and the analog  
input signal is sampled. The sampled signal is sequentially converted by a series of small resolution stages, with  
the outputs combined in a digital correction logic block. At every clock edge the sample propagates through the  
pipeline, resulting in a data latency of 21 clock cycles. The output is available as 14-bit data or 12-bit data, in  
DDR LVDS mode or CMOS mode, and coded in either straight offset binary or binary twos complement format.  
ANALOG INPUT  
The analog input pins have analog buffers (running off the AVDD_BUF supply) that internally drive the differential  
sampling circuit. As a result of the analog buffer, the input pins present high input impedance to the external  
driving source (10kΩ dc resistance and 2pF input capacitance). The buffer helps to isolate the external driving  
source from the switching currents of the sampling circuit. This buffering makes it easy to drive the buffered  
inputs compared to an ADC without the buffer.  
The input common-mode is set internally using a 5kΩ resistor from each input pin to 1.7V, so the input signal can  
be ac-coupled to the pins. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.375V) and  
(VCM – 0.375V), resulting in a 1.5VPP differential input swing.  
The input sampling circuit has a high 3dB bandwidth that extends up to 800MHz (measured from the input pins  
to the sampled voltage). Figure 59 shows an equivalent circuit for the analog input.  
LPKG  
1nH  
Buffer  
5W  
INP  
CBOND  
1pF  
(1)  
(2)  
CEQ  
5kW  
RESR  
REQ  
100W  
Sampling  
Circuit  
1.7V  
(2)  
(1)  
REQ  
LPKG  
1nH  
5kW  
5W  
CEQ  
INM  
CBOND  
1pF  
Buffer  
RESR  
100W  
(1) CEQ refers to the equivalent input capacitance of the buffer = 3pF.  
(2) REQ refers to the REQ buffer = 10Ω.  
Figure 59. Analog Input Equivalent Circuit  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This technique improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (5Ω to 10Ω) in series with  
each input pin is recommended to damp out ringing caused by package parasitics.  
Figure 60 and Figure 61 show the differential impedance (ZIN = RIN || CIN) seen by looking into the ADC input  
pins. The presence of the analog input buffer results in an almost constant input capacitance up to 1GHz.  
100.00  
10.00  
1.00  
0.10  
0.01  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Input Frequency (GHz)  
Figure 60. ADC Analog Input Resistance (RIN) Across Frequency  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Input Frequency (GHz)  
Figure 61. ADC Analog Input Capacitance (CIN) Across Frequency  
44  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Driving Circuit  
Two example driving circuit configurations are shown in Figure 62 and Figure 63—one optimized for low input  
frequencies and the other optimized for high input frequencies. Notice in both cases that the board circuitry is  
simplified compared to the non-buffered ADS4149.  
In Figure 62, a single transformer is used and is suited for low input frequencies. To optimize even-harmonic  
performance at high input frequencies (greater than the first Nyquist), the use of back-to-back transformers is  
recommended (see Figure 63). Note that both drive circuits have been terminated by 50Ω near the ADC side.  
The ac-coupling capacitors allow the analog inputs to self-bias around the required common-mode voltage.  
5W  
INP  
T1  
0.1mF  
25W  
0.1mF  
25W  
INM  
1:1  
5W  
Figure 62. Drive Circuit for Low Input Frequencies  
5W  
INP  
T2  
T1  
0.1mF  
50W  
50W  
50W  
50W  
0.1mF  
INM  
1:1  
1:1  
5W  
Figure 63. Drive Circuit for High Input Frequencies  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and  
good performance is obtained for high-frequency input signals. An additional termination resistor pair may be  
required between the two transformers, as shown in Figure 62 and Figure 63. The center point of this termination  
is connected to ground to improve the balance between the P (positive) and M (negative) sides. The values of  
the terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω  
(for a 50Ω source impedance).  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
CLOCK INPUT  
The ADS41B29/49 clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS),  
with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
VCM using internal 5kΩ resistors. This setting allows the use of transformer-coupled drive circuits for sine-wave  
clock or ac-coupling for LVPECL and LVDS clock sources. Figure 64 shows an equivalent circuit for the input  
clock.  
Clock Buffer  
LPKG  
1nH  
20W  
CLKP  
CBOND  
CEQ  
CEQ  
5kW  
1pF  
RESR  
100W  
2pF  
0.95V  
LPKG  
1nH  
5kW  
20W  
CLKM  
CBOND  
1pF  
RESR  
100W  
NOTE: CEQ is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.  
Figure 64. Input Clock Equivalent Circuit  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1mF  
capacitor, as shown in Figure 65. For best performance, the clock inputs must be driven differentially, reducing  
susceptibility to common-mode noise. For high input frequency sampling, it is recommended to use a clock  
source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no  
change in performance with a non-50% duty cycle clock input. Figure 66 shows a differential circuit.  
0.1mF  
CMOS  
0.1mF  
CLKP  
Clock Input  
CLKP  
Differential Sine-Wave,  
PECL, or LVDS  
Clock Input  
VCM  
0.1mF  
0.1mF  
CLKM  
CLKM  
Figure 65. Single-Ended Clock Driving Circuit  
Figure 66. Differential Clock Driving Circuit  
46  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
 
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
GAIN FOR SFDR/SNR TRADE-OFF  
The ADS41B29/49 include gain settings that can be used to get improved SFDR performance. The gain is  
programmable from 0dB to 3.5dB (in 0.5dB steps) using the GAIN register bits. For each gain setting, the analog  
input full-scale range scales proportionally, as shown in Table 8.  
The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades  
approximately between 0.5dB and 1dB. The SNR degradation is reduced at high input frequencies. As a result,  
the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal  
degradation in SNR. Therefore, the gain can be used to trade-off between SFDR and SNR.  
After a reset, the gain is enabled with 0dB gain setting. For other gain settings, program the GAIN register bits.  
Table 8. Full-Scale Range Across Gains  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
0.5  
1
Default after reset  
Programmable gain  
Programmable gain  
Programmable gain  
Programmable gain  
Programmable gain  
Programmable gain  
Programmable gain  
1.5  
1.41  
1.33  
1.26  
1.19  
1.12  
1.06  
1
1.5  
2
2.5  
3
3.5  
OFFSET CORRECTION  
The ADS41B29/49 has an internal offset corretion algorithm that estimates and corrects dc offset up to ±10mV.  
The correction can be enabled using the EN OFFSET CORR serial register bit. Once enabled, the algorithm  
estimates the channel offset and applies the correction every clock cycle. The time constant of the correction  
loop is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET CORR  
TIME CONSTANT register bits, as described in Table 9.  
Table 9. Time Constant of Offset Correction Loop  
TIME CONSTANT, TCCLK  
(Number of Clock Cycles)  
OFFSET CORR TIME CONSTANT  
TIME CONSTANT, TCCLK × 1/fS (sec)(1)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1M  
2M  
4ms  
8ms  
4M  
16.7ms  
33.5ms  
67ms  
134ms  
268ms  
537ms  
1.1s  
8M  
16M  
32M  
64M  
128M  
256M  
512M  
1G  
2.15s  
4.3s  
2G  
8.6s  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Sampling frequency, fS = 250MSPS.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR = 1. Once frozen,  
the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is  
disabled by a default after reset.  
After a reset, the offset correction is disabled.. To use offset correction set EN OFFSET CORR to '1' and  
program the required time constant. Figure 67 shows the time response of the offset correction algorithm after it  
is enabled.  
OFFSET CORRECTION  
Time Response  
8200  
8190  
8180  
8170  
8181  
Offset of  
10 LSBs  
8192  
Final converged value  
Offset correction  
converges to output  
code of 8192  
8160  
8150  
Offset correction  
begins  
8140  
8130  
8120  
8110  
8100  
8090  
8080  
8070  
8060  
8050  
-5  
5
15 25 35 45 55 65 75 85 95 105  
Time (ms)  
Figure 67. Time Response of Offset Correction  
POWER DOWN  
The ADS41B29/49 has three power-down modes: power-down global, standby, and output buffer disable.  
Power-Down Global  
In this mode, the entire chip (including the ADC, internal reference, and the output buffers) is powered down,  
resulting in reduced total power dissipation of about 7mW. The output buffers are in a high-impedance state. The  
wake-up time from the global power-down to data becoming valid in normal mode is typically 100µs. To enter the  
global power-down mode, set the PDN GLOBAL register bit.  
Standby  
In this mode, only the ADC is powered down and the internal references are active, resulting in a fast wake-up  
time of 5µs. The total power dissipation in standby mode is approximately 200mW. To enter the standby mode,  
set the STBY register bit.  
Output Buffer Disable  
The output buffers can be disabled and put in a high-impedance state; wakeup time from this mode is fast,  
approximately 100ns. This can be controlled using the PDN OBUF register bit or using the OE pin.  
Input Clock Stop  
In addition, the converter enters a low-power mode when the input clock frequency falls below 1MSPS. The  
power dissipation is approximately 92mW.  
POWER-SUPPLY SEQUENCE  
During power-up, the AVDD, AVDD_BUF, and DRVDD supplies can come up in any sequence. These supplies  
are separated in the device. Externally, they can be driven from separate supplies or from a single supply.  
48  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
DIGITAL OUTPUT INFORMATION  
The ADS41B29/49 provide either 14-bit data or 12-bit data, respectively, and an output clock synchronized with  
the data.  
Output Interface  
Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be  
selected using the LVDS CMOS serial interface register bit or using the DFS pin.  
DDR LVDS Outputs  
In this mode, the data bits and clock are output using low voltage differential signal (LVDS) levels. Two data bits  
are multiplexed and output on each LVDS differential pair, as shown in Figure 68 and Figure 69.  
Pins  
Pins  
CLKOUTP  
Output Clock  
CLKOUTP  
CLKOUTM  
Output Clock  
CLKOUTM  
D0_D1_P  
D0_D1_M  
Data Bits D0, D1  
Data Bits D2, D3  
Data Bits D4, D5  
Data Bits D6, D7  
Data Bits D8, D9  
Data Bits D10, D11  
D0_D1_P  
D0_D1_M  
Data Bits D0, D1  
Data Bits D2, D3  
Data Bits D4, D5  
Data Bits D6, D7  
Data Bits D8, D9  
Data Bits D10, D11  
Data Bits D12, D13  
D2_D3_P  
D2_D3_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
D4_D5_P  
D4_D5_M  
12-Bit  
ADC Data  
14-Bit  
ADC Data  
D6_D7_P  
D6_D7_M  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
D10_D11_P  
D10_D11_M  
ADS41B29  
D12_D13_P  
D12_D13_M  
Figure 68. ADS41B29 LVDS Data Outputs  
ADS41B49  
Figure 69. ADS41B49 LVDS Data Outputs  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS41B29 ADS41B49  
 
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Even data bits (D0, D2, D4, etc.) are output at the falling edge of CLKOUTP and the odd data bits (D1, D3, D5,  
etc.) are output at the rising edge of CLKOUTP. Both the rising and falling edges of CLKOUTP must be used to  
capture all 14 data bits, as shown in Figure 70.  
CLKOUTP  
CLKOUTM  
D0_D1_P,  
D0_D1_M  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
D2_D3_P,  
D2_D3_M  
D4_D5_P,  
D4_D5_M  
D6_D7_P,  
D6_D7_M  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
D8_D9_P,  
D8_D9_M  
D10_D11_P,  
D10_D11_M  
D10  
D11  
D10  
D11  
D12_D13_P,  
D12_D13_M  
D12  
D13  
D12  
D13  
Sample N  
Sample N + 1  
Figure 70. DDR LVDS Interface  
50  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
LVDS Output Data and Clock Buffers  
The equivalent circuit of each LVDS output buffer is shown in Figure 71. After reset, the buffer presents an  
output impedance of 100Ω to match with the external 100Ω termination.  
The VDIFF voltage is nominally 350mV, resulting in an output swing of ±350mV with 100Ω external termination.  
The VDIFF voltage is programmable using the LVDS SWING register bits from ±125mV to ±570mV.  
Additionally, a mode exists to double the strength of the LVDS buffer to support 50Ω differential termination. This  
mode can be used when the output LVDS signal is routed to two separate receiver chips, each using a 100Ω  
termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS CLKOUT STRENGTH  
register bits for data and output clock buffers, respectively.  
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing  
reflections from the receiver end, it helps to improve signal integrity.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100W Load  
1.1V  
ROUT  
VDIFF  
High  
Low  
NOTE: Use the default buffer strength to match 100Ω external termination (ROUT = 100Ω). To match with a 50Ω external termination, set the  
LVDS STRENGTH bit (ROUT = 50Ω).  
Figure 71. LVDS Buffer Equivalent Circuit  
Parallel CMOS Interface  
In CMOS mode, each data bit is output on a separate pin as the CMOS voltage level, for every clock cycle. The  
rising edge of the output clock CLKOUT can be used to latch data in the receiver. Figure 72 depicts the CMOS  
output interface.  
Switching noise (caused by CMOS output data transitions) can couple into the analog inputs and degrade SNR.  
The coupling and SNR degradation increases as the output buffer drive is made stronger. To minimize this  
degradation, the CMOS output buffers are designed with controlled drive strength. The default drive strength  
ensures a wide data stable window (even at 250MSPS) is provided so the data outputs have minimal load  
capacitance. It is recommended to use short traces (one to two inches or 2,54cm to 5,08cm) terminated with less  
than 5pF load capacitance, as shown in Figure 73.  
For sampling frequencies greater than 200MSPS, it is recommended to use an external clock to capture data.  
The delay from input clock to output data and the data valid times are specified for higher sampling frequencies.  
These timings can be used to delay the input clock appropriately and use it to capture data.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS41B29 ADS41B49  
 
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Pins  
OVR  
CLKOUT  
D0  
D1  
D2  
D3  
14-Bit  
ADC Data  
D11  
D12  
D13  
ADS41B49  
Figure 72. CMOS Output Interface  
52  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
Use External Clock Buffer  
(> 200MSPS)  
Input Clock  
Receiver (FPGA, ASIC, etc.)  
Flip-Flops  
CLKIN  
CLKOUT  
D0  
D1  
D2  
D0_In  
D1_In  
D2_In  
14-Bit ADC Data  
D12  
D13  
D12_In  
D13_In  
ADS41Bx9  
Use short traces between  
ADC output and receiver pins (1 to 2 inches).  
Figure 73. Using the CMOS Data Outputs  
CMOS Interface Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output pin. The maximum DRVDD current occurs when each output bit toggles between '0' and '1' every clock  
cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined  
by the average number of output bits switching, which is a function of the sampling frequency and the nature of  
the analog input signal.  
Digital Current as a Result of CMOS Output Switching = CL × DRVDD × (N × fAVG  
)
where:  
CL = load capacitance,  
N × FAVG = average number of output bits switching.  
(1)  
Figure 52 illustrates the current across sampling frequencies at 2MHz analog input frequency.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Input Over-Voltage Indication (OVR Pin)  
The device has an OVR pin that provides information about analog input overload. At any clock cycle, if the  
sampled input voltage exceeds the positive or negative full-scale range, the OVR pin goes high. The OVR  
remains high as long as the overload condition persists. The OVR pin is a CMOS output buffer (running off  
DRVDD supply), independent of the type of output data interface (DDR LVDS or CMOS).  
For a positive overload, the D[13:0] output data bits are 0x3FFF in offset binary output format and 0x1FFF in  
twos complement output format. For a negative input overload, the output code is 0x0000 in offset binary output  
format and 0x2000 in twos complement output format.  
Output Data Format  
Two output data formats are supported: twos complement and offset binary. They can be selected using the  
DATA FORMAT serial interface register bit or controlling the DFS pin in parallel configuration mode. In the event  
of an input voltage overdrive, the digital outputs go to the appropriate full-scale level.  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the ADS414x, ADS412x EVM User Guide (SLWU067) for details on layout  
and grounding.  
Supply Decoupling  
Because the ADS41B29/49 already include internal decoupling, minimal external decoupling can be used without  
loss in performance. Note that decoupling capacitors can help filter external power-supply noise, so the optimum  
number of capacitors depends on the actual application. The decoupling capacitors should be placed very close  
to the converter supply pins.  
Exposed Pad  
In addition to providing a path for heat dissipation, the PowerPAD is also electrically internally connected to the  
digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and  
electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and  
QFN/SON PCB Attachment (SLUA271), both available for download at the TI web site (www.ti.com).  
54  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
www.ti.com  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate – The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) – The INL is the deviation of the ADC transfer function from a best fit line determined  
by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error – Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as  
EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 – 0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error – The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX – TMIN  
.
Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(2)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(3)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS41B29 ADS41B49  
ADS41B29  
ADS41B49  
SBAS486D – NOVEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Effective Number of Bits (ENOB) – ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(4)  
Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(5)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 – f2 or 2f2 – f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR) – DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the  
ADC output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(6)  
Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(7)  
Crosstalk (only for multi-channel ADCs) – This is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. It is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually  
measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. It is typically expressed in dBc.  
56  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS41B29 ADS41B49  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS41B29IRGZ25  
ADS41B29IRGZR  
PREVIEW  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
25  
TBD  
Call TI  
Call TI  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
ADS41B29IRGZT  
ACTIVE  
VQFN  
RGZ  
48  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
ADS41B49IRGZ25  
ADS41B49IRGZR  
PREVIEW  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
25  
TBD  
Call TI  
Call TI  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
ADS41B49IRGZT  
ACTIVE  
VQFN  
RGZ  
48  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2011  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS41B29IRGZR  
ADS41B29IRGZT  
ADS41B49IRGZR  
ADS41B49IRGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS41B29IRGZR  
ADS41B29IRGZT  
ADS41B49IRGZR  
ADS41B49IRGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
333.2  
333.2  
333.2  
333.2  
345.9  
345.9  
345.9  
345.9  
28.6  
28.6  
28.6  
28.6  
2500  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

ADS41B29IRGZT

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
TI

ADS41B49

14-/12-Bit, 160/250MSPS, Ultralow-Power ADC
TI

ADS41B49IRGZ25

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
TI

ADS41B49IRGZR

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
TI

ADS41B49IRGZT

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
TI

ADS41B49_13

14-/12-Bit, 250MSPS, Ultralow-Power ADC with Analog Buffers
TI

ADS4222

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4222IRGCR

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4222IRGCT

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4222_14

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4225

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4225IRGC25

12 bit 125MSPS Dual Low Power ADC 64-VQFN -40 to 85
TI