ADS4245-EP [TI]

双通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品;
ADS4245-EP
型号: ADS4245-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品

转换器 模数转换器
文件: 总61页 (文件大小:3033K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS4245-EP
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
ADS4245-EP 双通道,14 位,125MSPS 超低功率模数转换器 (ADC)  
1 特性  
3 说明  
超低功耗采用 1.8V 单电源供电:  
CMOS 输出:  
125MSPS 时总体功耗 277mW  
ADS4245 ADS42xx 双通道 14 位模数转换器 (ADC)  
超低功耗系列产品的一款低速型号。采用创新设计技术  
实现高动态性能同时在由 1.8V 电源供电时功耗极  
低。该拓扑结构使得 ADS4245 非常适合多载波、宽带  
宽通信应用。  
高动态性能:  
170MHz 时无杂散动态范围 (SFDR) 88dBc  
170MHz 时信噪比 (SNR) 71.4dBFS  
串扰185MHz 时大于 90dB  
高达 6dB 的可编程增益支持  
SNR/SFDR 平衡  
ADS4245 具有可被用于在较低满量程输入范围内改进  
SFDR 性能的增益选项。这个器件还包括一个直流偏移  
校正环路此环路可被用于消除 ADC 偏移。DDR双  
倍数据速率LVDS 与并行 CMOS 数字输出接口都采  
用紧凑型 QFN-64 PowerPAD封装。  
直流偏移校正  
此器件包含内部基准而删除了传统基准引脚和相关的  
去耦合电容器。ADS4245 可在军用温度范围-55°C  
125°C内额定运行。  
输出接口选项:  
1.8V 并行 CMOS 接口  
– 支持可编程摆幅的双倍数据速率 (DDR) 低压差  
分信令 (LVDS):  
器件信息  
封装(1)  
标准摆幅350mV  
低摆幅200mV  
订货编号  
封装尺寸  
9mm x 9mm  
ADS4245MRGC25EP VQFN (64)  
支持低至 200mVPP 的低输入时钟幅度  
支持国防、航天和医疗应用  
– 受控基线  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
AVDD  
AGND  
DRVDD DRGND  
LVDS Interface  
– 同一组装和测试场所  
– 同一制造场所  
DA0P  
DA0M  
DA2P  
DA2M  
DA4P  
– 支持军用-55°C 125°C温度范围  
– 延长的产品生命周期  
– 延长的产品变更通知  
– 产品可追溯性  
INP_A  
INM_A  
Digital and  
DDR  
Serializer  
DA4M  
DA6P  
Sampling  
Circuit  
14-Bit  
ADC  
DA6M  
DA8P  
DA8M  
DA10P  
DA10M  
DA12P  
DA12M  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
2 应用  
Output  
Clock Buffer  
CLOCKGEN  
DB0P  
无线通信基础设施  
DB0M  
DB2P  
由软件定义的无线电  
功率放大器线性化  
DB2M  
DB4P  
INP_B  
INM_B  
Digital and  
DDR  
Serializer  
DB4M  
DB6P  
Sampling  
Circuit  
14-Bit  
ADC  
DB6M  
DB8P  
DB8M  
DB10P  
DB10M  
DB12P  
DB12M  
Control  
Interface  
VCM  
Reference  
SDOUT  
ADS424x  
方框图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS653  
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................24  
7.4 Device Functional Modes..........................................24  
7.5 Serial Register Map.................................................. 37  
7.6 Description Of Serial Registers.................................38  
8 Application and Implementation..................................44  
8.1 Application Information............................................. 44  
8.2 Typical Applications.................................................. 45  
9 Power Supply Recommendations................................49  
10 Layout...........................................................................50  
10.1 Layout Guidelines................................................... 50  
10.2 Layout Example...................................................... 51  
11 Device and Documentation Support..........................52  
11.1 Device Support........................................................52  
11.2 Receiving Notification of Documentation Updates..54  
11.3 Support Resources................................................. 54  
11.4 Trademarks............................................................. 54  
11.5 Electrostatic Discharge Caution..............................54  
11.6 Glossary..................................................................54  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................8  
6.4 Thermal Information....................................................8  
6.5 Electrical Characteristics:............................................9  
6.6 Electrical Characteristics: General............................10  
6.7 Digital Characteristics............................................... 11  
6.8 Timing Characteristics: LVDS And CMOS Modes.... 13  
6.9 Typical Characteristics:.............................................17  
6.10 Typical Characteristics: General............................. 21  
6.11 Typical Characteristics: Contour............................. 22  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
4 Revision History  
Changes from Revision A (September 2018) to Revision B (October 2020)  
Page  
Changed 6-4 ............................................................................................................................................... 13  
Changes from Revision * (April 2014) to Revision A (September 2018)  
Page  
Moved Storage temperature, Tstg From the ESD Ratings table to the Absolute Maximum Ratings table..........7  
Changed Handling Rating To: ESD Ratings ...................................................................................................... 7  
Added a MIN value of 1 MSPS to Low-speed mode enabled in the Recommended Operating Conditions ......8  
Added NOTE to the Application and Implementation ...................................................................................... 44  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
DRVDD  
DB4M  
DB4P  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DRVDD  
DA6P  
DA6M  
DA4P  
DA4M  
DA2P  
DA2M  
DA0P  
DA0M  
NC  
2
3
DB6M  
DB6P  
4
5
DB8M  
DB8P  
6
7
DB10M  
DB10P  
DB12M  
DB12P  
RESET  
SCLK  
8
Thermal  
Pad  
9
10  
11  
12  
13  
14  
15  
16  
NC  
CTRL3  
CTRL2  
CTRL1  
AVDD  
AVDD  
SDATA  
SEN  
AVDD  
Not to scale  
A. The PowerPADis connected to DRGND.  
NOTE: NC = do not connect; must float.  
5-1. RGC Package (LVDS Mode) (1), VQFN-64, (Top View)  
5-1. Pin Functions: LVDS Mode  
NO.  
NAME  
# OF PINS  
FUNCTION  
DESCRIPTION  
1, 48  
DRVDD  
2
Input  
Output buffer supply  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must be initialized through  
a hardware RESET by applying a high pulse on this terminal or by using the software  
reset option; refer to the Serial Interface Configuration section.  
12  
RESET  
1
Input  
In parallel interface mode, the RESET terminal must be permanently tied high. SCLK  
and SEN are used as parallel control terminals in this mode. This terminal has an  
internal 150kΩ pull-down resistor.  
This terminal functions as a serial interface clock input when RESET is low. It controls  
the low-speed mode selection when RESET is tied high; see 7-6 for detailed  
information. This terminal has an internal 150kΩ pull-down resistor.  
13  
SCLK  
SDATA  
SEN  
1
1
1
Input  
Input  
Input  
14  
15  
Serial interface data input; this terminal has an internal 150kΩ pull-down resistor.  
This terminal functions as a serial interface enable input when RESET is low. It controls  
the output interface and data format selection when RESET is tied high; see 7-7 for  
detailed information. This terminal has an internal 150kΩ pull-up resistor to AVDD.  
16, 22, 33, 34  
AVDD  
AGND  
4
8
Input  
Input  
Analog power supply  
Analog ground  
17, 18, 21, 24,  
27, 28, 31, 32  
19  
20  
INP_B  
INM_B  
1
1
Input  
Input  
Differential analog positive input, channel B  
Differential analog negative input, channel B  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
5-1. Pin Functions: LVDS Mode (continued)  
NO.  
NAME  
# OF PINS  
FUNCTION  
DESCRIPTION  
This terminal outputs the common-mode voltage (0.95V) that can be used externally to  
bias the analog input terminals  
23  
VCM  
1
Output  
25  
26  
29  
30  
35  
36  
37  
49  
56  
57  
CLKP  
CLKM  
1
1
1
1
1
1
1
2
1
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Differential clock positive input  
Differential clock negative input  
INP_A  
Differential analog positive input, channel A  
INM_A  
Differential analog negative input, channel A  
CTRL1  
Digital control input terminals. Together, they control the various power-down modes.  
Digital control input terminals. Together, they control the various power-down modes.  
Digital control input terminals. Together, they control the various power-down modes.  
Output buffer ground  
CTRL2  
CTRL3  
DRGND  
CLKOUTM  
CLKOUTP  
Differential output clock, complement  
Differential output clock, true  
This terminal functions as a serial interface register readout when the READOUT bit is  
enabled. When READOUT = 0, this terminal is in high-impedance state.  
64  
SDOUT  
1
2
Output  
Output  
40  
DA0M  
DA0P  
DA2M  
DA2P  
DA4M  
DA4P  
DA6M  
DA6P  
DA8M  
DA8P  
DA10M  
DA10P  
DA12M  
DA12P  
DB0M  
DB0P  
DB2M  
DB2P  
DB4M  
DB4P  
DB6M  
DB6P  
DB8M  
DB8P  
DB10M  
DB10P  
DB12M  
DB12P  
NC  
Channel A differential output data pair, D0 and D1 multiplexed  
Channel A differential output data D2 and D3 multiplexed  
Channel A differential output data D4 and D5 multiplexed  
Channel A differential output data D6 and D7 multiplexed  
Channel A differential output data D8 and D9 multiplexed  
Channel A differential output data D10 and D11 multiplexed  
Channel A differential output data D12 and D13 multiplexed  
Channel B differential output data pair, D0 and D1 multiplexed  
Channel B differential output data D2 and D3 multiplexed  
Channel B differential output data D4 and D5 multiplexed  
Channel B differential output data D6 and D7 multiplexed  
Channel B differential output data D8 and D9 multiplexed  
Channel B differential output data D10 and D11 multiplexed  
41  
42  
2
2
2
2
2
2
2
2
2
2
2
2
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
43  
44  
45  
46  
47  
50  
51  
52  
53  
54  
55  
60  
61  
62  
63  
2
3
4
5
6
7
8
9
10  
11  
2
4
Output  
Channel B differential output data D12 and D13 multiplexed  
Do not connect, must be floated  
38, 39, 58, 59  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
DRVDD  
DB4  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DRVDD  
DA7  
2
DB5  
3
DA6  
DB6  
4
DA5  
DB7  
5
DA4  
DB8  
6
DA3  
DB8  
7
DA2  
DB10  
DB11  
DB12  
DB13  
RESET  
SCLK  
SDATA  
SEN  
8
DA1  
Thermal  
Pad  
9
DA0  
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
CTRL3  
CTRL2  
CTRL1  
AVDD  
AVDD  
AVDD  
Not to scale  
A. The PowerPAD™ is connected to DRGND.  
NOTE: NC = do not connect; must float.  
5-2. RGC Package (CMOS Mode), (1) VQFN-64, (Top View)  
5-2. Pin Functions: CMOS Mode  
NO.  
NAME  
# OF PINS  
FUNCTION  
DESCRIPTION  
1, 48  
DRVDD  
2
Input  
Output buffer supply  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must be initialized  
through a hardware RESET by applying a high pulse on this terminal or by using  
the software reset option; refer to the Serial Interface Configuration section.  
In parallel interface mode, the RESET terminal must be permanently tied high.  
SDATA and SEN are used as parallel control terminals in this mode. This terminal  
has an internal 150kΩ pull-down resistor.  
12  
RESET  
1
Input  
This terminal functions as a serial interface clock input when RESET is low. It  
controls the low-speed mode when RESET is tied high; see 7-6 for detailed  
information. This terminal has an internal 150kΩ pull-down resistor.  
13  
14  
SCLK  
1
1
Input  
Input  
SDATA  
Serial interface data input; this terminal has an internal 150kΩ pull-down resistor.  
This terminal functions as a serial interface enable input when RESET is low. It  
controls the output interface and data format selection when RESET is tied high;  
see 7-7 for detailed information. This terminal has an internal 150kΩ pull-up  
resistor to AVDD.  
15  
SEN  
1
Input  
16, 22, 33, 34  
AVDD  
AGND  
4
8
Input  
Input  
Analog power supply  
Analog ground  
17, 18, 21, 24,  
27, 28, 31, 32  
19  
20  
INP_B  
INM_B  
1
1
Input  
Input  
Differential analog positive input, channel B  
Differential analog negative input, channel B  
This terminal outputs the common-mode voltage (0.95V) that can be used  
externally to bias the analog input terminals  
23  
VCM  
1
Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
5-2. Pin Functions: CMOS Mode (continued)  
NO.  
25  
26  
29  
30  
35  
36  
37  
49  
56  
57  
NAME  
CLKP  
# OF PINS  
FUNCTION  
DESCRIPTION  
1
1
1
1
1
1
1
2
1
1
Input  
Differential clock positive input  
Differential clock negative input  
CLKM  
Input  
INP_A  
Input  
Differential analog positive input, channel A  
Differential analog negative input, channel A  
INM_A  
CTRL1  
CTRL2  
CTRL3  
DRGND  
UNUSED  
CLKOUT  
Input  
Input  
Digital control input terminals. Together, they control various power-down modes.  
Digital control input terminals. Together, they control various power-down modes.  
Digital control input terminals. Together, they control various power-down modes.  
Output buffer ground  
Input  
Input  
Input  
This terminal is not used in the CMOS interface  
Output  
CMOS output clock  
This terminal functions as a serial interface register readout when the READOUT  
bit is enabled. When READOUT = 0, this terminal is in high-impedance state.  
64  
SDOUT  
1
Output  
40  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
DA10  
DA11  
DA12  
DA13  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB8  
DB10  
DB11  
DB12  
DB13  
NC  
41  
42  
43  
44  
45  
12  
Output  
Channel A ADC output data bits, CMOS levels  
Channel A ADC output data bits, CMOS levels  
Channel B ADC output data bits, CMOS levels  
46  
47  
50  
51  
52  
53  
54  
2
Output  
55  
60  
61  
62  
63  
2
3
12  
Output  
4
5
6
7
8
9
10  
11  
2
1
Output  
Channel B ADC output data bits, CMOS levels  
Do not connect, must be floated  
38, 39, 58, 59  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
2.4  
2.4  
MAX  
2.1  
2.1  
0.3  
2.4  
2.4  
UNIT  
Supply voltage, AVDD  
V
V
V
V
V
Supply voltage, DRVDD  
Voltage between AGND and DRGND  
Voltage between AVDD to DRVDD (when AVDD leads DRVDD)  
Voltage between DRVDD to AVDD (when DRVDD leads AVDD)  
Minimum  
(1.9, AVDD + 0.3)  
INP_A, INM_A, INP_B, INM_B  
V
V
V
0.3  
0.3  
0.3  
Voltage applied to input terminals  
CLKP, CLKM(2)  
AVDD + 0.3  
3.9  
RESET, SCLK, SDATA, SEN,  
CTRL1, CTRL2, CTRL3  
Junction temperature, TJ  
Storage temperature, Tstg  
+150  
+150  
°C  
°C  
55  
65  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|).  
This configuration prevents the ESD protection diodes at the clock input terminals from turning on.  
6.2 ESD Ratings  
VALUE  
±2000  
UNIT  
(1)  
VESD  
Human body model (HBM)(2)  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS4245-EP  
 
 
 
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
Analog supply voltage, AVDD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
Digital supply voltage, DRVDD  
ANALOG INPUTS  
Differential input voltage  
2
VPP  
V
Input common-mode voltage  
VCM ±0.05  
400  
Maximum analog input frequency with 2VPP input amplitude(1)  
Maximum analog input frequency with 1VPP input amplitude(1)  
CLOCK INPUT  
MHz  
MHz  
600  
Input clock sample rate  
Low-speed mode enabled(2)  
1
80  
MSPS  
MSPS  
Low-speed mode disabled(2) (by default after reset)  
Input clock duty cycle  
80  
125  
Low-speed mode disabled(3)  
35%  
40%  
50%  
50%  
65%  
60%  
Low-speed mode enabled(3)  
DIGITAL OUTPUTS  
Maximum external load capacitance from each output terminal to DRGND, CLOAD  
Differential load resistance between the LVDS output pairs (LVDS mode), RLOAD  
Operating junction temperature, TJ  
5
pF  
100  
Ω
+125  
°C  
55  
(1) See the Theory of Operation section in the Application Information.  
(2) See the Serial Interface Configuration section for details on programming the low-speed mode.  
(3) Ensured by design for temperature range -40°C to 85°C.  
6.4 Thermal Information  
ADS4245-EP  
THERMAL METRIC(1)  
RGC  
UNIT  
64 TERMINAL  
Rθ JA  
Rθ JCtop  
Rθ JB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.9  
10.9  
4.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
4.4  
ψJB  
Rθ JCbot  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
6-1. High-Performance Modes  
PARAMETER(1) (2)  
High-performance mode  
DESCRIPTION  
Set the HIGH PERF MODE register bit to obtain best performance across sample clock and  
input signal frequencies.  
Register address = 03h, data = 03h  
Set the HIGH FREQ MODE CH A and HIGH FREQ MODE CH B register bits for high input  
signal frequencies greater than 200MHz.  
Register address = 4Ah, data = 01h  
High-frequency mode  
Register address = 58h, data = 01h  
(1) It is recommended to use these modes to obtain best performance.  
(2) See the Serial Interface Configuration section for details on register programming.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
 
 
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics:  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, LVDS  
interface, and 0dB gain (unless otherwise noted). Minimum and maximum values are across the recommended operating  
condition (unless otherwise noted), AVDD = 1.8V, and DRVDD = 1.8V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
14  
Bits  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
73.4  
72.9  
72.6  
71.4  
69.3  
73.2  
72.6  
72.3  
71.2  
68.5  
88  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
68  
Signal-to-noise ratio  
SNR  
SINAD  
SFDR  
THD  
68  
71  
Signal-to-noise and  
distortion ratio  
86  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
Third-harmonic distortion  
85  
dBc  
88  
dBc  
78  
dBc  
86  
dBc  
68  
84  
dBc  
83  
dBc  
84  
dBc  
75  
dBc  
88  
dBc  
66.5  
72.5  
73  
86  
dBc  
HD2  
85  
dBc  
88  
dBc  
78  
dBc  
93  
dBc  
89  
dBc  
HD3  
89  
dBc  
90  
dBc  
81  
dBc  
95  
dBc  
94  
dBc  
Worst spur  
(other than second and third harmonics)  
93  
dBc  
91  
dBc  
89  
dBc  
f1 = 46MHz, f2 = 50MHz,  
each tone at 7dBFS  
96  
92  
dBFS  
dBFS  
Two-tone intermodulation distortion  
Crosstalk  
IMD  
f1 = 185MHz, f2 = 190MHz,  
each tone at 7dBFS  
20-MHz full-scale signal on channel under  
observation; 170-MHz full-scale signal on other  
channel  
95  
dB  
Recovery to within 1%  
(of full-scale) for 6dB overload with sine-wave  
input  
Input overload recovery  
1
Clock cycle  
dB  
For 100mVPP signal on AVDD supply, up to  
10MHz  
AC power-supply rejection ratio  
PSRR  
> 30  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
ENOB  
DNL  
INL  
fIN = 70MHz  
fIN = 70MHz  
fIN = 70MHz  
11.5  
±0.5  
±2  
LSBs  
LSBs  
LSBs  
1.9  
±5  
0.97  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.6 Electrical Characteristics: General  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, and 1dBFS differential analog input  
(unless otherwise noted). Minimum and maximum values are across the recommended operating condition (unless otherwise  
noted), AVDD = 1.8V, and DRVDD = 1.8V.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Differential input voltage range (0dB gain)  
Differential input resistance (at 200MHz)  
Differential input capacitance (at 200MHz)  
2
0.75  
3.7  
VPP  
kΩ  
pF  
Analog input bandwidth  
(with 50Ω source impedance, and 50Ω termination)  
550  
1.5  
MHz  
Analog input common-mode current  
(per input terminal of each channel)  
µA/MSPS  
Common-mode output voltage  
VCM output current capability  
DC ACCURACY  
VCM  
0.95  
4
V
mA  
Offset error  
2.5  
25  
4
mV  
25  
4  
Temperature coefficient of offset error  
0.003  
mV/°C  
Gain error as a result of internal reference inaccuracy  
alone  
EGREF  
%FS  
Gain error of channel alone  
Temperature coefficient of EGCHAN  
POWER SUPPLY  
EGCHAN  
±0.1  
%FS  
0.002  
Δ%/°C  
IAVDD  
Analog supply current  
105  
99  
130  
120  
mA  
mA  
IDRVDD  
Output buffer supply current  
LVDS interface, 350mV swing with 100Ω external termination, fIN = 2.5MHz  
IDRVDD  
Output buffer supply current  
CMOS interface, no load capacitance(1)  
fIN = 2.5MHz  
49  
mA  
Analog power  
189  
179  
mW  
mW  
Digital power  
LVDS interface, 350mV swing with 100Ω external termination, fIN = 2.5MHz  
Digital power  
CMOS interface, no load capacitance(1)  
fIN = 2.5MHz  
88  
mW  
mW  
Global power-down  
25  
(1) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output terminals, input frequency,  
and the supply voltage (see the CMOS Interface Power Dissipation section in the Application Information).  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.7 Digital Characteristics  
At AVDD = 1.8V and DRVDD = 1.8V (unless otherwise noted). DC specifications refer to the condition where the digital  
outputs do not switch, but are permanently at a valid logic level '0' or '1'.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3)(1)  
High-level input voltage  
1.3  
V
All digital inputs support 1.8V  
and 3.3V CMOS logic levels  
Low-level input voltage  
0.4  
V
SDATA, SCLK(2)  
SEN(3)  
VHIGH = 1.8V  
VHIGH = 1.8V  
VLOW = 0V  
10  
0
µA  
µA  
µA  
µA  
High-level input current  
SDATA, SCLK  
SEN  
0
Low-level input current  
VLOW = 0V  
10  
DIGITAL OUTPUTS, CMOS INTERFACE (DA[13:0], DB[13:0], CLKOUT, SDOUT)  
High-level output voltage  
DRVDD  
0
V
V
DRVDD 0.1  
Low-level output voltage  
0.1  
Output capacitance (internal to device)  
DIGITAL OUTPUTS, LVDS INTERFACE  
pF  
With an external  
100Ω termination  
High-level output  
differential voltage  
VODH  
220  
350  
490  
mV  
With an external  
100Ω termination  
Low-level output  
differential voltage  
VODL  
VOCM  
mV  
V
490  
350  
220  
Output common-mode voltage  
0.9  
1.05  
1.25  
(1) SCLK, SDATA, and SEN function as digital input terminals in serial configuration mode.  
(2) SDATA, SCLK have internal 150kΩ pull-down resistor.  
(3) SEN has an internal 150kΩ pull-up resistor to AVDD. Because the pull-up is weak, SEN can also be driven by 1.8V or 3.3V CMOS  
buffers.  
DAn_P  
DBn_P  
Logic 0  
VODL = -350mV(1)  
Logic 1  
V
ODH = +350mV(1)  
DAn_M  
DBn_M  
VOCM  
GND  
A. With external 100Ω termination.  
6-1. LVDS Output Voltage Levels  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS4245-EP  
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
100.00  
10.00  
1.00  
85  
95  
105  
115  
125  
Operating Junction Temperature (°C)  
A. See datasheet for absolute maximum and minimum recommended operating conditions.  
B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).  
C. Enhanced plastic product disclaimer applies.  
6-2. ADS4245-EP Electromigration Fail Mode Chart  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.8 Timing Characteristics: LVDS And CMOS Modes  
Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8V, sampling frequency = 160MSPS, sine wave input clock, 1.5VPP  
clock amplitude, CLOAD = 5pF(2), and RLOAD = 100Ω(3), unless otherwise noted. Minimum and maximum values are across  
the full temperature range: TMIN = 55°C to TMAX = +125°C, AVDD = 1.8V, and DRVDD = 1.7V to 1.9V.  
PARAMETER(1)  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
tA  
Aperture delay  
0.8  
ns  
Aperture delay matching  
Between the two channels of the same device  
±70  
ps  
Between two devices at the same temperature and  
DRVDD supply  
Variation of aperture delay  
Aperture jitter  
±150  
140  
50  
ps  
fS rms  
µs  
tJ  
Time to valid data after coming out of STANDBY  
mode  
100  
500  
Wakeup time  
Time to valid data after coming out of GLOBAL  
power-down mode  
100  
16  
µs  
Clock  
cycles  
Default latency after reset  
ADC latency(7)  
Clock  
cycles  
Digital functions enabled (EN DIGITAL = 1)  
24  
DDR LVDS MODE(4)  
tSU Data setup time  
Data valid(5) to zero-crossing of CLKOUTP  
1.5  
2.0  
0.6  
ns  
ns  
Zero-crossing of CLKOUTP to data becoming  
invalid(5)  
tH  
Data hold time  
0.35  
Input clock rising edge cross-over to output clock  
rising edge cross-over  
tPDI  
Clock propagation delay  
LVDS bit clock duty cycle  
5.0  
6.1  
49  
7.5  
ns  
%
Duty cycle of differential clock, (CLKOUTP-  
CLKOUTM)  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
1MSPS Sampling frequency 160MSPS  
tRISE  
tFALL  
,
Data rise time,  
Data fall time  
0.13  
0.13  
ns  
ns  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
1MSPS Sampling frequency 160MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time,  
Output clock fall time  
PARALLEL CMOS MODE  
tSU  
tH  
Data setup time  
Data hold time  
Data valid(6) to zero-crossing of CLKOUT  
1.6  
2.3  
2.5  
2.7  
ns  
ns  
Zero-crossing of CLKOUT to data becoming invalid(6)  
Input clock rising edge cross-over to output clock  
rising edge cross-over  
tPDI  
Clock propagation delay  
Output clock duty cycle  
4.5  
6.4  
46  
8.5  
ns  
%
Duty cycle of output clock, CLKOUT  
1MSPS Sampling frequency 160MSPS  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1MSPS Sampling frequency 160MSPS  
tRISE  
tFALL  
,
Data rise time,  
Data fall time  
1
1
ns  
ns  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1MSPS Sampling frequency 160MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time  
Output clock fall time  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) CLOAD is the effective external single-ended load capacitance between each output terminal and ground  
(3) RLOAD is the differential load resistance between the LVDS output pair.  
(4) Measurements are done with a transmission line of 100Ω characteristic impedance between the device and the load. Setup and hold  
time specifications take into account the effect of jitter on the output data and clock.  
(5) Data valid refers to a logic high of +100mV and a logic low of 100mV.  
(6) Data valid refers to a logic high of 1.26V and a logic low of 0.54V  
(7) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS4245-EP  
 
 
 
 
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6-2. LVDS Timings At Lower Sampling Frequencies  
tPDI, CLOCK PROPAGATION  
SAMPLING  
FREQUENCY  
(MSPS)  
SETUP TIME (ns)  
HOLD TIME (ns)  
DELAY (ns)  
MIN  
5.9  
4.5  
2.3  
TYP  
6.6  
5.2  
2.9  
MAX  
MIN  
0.35  
0.35  
0.35  
TYP  
0.6  
0.6  
0.6  
MAX  
MIN  
5.0  
5.0  
5.0  
TYP  
6.1  
6.1  
6.1  
MAX  
7.5  
65  
80  
7.5  
125  
7.5  
6-3. CMOS Timings At Lower Sampling Frequencies  
TIMINGS SPECIFIED WITH RESPECT TO CLKOUT  
SAMPLING  
FREQUENCY  
(MSPS)  
tPDI, CLOCK PROPAGATION  
DELAY (ns)  
SETUP TIME (ns)  
HOLD TIME (ns)  
MIN  
6.1  
4.7  
2.7  
TYP  
7.2  
5.8  
3.6  
MAX  
MIN  
6.7  
5.3  
3.1  
TYP  
7.1  
5.8  
3.6  
MAX  
MIN  
4.5  
4.5  
4.5  
TYP  
6.4  
6.4  
6.4  
MAX  
8.5  
65  
80  
8.5  
125  
8.5  
CLKM  
CLKP  
Input  
Clock  
tPDI  
Output  
Clock  
CLKOUT  
tSU  
tH  
DAn,  
DBn  
Output  
Data  
Dn(1)  
A. Dn = bits D0, D1, D2, etc. of channels A and B.  
6-3. CMOS Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
A. ADC latency after reset. At higher sampling frequencies, tPDI is greater than one clock cycle, which then makes the overall latency =  
ADC latency + 1.  
B. E = even bits (D0, D2, D4, etc.); O = odd bits (D1, D3, D5, etc.).  
6-4. Latency Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
CLKOUTM  
CLKOUTP  
DA0, DB0  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
DA2, DB2  
DA4, DB4  
DA6, DB6  
DA8, DB8  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
DA10, DB10  
DA12, DB12  
D10  
D12  
D11  
D13  
D10  
D12  
D11  
D13  
Sample N  
Sample N + 1  
6-5. ADS4245 LVDS Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics:  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
0
0
−20  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
SFDR = 89.7dBc  
THD = 88.4dBc  
SINAD = 73dBFS  
SNR = 73.1dBFS  
SFDR = 86.7dBc SINAD = 71.2dBFS  
THD = 83.8dBc  
SNR = 71.4dBFS  
6-6. FFT For 20MHz Input Signal  
6-7. FFT For 170MHz Input Signal  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
fIN1 = 185MHz  
fIN2 = 190MHz  
Each Tone at 7dBFS Amplitude  
SFDR = 92.8dBFS  
SFDR = 73.4dBc SINAD = 67.7dBFS  
THD = 72.3dBc  
SNR = 69.2dBFS  
TwoTone IMD = 94dBFS  
6-9. FFT For Two-Tone Input Signal  
6-8. FFT For 300MHz Input Signal  
0
−20  
90  
85  
80  
75  
70  
65  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
10  
20  
30  
40  
50  
60  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
fIN1 = 46MHz  
fIN2 = 50MHz  
Each Tone at 7dBFS Amplitude  
SFDR=105.3dBFS  
6-11. SFDR vs Input Frequency  
TwoTone IMD=96.9dBFS  
6-10. FFT For Two-Tone Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics: (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
6-12. SNR vs Input Frequency  
6-13. SNR vs Input Frequency (CMOS)  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
6-15. SINAD vs Gain And Input Frequency  
6-14. SFDR vs Gain And Input Frequency  
110  
100  
90  
76.5  
76  
110  
100  
90  
77  
76  
75  
74  
73  
72  
71  
70  
69  
75.5  
75  
80  
80  
70  
74.5  
74  
70  
60  
60  
50  
73.5  
73  
50  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
40  
40  
30  
−70  
72.5  
0
30  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
6-16. Performance vs Input Amplitude  
6-17. Performance vs Input Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics: (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
90  
89  
88  
87  
86  
85  
84  
83  
82  
73.8  
73.7  
73.6  
73.5  
73.4  
73.3  
73.2  
73.1  
73  
89  
87  
85  
83  
81  
79  
77  
75  
73  
73  
72.75  
72.5  
72.25  
72  
71.75  
71.5  
71.25  
71  
SFDR  
SNR  
SFDR  
SNR  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input CommonMode (V)  
Input CommonMode Voltage (V)  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
6-18. Performance vs Input Common-Mode Voltage  
6-19. Performance vs Input Common-Mode Voltage  
91  
73  
AVDD = 1.65  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.9  
AVDD = 1.95  
AVDD = 1.65  
AVDD = 1.70  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
89  
87  
85  
83  
81  
79  
77  
75  
73  
71  
72.5  
72  
71.5  
71  
70.5  
70  
−40  
−40  
−15  
10  
35  
60  
85  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
6-20. SFDR vs Temperature And AVDD Supply  
6-21. SNR vs Temperature And AVDD Supply  
88  
87  
86  
85  
84  
83  
82  
73  
90  
89  
88  
87  
86  
85  
84  
74.5  
74  
72.5  
72  
73.5  
73  
71.5  
71  
72.5  
72  
70.5  
SFDR  
SNR  
SFDR  
SNR  
70  
1.95  
71.5  
2.2  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Input Frequency = 150MHz  
Input Frequency = 40MHz  
6-22. Performance vs DRVDD Supply Voltage  
6-23. Performance vs Input Clock Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics: (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
89  
75  
88  
87  
86  
85  
84  
83  
74.5  
74  
73.5  
73  
72.5  
72  
SFDR  
SNR  
SNR  
THD  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Input Frequency = 10MHz  
Input Frequency = 150MHz  
6-25. Performance vs Input Clock Duty Cycle  
6-24. Performance vs Input Clock Amplitude  
1.5  
40  
1.2  
0.9  
0.6  
0.3  
0
35  
30  
25  
20  
15  
10  
5
33.31  
28.49  
18.26  
−0.3  
−0.6  
−0.9  
−1.2  
−1.5  
12.23  
4.52  
2.46  
0.47  
0.23  
0.01  
0
0
4000  
8000  
12000  
16000  
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221  
Output Code (LSB)  
Output Code (LSB)  
Input Frequency = 20MHz  
RMS Noise = 1.1LSB  
6-26. Integrated Nonlinearity  
6-27. Output Noise Histogram (With Inputs Shorted To VCM)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.10 Typical Characteristics: General  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP  
differential clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode  
disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.  
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Frequency of Input Common−Mode Signal (MHz)  
Frequency of Signal on Supply (MHz)  
Input Frequency = 40MHz  
50mVPP Signal Superimposed  
Input Frequency = 10MHz  
50mVPP Signal Superimposed on AVDD Supply  
on Input CommonMode Voltage 0.95V  
6-29. PSRR vs Test Signal Frequency  
6-28. CMRR vs Test Signal Frequency  
240  
220  
200  
180  
160  
140  
120  
100  
80  
240  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
LVDS, 350mV Swing  
CMOS  
20  
60  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
AVDD = 1.8V  
Input Frequency = 2.5MHz  
fIN = 2.5 MHz  
6-30. Analog Power vs Sampling Frequency  
6-31. Digital Power LVDS CMOS  
260  
Default  
EN Digital = 1  
EN Digital = 1, Offset Correction Enabled  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
6-32. Digital Power In Various Modes (LVDS)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
6.11 Typical Characteristics: Contour  
All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input  
clock. 1.5VPP differential clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-  
Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
79  
77  
79  
76  
83  
73  
83  
87  
83  
81  
83  
87  
86  
83  
86  
86  
87  
79  
79  
83  
81  
83  
76  
79  
73  
86  
83  
87  
87  
89  
79  
89  
79  
79  
83  
81  
76  
80  
80  
89  
83  
83  
73  
73  
86  
79  
83  
87  
100  
70  
65  
70  
65  
79  
92  
91  
10  
50  
150  
200  
250  
300  
350  
400  
450  
90  
10  
50  
100  
150  
200  
250  
300  
86  
350  
400  
450  
Input Frequency (MHz)  
80  
Input Frequency (MHz)  
84  
70  
75  
85  
78  
80  
82  
88  
90  
92  
SFDR (dBc)  
SFDR (dBc)  
6-33. Spurious-Free Dynamic Range (0dB Gain) 6-34. Spurious-Free Dynamic Range (6dB Gain)  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
67  
64.5  
65  
65  
65  
66.5  
66.75  
67  
71  
65.5  
66  
66.25  
73  
72  
70  
67  
69  
67  
68  
68  
67.25  
66.75  
73  
71  
72  
66  
65.5  
65.5  
66.5  
70  
66.25  
69  
67  
67.25  
67  
67.5  
66.75  
71  
72  
66  
73  
66.25  
68  
66.5  
70  
80  
80  
67.25  
64.5  
67  
69  
67  
67.5  
50  
70  
65  
70  
65  
10  
50  
100  
150  
200  
250  
300  
350  
400  
72  
450  
10  
100  
150  
200  
250  
300  
350  
400  
67  
450  
Input Frequency (MHz)  
70  
Input Frequency (MHz)  
66  
67  
68  
69  
71  
73  
64.5  
65  
65.5  
66.5  
67.5  
SNR (dBFS)  
SNR (dBFS)  
6-35. Signal-To-Noise Ratio (0dB Gain)  
6-36. Signal-To-Noise Ratio (6dB Gain)  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
65.75  
70  
67  
70.5  
69  
67.5  
68  
66.5  
68.5  
66  
69.5  
66.25  
65.75  
65.5  
64.5  
65  
66.25  
66.5  
66  
69.5  
70  
67  
68  
67.5  
68.5  
69  
66  
66.5  
70.5  
65.75  
65.5  
66.5  
65  
65  
64.5  
66  
67  
66.25  
150  
69.5  
150  
69  
65.5  
80  
80  
66.75  
70  
66.5  
68.5  
70.5  
67.5  
68  
65.75  
64.5  
400  
66.5  
66  
69  
70  
65  
70  
65  
10  
50  
100  
200  
250  
300  
350  
400  
450  
10  
64  
50  
100  
200  
250  
300  
350  
66  
450  
Input Frequency (MHz)  
Input Frequency (MHz)  
65.5  
66  
66.5  
67  
67.5  
68  
68.5  
69  
69.5  
70  
70.5  
64.5  
65  
66.5  
SNR (dBFS)  
SNR (dBFS)  
6-37. Signal-To-Noise Ratio (0dB Gain)  
6-38. Signal-To-Noise Ratio (6dB Gain)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS4245 is a low-speed variant of the ADS42xx ultralow-power family of dual-channel, 14-bit analog- to-  
digital converters (ADCs). Innovative design techniques are used to achieve high-dynamic performance, while  
consuming extremely low power with 1.8V supply.  
The ADS4245 has gain options that can be used to improve SFDR performance at lower full-scale input ranges.  
This device includes a dc offset correction loop that can be used to cancel the ADC offset.  
7.2 Functional Block Diagram  
AVDD  
AGND  
DRVDD DRGND  
LVDS Interface  
DA0P  
DA0M  
DA2P  
DA2M  
DA4P  
INP_A  
INM_A  
Digital and  
DDR  
Serializer  
DA4M  
DA6P  
14-Bit  
ADC  
Sampling  
Circuit  
DA6M  
DA8P  
DA8M  
DA10P  
DA10M  
DA12P  
DA12M  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
Output  
Clock Buffer  
CLOCKGEN  
DB0P  
DB0M  
DB2P  
DB2M  
DB4P  
INP_B  
INM_B  
Digital and  
DDR  
Serializer  
DB4M  
DB6P  
14-Bit  
ADC  
Sampling  
Circuit  
DB6M  
DB8P  
DB8M  
DB10P  
DB10M  
DB12P  
DB12M  
Control  
Interface  
VCM  
Reference  
SDOUT  
ADS424x  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS4245-EP  
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.3 Feature Description  
The ADS4245 is terminal-compatible with the previous generation ADS62P49 family of data converters; this  
architecture enables easy migration. However, there are some important differences between the two device  
generations, summarized in 7-1.  
7-1. Migrating From The ADS62P49  
ADS62P49 FAMILY  
ADS4245 FAMILY  
TERMINALS  
Terminal 22 is NC (not connected)  
Terminals 38 and 58 are DRVDD  
Terminals 39 and 59 are DRGND  
SUPPLY  
Terminal 22 is AVDD  
Terminals 38 and 58 are NC (do not connect, must be floated)  
Terminals 39 and 59 are NC (do not connect, must be floated)  
AVDD is 3.3V  
AVDD is 1.8V  
No change  
DRVDD is 1.8V  
INPUT COMMON-MODE VOLTAGE  
VCM is 1.5V  
VCM is 0.95V  
SERIAL INTERFACE  
No change in protocol  
New serial register map  
Protocol: 8-bit register address and 8-bit register data  
EXTERNAL REFERENCE  
Supported  
Not supported  
7.4 Device Functional Modes  
7.4.1 Digital Functions  
The device has several useful digital functions (such as test patterns, gain, and offset correction). These  
functions require extra clock cycles for operation and increase the overall latency and power of the device.  
These digital functions are disabled by default after reset and the raw ADC output is routed to the output data  
terminals with a latency of 16 clock cycles. 7-1 shows more details of the processing after the ADC. In order  
to use any of the digital functions, the EN DIGITAL bit must be set to '1'. After this, the respective register bits  
must be programmed as described in the following sections and in the Serial Register Map section.  
Output  
Interface  
12-/14-Bit  
ADC  
12-Bit (ADS422x)  
14-Bit (ADS424x)  
Digital Functions  
(Gain, Offset Correction, Test Patterns)  
DDR LVDS  
or CMOS  
EN DIGITAL Bit  
7-1. Digital Processing Block  
7.4.2 Gain For SFDR/SNR Trade-Off  
The ADS4245 includes gain settings that can be used to get improved SFDR performance (compared to no  
gain). The gain is programmable from 0dB to 6dB (in 0.5dB steps). For each gain setting, the analog input full-  
scale range scales proportionally, as shown in 7-2.  
The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades  
approximately between 0.5dB and 1dB. The SNR degradation is reduced at high input frequencies. As a result,  
the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
degradation in SNR. Therefore, the gain can be used as a trade-off between SFDR and SNR. Note that the  
default gain after reset is 0dB.  
7-2. Full-Scale Range Across Gains  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
1
2
3
4
5
6
Default after reset  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
2
1.78  
1.59  
1.42  
1.26  
1.12  
1
7.4.3 Offset Correction  
The ADS4245 has an internal offset corretion algorithm that estimates and corrects dc offset up to ±10mV. The  
correction can be enabled using the ENABLE OFFSET CORR serial register bit. Once enabled, the algorithm  
estimates the channel offset and applies the correction every clock cycle. The time constant of the correction  
loop is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET  
CORR TIME CONSTANT register bits, as described in 7-3.  
After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR = 0. Once frozen,  
the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is  
disabled by default after reset.  
7-3. Time Constant Of Offset Correction Algorithm  
TIME CONSTANT, TCCLK  
(Number of Clock Cycles)  
OFFSET CORR TIME CONSTANT  
TIME CONSTANT, TCCLK × 1/fS (ms)(1)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
f0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1M  
2M  
7
13  
4M  
26  
8M  
52  
16M  
105  
210  
419  
839  
1678  
3355  
6711  
13422  
32M  
64M  
128M  
256M  
512M  
1G  
2G  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Sampling frequency, fS = 160MSPS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS4245-EP  
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.4 Power-Down  
The ADS4245 has two power-down modes: global power-down and channel standby. These modes can be set  
using either the serial register bits or using the control terminals CTRL1 to CTRL3 (as shown in 7-4).  
7-4. Power-Down Settings  
CTRL1  
Low  
CTRL2  
Low  
CTRL3  
DESCRIPTION  
Low  
Default  
Low  
Low  
High  
Low  
Not available  
Not available  
Not available  
Global power-down  
Low  
High  
High  
Low  
Low  
High  
Low  
High  
High  
High  
Low  
High  
Low  
Channel A powered down, channel B is active  
Not available  
High  
MUX mode of operation, channel A and B data is  
multiplexed and output on DB[10:0] terminals  
High  
High  
High  
7.4.4.1 Global Power-Down  
In this mode, the entire chip (including ADCs, internal reference, and output buffers) are powered down, resulting  
in reduced total power dissipation of approximately 20mW when the CTRL terminals are used and 3mW when  
the PDN GLOBAL serial register bit is used. The output buffers are in high-impedance state. The wake-up time  
from global power-down to data becoming valid in normal mode is typically 100µs.  
7.4.4.2 Channel Standby  
In this mode, each ADC channel can be powered down. The internal references are active, resulting in a quick  
wake-up time of 50µs. The total power dissipation in standby is approximately 200mW at 160MSPS.  
7.4.4.3 Input Clock Stop  
In addition to the previous modes, the converter enters a low-power mode when the input clock frequency falls  
below 1MSPS. The power dissipation is approximately 160mW.  
7.4.5 Digital Output Information  
The ADS4245 provides 14-bit digital data for each channel and an output clock synchronized with the data.  
7.4.5.1 Output Interface  
Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be  
selected using the serial interface register bit or by setting the proper voltage on the SEN terminal in parallel  
configuration mode.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.5.2 DDR LVDS Outputs  
In this mode, the data bits and clock are output using low-voltage differential signal (LVDS) levels. Two data bits  
are multiplexed and output on each LVDS differential pair, as shown in 7-2.  
Pins  
CLKOUTP  
Output  
Clock  
CLKOUTM  
DB0_P  
Data Bits  
D0, D1  
DB0_M  
DB2_P  
Data Bits  
D2, D3  
DB2_M  
DB4_P  
Data Bits  
D4, D5  
14-Bit ADC Data,  
Channel B  
DB4_M  
DB6_P  
DB6_M  
Data Bits  
D6, D7  
DB8_P  
DB8_M  
Data Bits  
D8, D9  
DB10_P  
DB10_M  
Data Bits  
D10, D11  
DB12_P  
DB12_M  
Data Bits  
D12, D13  
7-2. LVDS Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
Even data bits (D0, D2, D4, etc.) are output at the CLKOUTP rising edge and the odd data bits (D1, D3, D5, etc.)  
are output at the CLKOUTP falling edge. Both the CLKOUTP rising and falling edges must be used to capture all  
the data bits, as shown in 7-3.  
CLKOUTM  
CLKOUTP  
DA0P/M, DB0P/M  
DA2P/M, DB2P/M  
DA4P/M, DB4P/M  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
DA6P/M, DB6P/M  
DA8P/M, DB8P/M  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
DA10P/M, DB10P/M  
DA12P/M, DB12P/M  
D10  
D12  
D11  
D13  
D10  
D12  
D11  
D13  
Sample N  
Sample N + 1  
7-3. DDR LVDS Interface Timing  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.5.3 LVDS Buffer  
The equivalent circuit of each LVDS output buffer is shown in 7-4. After reset, the buffer presents an output  
impedance of 100Ω to match with the external 100Ω termination.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100W Load  
VOCM  
ROUT  
VDIFF  
High  
Low  
NOTE: Default swing across 100Ω load is ±350mV. Use the LVDS SWING bits to change the swing.  
7-4. LVDS Buffer Equivalent Circuit  
The VDIFF voltage is nominally 350mV, resulting in an output swing of ±350mV with 100Ω external termination.  
The VDIFF voltage is programmable using the LVDS SWING register bits from ±125mV to ±570mV.  
Additionally, a mode exists to double the strength of the LVDS buffer to support 50Ω differential termination, as  
shown in 7-5. This mode can be used when the output LVDS signal is routed to two separate receiver chips,  
each using a 100Ω termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS  
CLKOUT STRENGTH register bits for data and output clock buffers, respectively.  
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing  
reflections from the receiver end, it helps to improve signal integrity.  
Receiver Chip # 1  
(for example, GC5330)  
DAnP/M  
CLKIN1  
100W  
CLKOUTP  
CLKOUTM  
CLKIN2  
100W  
DBnP/M  
Receiver Chip # 2  
ADS42xx  
Make LVDS CLKOUT STRENGTH = 1  
7-5. LVDS Buffer Differential Termination  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.5.4 Parallel CMOS Interface  
In the CMOS mode, each data bit is output on separate terminals as CMOS voltage level, every clock cycle, as  
7-6 shows. The rising edge of the output clock CLKOUT can be used to latch data in the receiver. It is  
recommended to minimize the load capacitance of the data and clock output terminals by using short traces to  
the receiver. Furthermore, match the output data and clock traces to minimize the skew between them.  
DB0  
DB1  
DB2  
14-Bit ADC Data,  
Channel B  
DB11  
DB12  
DB13  
SDOUT  
CLKOUT  
DA0  
DA1  
DA2  
14-Bit ADC Data,  
Channel A  
DA11  
DA12  
DA13  
7-6. CMOS Outputs  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.5.5 CMOS Interface Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output terminal. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every  
clock cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be  
determined by the average number of output bits switching, which is a function of the sampling frequency and  
the nature of the analog input signal. This relationship is shown by the formula:  
Digital current as a result of CMOS output switching = CL × DRVDD × (N × FAVG),  
where CL = load capacitance, N × FAVG = average number of output bits switching.  
7.4.5.6 Multiplexed Mode Of Operation  
In this mode, the digital outputs of both channels are multiplexed and output on a single bus (DB[13:0]  
terminals), as shown in 7-7. The channel A output terminals (DA[13:0]) are in 3-state. Because the output  
data rate on the DB bus is effectively doubled, this mode is recommended only for low sampling frequencies  
(less than 80MSPS). This mode can be enabled using the POWER-DOWN MODE register bits or using the  
CTRL[3:1] parallel terminals.  
CLKM  
Input  
Clock  
CLKP  
tPDI  
Output  
CLKOUT  
Clock  
tSU  
tH  
Channel A  
DAn(2)  
Channel B  
DBn(2)  
Channel A  
DAn(2)  
Output  
Data  
DBn(1)  
A. In multiplexed mode, both channels outputs come on the channel B output terminals.  
B. Dn = bits D0, D1, D2, etc.  
7-7. Multiplexed Mode Timing Diagram  
7.4.5.7 Output Data Format  
Two output data formats are supported: twos complement and offset binary. The format can be selected using  
the DATA FORMAT serial interface register bit or by controlling the DFS terminal in parallel configuration mode.  
In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive  
overdrive, the output code is FFFh for the ADS422x and 3FFFh for the ADS424x in offset binary output format;  
the output code is 7FFh for the ADS422x and 1FFFh for the ADS424x in twos complement output format. For a  
negative input overdrive, the output code is 0000h in offset binary output format and 800h for the ADS422x and  
2000h for the ADS424x in twos complement output format.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.6 Device Configuration  
The ADS4245 can be configured independently using either parallel interface control or serial interface  
programming.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.6.1 Parallel Configuration Only  
To put the device into parallel configuration mode, keep RESET tied high (AVDD). Then, use the SEN, SCLK,  
CTRL1, CTRL2, and CTRL3 terminals to directly control certain modes of the ADC. The device can be easily  
configured by connecting the parallel terminals to the correct voltage levels (as described in 7-5 to 7-8).  
There is no need to apply a reset and SDATA can be connected to ground.  
In this mode, SEN and SCLK function as parallel interface control terminals. Some frequently-used functions can  
be controlled using these terminals. 7-5 describes the modes controlled by the parallel terminals.  
7-5. Parallel Terminal Definition  
TERMINAL  
SCLK  
CONTROL MODE  
Low-speed mode selection  
SEN  
Output data format and output interface selection  
CTRL1  
CTRL2  
CTRL3  
Together, these terminals control the power-down modes  
7.4.6.2 Serial Interface Configuration Only  
To enable this mode, the serial registers must first be reset to the default values and the RESET terminal must  
be kept low. SEN, SDATA, and SCLK function as serial interface terminals in this mode and can be used to  
access the internal registers of the ADC. The registers can be reset either by applying a pulse on the RESET  
terminal or by setting the RESET bit high. The Serial Register Map section describes the register programming  
and the register reset process in more detail.  
7.4.6.3 Using Both Serial Interface And Parallel Controls  
For increased flexibility, a combination of serial interface registers and parallel terminal controls (CTRL1 to  
CTRL3) can also be used to configure the device. To enable this option, keep RESET low. The parallel interface  
control terminals CTRL1 to CTRL3 are available. After power-up, the device is automatically configured  
according to the voltage settings on these terminals (see 7-8). SEN, SDATA, and SCLK function as serial  
interface digital terminals and are used to access the internal registers of the ADC. The registers must first be  
reset to the default values either by applying a pulse on the RESET terminal or by setting the RESET bit to '1'.  
After reset, the RESET terminal must be kept low. The Serial Register Map section describes register  
programming and the register reset process in more detail.  
7.4.6.4 Parallel Configuration Details  
The functions controlled by each parallel terminal are described in 7-6, 7-7, and 7-8. A simple way of  
configuring the parallel terminals is shown in 7-8.  
7-6. SCLK Control Terminal  
VOLTAGE APPLIED ON SCLK  
DESCRIPTION  
Low  
Low-speed mode is disabled  
Low-speed mode is enabled(1)  
High  
(1) Low-speed mode is enabled in the ADS4222/42 by default.  
7-7. SEN Control Terminal  
VOLTAGE APPLIED ON SEN  
DESCRIPTION  
Twos complement and parallel CMOS output  
Offset binary and parallel CMOS output  
0
(+50mV/0mV)  
(3/8) AVDD  
(±50mV)  
(5/8) 2AVDD  
(±50mV)  
Offset binary and DDR LVDS output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS4245-EP  
 
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7-7. SEN Control Terminal (continued)  
VOLTAGE APPLIED ON SEN  
DESCRIPTION  
AVDD  
(0mV/50mV)  
Twos complement and DDR LVDS output  
7-8. CTRL1, CTRL2, And CTRL3 Terminals  
CTRL1  
Low  
CTRL2  
CTRL3  
DESCRIPTION  
Low  
Low  
High  
High  
Low  
Low  
High  
Low  
Normal operation  
Not available  
Low  
High  
Low  
Low  
Not available  
Low  
High  
Low  
Not available  
High  
High  
High  
Global power-down  
High  
Low  
Channel A standby, channel B is active  
Not available  
MUX mode of operation, channel A and B data are  
multiplexed and output on the DB[13:0] terminals.  
High  
High  
High  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
(3/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
To Parallel Terminal  
7-8. Simple Scheme To Configure The Parallel Terminals  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4.6.5 Serial Interface Details  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDATA (serial interface data) terminals. Serial shift of bits  
into the device is enabled when SEN is low. Serial data SDATA are latched at every SCLK falling edge when  
SEN is active (low). The serial data are loaded into the register at every 16th SCLK falling edge when SEN is  
low. When the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in  
multiples of 16-bit words within a single active SEN pulse. The first eight bits form the register address and the  
remaining eight bits are the register data. The interface can work with SCLK frequencies from 20MHz down to  
very low speeds (of a few hertz) and also with non-50% SCLK duty cycle.  
7.4.6.5.1 Register Initialization  
After power-up, the internal registers must be initialized to the default values. Initialization can be accomplished  
in one of two ways:  
1. Either through hardware reset by applying a high pulse on the RESET terminal (of width greater than 10ns),  
as shown in 7-9; or  
2. By applying a software reset. When using the serial interface, set the RESET bit high. This setting initializes  
the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET  
terminal is kept low.  
Register Address  
Register Data  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
tDH  
D1  
D0  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
SEN  
RESET  
7-9. Serial Interface Timing  
7-9. Serial Interface Timing Characteristics  
PARAMETER(1)  
SCLK frequency (equal to 1/tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
MIN  
> DC  
30  
TYP  
MAX  
UNIT  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
20  
MHz  
ns  
30  
ns  
30  
ns  
tDH  
SDATA hold time  
30  
ns  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = 55°C to TMAX = +125°C,  
AVDD = 1.8V, and DRVDD = 1.8V, unless otherwise noted.  
7.4.6.5.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back. This readback mode  
may be useful as a diagnostic check to verify the serial interface communication between the external controller  
and the ADC. To use readback mode, follow this procedure:  
1. Set the READOUT register bit to '1'. This setting disables any further writes to the registers.  
2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be read.  
3. The device outputs the contents (D7 to D0) of the selected register on the SDOUT terminal (terminal 64).  
4. The external controller can latch the contents at the SCLK falling edge.  
5. To enable register writes, reset the READOUT register bit to '0'.  
The serial register readout works with both CMOS and LVDS interfaces on terminal 64.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS4245-EP  
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
When READOUT is disabled, the SDOUT terminal is in high-impedance state. If serial readout is not used, the  
SDOUT terminal must float.  
Register Address A[7:0] = 00h  
Register Data D[7:0] = 01h  
SDATA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SCLK  
SEN  
The SDOUT pin is in high-impedance state.  
SDOUT  
a) Enable serial readout (READOUT = 1)  
Register Address A[7:0] = 45h  
A4 A2  
A5 A3  
Register Data D[7:0] = XX (don’t care)  
D4 D2 D1  
D6 D5 D3  
SDATA  
SCLK  
A7  
A6  
A1  
A0  
D7  
D0  
SEN  
0
0
0
0
0
1
0
0
SDOUT  
The SDOUT pin functions as serial readout (READOUT = 1).  
b) Read contents of Register 45h. This register has been initialized with 04h (device is put into global power-down mode.)  
7-10. Serial Readout Timing Diagram  
7-10. Reset Timing (Only When Serial Interface Is Used)  
PARAMETER(1)  
CONDITIONS  
MIN  
TYP MAX UNIT  
Delay from AVDD and DRVDD power-up to active RESET  
pulse  
1
ms  
t1  
Power-on delay  
100  
350  
ns  
t2  
t3  
Reset pulse width  
Active RESET signal pulse width  
1
µs  
ns  
Register write delay  
Delay from RESET disable to SEN active  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = 55°C to TMAX = +125°C, unless  
otherwise noted.  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high pulse on the RESET terminal is required in the serial interface mode when initialized through a hardware reset. For  
parallel interface operation, RESET must be permanently tied high.  
7-11. Reset Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.5 Serial Register Map  
7-11 summarizes the functions supported by the serial interface.  
7-11. Serial Interface Register Map  
REGISTER  
ADDRESS(1)  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET  
0
D0  
READOUT  
0
00  
01  
03  
25  
29  
2B  
0
0
0
0
0
0
LVDS SWING  
0
0
0
0
0
0
0
0
0
0
0
0
HIGH PERF MODE  
CH A GAIN  
CH B GAIN  
CH A TEST PATTERNS  
DATA FORMAT  
0
0
0
0
CH B TEST PATTERNS  
ENABLE  
OFFSET  
CORR  
3D  
0
0
0
0
0
0
0
3F  
40  
41  
42  
CUSTOM PATTERN D[13:8]  
CUSTOM PATTERN D[7:0]  
LVDS CMOS  
CMOS CLKOUT STRENGTH  
CLKOUT RISE POSN  
0
0
0
DIS OBUF  
0
CLKOUT FALL POSN  
EN DIGITAL  
0
0
LVDS CLKOUT LVDS DATA  
STRENGTH  
45  
4A  
58  
STBY  
0
0
0
0
0
0
PDN GLOBAL  
0
0
0
STRENGTH  
HIGH FREQ  
0
0
0
0
0
0
MODE CH B(2)  
HIGH FREQ  
0
0
MODE CH A(2)  
BF  
C1  
CH A OFFSET PEDESTAL  
CH B OFFSET PEDESTAL  
0
0
0
0
FREEZE  
OFFSET  
CORR  
CF  
DB  
EF  
0
0
0
OFFSET CORR TIME CONSTANT  
0
0
0
0
LOW SPEED  
MODE CH B  
0
0
0
0
0
0
0
0
EN LOW  
SPEED  
0
0
0
MODE(2)  
F1  
F2  
0
0
0
0
0
0
0
0
0
0
EN LVDS SWING  
LOW SPEED  
0
0
MODE CH A(2)  
(1) Multiple functions in a register can be programmed in a single write operation. All registers default to '0' after reset.  
(2) These bits improve SFDR on high frequencies. The frequency limit is 200MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS4245-EP  
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
7.6 Description Of Serial Registers  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
RESET  
READOUT  
Bits[7:2]  
Bit 1  
Always write '0'  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to 0 (default = 1).  
READOUT: Serial readout  
Bit 0  
This bit sets the serial readout of the registers.  
0 = Serial readout of registers disabled; the SDOUT terminal is placed in high-impedance state.  
1 = Serial readout enabled; the SDOUT terminal functions as a serial data readout with CMOS logic levels running from the  
DRVDD supply. See the Serial Register Readout section.  
7
6
5
4
3
2
1
0
0
0
LVDS SWING  
Bits[7:2]  
LVDS SWING: LVDS swing programmability  
These bits program the LVDS swing. Set the EN LVDS SWING bit to '1' before programming swing.  
000000 = Default LVDS swing; ±350mV with external 100termination  
011011 = LVDS swing increases to ±410mV  
110010 = LVDS swing increases to ±465mV  
010100 = LVDS swing increases to ±570mV  
111110 = LVDS swing decreases to ±200mV  
001111 = LVDS swing decreases to ±125mV  
Bits[1:0]  
Always write '0'  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
HIGH PERF MODE  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
HIGH PERF MODE: High-performance mode  
00 = Default performance  
01 = Do not use  
10 = Do not use  
11 = Obtain best performance across sample clock and input signal frequencies  
7
6
5
4
3
0
2
1
0
CH A GAIN  
CH A TEST PATTERNS  
Bits[7:4]  
CH A GAIN: Channel A gain programmability  
These bits set the gain programmability in 0.5dB steps for channel A.  
0000 = 0dB gain (default after reset)  
0001 = 0.5dB gain  
0010 = 1dB gain  
0011 = 1.5dB gain  
0100 = 2dB gain  
0101 = 2.5dB gain  
0110 = 3dB gain  
0111 = 3.5dB gain  
1000 = 4dB gain  
1001 = 4.5dB gain  
1010 = 5dB gain  
1011 = 5.5dB gain  
1100 = 6dB gain  
Bit 3  
Always write '0'  
Bits[2:0]  
CH A TEST PATTERNS: Channel A data capture  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
These bits verify data capture for channel A.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern.  
Output data D[13:0] are an alternating sequence of 10101010101010 and 01010101010101.  
100 = Outputs digital ramp.  
Output data increment by one LSB (14-bit) every clock cycle from code 0 to code 16383.  
101 = Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern  
110 = Unused  
111 = Unused  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
DATA FORMAT  
Bits[7:5]  
Bits[4:3]  
Always write '0'  
DATA FORMAT: Data format selection  
00 = Twos complement  
01 = Twos complement  
10 = Twos complement  
11 = Offset binary  
Bits[2:0]  
Always write '0'  
7
6
5
4
3
0
2
1
0
CH B GAIN  
CH B TEST PATTERNS  
Bits[7:4]  
CH B GAIN: Channel B gain programmability  
These bits set the gain programmability in 0.5dB steps for channel B.  
0000 = 0dB gain (default after reset)  
0001 = 0.5dB gain  
0010 = 1dB gain  
0011 = 1.5dB gain  
0100 = 2dB gain  
0101 = 2.5dB gain  
0110 = 3dB gain  
0111 = 3.5dB gain  
1000 = 4dB gain  
1001 = 4.5dB gain  
1010 = 5dB gain  
1011 = 5.5dB gain  
1100 = 6dB gain  
Bit 3  
Always write '0'  
Bits[2:0]  
CH B TEST PATTERNS: Channel B data capture  
These bits verify data capture for channel B.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern.  
Output data D[13:0] are an alternating sequence of 10101010101010 and 01010101010101.  
100 = Outputs digital ramp.  
Output data increment by one LSB (14-bit) every clock cycle from code 0 to code 16383.  
101 = Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern  
110 = Unused  
111 = Unused  
7
0
6
0
5
4
0
3
0
2
0
1
0
0
0
ENABLE  
OFFSET CORR  
Bits[7:6]  
Bit 5  
Always write '0'  
ENABLE OFFSET CORR: Offset correction setting  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
This bit enables the offset correction.  
0 = Offset correction disabled  
1 = Offset correction enabled  
Bits[4:0]  
Always write '0'  
7
0
6
0
5
4
3
2
1
0
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D8  
PATTERN D13 PATTERN D12 PATTERN D11 PATTERN D10 PATTERN D9  
Bits[7:6]  
Bits[5:0]  
Always write '0'  
CUSTOM PATTERN D[13:8]  
These are the six upper bits of the custom pattern available at the output instead of ADC data.  
7
6
5
4
3
2
1
1
0
0
Bits[7:0]  
CUSTOM PATTERN D[7:0]  
These are the eight upper bits of the custom pattern available at the output instead of ADC data.  
7
6
5
4
3
0
2
0
LVDS CMOS  
CMOS CLKOUT STRENGTH  
DIS OBUF  
Bits[7:6]  
LVDS CMOS: Interface selection  
These bits select the interface.  
00 = DDR LVDS interface  
01 = DDR LVDS interface  
10 = DDR LVDS interface  
11 = Parallel CMOS interface  
Bits[5:4]  
CMOS CLKOUT STRENGTH  
These bits control the strength of the CMOS output clock.  
00 = Maximum strength (recommended)  
01 = Medium strength  
10 = Low strength  
11 = Very low strength  
Bits[3:2]  
Bits[1:0]  
Always write '0'  
DIS OBUF  
These bits power down data and clock output buffers for both the CMOS and LVDS output interface. When powered down,  
the output buffers are in 3-state.  
00 = Default  
01 = Power-down data output buffers for channel B  
10 = Power-down data output buffers for channel A  
11 = Power-down data output buffers for both channels as well as the clock output buffer  
7
6
5
4
3
2
0
1
0
0
0
CLKOUT FALL POSN  
CLKOUT RISE POSN  
EN DIGITAL  
Bits[7:6] CLKOUT FALL POSN  
In LVDS mode:  
00 = Default  
01 = The falling edge of the output clock advances by 450 ps  
10 = The falling edge of the output clock advances by 150 ps  
11 = The falling edge of the output clock is delayed by 550 ps  
In CMOS mode:  
00 = Default  
01 = The falling edge of the output clock is delayed by 150 ps  
10 = Do not use  
11 = The falling edge of the output clock advances by 100 ps  
Bits[5:6]  
CLKOUT RISE POSN  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
In LVDS mode:  
00 = Default  
01 = The rising edge of the output clock advances by 450 ps  
10 = The rising edge of the output clock advances by 150 ps  
11 = The rising edge of the output clock is delayed by 250 ps  
In CMOS mode:  
00 = Default  
01 = The rising edge of the output clock is delayed by 150 ps  
10 = Do not use  
11 = The rising edge of the output clock advances by 100 ps  
Bit 3  
EN DIGITAL: Digital function enable  
0 = All digital functions disabled  
1 = All digital functions (such as test patterns, gain, and offset correction) enabled  
Bits[2:0]  
Always write '0'  
7
6
5
4
0
3
0
2
1
0
0
0
LVDS CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
STBY  
PDN GLOBAL  
Bit 7  
Bit 6  
STBY: Standby setting  
0 = Normal operation  
1 = Both channels are put in standby; wakeup time from this mode is fast (typically 50µs).  
LVDS CLKOUT STRENGTH: LVDS output clock buffer strength setting  
0 = LVDS output clock buffer at default strength to be used with 100Ω external termination  
1 = LVDS output clock buffer has double strength to be used with 50Ω external termination  
Bit 5  
LVDS DATA STRENGTH  
0 = All LVDS data buffers at default strength to be used with 100Ω external termination  
1 = All LVDS data buffers have double strength to be used with 50Ω external termination  
Bits[4:3]  
Bit 2  
Always write '0'  
PDN GLOBAL  
0 = Normal operation  
1 = Total power down; all ADC channels, internal references, and output buffers are powered down. Wakeup time from this  
mode is slow (typically 100µs).  
Bits[1:0]  
Always write '0'  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH FREQ  
MODE CH B  
Bits[7:1]  
Bit 0  
Always write '0'  
HIGH FREQ MODE CH B: High-frequency mode for channel B  
0 = Default  
1 = Use this mode for high input frequencies  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH FREQ  
MODE CH A  
Bits[7:1]  
Bit 0  
Always write '0'  
HIGH FREQ MODE CH A: High-frequency mode for channel A  
0 = Default  
1 = Use this mode for high input frequencies  
7
6
5
4
3
2
1
0
0
0
CH A OFFSET PEDESTAL  
Bits[7:2]  
CH A OFFSET PEDESTAL: Channel A offset pedestal selection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
When the offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A  
pedestal can be added to the final converged value by programming these bits. See the Offset Correction section. Channels  
can be independently programmed for different offset pedestals by choosing the relevant register address.  
The pedestal ranges from 32 to +31, so the output code can vary from midcode-32 to midcode+32 by adding pedestal  
D7-D2.  
ADS4245 (Program Bits D[7:2])  
011111 = Midcode+31  
011110 = Midcode+30  
011101 = Midcode+29  
000000 = Midcode  
111111 = Midcode-1  
111110 = Midcode-2  
111101 = Midcode-3  
100000 = Midcode-32  
Bits[1:0]  
Always write '0'  
7
6
5
4
3
2
1
0
0
0
CH B OFFSET PEDESTAL  
Bits[7:2]  
CH B OFFSET PEDESTAL: Channel B offset pedestal selection  
When offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A  
pedestal can be added to the final converged value by programming these bits; see the Offset Correction section. Channels  
can be independently programmed for different offset pedestals by choosing the relevant register address.  
The pedestal ranges from 32 to +31, so the output code can vary from midcode-32 to midcode+32 by adding pedestal  
D[7:2].  
ADS424x (Program Bits D[7:2])  
011111 = Midcode+31  
011110 = Midcode+30  
011101 = Midcode+29  
000000 = Midcode  
111111 = Midcode-1  
111110 = Midcode-2  
111101 = Midcode-3  
100000 = Midcode-32  
Bits[1:0]  
Always write '0'  
7
6
0
5
4
3
2
1
0
0
0
FREEZE  
OFFSET CORR  
OFFSET CORR TIME CONSTANT  
Bit 7  
FREEZE OFFSET CORR: Freeze offset correction setting  
This bit sets the freeze offset correction estimation.  
0 = Estimation of offset correction is not frozen (the EN OFFSET CORR bit must be set)  
1 = Estimation of offset correction is frozen (the EN OFFSET CORR bit must be set); when frozen, the last estimated value  
is used for offset correction of every clock cycle. See the Offset Correction section.  
Bit 6  
Always write '0'  
Bits[5:2]  
OFFSET CORR TIME CONSTANT  
The offset correction loop time constant in number of clock cycles. Refer to the Offset Correction section.  
Bits[1:0]  
Always write '0'  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LOW SPEED  
MODE CH B  
Bits[7:1]  
Always write '0'  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
Bit 0  
LOW SPEED MODE CH B: Channel B low-speed mode enable  
This bit enables the low-speed mode for channel B. Set the EN LOW SPEED MODE bit to '1' before using this bit.  
0 = Low-speed mode is disabled for channel B  
1 = Low-speed mode is enabled for channel B  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
EN LOW  
SPEED MODE  
Bits[7:5]  
Bit 4  
Always write '0'  
EN LOW SPEED MODE: Enable control of low-speed mode through serial register bits (ADS42x5 and ADS42x6  
only)  
This bit enables the control of the low-speed mode using the LOW SPEED MODE CH B and LOW SPEED MODE CH A  
register bits.  
0 = Low-speed mode is disabled  
1 = Low-speed mode is controlled by serial register bits  
Bits[3:0]  
Always write '0'  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
EN LVDS SWING  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
EN LVDS SWING: LVDS swing enable  
These bits enable LVDS swing control using the LVDS SWING register bits.  
00 = LVDS swing control using the LVDS SWING register bits is disabled  
01 = Do not use  
10 = Do not use  
11 = LVDS swing control using the LVDS SWING register bits is enabled  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
LOW SPEED  
MODE CH A  
Bits[7:4]  
Bit 3  
Always write '0'  
LOW SPEED MODE CH A: Channel A low-speed mode enable  
This bit enables the low-speed mode for channel A. Set the EN LOW SPEED MODE bit to '1' before using this bit.  
0 = Low-speed mode is disabled for channel A  
1 = Low-speed mode is enabled for channel A  
Bits[2:0]  
Always write '0'  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The ADS4245 belongs to TI's ultralow-power family of dual-channel 14-bit analog-to-digital converters (ADCs).  
At every rising edge of the input clock, the analog input signal of each channel is simultaneously sampled. The  
sampled signal in each channel is converted by a pipeline of low-resolution stages. In each stage, the sampled/  
held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference between the stage input  
and the quantized equivalent is gained and propagates to the next stage. At every clock, each succeeding stage  
resolves the sampled input with greater accuracy. The digital outputs from all stages are combined in a digital  
correction logic block and digitally processed to create the final code after a data latency of 16 clock cycles. The  
digital output is available as either DDR LVDS or parallel CMOS and coded in either straight offset binary or  
binary twos complement format. The dynamic offset of the first stage sub-ADC limits the maximum analog input  
frequency to approximately 400MHz (with 2VPP amplitude) or approximately 600MHz (with 1VPP amplitude).  
8.1.1 Clock Input  
The ADS4245 clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to VCM  
using internal 5kΩ resistors. This setting allows the use of transformer-coupled drive circuits for sine-wave clock  
or ac-coupling for LVPECL and LVDS clock sources are shown in 8-1, 8-2 and 8-3. The internal clock  
buffer is shown in 8-4.  
0.1mF  
0.1mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100W  
0.1mF  
CLKM  
ADS42xx  
0.1mF  
Zo  
CLKM  
A. RT = termination resister, if necessary.  
ADS42xx  
8-1. Differential Sine-Wave Clock Driving Circuit  
8-2. LVDS Clock Driving Circuit  
0.1mF  
Zo  
CLKP  
150W  
Typical LVPECL  
Clock Input  
100W  
0.1mF  
Zo  
CLKM  
ADS42xx  
150W  
8-3. LVPECL Clock Driving Circuit  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
Clock Buffer  
LPKG  
2nH  
20W  
CLKP  
CBOND  
1pF  
CEQ  
CEQ  
5kW  
5kW  
RESR  
100W  
2pF  
VCM  
LPKG  
2nH  
20W  
CLKM  
CBOND  
1pF  
RESR  
100W  
NOTE: CEQ is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.  
8-4. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a  
0.1μF capacitor, as shown in 8-5. For best performance, the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, it is recommended to  
use a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1mF  
CMOS  
Clock Input  
CLKP  
VCM  
0.1mF  
CLKM  
ADS42xx  
8-5. Single-Ended Clock Driving Circuit  
8.2 Typical Applications  
8.2.1 Analog Input  
The analog input consists of a switched-capacitor based, differential sample-and-hold (S/H) architecture. This  
differential topology results in very good ac performance even for high input frequencies at high sampling rates.  
The INP and INM terminals must be externally biased around a common-mode voltage of 0.95V, available on the  
VCM terminal. For a full-scale differential input, each input terminal (INP and INM) must swing symmetrically  
between VCM + 0.5V and VCM 0.5V, resulting in a 2VPP differential input swing. The input sampling circuit  
has a high 3dB bandwidth that extends up to 550MHz (measured from the input terminals to the sampled  
voltage). 8-6 shows an equivalent circuit for the analog input.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS4245-EP  
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
Sampling  
Switch  
LPKG  
2nH  
Sampling  
Capacitor  
10W  
RCR Filter  
INP  
RON  
CBOND  
1pF  
CPAR2  
1pF  
CSAMP  
2pF  
100W  
15W  
RESR  
3pF  
200W  
CPAR1  
0.5pF  
RON  
10W  
3pF  
LPKG  
2nH  
CSAMP  
2pF  
100W  
RON  
10W  
15W  
INM  
CBOND  
1pF  
CPAR2  
1pF  
Sampling  
Capacitor  
RESR  
Sampling  
Switch  
200W  
8-6. Analog Input Equivalent Circuit  
8.2.1.1 Design Requirements for Drive Circuits  
For optimum performance, the analog inputs must be driven differentially. This operation improves the common-  
mode noise immunity and even-order harmonic rejection. A 5Ω to 15Ω resistor in series with each input terminal  
is recommended to damp out ringing caused by package parasitics.  
SFDR performance can be limited as a result of several reasons, including the effects of sampling glitches;  
nonlinearity of the sampling circuit; and nonlinearity of the quantizer that follows the sampling circuit. Depending  
on the input frequency, sample rate, and input amplitude, one of these factors plays a dominant part in limiting  
performance. At very high input frequencies (greater than approximately 300MHz), SFDR is determined largely  
by the device sampling circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity usually limits  
performance.  
Glitches are caused by the opening and closing of the sampling switches. The driving circuit should present a  
low source impedance to absorb these glitches. Otherwise, glitches could limit performance, primarily at low  
input frequencies (up to approximately 200MHz). It is also necessary to present low impedance (less than 50Ω)  
for the common-mode switching currents. This configuration can be achieved by using two resistors from each  
input terminated to the common-mode voltage (VCM).  
The device includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the  
sampling glitches inside the device itself. The cutoff frequency of the R-C filter involves a trade-off. A lower cutoff  
frequency (larger C) absorbs glitches better, but it reduces the input bandwidth. On the other hand, with a higher  
cutoff frequency (smaller C), bandwidth support is maximized. However, the sampling glitches now must be  
supplied by the external drive circuit. This tradeoff has limitations as a result of the presence of the package  
bond-wire inductance.  
In the ADS4245, the R-C component values have been optimized while supporting high input bandwidth (up to  
550MHz). However, in applications with input frequencies up to 200MHz to 300MHz, the filtering of the glitches  
can be improved further using an external R-C-R filter; see 8-7 and 8-8.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Two example driving circuit configurations are shown in 8-7 and 8-8one optimized for low bandwidth (low  
input frequencies) and the other one for high bandwidth to support higher input frequencies. Note that both of the  
drive circuits have been terminated by 50Ω near the ADC side. The termination is accomplished by a 25Ω  
resistor from each input to the 1.5V common-mode (VCM) from the device. This architecture allows the analog  
inputs to be biased around the required common-mode voltage.  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch;  
good performance is obtained for high-frequency input signals. An additional termination resistor pair may be  
required between the two transformers, as shown in 8-7, 8-8, and 8-9. The center point of this  
termination is connected to ground to improve the balance between the P and M sides. The values of the  
terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω (in  
the case of 50Ω source impedance).  
0.1mF  
15W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
25W  
0.1mF  
3.3pF  
25W  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
15W  
0.1mF  
ADS42xx  
8-7. Drive Circuit With Low Bandwidth (For Low Input Frequencies Less Than 150MHz)  
0.1mF  
5W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
50W  
0.1mF  
3.3pF  
50W  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
5W  
0.1mF  
ADS42xx  
8-8. Drive Circuit With High Bandwidth (For High Input Frequencies Greater Than 150MHz And Less  
Than 270MHz)  
0.1mF  
5W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
0.1mF  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
5W  
0.1mF  
ADS42xx  
8-9. Drive Circuit With Very High Bandwidth (Greater Than 270MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS4245-EP  
 
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
All of these examples show 1:1 transformers being used with a 50Ω source. As explained in the Drive Circuit  
Requirements section, this configuration helps to present a low source impedance to absorb the sampling  
glitches. With a 1:4 transformer, the source impedance is 200Ω. The higher source impedance is unable to  
absorb the sampling glitches effectively and can lead to degradation in performance (compared to using 1:1  
transformers).  
In almost all cases, either a band-pass or low-pass filter is required to obtain the desired dynamic performance,  
as shown in 8-10. Such filters present low source impedance at the high frequencies corresponding to the  
sampling glitch and help avoid the performance loss with the high source impedance.  
5W  
INx_P  
T1  
100W  
Band-Pass  
or  
0.1mF  
0.1mF  
Differential  
Input Signal  
RIN  
CIN  
Low-Pass  
Filter  
100W  
INx_M  
VCM  
1:4  
5W  
ADS42xx  
8-10. Drive Circuit With A 1:4 Transformer  
8.2.1.3 Application Curves  
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency  
range and matched impedance to the source. Furthermore, the ADC input impedance must be considered. 图  
8-11 and 8-12 show the impedance (ZIN = RIN || CIN) looking into the ADC input terminals.  
100  
5
4.5  
4
10  
3.5  
3
1
2.5  
2
0.1  
0.01  
1.5  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Input Frequency (GHz)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Input Frequency (GHz)  
1
8-11. ADC Analog Input Resistance (RIN) Across  
8-12. ADC Analog Input Capacitance (CIN)  
Frequency  
Across Frequency  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The recommended analog/digital power supply range for ADS4245 is 1.7V to 1.9V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS4245-EP  
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the ADS4226 Evaluation Module (SLAU333) for details on layout and  
grounding.  
10.1.2 Supply Decoupling  
Because the ADS4245 already includes internal decoupling, minimal external decoupling can be used without  
loss in performance. Note that decoupling capacitors can help filter external power-supply noise; thus, the  
optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed  
very close to the converter supply terminals.  
10.1.3 Exposed Pad  
In addition to providing a path for heat dissipation, the PowerPAD is also electrically connected internally to the  
digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and  
electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and  
QFN/SON PCB Attachment (SLUA271).  
10.1.4 Routing Analog Inputs  
It is advisable to route differential analog input pairs (INP_x and INM_x) close to each other. To minimize the  
possibility of coupling from a channel analog input to the sampling clock, the analog input pairs of both channels  
should be routed perpendicular to the sampling clock. See the ADS4226 Evaluation Module (SLAU333) for  
reference routing.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
10.2 Layout Example  
10-1 shows a snapshot of the PCB layout from the ADS424x EVM.  
10-1. ADS42XX EVM PCB Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Support  
11.1.1.1 Definition Of Specifications  
Analog Bandwidth The analog input frequency at which the power of the fundamental is reduced by 3 dB  
with respect to the low-frequency value.  
Aperture Delay The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle The duty cycle of a clock signal is the ratio of the time the clock signal  
remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate The maximum sampling rate at which specified operation is given. All  
parametric testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) An ideal ADC exhibits code transitions at analog input values spaced exactly  
1LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) The INL is the deviation of the ADC transfer function from a best fit line  
determined by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy (EGREF) and error as a result of the channel (EGCHAN). Both errors are specified  
independently as EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into  
millivolts.  
Temperature Drift The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum  
deviation of the parameter across the TMIN to TMAX range by the difference TMAX TMIN  
.
Signal-to-Noise Ratio SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(1)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the power of the fundamental (PS) to the  
power of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
PS  
SINAD = 10Log10  
PN + PD  
(2)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Effective Number of Bits (ENOB) ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(3)  
Total Harmonic Distortion (THD) THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(4)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 f2 or 2f2 f1. IMD3 is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR) DC PSSR is the ratio of the change in offset error to a  
change in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR) AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the  
ADC output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(5)  
Voltage Overload Recovery The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6 dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR) CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input terminals and  
ΔVOUT is the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(6)  
Crosstalk (only for multi-channel ADCs) This is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. It is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS4245-EP  
ADS4245-EP  
ZHCSCA6B APRIL 2014 REVISED OCTOBER 2020  
www.ti.com.cn  
measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. It is typically expressed in dBc.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
PowerPADis a trademark of Texas Instruments Incorporated.  
TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS4245-EP  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS4245MRGC25EP  
V62/14609-01XE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
AZ4245EP  
AZ4245EP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064H  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
7.4 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219011/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(3.45) TYP  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(1.16) TYP  
(3.45) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219011/A 05/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(0.58)  
36X ( 0.96)  
33  
16  
17  
32  
(0.58)  
(1.16)  
TYP  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
61% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219011/A 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS4245IRGC25

14 bit 125MSPS Dual Low Power ADC 64-VQFN -40 to 85
TI

ADS4245IRGCR

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4245IRGCT

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4245MRGC25EP

双通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | RGC | 64 | -55 to 125
TI

ADS4246

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4246IRGC25

Programmable Gain up to 6dB for SNR/SFDR Trade-off
TI

ADS4246IRGCR

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4246IRGCT

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4249

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4249IRGC25

14-Bit 250MSPS Dual Low Power ADC 64-VQFN -40 to 85
TI

ADS4249IRGCR

Dual-Channel, 14-Bit, 250-MSPS Ultralow-Power ADC
TI

ADS4249IRGCT

Dual-Channel, 14-Bit, 250-MSPS Ultralow-Power ADC
TI