ADS42JB46IRGC25 [TI]

Dual-Channel, 14-Bit, 160-MSPS Analog-to-Digital Converter;
ADS42JB46IRGC25
型号: ADS42JB46IRGC25
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual-Channel, 14-Bit, 160-MSPS Analog-to-Digital Converter

转换器
文件: 总70页 (文件大小:4357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters  
Check for Samples: ADS42JB49, ADS42JB69  
1
FEATURES  
APPLICATIONS  
2
Dual-Channel ADCs  
Communication and Cable Infrastructure  
14- and 16-Bit Resolution  
Maximum Clock Rate: 250 MSPS  
JESD204B Serial Interface  
Multi-Carrier, Multimode Cellular Receivers  
Radar and Smart Antenna Arrays  
Broadband Wireless  
Subclass 0, 1, 2 Compliant  
Up to 3.125 Gbps  
Test and Measurement Systems  
Software-Defined and Diversity Radios  
Microwave and Dual-Channel I/Q Receivers  
Repeaters  
Two and Four Lanes Support  
Analog Input Buffer with High-Impedance Input  
Flexible Input Clock Buffer:  
Divide-by-1, -2, and -4  
Power Amplifier Linearization  
DESCRIPTION  
Differential Full-Scale Input: 2 VPP and 2.5 VPP  
(Register Programmable)  
The ADS42JB69 and ADS42JB49 are high-linearity,  
dual-channel, 16- and 14-bit, 250-MSPS, analog-to-  
digital converters (ADCs). These devices support the  
JESD204B serial interface with data rates up to  
3.125 Gbps. The buffered analog input provides  
uniform input impedance across a wide frequency  
range while minimizing sample-and-hold glitch energy  
making it easy to drive analog inputs up to very high  
input frequencies. A sampling clock divider allows  
more flexibility for system clock architecture design.  
The devices employ internal dither algorithms to  
provide excellent spurious-free dynamic range  
(SFDR) over a large input frequency range.  
Package: 9-mm × 9-mm QFN-64  
Power Dissipation: 850 mW/Ch  
Aperture Jitter: 85 fS rms  
Internal Dither  
Channel Isolation: 100 dB  
Performance:  
fIN = 170 MHz at 2 VPP, –1 dBFS  
SNR: 73.3 dBFS  
SFDR: 93 dBc for HD2, HD3  
SFDR: 100 dBc for Non HD2, HD3  
RELATED PRODUCTS  
fIN = 170 MHz at 2.5 VPP, –1 dBFS  
INTERFACE  
OPTION  
14-BIT,  
160 MSPS  
14-BIT,  
250 MSPS  
16-BIT,  
250 MSPS  
SNR: 74.7 dBFS  
SFDR: 89 dBc for HD2, HD3 and  
95 dBc for Non HD2, HD3  
DDR,  
QDR LVDS  
ADS42LB49  
ADS42JB49  
ADS42LB69  
ADS42JB69  
JESD204B  
ADS42JB46  
Device  
FFT for 170MHz Input Signal  
OVRA  
Digital  
Block  
0
DA0P,  
DA0M  
INAP,  
14-, 16-Bit  
Fs = 250Msps  
JESD204B  
Digital  
ADC  
Gain  
INAM  
Fin= 170MHz  
Ain =-1dBFS  
HD2 = 90dBc  
HD3 = 89dBc  
DA1P,  
DA1M  
Test Modes  
-20  
-40  
CLKINP,  
CLKINM  
Divide  
by 1, 2, 4  
PLL  
x10, x20  
SYNCP,  
SYNCM  
Non HD2,3 = 100dBc  
SYSREFP,  
SYSREFM  
Delay  
-60  
DB0P,  
DB0M  
Digital  
Block  
JESD204B  
Digital  
INBP,  
INBM  
14-, 16-Bit  
ADC  
DB1P,  
DB1M  
-80  
Gain  
Test Modes  
OVRB  
Common  
Mode  
-100  
-120  
Device Configuration  
VCM  
0
25  
50  
75  
100  
125  
Frequency(MHz)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
PRODUCT  
ADS42JB49(2)  
ADS42JB69  
PACKAGE-LEAD  
PACKAGE DESIGNATOR  
SPECIFIED TEMPERATURE RANGE  
–40°C to +85°C  
QFN-64  
RGC  
RGC  
QFN-64  
–40°C to +85°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
(2) Product preview device.  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range, unless otherwise noted.  
VALUE  
–0.3 to 3.6  
UNIT  
AVDD3V  
AVDD  
V
V
V
V
V
V
V
V
V
–0.3 to 2.1  
Supply voltage range  
DRVDD  
IOVDD  
–0.3 to 2.1  
–0.3 to 2.1  
Voltage between AGND and DGND  
–0.3 to 0.3  
INAP, INBP, INAM, INBM  
CLKINP, CLKINM  
–0.3 to 3  
–0.3 to minimum (2.1, AVDD + 0.3)  
–0.3 to minimum (2.1, AVDD + 0.3)  
–0.3 to minimum (2.1, AVDD + 0.3)  
SYNC~P, SYNC~M  
SYSREFP, SYSREFM  
Voltage applied to input pins  
Temperature range  
SCLK, SEN, SDATA, RESET, PDN_GBL,  
CTRL1, CTRL2, STBY, MODE  
–0.3 to 3.9  
V
Operating free-air, TA  
Operating junction, TJ  
Storage, Tstg  
–40 to +85  
+125  
°C  
°C  
°C  
kV  
–65 to +150  
2
Electrostatic discharge (ESD) rating Human body model (HBM)  
THERMAL INFORMATION  
ADS42JB49,  
ADS42JB69  
THERMAL METRIC(1)  
UNITS  
RGC (QFN)  
64 PINS  
22.9  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
7.1  
2.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.5  
θJCbot  
0.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
RECOMMENDED OPERATING CONDITIONS(1)  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
MIN NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
1.7  
3.15  
1.7  
1.8  
3.3  
1.8  
1.8  
1.9  
3.45  
1.9  
V
V
V
V
AVDD3V  
DRVDD  
Analog buffer supply voltage  
Digital supply voltage  
IOVDD  
Output buffer supply voltage  
1.7  
1.9  
ANALOG INPUTS  
Default after reset  
Register programmable(2)  
2
VPP  
VPP  
V
VID  
Differential input voltage range  
Input common-mode voltage  
2.5  
VICR  
VCM ± 0.025  
250  
Maximum analog input frequency with 2.5-VPP input amplitude  
Maximum analog input frequency with 2-VPP input amplitude  
MHz  
MHz  
400  
CLOCK INPUT  
10x mode  
Input clock sample rate  
60  
40  
250  
MSPS  
MSPS  
VPP  
20x mode  
156.25  
Sine wave, ac-coupled  
0.3(3)  
35%  
–40  
1.5  
1.6  
LVPECL, ac-coupled  
VPP  
Input clock amplitude differential  
(VCLKP – VCLKM  
)
LVDS, ac-coupled  
0.7  
VPP  
LVCMOS, single-ended, ac-coupled  
1.5  
V
Input clock duty cycle  
DIGITAL OUTPUTS  
50%  
65%  
+85  
CLOAD  
RLOAD  
TA  
Maximum external load capacitance from each output pin to DRGND  
Single-ended load resistance  
3.3  
pF  
Ω
+50  
Operating free-air temperature  
°C  
(1) After power-up, to reset the device for the first time, use the RESET pin only. Refer to the Register Initialization section.  
(2) For details, refer to the Digital Gain section.  
(3) Refer to the Performance vs Clock Amplitude curves, Figure 32 and Figure 33.  
Table 1. High-Frequency Modes Summary  
REGISTER  
ADDRESS  
VALUE  
90h  
DESCRIPTION  
Dh  
Eh  
High-frequency modes should be enabled for input frequencies greater than 250 MHz.  
High-frequency modes should be enabled for input frequencies greater than 250 MHz.  
90h  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS42JB69 (16-Bit)  
Typical values are at TA = +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, 50% clock duty cycle,  
–1-dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values  
are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V,  
and IOVDD = 1.8 V.  
2-VPP FULL-SCALE  
2.5-VPP FULL-SCALE  
PARAMETER  
TEST CONDITIONS  
UNITS  
MIN  
TYP  
74  
MAX  
MIN  
TYP  
75.9  
75.6  
74.7  
74  
MAX  
fIN = 10 MHz  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
73.8  
73.3  
72.6  
73.9  
73.7  
73.2  
72.2  
95  
SNR  
Signal-to-noise ratio  
70.8  
75.7  
75.3  
74.5  
73.1  
90  
SINAD Signal-to-noise and distortion ratio  
69.6  
81  
Spurious-free dynamic range  
SFDR (including second and third  
harmonic distortion)  
91  
88  
dBc  
93  
89  
dBc  
84  
82  
dBc  
92  
88  
dBc  
89  
86  
dBc  
THD  
HD2  
HD3  
Total harmonic distortion  
78  
91  
86  
dBc  
82  
80  
dBc  
95  
95  
dBc  
91  
88  
dBc  
2nd-order harmonic distortion  
3rd-order harmonic distortion  
81  
93  
94  
dBc  
84  
82  
dBc  
95  
90  
dBc  
96  
93  
dBc  
81  
94  
89  
dBc  
86  
84  
dBc  
102  
103  
100  
99  
102  
103  
95  
dBc  
Worst spur  
(other than second and third  
harmonics)  
dBc  
87  
dBc  
93  
dBc  
f1 = 46 MHz, f2 = 50 MHz,  
each tone at –7 dBFS  
97  
90  
95  
89  
dBFS  
dBFS  
Two-tone intermodulation  
distortion  
IMD  
f1 = 185 MHz, f2 = 190 MHz,  
each tone at –7 dBFS  
20-MHz, full-scale signal on  
channel under observation;  
170-MHz, full-scale signal on  
other channel  
Crosstalk  
100  
100  
dB  
Recovery to within 1% (of full-  
scale) for 6-dB overload with sine-  
wave input  
Clock  
cycle  
Input overload recovery  
1
1
For 50-mVPP signal on AVDD  
supply, up to 10 MHz  
PSRR AC power-supply rejection ratio  
ENOB Effective number of bits  
> 40  
> 40  
dB  
fIN = 170 MHz  
fIN = 170 MHz  
fIN = 170 MHz  
11.9  
±0.6  
±3  
12.1  
±0.6  
±3.5  
LSBs  
LSBs  
LSBs  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
±8  
4
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
ELECTRICAL CHARACTERISTICS: ADS42JB49 (14-Bit)  
Typical values are at TA = +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, 50% clock duty cycle,  
–1-dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values  
are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V,  
and IOVDD = 1.8 V.  
2-VPP FULL-SCALE  
2.5-VPP FULL-SCALE  
PARAMETER  
TEST CONDITIONS  
UNITS  
MIN  
TYP  
73.4  
73.2  
72.7  
72.2  
73.3  
73.1  
72.7  
71.8  
95  
MAX  
MIN  
TYP  
75  
MAX  
fIN = 10 MHz  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
74.7  
74  
SNR  
Signal-to-noise ratio  
69.5  
73.4  
74.8  
74.5  
73.8  
72.6  
90  
SINAD Signal-to-noise and distortion ratio  
68.5  
79  
Spurious-free dynamic range  
SFDR (including second and third  
harmonic distortion)  
91  
88  
dBc  
93  
89  
dBc  
84  
82  
dBc  
92  
88  
dBc  
89  
86  
dBc  
THD  
HD2  
HD3  
Total harmonic distortion  
76  
90  
86  
dBc  
82  
80  
dBc  
95  
95  
dBc  
91  
88  
dBc  
2nd-order harmonic distortion  
3rd-order harmonic distortion  
79  
93  
94  
dBc  
84  
82  
dBc  
95  
90  
dBc  
96  
93  
dBc  
79  
94  
89  
dBc  
86  
84  
dBc  
102  
103  
101  
99  
102  
103  
95  
dBc  
Worst spur  
(other than second and third  
harmonics)  
dBc  
87  
dBc  
93  
dBc  
f1 = 46 MHz, f2 = 50 MHz,  
each tone at –7 dBFS  
97  
90  
95  
89  
dBFS  
dBFS  
Two-tone intermodulation  
distortion  
IMD  
f1 = 185 MHz, f2 = 190 MHz,  
each tone at –7 dBFS  
20-MHz, full-scale signal on  
channel under observation;  
170-MHz, full-scale signal on  
other channel  
Crosstalk  
100  
100  
dB  
Recovery to within 1% (of full-  
scale) for 6-dB overload with sine-  
wave input  
Clock  
cycle  
Input overload recovery  
1
1
For a 50-mVPP signal on AVDD  
supply, up to 10 MHz  
PSRR AC power-supply rejection ratio  
ENOB Effective number of bits  
> 40  
> 40  
dB  
fIN = 170 MHz  
fIN = 170 MHz  
fIN = 170 MHz  
11.8  
±0.15  
±0.75  
12  
±0.15  
±0.9  
LSBs  
LSBs  
LSBs  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
±2  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS: GENERAL  
Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, 50% clock duty cycle, –1-  
dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values are  
across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, and  
IOVDD = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Default (after reset)  
Register programmed(1)  
2
2.5  
1.2  
4
VPP  
VPP  
kΩ  
Differential input voltage  
range  
VID  
Differential input resistance (at 170 MHz)  
Differential input capacitance (at 170 MHz)  
pF  
With 50-Ω source impedance, and 50-Ω  
termination  
Analog input bandwidth  
900  
MHz  
VCM  
Common-mode output voltage  
VCM output current capability  
1.9  
10  
V
mA  
DC ACCURACY  
Offset error  
–20  
20  
mV  
Gain error as a result of  
internal reference inaccuracy  
alone  
EGREF  
±2  
%FS  
EGCHAN  
Gain error of channel alone  
–5  
%FS  
Temperature coefficient of  
EGCHAN  
0.01  
Δ%/°C  
POWER SUPPLY  
IAVDD  
Analog supply current  
128  
290  
228  
160  
330  
252  
mA  
mA  
mA  
IAVDD3V  
IDRVDD  
Analog buffer supply current  
Digital supply current  
50-Ω external termination from pin to IOVDD,  
fIN = 2.5 MHz  
IOVDD  
Output buffer supply current  
60  
100  
mA  
Analog power  
231  
957  
410  
mW  
mW  
mW  
Analog buffer power  
Digital power  
Power consumption by output 50-Ω external termination from pin to IOVDD,  
109  
1.7  
mW  
buffer  
fIN = 2.5 MHz  
Total power  
Global power-down  
1.96  
160  
W
mW  
(1) Refer to the Serial Interface section.  
6
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TIMING CHARACTERISTICS  
Typical values are at +25°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, 50% clock duty cycle, –1-  
dBFS differential analog input, and sampling rate = 250 MSPS, unless otherwise noted. Minimum and maximum values are  
across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, and  
IOVDD = 1.8 V. See Figure 1.  
PARAMETER  
SAMPLE TIMING CHARACTERISTICS  
Aperture delay  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.4  
0.7  
1.1  
ns  
ps  
Between two channels on the same device  
±70  
Aperture delay matching  
Between two devices at the same temperature and supply  
voltage  
±150  
ps  
Aperture jitter  
Wake-up time  
85  
50  
fS rms  
µs  
Time to valid data after coming out of STANDBY mode  
Time to valid data after coming out of global power-down  
Referenced to input clock rising edge  
200  
250  
1000  
µs  
tSU_SYNC~  
tH_SYNC~  
tSU_SYSREF  
tH_SYSREF  
Setup time for SYNC~  
Hold time for SYNC~  
Setup time for SYSREF  
Hold time for SYSREF  
400  
100  
400  
100  
ps  
Referenced to input clock rising edge  
ps  
Referenced to input clock rising edge  
ps  
Referenced to input clock rising edge  
ps  
CML OUTPUT TIMING CHARACTERISTICS  
Unit interval  
320  
1667  
ps  
Serial output data rate  
3.125  
Gbps  
P-PUI  
P-PUI  
2.5 Gbps (10x mode, fS = 250 MSPS)  
0.28  
0.3  
Total jitter  
3.125 Gbps (20x mode, fS = 156.25 MSPS)  
Rise and fall times measured from 20% to 80%,  
differential output waveform,  
600 Mbps bit rate 3.125 Gbps  
Data rise time,  
data fall time  
tR, tF  
105  
ps  
Table 2. Latency in Different Modes(1)(2)  
MODE  
PARAMETER  
LATENCY (N Cycles)  
TYPICAL DATA DELAY (tD, ns)  
ADC latency  
23  
14  
9
0.65 × tS + 3  
6.7  
Normal OVR latency  
10x  
Fast OVR latency  
6.7  
from SYNC~ falling edge to CGS phase(3)  
from SYNC~ rising edge to ILA sequence(4)  
16  
25  
0.65 × tS + 3  
0.65 × tS + 3  
ADC latency  
22  
14  
9
0.85 × tS + 3  
6.7  
Normal OVR latency  
20x  
Fast OVR latency  
6.7  
from SYNC~ falling edge to CGS phase(3)  
from SYNC~ rising edge to ILA sequence(4)  
15  
16  
0.85 × tS + 3  
0.85 × tS + 3  
(1) Overall latency = latency + tD.  
(2) tS is the time period of the ADC conversion clock.  
(3) Latency is specified for subclass 2. In subclass 0, the SYNC~ falling edge to CGS phase latency is 16 clock cycles in 10x mode and 15  
clock cycles in 20x mode.  
(4) Latency is specified for subclass 2. In subclass 0, the SYNC~ rising edge to ILA sequence latency is 11 clock cycles in 10x mode and  
11 clock cycles in 20x mode.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TIMING DIAGRAMS  
N + Latency + 2  
N + 4  
N + 3  
N + Latency + 1  
N + Latency  
N + 2  
Sample  
N
N + 1  
tA  
CLKP  
CLKM  
Input  
Clock  
ADC Latency(1)  
tD  
Dx0P, Dx0M(2)  
N - Latency-1  
N + Latency  
N - Latency+1 N - Latency+2 N - Latency+3  
N - Latency+1 N - Latency+2 N - Latency+3  
Figure 1. ADC Latency  
N - 1  
N
N + 1  
N + 1  
Dx1P, Dx1M(2)  
N - Latency-1  
N + Latency  
N - 1  
N
N + 1  
N + 1  
(1) Overall latency = ADC latency + tD.  
(2) x = A for channel A and B for channel B.  
CLKINP  
Input  
Clock  
CLKINM  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Asserted Latency  
CGS Phase  
Dx0P, Dx0M(1)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
K28.5  
K28.5  
Dx1P, Dx1M(1)  
Data  
(1) x = A for channel A and B for channel B.  
Figure 2. SYNC~ Latency in CGS Phase (Two-Lane Mode)  
8
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TIMING DIAGRAMS (continued)  
CLKINP  
Input  
Clock  
CLKINM  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Deasserted Latency  
ILA Sequence  
Dx0P, Dx0M(1)  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.0  
K28.0  
K28.0  
K28.0  
Dx1P, Dx1M(1)  
K28.5  
(1) x = A for channel A and B for channel B.  
Figure 3. SYNC~ Latency in ILAS Phase (Two-Lane Mode)  
Sample N  
Sample N  
tSU_SYSREF  
tSU_SYNC~  
tH_SYSREF  
tH_SYNC~  
CLKIN  
CLKIN  
SYSREF  
SYNC~  
Figure 4. SYSREF Timing (Subclass 1)  
Figure 5. SYNC~ Timing (Subclass 2)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
DIGITAL CHARACTERISTICS  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level '0' or '1'. AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, and IOVDD = 1.8 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDATA, PDN_GBL, STBY, CTRL1, CTRL2, MODE)(1)  
All digital inputs support 1.8-V and 3.3-V logic  
High-level input voltage  
levels  
1.2  
V
All digital inputs support 1.8-V and 3.3-V logic  
Low-level input voltage  
levels  
0.4  
V
SEN  
0
10  
10  
0
µA  
µA  
µA  
µA  
High-level input current  
Low-level input current  
RESET, SCLK, SDATA, PDN_GBL, STBY,  
CTRL1, CTRL2, MODE  
SEN  
RESET, SCLK, SDATA, PDN_GBL, STBY,  
CTRL1, CTRL2, MODE  
DIGITAL INPUTS (SYNC~P, SYNC~M, SYSREFP, SYSREFM)  
High-level input voltage  
1.3  
0.5  
0.9  
V
V
V
Low-level input voltage  
VCM_DIG  
Input common-mode voltage  
DIGITAL OUTPUTS (SDOUT, OVRA, OVRB)  
DRVDD  
– 0.1  
High-level output voltage  
DRVDD  
V
V
Low-level output voltage  
DIGITAL OUTPUTS (JESD204B Interface: DA[0,1], DB[0,1])(2)  
High-level output voltage  
0.1  
IOVDD  
V
V
V
V
Low-level output voltage  
IOVDD – 0.4  
0.4  
|VOD  
|
Output differential voltage  
VOCM  
Output common-mode voltage  
IOVDD – 0.2  
Transmitter terminals shorted to any voltage  
between –0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) RESET, SCLK, SDATA, PDN_GBL, STBY, CTRL1, CTRL2 and MODE pins have 150-kΩ (typical) internal pull-down resistor to ground,  
while SEN pin has 150-kΩ (typical) pull-up resistor to AVDD.  
(2) 50-Ω, single-ended external termination to IOVDD.  
10  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
PINOUT INFORMATION  
RGC PACKAGE  
QFN-64  
(Top View)  
DGND  
DRVDD  
DGND  
1
2
48 DGND  
47 DRVDD  
46 DGND  
45 SDOUT  
44 RESET  
43 SCLK  
42 SDATA  
41 SEN  
3
MODE  
STBY  
4
5
6
PDN_GBL  
DRVDD  
SYNC~M  
SYNC~P  
CTRL2  
AVDD  
7
8
Thermal Pad  
9
40 AVDD  
39 CTRL1  
38 AVDD  
37 AGND  
36 INAP  
10  
11  
12  
13  
14  
15  
16  
AGND  
INBP  
35 INAM  
34 AGND  
33 AVDD  
INBM  
AGND  
AVDD  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
PIN ASSIGNMENTS: JESD204B Output Interface  
NAME  
PIN NO.  
I/O  
FUNCTION  
DESCRIPTION  
12, 15, 19, 20,  
23, 26, 28, 34,  
37  
AGND  
I
Supply  
Analog ground  
11, 16, 18, 22,  
27, 31, 33, 38,  
40  
AVDD  
I
Supply  
1.8-V analog power supply  
AVDD3V  
CLKINM  
CLKINP  
CTRL1  
17, 32  
24  
I
I
Supply  
Clock  
3.3-V analog supply for analog buffer  
Differential ADC clock input  
25  
I
Clock  
Differential ADC clock input  
39  
I
Control  
Control  
Interface  
Interface  
Interface  
Interface  
Power-down control with an internal 150-kΩ pull-down resistor  
Power-down control with an internal 150-kΩ pull-down resistor  
JESD204B serial data output for channel A, lane 0  
JESD204B serial data output for channel A, lane 1  
JESD204B serial data output for channel B, lane 0  
JESD204B serial data output for channel B, lane 1  
CTRL2  
10  
I
DA0P/M  
DA1P/M  
DB0P/M  
DB1P/M  
54, 53  
52,51  
56,57  
58,59  
O
O
O
O
1, 3, 46, 48,  
50, 63  
DGND  
I
I
Supply  
Supply  
Digital ground  
2, 7, 47, 49,  
60, 64  
DRVDD  
Digital 1.8-V power supply  
INAM  
INAP  
35  
36  
14  
13  
55  
4
I
Input  
Input  
Differential analog input for channel A  
I
Differential analog input for channel A  
INBM  
I
Input  
Differential analog input for channel B  
INBP  
I
Input  
Differential analog input for channel B  
IOVDD  
MODE  
I
Supply  
Control  
Interface  
Interface  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
Interface  
Interface  
Clock  
Digital 1.8-V power supply for the JESD204B transmitter  
Connect to GND  
I
OVRA  
61  
62  
6
O
Overrange indication channel A in CMOS output format.  
Overrange indication channel B in CMOS output format.  
OVRB  
O
PDN_GBL  
RESET  
SCLK  
I
Global power down. Active high with an internal 150-kΩ pull-down resistor.  
Hardware reset; active high. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data output  
44  
43  
42  
45  
41  
5
I
I
SDATA  
SDOUT  
SEN  
I
O
I
Serial interface enable. This pin has an internal 150-kΩ pull-up resistor.  
Standby. Active high with an internal 150-kΩ pull-down resistor.  
Synchronization input for JESD204B port  
STBY  
I
SYNC~P  
SYNC~M  
SYSREFM  
SYSREFP  
VCM  
9
I
8
I
Synchronization input for JESD204B port  
30  
29  
21  
65  
I
I
External SYSREF input (subclass 1)  
Clock  
External SYSREF input (subclass 1)  
O
Output  
Ground  
1.9-V common-mode output voltage for analog inputs  
Connect to ground plane  
Thermal Pad  
GND  
12  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB69  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
fIN = 10 MHz  
fIN = 170 MHz  
SFDR = 96 dBc  
SNR = 74 dBFS  
SINAD = 73.9 dBFS  
THD = 94 dBc  
SFDR = 88 dBc  
SNR = 73.3 dBFS  
SINAD = 73 dBFS  
THD = 87 dBc  
−20  
−20  
SFDR Non HD2, HD3  
SFDR Non HD2, HD3  
= 102 dBc  
= 101 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 6. FFT FOR 10-MHz INPUT SIGNAL  
Figure 7. FFT FOR 170-MHz INPUT SIGNAL  
0
−20  
0
−20  
fIN = 300 MHz  
fIN = 10 MHz  
SFDR = 74 dBc  
SNR = 72.4 dBFS  
SINAD = 69.9 dBFS  
THD = 73 dBc  
SFDR Non HD2,HD3  
= 96  
SFDR = 90 dBc  
SNR = 75.8 dBFS  
SINAD = 75.7 dBFS  
THD = 89 dBc  
SFDR Non HD2, HD3  
= 105 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G003  
G004  
Figure 8. FFT FOR 300-MHz INPUT SIGNAL  
Figure 9. FFT FOR 10-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
fIN = 170 MHz  
fIN = 300 MHz  
SFDR = 87 dBc  
SNR = 74.7 dBFS  
SINAD = 74.4 dBFS  
THD = 84 dBc  
SFDR = 71 dBc  
SNR = 73.4 dBFS  
SINAD = 69 dBFS  
THD = 70 dBc  
−20  
−20  
SFDR Non HD2, HD3  
SFDR Non HD2, HD3  
= 94 dBc  
= 94 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 10. FFT FOR 170-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
Figure 11. FFT FOR 300-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
0
−20  
0
−20  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
Each Tone at  
−36 dBFS Amplitude  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
2−Tone IMD = 98 dBFS  
SFDR = 105 dBFS  
2−Tone IMD = 101 dBFS  
SFDR = 106 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G007  
G007  
Figure 12. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 13. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS at 46 MHz and 50 MHz)  
14  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
Each Tone at  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−36 dBFS Amplitude  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−20  
−20  
2−Tone IMD = 90 dBFS  
SFDR = 102 dBFS  
2−Tone IMD = 101 dBFS  
SFDR = 104 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G009  
G010  
Figure 14. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 15. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS at 185 MHz and 190 MHz)  
−98  
−100  
−102  
−104  
−106  
−108  
−110  
−90  
−92  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−94  
−96  
−98  
−100  
−102  
−104  
−106  
−108  
−110  
−36 −33 −30 −27 −24 −21 −18 −15 −12 −9 −7  
−36 −33 −30 −27 −24 −21 −18 −15 −12 −9 −7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
G011  
G001  
Figure 16. INTERMODULATION DISTORTION vs  
INPUT AMPLITUDE (46 MHz and 50 MHz)  
Figure 17. INTERMODULATION DISTORTION vs  
INPUT AMPLITUDE (185 MHz and 190 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
77  
76  
75  
74  
73  
72  
71  
70  
2−VPP Full−Scale  
2.5−VPP Full−Scale  
2−VPP Full−Scale  
2.5−VPP Full−Scale  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Input Frequency (MHz)  
Input Frequency (MHz)  
G013  
G014  
Figure 18. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT FREQUENCY  
Figure 19. SIGNAL-TO-NOISE RATIO vs  
INPUT FREQUENCY  
120  
110  
100  
90  
80  
78  
76  
74  
72  
70  
68  
66  
10 MHz  
70 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
270 MHz  
350 MHz  
400 MHz  
491 MHz  
10 MHz  
70 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
270 MHz  
350 MHz  
400 MHz  
491 MHz  
80  
70  
60  
21.510.5 0 0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
21.510.5 0 0.5  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6  
Digital Gain (dB)  
Digital Gain (dB)  
G015  
G016  
Figure 20. SPURIOUS-FREE DYNAMIC RANGE vs  
DIGITAL GAIN  
Figure 21. SIGNAL-TO-NOISE RATIO vs  
DIGITAL GAIN  
16  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
77  
76.5  
76  
130  
120  
110  
100  
90  
77.5  
130  
120  
110  
100  
90  
Input Frequency = 70 MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
Input Frequency = 170 MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
77  
76.5  
76  
75.5  
75  
75.5  
75  
74.5  
74  
80  
80  
70  
74.5  
74  
70  
73.5  
73  
60  
60  
50  
73.5  
73  
50  
72.5  
72  
40  
40  
30  
72.5  
30  
71.5  
20  
72  
−70  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
G017  
G018  
Figure 22. PERFORMANCE vs INPUT AMPLITUDE  
(70 MHz)  
Figure 23. PERFORMANCE vs INPUT AMPLITUDE  
(170 MHz)  
99  
96  
94  
92  
89  
86  
84  
82  
76  
101  
98  
95  
92  
89  
86  
83  
80  
75.5  
Input Frequency = 70 MHz  
SFDR  
SNR  
Input Frequency = 170 MHz  
SFDR  
SNR  
75.5  
75  
75  
74.5  
74  
74.5  
74  
73.5  
73  
73.5  
73  
72.5  
72.5  
1.95  
72  
1.95  
1.85  
1.87  
1.9  
1.93  
1.85  
1.87  
1.9  
1.93  
Input Common−Mode Voltage (V)  
Input Common−Mode Voltage (V)  
G019  
G020  
Figure 24. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE (70 MHz)  
Figure 25. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE (170 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
75  
74.5  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
73.5  
73  
72.5  
72  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
−40  
35  
60  
85  
−40  
35  
60  
85  
G021  
G022  
Figure 26. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD SUPPLY AND TEMPERATURE (170 MHz)  
Figure 27. SIGNAL-TO-NOISE RATIO vs  
AVDD SUPPLY AND TEMPERATURE (170 MHz)  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
75  
74.5  
74  
AVDD3V = 3.15 V  
AVDD3V = 3.2 V  
AVDD3V = 3.25 V  
AVDD3V = 3.3 V  
AVDD3V = 3.35 V  
AVDD3V = 3.4 V  
AVDD3V = 3.45 V  
AVDD3V = 3.15 V  
AVDD3V = 3.2 V  
AVDD3V = 3.25 V  
AVDD3V = 3.3 V  
AVDD3V = 3.35 V  
AVDD3V = 3.4 V  
AVDD3V = 3.45 V  
73.5  
73  
72.5  
72  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
−40  
35  
60  
85  
−40  
35  
60  
85  
G023  
G024  
Figure 28. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD_BUF SUPPLY AND TEMPERATURE (170 MHz)  
Figure 29. SIGNAL-TO-NOISE RATIO vs  
AVDD_BUF SUPPLY AND TEMPERATURE (170 MHz)  
18  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
75  
74.5  
74  
DRVDD = 1.7 V  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
DRVDD = 1.7 V  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
73.5  
73  
72.5  
72  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
−40  
35  
60  
85  
−40  
35  
60  
85  
G025  
G026  
Figure 30. SPURIOUS-FREE DYNAMIC RANGE vs  
DRVDD SUPPLY AND TEMPERATURE (170 MHz)  
Figure 31. SIGNAL-TO-NOISE RATIO vs  
DRVDD SUPPLY AND TEMPERATURE (170 MHz)  
96  
94  
92  
90  
88  
86  
84  
77  
96  
94  
92  
90  
88  
86  
84  
82  
80  
Input Frequency = 70 MHz  
SFDR  
SNR  
Input Frequency =170 MHz  
SFDR  
SNR  
78  
76  
74  
72  
70  
68  
66  
76  
75  
74  
73  
72  
71  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
G027  
G028  
Figure 32. PERFORMANCE vs CLOCK AMPLITUDE  
(70 MHz)  
Figure 33. PERFORMANCE vs CLOCK AMPLITUDE  
(170 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB69 (continued)  
Typical values are at TA = +25°C, ADC sampling rate = 250 MSPS, 50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V,  
DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
96  
94  
92  
90  
88  
86  
84  
82  
78  
77  
76  
75  
74  
73  
72  
71  
96  
94  
92  
90  
88  
86  
84  
77  
76  
75  
74  
73  
72  
71  
Input Frequency = 70 MHz  
SNR  
SFDR  
Input Frequency = 170 MHz  
SNR  
SFDR  
30  
40  
50  
Input Clock Duty Cycle (%)  
60  
70  
30  
40  
50  
Input Clock Duty Cycle (%)  
60  
70  
G029  
G030  
Figure 34. PERFORMANCE vs CLOCK DUTY CYCLE  
(70 MHz)  
Figure 35. PERFORMANCE vs CLOCK DUTY CYCLE  
(170 MHz)  
20  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB49  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
fIN = 10 MHz  
fIN = 170 MHz  
SFDR = 97 dBc  
SNR = 73.4 dBFS  
SINAD = 73.3 dBFS  
THD = 95 dBc  
SFDR = 89 dBc  
SNR = 72.8 dBFS  
SINAD = 72.5 dBFS  
THD = 88 dBc  
−20  
−20  
SFDR Non HD2, HD3  
SFDR Non HD2, HD3  
= 103 dBc  
= 100 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G031  
G032  
Figure 36. FFT FOR 10-MHz INPUT SIGNAL  
Figure 37. FFT FOR 170-MHz INPUT SIGNAL  
0
−20  
0
±20  
fIN = 10 MHz  
fIN = 300 MHz  
SFDR = 74 dBc  
SNR = 72.1 dBFS  
SINAD = 69.8 dBFS  
THD = 72 dBc  
SFDR = 89 dBc  
SNR = 75 dBFS  
SINAD = 74.8 dBFS  
THD = 88 dBc  
SFDR Non HD2, HD3  
SFDR Non HD2, HD3 =  
= 103 dBc  
−40  
±40  
−60  
±60  
−80  
±80  
−100  
−120  
±100  
±120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (Mhz)  
G034  
C033  
Figure 38. FFT FOR 300-MHz INPUT SIGNAL  
Figure 39. FFT FOR 10-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
fIN = 170 MHz  
fIN = 300 MHz  
SFDR = 87 dBc  
SNR = 73.9 dBFS  
SINAD = 73.7 dBFS  
THD = 85 dBc  
SFDR = 71 dBc  
SNR = 73.1 dBFS  
SINAD = 68.4 dBFS  
THD = 69 dBc  
−20  
−20  
SFDR Non HD2, HD3  
SFDR Non HD2, HD3  
= 94 dBc  
= 93 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G035  
G036  
Figure 40. FFT FOR 170-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
Figure 41. FFT FOR 300-MHz INPUT SIGNAL  
(2.5-VPP Full-Scale)  
0
−20  
0
−20  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
Each Tone at  
−36 dBFS Amplitude  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
2−Tone IMD = 98 dBFS  
SFDR = 105 dBFS  
2−Tone IMD = 101 dBFS  
SFDR = 106 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G037  
G038  
Figure 42. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 43. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS at 46 MHz and 50 MHz)  
22  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
Each Tone at  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−36 dBFS Amplitude  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−20  
−20  
2−Tone IMD = 90 dBFS  
SFDR = 102 dBFS  
2−Tone IMD = 101 dBFS  
SFDR = 104 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
Frequency (MHz)  
G039  
G040  
Figure 44. FFT FOR TWO-TONE INPUT SIGNAL  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 45. FFT FOR TWO-TONE INPUT SIGNAL  
(–36 dBFS at 185 MHz and 190 MHz)  
−98  
−100  
−102  
−104  
−106  
−108  
−110  
−90  
−92  
fIN1 = 46 MHz  
fIN2 = 50 MHz  
fIN1 = 185 MHz  
fIN2 = 190 MHz  
−94  
−96  
−98  
−100  
−102  
−104  
−106  
−108  
−110  
−36 −33 −30 −27 −24 −21 −18 −15 −12 −9 −7  
−36 −33 −30 −27 −24 −21 −18 −15 −12 −9 −7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
G041  
G042  
Figure 46. INTERMODULATION DISTORTION vs  
INPUT AMPLITUDE (46 MHz and 50 MHz)  
Figure 47. INTERMODULATION DISTORTION vs  
INPUT AMPLITUDE (185 MHz and 190 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
76  
75  
74  
73  
72  
71  
70  
69  
2−VPP Full−Scale  
2.5−VPP Full−Scale  
2−VPP Full−Scale  
2.5−VPP Full−Scale  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Input Frequency (MHz)  
Input Frequency (MHz)  
G043  
G044  
Figure 48. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT FREQUENCY  
Figure 49. SIGNAL-TO-NOISE RATIO vs  
INPUT FREQUENCY  
120  
110  
100  
90  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
10 MHz  
70 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
270 MHz  
350 MHz  
400 MHz  
491 MHz  
10 MHz  
70 MHz  
100 MHz  
130 MHz  
170 MHz  
230 MHz  
270 MHz  
350 MHz  
400 MHz  
491 MHz  
80  
70  
60  
21.510.5 0 0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
21.510.5 0 0.5  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6  
Digital Gain (dB)  
Digital Gain (dB)  
G045  
G046  
Figure 50. SPURIOUS-FREE DYNAMIC RANGE vs  
DIGITAL GAIN  
Figure 51. SIGNAL-TO-NOISE RATIO vs  
DIGITAL GAIN  
24  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
77  
76.5  
76  
130  
120  
110  
100  
90  
76.5  
130  
120  
110  
100  
90  
Input Frequency = 70 MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
Input Frequency = 170 MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
76  
75.5  
75  
75.5  
75  
74.5  
74  
74.5  
74  
80  
80  
70  
73.5  
73  
70  
73.5  
73  
60  
60  
50  
72.5  
72  
50  
72.5  
72  
40  
40  
30  
71.5  
30  
71.5  
20  
71  
−70  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
G047  
G048  
Figure 52. PERFORMANCE vs INPUT AMPLITUDE  
(70 MHz)  
Figure 53. PERFORMANCE vs INPUT AMPLITUDE  
(170 MHz)  
99  
96  
94  
92  
89  
86  
84  
82  
75.5  
101  
98  
95  
92  
89  
86  
83  
80  
75  
Input Frequency = 70 MHz  
SFDR  
SNR  
Input Frequency = 170 MHz  
SFDR  
SNR  
75  
74.5  
74  
74.5  
74  
73.5  
73  
73.5  
73  
72.5  
72  
72.5  
72  
1.95  
71.5  
1.95  
1.85  
1.87  
1.9  
1.93  
1.85  
1.87  
1.9  
1.93  
Input Common−Mode Voltage (V)  
Input Common−Mode Voltage (V)  
G049  
G050  
Figure 54. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE (70 MHz)  
Figure 55. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE (170 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
74.5  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
74  
73.5  
73  
72.5  
72  
71.5  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
71  
−40  
−40  
35  
60  
85  
35  
60  
85  
G051  
G052  
Figure 56. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD SUPPLY AND TEMPERATURE (170 MHz)  
Figure 57. SIGNAL-TO-NOISE RATIO vs  
AVDD SUPPLY AND TEMPERATURE (170 MHz)  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
74.5  
74  
AVDD3V = 3.15 V  
AVDD3V = 3.2 V  
AVDD3V = 3.25 V  
AVDD3V = 3.3 V  
AVDD3V = 3.35 V  
AVDD3V = 3.4 V  
AVDD3V = 3.45 V  
AVDD3V = 3.15 V  
AVDD3V = 3.2 V  
AVDD3V = 3.25 V  
AVDD3V = 3.3 V  
AVDD3V = 3.35 V  
AVDD3V = 3.4 V  
AVDD3V = 3.45 V  
73.5  
73  
72.5  
72  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
71.5  
−40  
35  
60  
85  
−40  
35  
60  
85  
G053  
G054  
Figure 58. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD_BUF SUPPLY AND TEMPERATURE (170 MHz)  
Figure 59. SIGNAL-TO-NOISE RATIO vs AVDD_BUF  
SUPPLY AND TEMPERATURE (170 MHz)  
26  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
74.5  
DRVDD = 1.7 V  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
DRVDD = 1.7 V  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
74  
73.5  
73  
72.5  
72  
71.5  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 170 MHz  
−15 10  
Temperature (°C)  
71  
−40  
−40  
35  
60  
85  
35  
60  
85  
G055  
G056  
Figure 60. SPURIOUS-FREE DYNAMIC RANGE vs  
DRVDD SUPPLY AND TEMPERATURE (170 MHz)  
Figure 61. SIGNAL-TO-NOISE RATIO vs  
DRVDD SUPPLY AND TEMPERATURE (170 MHz)  
96  
94  
92  
90  
88  
86  
84  
77  
98  
96  
94  
92  
90  
88  
86  
84  
82  
82  
Input Frequency = 70 MHz  
SFDR  
SNR  
Input Frequency = 170 MHz  
SFDR  
SNR  
80  
78  
76  
74  
72  
70  
68  
66  
76  
75  
74  
73  
72  
71  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
G057  
G058  
Figure 62. PERFORMANCE vs CLOCK AMPLITUDE  
(70 MHz)  
Figure 63. PERFORMANCE vs CLOCK AMPLITUDE  
(170 MHz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS42JB49 (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
96  
94  
92  
90  
88  
86  
84  
82  
75  
96  
94  
92  
90  
88  
86  
84  
82  
74.5  
Input Frequency = 70 MHz  
SNR  
SFDR  
Input Frequency = 170 MHz  
SNR  
SFDR  
74.5  
74  
74  
73.5  
73  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
30  
40  
50  
Input Clock Duty Cycle (%)  
60  
70  
30  
40  
50  
Input Clock Duty Cycle (%)  
60  
70  
G059  
G060  
Figure 64. PERFORMANCE vs CLOCK DUTY CYCLE  
(70 MHz)  
Figure 65. PERFORMANCE vs CLOCK DUTY CYCLE  
(170 MHz)  
28  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: COMMON  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 64k-point FFT, unless otherwise noted.  
0
0
−5  
fIN = 100 MHz  
SFDR = 86 dBc  
Input Frequency = 10MHz  
50−mVPP Signal Superimposed on VCM  
fCM = 5 MHz, 50 mVPP  
Amplitude (fIN) = -1 dBFS  
Amplitude (fCM) = -105 dBFS  
Amplitude (fIN + fCM) = -90 dBFS  
Amplitude (fIN - fCM) = -87 dBFS  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−65  
±20  
±40  
±60  
±80  
±100  
±120  
0
50  
100  
150  
200  
250  
300  
0
20  
40  
60  
80  
100  
120  
Common−Mode Test Signal Frequency (MHz)  
Frequency (Mhz)  
G062  
C061  
Figure 66. COMMON-MODE REJECTION RATIO FFT  
Figure 67. COMMON-MODE REJECTION RATIO vs  
TEST SIGNAL FREQUENCY  
−20  
0
±20  
fIN = 20 MHz  
SFDR = 87 dBc  
50−mVPP Signal Superimposed on AVDD  
100−mVPP Signal Superimposed on AVDD3V  
fPSRR = 5 MHz, 50 mVPP  
Amplitude (fIN) = -1 dBFS  
Amplitude (fPSRR) = -88 dBFS  
Amplitude (fIN + fPSRR) = -97.8  
dBFS  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
±40  
±60  
±80  
±100  
±120  
Input Frequency = 20MHz  
0
50  
100  
150  
200  
250  
300  
0
20  
40  
60  
80  
100  
120  
Test Signal Frequency on Supply (MHz)  
Frequency (Mhz)  
G064  
C063  
Figure 68. POWER-SUPPLY REJECTION RATIO FFT FOR  
AVDD SUPPLY  
Figure 69. POWER-SUPPLY REJECTION RATIO vs  
TEST SIGNAL FREQUENCY  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: COMMON (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 64k-point FFT, unless otherwise noted.  
2
1.8  
1.6  
1.4  
1.2  
1
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
AVDD Power  
DVDD Power  
IOVDD Power  
AVDD3V Power  
Total Power  
20X Mode  
10X Mode  
0.8  
0.6  
0.4  
0.2  
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
G065  
G066  
Figure 70. TOTAL POWER vs SAMPLING FREQUENCY  
Figure 71. IOVDD POWER vs SAMPLING FREQUENCY  
30  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: CONTOUR  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 64k-point FFT, unless otherwise noted.  
Spurious-Free Dynamic Range (SFDR): General  
240  
75  
70  
85  
80  
95  
90  
220  
200  
180  
160  
140  
120  
100  
80  
80  
85  
75  
70  
65  
90  
95  
90  
95  
90  
80  
85  
75  
70  
50  
100  
150  
200  
250  
300  
350  
400  
95  
fIN - Input Frequency - MHz  
80  
65  
70  
75  
85  
90  
SFDR - dBc  
Figure 72. 0-dB GAIN (SFDR)  
95  
240  
75  
95  
90  
80  
70  
85  
220  
200  
180  
95  
95  
95  
75  
70  
90  
80  
85  
160  
140  
120  
100  
80  
95  
95  
75  
70  
85  
90  
80  
95  
200  
300  
400  
500  
600  
95  
100  
fIN - Input Frequency - MHz  
80  
70  
75  
85  
90  
SFDR - dBc  
Figure 73. 6-dB GAIN (SFDR)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 64k-point FFT, unless otherwise noted.  
Signal-to-Noise Ratio (SNR): ADS42JB69  
240  
73.2  
73.6  
72.8  
72.4  
72  
71.5  
220  
200  
180  
160  
140  
120  
100  
80  
74  
73.2  
73.6  
72.8  
72.4  
72  
71.5  
71  
74  
72.4  
73.6  
72.8  
73.2  
72  
71.5  
70.5  
71  
350  
74  
50  
100  
71  
150  
200  
250  
300  
400  
fIN - Input Frequency - MHz  
70.5  
71.5  
72  
72.5  
73  
73.5  
74  
SNR - dBFS  
Figure 74. 0-dB GAIN (SNR, ADS42JB69)  
240  
67.5  
67.2  
66.9  
66.4  
68.1  
67.8  
220  
200  
180  
68.1  
68.1  
67.5  
67.2  
66.9  
66.4  
67.8  
160  
140  
120  
100  
80  
67.8  
68.1  
65.9  
66.4  
500  
68.4  
50  
66.9  
67.2  
67.5  
100  
150  
200  
250  
300  
350  
400  
450  
550  
600  
fIN - Input Frequency - MHz  
67  
65.5  
66  
66.5  
67.5  
68  
SNR - dBFS  
Figure 75. 6-dB GAIN (SNR, ADS42JB69)  
32  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
Typical values are at TA = +25°C, full temperature range is TMIN = –40°C to TMAX = +85°C, ADC sampling rate = 250 MSPS,  
50% clock duty cycle, AVDD = 1.8 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 64k-point FFT, unless otherwise noted.  
Signal-to-Noise Ratio (SNR): ADS42JB49  
240  
72.6  
72.2  
73  
71.3  
71.8  
220  
200  
180  
160  
140  
120  
100  
80  
73.4  
70.8  
72.6  
73  
72.2  
71.3  
71.8  
73.4  
70.8  
73  
71.8  
71.3  
70.3  
72.6  
72.2  
73.4  
70.5  
71  
350  
50  
100  
150  
200  
250  
300  
400  
fIN - Input Frequency - MHz  
71  
71.5  
72  
72.5  
73  
70  
SNR - dBFS  
Figure 76. 0-dB GAIN (SNR, ADS42JB49)  
240  
67.3  
67  
66.7  
66.4  
67.6  
67.9  
220  
200  
180  
67.9  
67.3  
67  
66.7  
66.4  
67.6  
160  
140  
120  
100  
80  
67.9  
67.9  
65.9  
67.6  
66.4  
66.7  
67.3  
67  
68.2  
200  
300  
fIN - Input Frequency - MHz  
400  
500  
600  
100  
65.5  
66  
66.5  
67  
67.5  
68  
SNR - dBFS  
Figure 77. 6-dB GAIN (SNR, ADS42JB49)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
DEVICE CONFIGURATION  
The ADS42JB49 and ADS42JB69 can be configured using a serial programming interface, as described in the  
Serial Interface section. In addition, the device has four dedicated parallel pins (PDN_GBL, STBY, CTRL1, and  
CTRL2) for controlling the power-down modes.  
SERIAL INTERFACE  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. SDATA serial data are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 16th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 16 bits, the excess bits are  
ignored. Data can be loaded in multiples of 16-bit words within a single active SEN pulse. The interface functions  
with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with non-50% SCLK duty  
cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of widths greater than 10 ns), as shown in Figure 78. Later during  
operation, if required serial interface registers can be cleared by:  
1. Either through a hardware reset or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 08h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a high pulse on  
the RESET pin.  
Figure 78. Reset Timing Diagram  
(1)  
Table 3. Reset Timing  
PARAMETER  
Power-on delay  
CONDITIONS  
MIN  
TYP MAX UNIT  
Delay from AVDD and DRVDD power-up to active RESET  
pulse  
1
ms  
t1  
10  
ns  
t2  
t3  
Reset pulse width  
Active RESET signal pulse width  
1
µs  
ns  
Register write delay  
Delay from RESET disable to SEN active  
100  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C, unless  
otherwise noted.  
34  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Serial Register Write  
The internal device register can be programmed following these steps:  
1. Drive the SEN pin low.  
2. Set the R/W bit to ‘0’ (bit A7 of the 8-bit address).  
3. Set bit A6 in the address field to ‘0’.  
4. Initiate a serial interface cycle specifying the address of the register (A5 to A0) whose content must be  
written (as shown in Figure 79 and Table 4).  
5. Write the 8-bit data that is latched on the SCLK rising edge.  
Register Address <5:0>  
Register Data <7:0>  
SDATA  
R/W  
= 0  
0
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 79. Serial Register Write Timing Diagram  
Table 4. Serial Interface Timing(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
> dc  
25  
20  
tSLOADS  
tSLOADH  
tDSU  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C,  
AVDD3V = 3.3 V, and AVDD = DRVDD = IOVDD = 1.8 V, unless otherwise noted.  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back. This readback mode  
may be useful as a diagnostic check to verify the serial interface communication between the external controller  
and the ADC.  
1. Set bit A7 (MSB) of 8 bit address to '1'.  
2. Write the address of register on bits A5 through A0 whose contents must be read. See Figure 80  
3. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin (pin 45).  
4. The external controller can latch the contents at the SCLK rising edge.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
When serial registers are enabled for writing (bit A7 of 8-bit address bus is 0), the SDOUT pin is in a high-  
impedance mode. If serial readout is not used, the SDOUT pin must float. Figure 80 shows a timing diagram of  
this readout mode. SDOUT comes out at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns,  
as shown in Figure 81.  
Register Address <5:0>  
Register Data: don’t care  
SDATA  
R/W  
= 1  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D7  
D6  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D0  
D0  
0
Register Read Data <7:0>  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 80. Serial Register Readout Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 81. SDOUT Timing Diagram  
36  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
PIN CONTROLS  
The device power-down functions can be controlled either through the parallel control pins (STBY, PDN_GBL,  
CTRL1, and CTRL2) or through an SPI register setting.  
STBY places the device in a standby power-down mode. PDN_GBL places the device in global power-down  
mode.  
Table 5. CTRL1, CTRL2 Pin Functions  
CTRL1  
Low  
CTRL2  
Low  
DESCRIPTION  
Normal operation  
High  
Low  
Low  
Channel A powered down  
Channel B powered down  
Global power-down  
High  
High  
High  
Table 6. PDN_GBL Pin Function  
PDN_GBL  
DESCRIPTION  
Low  
Normal operation  
High  
Global power-down. Wake-up from this mode is slow.  
Table 7. STBY Pin Function  
STBY  
DESCRIPTION  
Low  
Normal operation  
ADCs are powered down while the input clock buffer and  
output CML buffers are alive. Wake-up from this mode is  
fast.  
High  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
SUMMARY OF SERIAL INTERFACE REGISTERS  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0]  
(Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
06  
07  
0
0
0
0
0
0
0
0
0
0
0
CLK DIV  
SYSREF DELAY  
DATA  
FORMAT  
Always write  
1
08  
0B  
0C  
0D  
0E  
PDN CHA  
PDN CHB  
STDBY  
0
0
RESET  
CHA GAIN  
EN  
CHA GAIN  
0
0
0
0
0
CHB GAIN  
EN  
CHBGAIN  
0
HIGH FREQ  
1
HIGH FREQ 1  
HIGH FREQ 2  
0
0
0
0
0
0
0
0
FAST OVR EN  
0
HIGH FREQ  
2
0F  
10  
11  
12  
13  
1F  
CHA TEST PATTERNS  
CHB TEST PATTERNS  
CUSTOM PATTERN (15:8)  
CUSTOM PATTERN (15:8)  
CUSTOM PATTERN (15:8)  
CUSTOM PATTERN (15:8)  
Always write 0  
FAST OVR THRESHOLD  
TX LINK  
CONFIG  
DATA0  
TESTMODE FLIP ADC  
FRAME  
ALIGN  
26  
SERDES TEST PATTERN  
IDLE SYNC  
LAN ALIGN  
EN  
0
DATA  
27  
2B  
0
0
0
0
0
0
0
0
0
CTRLK  
0
CTRLF  
SCRAMBLE  
EN  
0
0
OCTETS PER  
FRAME  
2C  
0
0
0
0
0
0
0
0
0
2D  
30  
0
FRAMES PER MULTIFRAME  
SUBCLASS  
0
0
0
0
0
0
0
LMFC  
RESET  
MASK  
36  
SYNC REQ  
0
OUTPUT CURRENT SEL  
LINK LAYER  
RPAT  
37  
38  
LINK LAYER TESTMODE  
PULSE DET MODES  
RELEASE ILANE SEQ  
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
38  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
DESCRIPTION OF SERIAL INTERFACE REGISTERS  
REGISTER  
REGISTER DATA  
ADDRESS  
A[7:0] (Hex)  
6
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CLK DIV  
Default: 00h  
D[1:0]  
00  
CLK DIV  
Internal clock divider for input sample clock  
Divide-by-1 (clock divider bypassed)  
Divide-by-2  
01  
10  
Divide-by-1  
11  
Divide-by-4  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7
0
0
0
0
0
0
SYSREF DELAY  
Default: 00h  
Controls the delay of the SYSREF input with respect to the input clock. Typical  
values for the expected delay of different settings are:  
D[2:0] SYSREF DELAY  
000  
001  
010  
011  
100  
101  
110  
111  
0-ps delay  
60-ps delay  
120-ps delay  
180-ps delay  
240-ps delay  
300-ps delay  
360-ps delay  
420-ps delay  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA  
FORMAT  
Always write  
1
8
PDN CHA  
PDN CHB  
STDBY  
0
0
RESET  
Default: 00h  
D7  
0
PDN CHA  
Normal operation  
Channel A power down  
Power-down channel A  
1
D6  
0
PDN CHB  
Power-down channel B  
Normal operation  
Channel B power down  
1
D5  
0
STBY  
Dual ADC is placed into standby mode  
Normal operation  
Both ADCs are powered down (input clock buffer and CML output  
buffers are alive)  
1
DATA  
D4  
Digital output data format  
FORMAT  
0
1
Twos complement  
Offset binary  
D3  
Always write 1  
Default value of this bit is 0. It must always be set to 1  
D0  
RESET  
Software reset applied  
This bit resets all internal registers to the default values and self-clears to ‘0’.  
40  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
D1  
D0  
B
CHA GAIN  
CHA GAIN EN  
0
0
Default: 00h  
D[7:3]  
CHA GAIN Digital gain for channel A (must set the CHA GAIN EN bit first, bit D2)  
Table 8. Digital Gain for Channel A  
FULL-SCALE  
FULL-SCALE  
INPUT VOLTAGE  
REGISTER VALUE  
DIGITAL GAIN  
REGISTER VALUE  
DIGITAL GAIN  
INPUT VOLTAGE  
2.0 VPP  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
0 dB  
Do not use  
Do not use  
–2.0 dB  
–1.5 dB  
–1.0 dB  
–0.5 dB  
0 dB  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
1.5 dB  
2 dB  
1.7 VPP  
1.6 VPP  
2.5 dB  
3 dB  
1.5 VPP  
2.5 VPP  
2.4 VPP  
2.2 VPP  
2.1 VPP  
2.0 VPP  
1.9 VPP  
1.8 VPP  
1.4 VPP  
3.5 dB  
4 dB  
1.3 VPP  
1.25 VPP  
1.2 VPP  
4.5 dB  
5 dB  
1.1 VPP  
0.5 dB  
5.5 dB  
6 dB  
1.05 VPP  
1.0 VPP  
1 dB  
D2  
0
CHA GAIN EN  
Digital gain enable bit for channel A  
Digital gain disabled  
Digital gain enabled  
1
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CHB GAIN  
C
CHB GAIN  
0
0
EN  
Default: 00h  
D[7:3]  
CHB GAIN Digital gain for channel B (must set the CHA GAIN EN bit first, bit D2)  
Table 9. Digital Gain for Channel B  
FULL-SCALE  
FULL-SCALE  
INPUT VOLTAGE  
REGISTER VALUE  
DIGITAL GAIN  
REGISTER VALUE  
DIGITAL GAIN  
INPUT VOLTAGE  
2.0 VPP  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
0 dB  
Do not use  
Do not use  
–2.0 dB  
–1.5 dB  
–1.0 dB  
–0.5 dB  
0 dB  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
1.5 dB  
2 dB  
1.7 VPP  
1.6 VPP  
1.5 VPP  
1.4 VPP  
1.3 VPP  
1.25 VPP  
1.2 VPP  
1.1 VPP  
1.05 VPP  
1.0 VPP  
2.5 dB  
3 dB  
2.5 VPP  
2.4 VPP  
2.2 VPP  
2.1 VPP  
2.0 VPP  
1.9 VPP  
1.8 VPP  
3.5 dB  
4 dB  
4.5 dB  
5 dB  
0.5 dB  
5.5 dB  
6 dB  
1 dB  
D2  
0
CHB GAIN EN  
Digital gain enable bit for channel B  
Digital gain disabled  
Digital gain enabled  
1
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HIGH FREQ  
1
HIGH FREQ  
1
D
0
0
0
0
0
FAST OVR EN  
D7, D4 HIGH FREQ 1  
High frequency mode 1  
00  
11  
D0  
0
Default  
Use for input frequencies > 250 MHz along with HIGH FREQ 2  
FAST OVR EN Selects if normal or fast OVR signal is presented on OVRA, OVRB pins  
Normal OVR on OVRA, OVRB pins  
Fast OVR on OVRA, OVRB pins  
1
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HIGH FREQ  
2
HIGH FREQ  
2
E
0
0
0
0
0
0
D7, D4 HIGH FREQ 2  
High frequency mode 2  
00  
11  
Default  
Use for input frequencies > 250 MHz along with HIGH FREQ 1  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
D1  
D0  
F
CHA TEST PATTERNS  
CHB TEST PATTERNS  
42  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Default: 00h  
D[7:4]  
CHA TEST PATTERNS  
Channel A test pattern programmability  
16-bit test pattern data is selected as input to JESD block (in ADS42JB49, last two LSBs of 16-bit data are replaced by 00)  
0000  
0001  
0010  
0011  
Normal operation  
All '0's  
All '1's  
Toggle pattern:  
In ADS42JB69, data is an alternating sequence of 1010101010101010 and 0101010101010101.  
In ADS42JB49, data alternates between 10101010101010 and 01010101010101.  
0100  
Digital ramp:  
In ADS42JB69, data increments by 1 LSB every clock cycle from code 0 to 65535. In ADS42JB49  
data increments by 1 LSB every 4th clock cycle from code 0 to 16383.  
0101  
0110  
Do not use  
Single pattern:  
In ADS42JB69, data is same as programmed by registers bits CUSTOM PATTERN 1 [15:0]. In  
ADS42JB49, data is same as programmed by register bits CUSTOM PATTERN 1 [15:2].  
0111  
Double pattern:  
In ADS42JB69, data alternates between CUSTOM PATTERN 1[15:0] and CUSTOM PATTERN  
2[15:0] .In ADS42JB49 data alternates between CUSTOM PATTERN 1[15:2] and CUSTOM  
PATTERN 2[15:2].  
1000  
1001  
1010  
1011  
Deskew pattern:  
Do not use  
In ADS42JB69, data is AAAAh. In ADS42JB49, data is 3AAAh.  
PRBS pattern:  
8-Point sine wave:  
Data is a sequence of pseudo random numbers.  
In ADS42JB69, data is a repetitive sequence of following 8 numbers forming a sine-wave in 2s  
complement format:  
1, 9598, 32768, 55938, 65535, 55938, 32768, 9598.  
In ADS42JB49, data is a repetitive sequence of following 8 numbers forming a sine-wave in 2s  
complement format:  
0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
D3-D0  
CHB TEST PATTERNS  
Channel B test pattern programmability  
16-bit test pattern data is selected as input to JESD block (in ADS42JB49, last two LSBs of 16-bit data are replaced by 00)  
0000  
0001  
0010  
0011  
Normal operation  
All '0's  
All '1's  
Toggle pattern:  
In ADS42JB69, data is an alternating sequence of 1010101010101010 and 0101010101010101.  
In ADS42JB49, data alternates between 10101010101010 and 01010101010101.  
0100  
Digital ramp:  
In ADS42JB69, data increments by 1 LSB every clock cycle from code 0 to 65535. In ADS42JB49  
data increments by 1 LSB every 4th clock cycle from code 0 to 16383.  
0101  
0110  
Do not use  
Single pattern:  
In ADS42JB69, data is same as programmed by registers bits CUSTOM PATTERN 1 [15:0]. In  
ADS42JB49, data is same as programmed by register bits CUSTOM PATTERN 1 [15:2].  
0111  
Double pattern:  
In ADS42JB69, data alternates between CUSTOM PATTERN 1[15:0] and CUSTOM PATTERN  
2[15:0] .In ADS42JB49 data alternates between CUSTOM PATTERN 1[15:2] and CUSTOM  
PATTERN 2[15:2].  
1000  
1001  
1010  
1011  
Deskew pattern:  
Do not use  
In ADS42JB69, data is AAAAh. In ADS42JB49, data is 3AAAh.  
PRBS pattern:  
8-Point sine wave:  
Data is a sequence of pseudo random numbers.  
In ADS42JB69, data is a repetitive sequence of following 8 numbers forming a sine-wave in 2s  
complement format:  
1, 9598, 32768, 55938, 65535, 55938, 32768, 9598.  
In ADS42JB49, data is a repetitive sequence of following 8 numbers forming a sine-wave in 2s  
complement format:  
0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
REGISTER  
REGISTER DATA  
ADDRESS  
A[7:0] (Hex)  
10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CUSTOM PATTERN 1 (15:8)  
Default: 00h  
D[7:0]  
CUSTOM PATTERN 1 (15:8) Sets custom pattern 1 (15:8) using these bits for both channels  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
CUSTOM PATTERN 1 (7:0)  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
D1  
D1  
D1  
D1  
D0  
11  
Default: 00h  
D[7:0]  
CUSTOM PATTERN 1 (7:0) Sets custom pattern 1 (7:0) using these bits for both channels  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
CUSTOM PATTERN 2 (15:8)  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
D0  
D0  
D0  
12  
Default: 00h  
D[7:0]  
CUSTOM PATTERN 2 (15:8) Sets custom pattern 2 (15:8) using these bits for both channels  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
CUSTOM PATTERN 2 (7:0)  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
13  
Default: 00h  
D[7:0]  
CUSTOM PATTERN 2 (7:0) Sets custom pattern 2 (7:0) using these bits for both channels  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
1F  
Always write 0  
FAST OVR THRESHOLD  
Default: FFh  
D7  
Always write 0  
Default value of this bit is '1'. Always write this bit to '0' when fast OVR thresholds are programmed.  
D[6:0]  
FAST OVR THRESHOLD  
The device has a fast OVR mode that indicates an overload condition at the ADC input. The input voltage level at which the  
overload is detected is referred to as the threshold and is programmable using the FAST OVR THRESHOLD bits. FAST OVR is  
triggered nine output clock cycles after the overload condition occurs. The threshold at which fast OVR is triggered is (full-scale ×  
[the decimal value of the FAST OVR THRESHOLD bits] / 127). See section OVERRANGE INDICATION for details.  
44  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
REGISTER  
ADDRESS  
REGISTER DATA  
D3  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
SERDES TEST  
PATTERN  
TESTMODE  
EN  
FLIP ADC  
DATA  
FRANE  
ALIGN  
TX LINK CONFIG  
DATA  
26  
IDLE SYNC  
LANE ALIGN  
Default: 00h  
D[7:6]  
00  
SERDES TEST PATTERN  
Normal operation  
Sets test patterns in the transport layer of the JESD204B interface  
01  
Outputs clock pattern:  
Encoded pattern:  
Output is 10101010 pattern  
Output is 1111111100000000  
Output is 215 – 1  
10  
11  
PRBS sequence:  
D5  
0
IDLE SYNC  
Sets output pattern when SYNC~ is asserted  
Sync code is k28.5 (0xBCBC)  
Sync code is 0xBC50  
1
D4  
TESTMODE EN  
Generates long transport layer test pattern mode according to 5.1.63 clause of JESD204B  
specification  
0
1
Test mode disabled  
Test mode enabled  
D3  
0
FLIP ADC DATA  
Normal operation  
1
Output data order is  
reversed:  
MSB – LSB  
D2  
0
LANE ALIGN  
Inserts lane alignment character (K28.3) for the receiver to align to lane boundary per section 5.3.3.5  
of the JESD204B specification.  
Lane Alignment  
characters are not  
inserted.  
1
Inserts lane alignment characters  
D1  
FRAME ALIGN  
Inserts frame alignment character (K28.7) for the receiver to align to frame boundary per section  
5.3.3.4 of the JESD204B specification.  
0
1
Frame Alignment  
characters are not  
inserted.  
Inserts frame alignment  
characters  
D0  
0
TX LINK CONFIG DATA Disables sending initial link alignment (ILA) sequence when SYNC~ is de-asserted, '0'  
ILA Enabled  
ILA disabled  
1
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
27  
0
0
0
0
0
0
CTRL K  
CTRL F  
Default: 00h  
D1  
0
CTRL K  
Default  
Frames per multiframe can be set in register 2Dh  
Enables bit for number of frames per multiframe  
1
D0  
0
CTRL F  
Enables bit for number of octets per frame  
Default  
1
Octets per frame can be specified in register 2Ch  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2B  
SCRAMBLE EN  
0
0
0
0
0
0
0
Default: 00h  
D7  
0
SCRAMBLE EN  
Scramble enable bit in the JESD204B interface  
Scrambling disabled  
Scrambling enabled  
1
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OCTETS PER  
2C  
0
0
0
0
0
0
0
FRAME  
Default: 00h  
D[7:0]  
OCTETS PER FRAME  
Sets number of octets per frame (F)  
0
1
10x mode using two lanes per ADC  
20x mode using one lane per ADC  
REGISTER  
REGISTER DATA  
ADDRESS  
A[7:0] (Hex)  
2D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
FRAMES PER MULTIFRAME  
Default: 00h  
D[4:0] FRAMES PER MULTIFRAME  
After reset, the default settings for frames per multiframe are:  
Sets number of frames per multiframe  
10x  
20x  
K = 16  
K = 8  
For each mode, K should not be set to a lower value.  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
30  
SUBCLASS  
0
0
0
0
0
Default: 40h  
D[7:5]  
SUBCLASS  
Sets JESD204B subclass. Note that the default value of these bits after reset is '010', which makes subclass 2  
the default class.  
000  
001  
010  
Subclass 0  
Subclass 1  
Subclass 2  
Backward compatibility with JESD204A  
Deterministic latency using SYSREF signal  
Deterministic latency using SYNC~ detection (default subclass after reset)  
46  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
36  
SYNC REQ  
LMFC RESET MASK  
0
0
OUTPUT CURRENT SEL  
Default: 00h  
D7  
0
SYNC REQ  
Generates synchronization request  
Mask LMFC reset coming to digital  
Normal operation  
1
Generates sync request  
D6  
0
LMFC RESET MASK  
LMFC reset is not  
masked  
1
Ignores LMFC reset  
D3-D0  
OUTPUT CURRENT  
SEL  
Changes JESD output buffer current  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
16 mA  
15 mA  
14 mA  
13 mA  
20 mA  
19 mA  
18 mA  
17 mA  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
8 mA  
7 mA  
6 mA  
5 mA  
12 mA  
11 mA  
10 mA  
9 mA  
REGISTER  
ADDRESS  
REGISTER DATA  
D4  
A[7:0] (Hex)  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
37  
LINK LAYER TESTMODE  
LINK LAYER RPAT  
0
PULSE DET MODES  
Default: 00h  
D[7:5] LINK LAYER TESTMODE  
Generates pattern according to clause 5.3.3.8.2 of the JESD204B document  
000  
001  
010  
011  
Normal ADC data  
D21.5 (high-frequency jitter pattern)  
K28.5 (mixed-frequency jitter pattern)  
Repeats initial lane alignment (generates K28.5 character and repeats lane alignment  
sequences continuously)  
100  
D4  
12-octet RPAT jitter pattern  
LINK LAYER RPAT  
Changes the running disparity in modified RPAT pattern test mode  
(only when link layer test mode = 100)  
0
1
Normal operation  
Changes disparity  
D[2:0] PULSE DET MODES  
Selects different detection modes for SYSREF (subclass 1) and SYNC (subclass 2)  
D2  
D1  
D0  
0
FUNCTIONALITY  
0
1
Don’t care  
Don’t care  
Allows all pulses to reset input clock dividers  
Do not allow reset of analog clock dividers  
Allows one pulse immediately after the 0 -> 1 transition to reset the divider  
0
Don’t care  
0 -> 1  
1
transition  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REGISTER  
ADDRESS  
REGISTER DATA  
A[7:0] (Hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
38  
FORCE LMFC COUNT  
LMFC COUNT INIT  
RELEASE ILANE SEQ  
Default: 00h  
D7  
0
FORCE LMFC COUNT  
Normal operation  
Enables using a different starting value for the LMFC counter  
Forces LMFC count  
1
D[6:2]  
LMFC COUNT INIT  
SYSREF receives the digital block and resets the LMFC count to '0'. K28.5 stops transmitting when  
the LMFC count reaches 31. The initial value that the LMFC count resets to can be set using LMFC  
COUNT INIT. In this manner, the Rx can be synchronized early because the Rx gets the LANE  
ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT register bit must be enabled.  
D[1:0]  
RELEASE ILANE SEQ  
Delays the generation of lane alignment sequence by 0, 1, 2, or 3 multiframes after the code group  
synchronization.  
00  
01  
10  
11  
0
1
2
3
48  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS42JB69 and ADS42JB49 is a family of high linearity, buffered analog input, dual-channel ADCs with  
maximum sampling rates up to 250 MSPS employing JESD204B interface. The conversion process is initiated by  
a rising edge of the external input clock and the analog input signal is sampled. The sampled signal is  
sequentially converted by a series of small resolution stages, with the outputs combined in a digital correction  
logic block. At every clock edge the sample propagates through the pipeline, resulting in a data latency of 23  
clock cycles. The output is available in CML logic levels following JESD204B standard.  
ANALOG INPUT  
The analog input pins have analog buffers (running from the AVDD3V supply) that internally drive the differential  
sampling circuit. As a result of the analog buffer, the input pins present high input impedance to the external  
driving source (10-kΩ dc resistance and 4-pF input capacitance). The buffer helps isolate the external driving  
source from the switching currents of the sampling circuit. This buffering makes driving the buffered inputs easier  
than when compared to an ADC without the buffer.  
The input common-mode is set internally using a 5-kΩ resistor from each input pin to VCM so the input signal  
can be ac-coupled to the pins. Each input pin (INP, INM) must swing symmetrically between VCM + 0.5 V and  
VCM – 0.5 V, resulting in a 2-V  
differential input swing. When programmed for 2.5-V  
full-scale, each input  
PP  
PP  
pin must swing symmetrically between VCM + 0.625 V and VCM – 0.625 V.  
The input sampling circuit has a high 3-dB bandwidth that extends up to 900 MHz (measured with a 50-Ω source  
driving a 50-Ω termination between INP and INM). The dynamic offset of the first-stage sub-ADC limits the  
maximum analog input frequency to approximately 250 MHz (with a 2.5-VPP full-scale amplitude) and to  
approximately 400 MHz (with a 2-VPP full-scale amplitude). This 3-dB bandwidth is different than the analog  
bandwidth of 900 MHz, which is only an indicator of signal amplitude versus frequency.  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This technique improves the common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics.  
Figure 82, Figure 83, and Figure 84 show the differential impedance (ZIN = RIN || CIN) at the ADC input pins. The  
presence of the analog input buffer results in an almost constant input capacitance up to 1 GHz.  
INxP(1)  
(2)  
RIN  
ZIN  
CIN  
INxM  
(1) X = A or B.  
(2) ZIN = RIN || (1 / jωCIN).  
Figure 82. ADC Equivalent Input Impedance  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
10  
5
4
3
2
1
0
1
0.1  
0.05  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Frequency (MHz)  
Frequency (MHz)  
G064  
G064  
Figure 83. ADC Analog Input Resistance (RIN)  
Across Frequency  
Figure 84. ADC Analog Input Capacitance (CIN)  
Across Frequency  
50  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Driving Circuit  
An example driving circuit configuration is shown in Figure 85. To optimize even-harmonic performance at high  
input frequencies (greater than the first Nyquist), the use of back-to-back transformers is recommended, as  
shown in Figure 85. Note that the drive circuit is terminated by 50 Ω near the ADC side. The ac-coupling  
capacitors allow the analog inputs to self-bias around the required common-mode voltage. An additional R-C-R  
(39 Ω - 6.8 pF - 39 Ω) circuit placed near device pins helps further improve HD3.  
0.1µF  
0.1µF  
5Q  
INP  
INM  
RINT  
39 Ÿ  
25 Ÿ  
25 Ÿ  
0.1µF  
6.8 pF  
RINT  
39 Ÿ  
5 Ÿ  
0.1µF  
1:1  
1:1  
Device  
Figure 85. Drive Circuit for Input Frequencies upto 250MHz  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and  
good performance is obtained for high-frequency input signals. An additional termination resistor pair may be  
required between the two transformers, as shown in Figure 85. The center point of this termination is connected  
to ground to improve the balance between the P (positive) and M (negative) sides. The values of the terminations  
between the transformers and on the secondary side must be chosen to obtain an effective 50 Ω (for a 50-Ω  
source impedance). For high input frequencies (>250MHz), the R-C-R circuit can be removed as indicated in  
Figure 86.  
0.1µF  
0.1µF  
5Q  
INP  
INM  
RINT  
25 Ÿ  
25 Ÿ  
0.1µF  
RINT  
5 Ÿ  
0.1µF  
1:1  
1:1  
Device  
Figure 86. Drive Circuit for Input Frequencies > 250MHz  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
CLOCK INPUT  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to 1.4 V  
using internal 5-kΩ resistors. The self-bias clock inputs of the ADS42JB69 and ADS42JB49 can be driven by the  
transformer-coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown  
in Figure 87, Figure 88, and Figure 89. See Figure 90 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 87. Differential Sine-Wave Clock Driving  
Circuit  
Figure 88. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 89. LVPECL Clock Driving Circuit  
Clock Buffer  
LPKG  
2 nH  
20 W  
CLKP  
CBOND  
1 pF  
CEQ  
CEQ  
5 kW  
RESR  
100 W  
1.4 V  
LPKG  
2 nH  
5 kW  
20 W  
CLKM  
CBOND  
1 pF  
RESR  
100 W  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 90. Internal Clock Buffer  
52  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in Figure 91. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 91. Single-Ended Clock Driving Circuit  
DIGITAL GAIN  
The device includes gain settings that can be used to obtain improved SFDR performance (compared to no  
gain). Gain is programmable from –2 dB to 6 dB (in 0.5-dB steps). For each gain setting, the analog input full-  
scale range scales proportionally. Table 10 shows how full-scale input voltage changes when digital gain are  
programmed in 1-dB steps. Refer to Table 8 to set digital gain using a serial interface register.  
SFDR improvement is achieved at the expense of SNR; for 1 dB increase in digital gain, SNR degrades  
approximately between 0.5 dB and 1 dB. Therefore, gain can be used as a trade-off between SFDR and SNR.  
Note that the default gain after reset is 0 dB with a 2.0-VPP full-scale voltage.  
Table 10. Full-Scale Range Across Gains  
DIGITAL GAIN  
–2 dB  
FULL-SCALE INPUT VOLTAGE  
(1)  
2.5 VPP  
–1 dB  
2.2 VPP  
2.0 VPP  
1.8 VPP  
1.6 VPP  
1.4 VPP  
1.25 VPP  
1.1 VPP  
1.0 VPP  
0 dB (default)  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
(1) Shaded cells indicate performance settings used in the Electrical  
Characteristics and Typical Characteristics.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
OVERRANGE INDICATION  
The device provides two different overrange indications. Normal OVR (default) is triggered if the final 16-bit data  
output exceeds the maximum code value. Fast OVR is triggered if the input voltage exceeds the programmable  
overrange threshold and is presented after only nine clock cycles, thus enabling a quicker reaction to an  
overrange event. By default, the normal overrange indication is output on the OVRA and OVRB pins. Using the  
register bit FAST OVR EN, the fast OVR indication can be presented on the overrange pins instead.  
The input voltage level at which the overload is detected is referred to as the threshold and is programmable  
using the FAST OVR THRESHOLD bits. FAST OVR is triggered nine output clock cycles after the overload  
condition occurs. The threshold voltage amplitude at which fast OVR is triggered is:  
1 × [the decimal value of the FAST OVR THRESH bits] / 127  
When digital is programmed (for gain values  
>
0-dB ), the threshold voltage amplitude is:  
10-Gain/20 x [the decimal value of the FAST OVR THRESH bits] / 127  
SNR AND CLOCK JITTER  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors, as shown in Equation 1.  
Quantization noise is typically not noticeable in pipeline converters and is 96 dBFS for a 16-bit ADC. Thermal  
noise limits SNR at low input frequencies and clock jitter sets SNR for higher input frequencies.  
2
2
2
ö
SNRQuantization _Noise  
æ
ö
SNRThermalNoise  
SNRJitter  
20  
æ
ö
æ
SNRADC[dBc] = -20´log 10 -  
ç
è
+ 10 -  
ç
è
+ 10 -  
ç
è
÷
÷
÷
÷
ç
20  
20  
ø
ø
ø
(1)  
(2)  
SNR limitation is a result of sample clock jitter and can be calculated by Equation 2:  
SNRJitter [dBc] = -20 ´ log(2p ´ fIN ´ tJitter  
)
The total clock jitter (TJitter) has three components: the internal aperture jitter (85 fS for the device) is set by the  
noise of the clock input buffer, the external clock jitter, and the jitter from the analog input signal. TJitter can be  
calculated by Equation 3:  
2
TJitter  
=
(TJitter,Ext.Clock_Input)2 + (TAperture_ADC  
)
(3)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input while a faster clock slew rate improves ADC aperture jitter. The device has a 74.1-dBFS  
thermal noise and an 85-fS internal aperture jitter. The SNR value depends on the amount of external jitter for  
different input frequencies, as shown in Figure 92.  
76  
74  
72  
35 fs  
70  
50 fs  
68  
66  
64  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Fin (MHz)  
Figure 92. SNR versus Input Frequency and External Clock Jitter  
54  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
 
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
INPUT CLOCK DIVIDER  
The device is equipped with an internal divider on the clock input. This divider allows operation with a faster input  
clock, simplifying the system clock distribution design. The clock divider can be bypassed (divide-by-1) for  
operation with a 250-MHz clock. The divide-by-2 option supports a maximum 500-MHz input clock and the  
divide-by-4 option supports a maximum 1-GHz input clock frequency.  
JESD204B INTERFACE  
The JESD interface of ADS42JB49 and ADS42JB69, as shown in Figure 93 , supports device subclasses 0, 1,  
and 2 with a maximum output data rate (per lane) of 3.125 Gbps.  
An external SYSREF (subclass 1) or SYNC~ (subclass 2) signal is used to align all internal clock phases and the  
local multiframe clock to a specific sampling clock edge. This alignment allows synchronization of multiple  
devices in a system and minimizes timing and alignment uncertainty.  
SYSREF SYNC~  
JESD204B  
D0, D1  
JESD  
204B  
INA  
INB  
JESD204B  
D0, D1  
JESD  
204B  
Sample  
Clock  
Figure 93. JESD204B Interface  
Depending on the ADC sampling rate, the JESD204B output interface can be operated with either one or two  
lanes per ADC. The JESD204B interface can be configured using serial registers.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
The JESD204B transmitter block (Figure 94) consists of the transport layer, the data scrambler, and the link  
layer. The transport layer maps the ADC output data into the selected JESD204B frame data format and  
manages if the ADC output data or test patterns are transmittied. The link layer performs the 8b and 10b data  
encoding as well as the synchronization and initial lane alignment using the SYNC~ input signal. Optionally, data  
from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b,10b  
encoding  
D0  
D1  
Scrambler  
1+x14+x15  
Comma characters  
Initial lane alignment  
Test Patterns  
SYNC~  
Figure 94. JESD204B Block  
JESD204B Initial Lane Alignment (ILA)  
When receiving device asserts the SYNC~ signal ( i.e a logic low signal is applied on SYNC~P - SYNC~M), the  
device begins transmitting comma (K28.5) characters to establish code group synchronization (CGS).  
When synchronization is complete, the receiving device de-asserts the SYNC~ signal and the ADS42JB49 and  
ADS42JB69 begin the initial lane alignment (ILA) sequence with the next local multiframe clock boundary. The  
device transmits four multiframes, each containing K frames (where K is SPI programmable). Each multiframe  
contains the frame start and end symbols; the second multiframe also contains the JESD204 link configuration  
data.  
JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The device  
supports a clock output, an encoded, and a PRBS (215 – 1) pattern. These patterns can be enabled by serial  
register write in address 26h, bits D[7:6].  
56  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per Lane.  
M is the number of converters per device.  
F is the number of octets per frame clock period.  
S is the number of samples per frame.  
Table 11 lists the available JESD204B formats and valid device ranges. Ranges are limited by the maximum  
ADC sample frequency and the SERDES line rate.  
Table 11. JESD240B Ranges  
L
4
2
M
2
F
1
2
S
1
1
MAX ADC SAMPLING RATE (MSPS)  
MAX fSERDES (Gbps)  
250  
2.5  
2
156.25  
3.125  
The detailed frame assembly in 10x and 20x modes for dual-channel operation is shown in Table 12. Note that  
unused lanes in 10x mode become 3-stated.  
Table 12. Frame Assembly for Dual-Channel Mode(1)  
LANE  
DA0  
DA1  
DB0  
DB1  
LMF = 421  
A1[15:8]  
A1[7:0]  
LMF = 222  
A0[15:8]  
A0[7:0]  
B0[15:8]  
B0[7:0]  
A2[15:8]  
A2[7:0]  
B2[15:8]  
B2[7:0]  
A0[15:8]  
A0[7:0]  
A1[15:8]  
A1[7:0]  
A2[15:8]  
A2[7:0]  
B1[15:8]  
B1[15:8]  
B1[7:0]  
B0[15:8]  
B0[7:0]  
B1[7:0]  
B2[15:8]  
B2[7:0]  
(1) In ADS42JB49 two LSBs of 16-bit data are padded with 00.  
JESD LINK CONFIGURATION  
During the lane alignment sequence, the ADS42JB69 and ADS42JB49 transmit JESD204B configuration  
parameters in the second multi-frame of the ILA sequence. Configuration bits are mapped in octets, as per the  
JESD204B standard described in Figure 95 and Table 13.  
Figure 95. Initial Lane Alignment Sequence  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
LSB  
Table 13. Mapping of Configuration Bits to Octets  
Octet  
No  
MSB  
D6  
D5  
D4  
D3  
D2  
D1  
0
1
DID [7:0]  
ADJCNT[3:0]  
BID[3:0]  
ADJDI  
R[0]  
2
X
PHADJ[0]  
LID[4:0]  
L[4:0]  
3
4
SCR[0]  
F[7:0]  
M[7:0]  
5
K[4:0]  
6
7
CS[1:0]  
X
X
N[4:0]  
N'[4:0]  
S[4:0]  
8
SUBCLASSV[2:0]  
9
JESDV[2:0]  
X
10  
11  
12  
13  
HD[0]  
CF[4:0]  
RES1[7:0]  
RES2[7:0]  
FCHK[7:0]  
Configuration for 2-Lane (20x) SERDES Mode  
Table 14 lists the values of the JESD204B configuration bits applicable for the 2-lane SERDES Mode. The  
default value of these bits after reset is also specified in the table.  
Table 14. Configuration for 2-Lane SERDES Mode  
PARAMETER  
RANGE  
DEFAULT VALUE  
AFTER RESET  
PARAMETER  
DESCRIPTION  
FIELD  
ENCODING  
Number of  
adjustment resolution  
steps to adjust DAC  
LMFC. Applies to  
subclass 2 operation  
only.  
ADJCNT  
0 ... 15  
ADJCNT[3:0]  
Binary value  
0
0
Direction to adjust  
DAC LMFC  
0 – Advance  
1 – Delay applies to  
subclass 2 operation  
only  
ADJDIR  
0 … 1  
ADJDIR[0]  
Binary value  
Bank ID – extension  
to DID  
BID  
CF  
0 ... 15  
0 ... 32  
BID[3:0]  
CF[4:0]  
Binary value  
Binary value  
0
0
No. of control words  
per frame clock  
period per link  
No. of control bits per  
sample  
CS  
0 ... 3  
CS[1:0]  
DID[7:0]  
Binary value  
Binary value  
0
0
Device (= link)  
identification no.  
DID  
0 ... 255  
No. of octets per  
frame  
F
1 ... 256  
0 ... 1  
F[7:0]  
HD[0]  
Binary value minus 1  
Binary value  
1
0
HD  
High-density format  
JESD204 version  
000 – JESD204A  
001 – JESD204B  
JESDV  
K
0 … 7  
JESDV[2:0]  
K[4:0]  
Binary value  
1
8
No. of frames per  
multi-frame  
1 ... 32  
Binary value minus 1  
58  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Table 14. Configuration for 2-Lane SERDES Mode (continued)  
PARAMETER  
RANGE  
DEFAULT VALUE  
AFTER RESET  
PARAMETER  
DESCRIPTION  
FIELD  
ENCODING  
Binary value minus 1  
Binary value  
No. of lanes per  
converter device  
(link)  
L
1 ... 32  
0 ... 31  
L[4:0]  
0
Lane identification  
no. (within link)  
LID  
LID[4:0]  
LID[0] = 0, LID[1] = 1  
No. of converters per  
device  
M
N
1 ... 256  
1 ... 32  
1 ... 32  
M[7:0]  
N[4:0]  
N'[4:0]  
Binary value minus 1  
Binary value minus 1  
Binary value minus 1  
1
Converter resolution  
15  
15  
Total no. of bits per  
sample  
N’  
Phase adjustment  
request to DAC  
subclass 2 only.  
PHADJ  
0 ... 1  
PHADJ[0]  
Binary value  
0
No. of samples per  
converter per frame  
cycle  
S
1 ... 32  
0 ... 1  
S[4:0]  
Binary value minus 1  
Binary value  
0
0
SCR  
Scrambling enabled  
SCR[0]  
Device subclass  
version  
SUBCLASSV  
RES1  
000 – Subclass 0  
001 – Subclass 1  
010 – Subclass 2  
0 … 7  
SUBCLASSV[2:0]  
RES1[7:0]  
Binary value  
Binary value  
2
0
Device subclass  
version  
000 – Subclass 0  
001 – Subclass 1  
010 – Subclass 2  
0 ... 255  
RES2  
Reserved field 2  
0 ... 255  
0 ... 255  
RES2[7:0]  
FCHK[7:0]  
Binary value  
Binary value  
0
Checksum Σ (all  
above fields) mod  
256  
CHKSUM  
44, 45  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
Configuration for 4-Lane (10x) SERDES Mode  
Table 15 lists the values of the JESD204 configuration bits applicable for the 4-lane SERDES Mode. The default  
value of these bits after reset is also specified in the table.  
Table 15. Configuration for 4-Lane SERDES Mode  
PARAMETER  
RANGE  
DEFAULT VALUE  
AFTER RESET  
PARAMETER  
DESCRIPTION  
FIELD  
ENCODING  
Number of  
adjustment resolution  
steps to adjust DAC  
LMFC. Applies to  
subclass 2 operation  
only.  
ADJCNT  
0 ... 15  
ADJCNT[3:0]  
Binary value  
0
0
Direction to adjust  
DAC LMFC  
0 – Advance  
1 – Delay applies to  
subclass 2 operation  
only  
ADJDIR  
0 … 1  
ADJDIR[0]  
Binary value  
Bank ID – extension  
to DID  
BID  
CF  
0 ... 15  
0 ... 32  
BID[3:0]  
CF[4:0]  
Binary value  
Binary value  
0
0
No. of control words  
per frame clock  
period per link  
No. of control bits per  
sample  
CS  
0 ... 3  
CS[1:0]  
DID[7:0]  
Binary value  
Binary value  
0
0
Device (= link)  
identification no.  
DID  
0 ... 255  
No. of octets per  
frame  
F
1 ... 256  
0 ... 1  
F[7:0]  
HD[0]  
Binary value minus 1  
Binary value  
0
1
HD  
High-density format  
JESD204 version  
000 – JESD204A  
001 – JESD204B  
JESDV  
0 … 7  
1 ... 32  
1 ... 32  
0 ... 31  
JESDV[2:0]  
K[4:0]  
Binary value  
Binary value minus 1  
Binary value minus 1  
Binary value  
1
16  
3
No. of frames per  
multi-frame  
K
L
No. of lanes per  
converter device  
(link)  
L[4:0]  
Lane identification no  
(within link)  
LID[0] = 0, LID[1] = 1,  
LID[2] = 2, LID[3] = 3  
LID  
LID[4:0]  
No. of converters per  
device  
M
N
1 ... 256  
1 ... 32  
1 ... 32  
M[7:0]  
N[4:0]  
N'[4:0]  
Binary value minus 1  
Binary value minus 1  
Binary value minus 1  
1
Converter resolution  
15  
15  
Total no. of bits per  
sample  
N’  
Phase adjustment  
request to DAC  
subclass 2 only.  
PHADJ  
0 ... 1  
PHADJ[0]  
Binary value  
0
No. of samples per  
converter per frame  
cycle  
S
1 ... 32  
0 ... 1  
S[4:0]  
Binary value minus 1  
Binary value  
0
0
SCR  
Scrambling enabled  
SCR[0]  
Device subclass  
version  
SUBCLASSV  
000 – Subclass 0  
001 – Subclass 1  
010 – Subclass 2  
0 … 7  
SUBCLASSV[2:0]  
Binary value  
2
60  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
 
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Table 15. Configuration for 4-Lane SERDES Mode (continued)  
PARAMETER  
RANGE  
DEFAULT VALUE  
AFTER RESET  
PARAMETER  
DESCRIPTION  
FIELD  
ENCODING  
Device subclass  
version  
RES1  
000 – Subclass 0  
001 – Subclass 1  
010 – Subclass 2  
0 ... 255  
RES1[7:0]  
Binary value  
0
RES2  
Reserved field 2  
0 ... 255  
0 ... 255  
RES2[7:0]  
FCHK[7:0]  
Binary value  
Binary value  
0
Checksum Σ(all  
above fields)mod 256  
CHKSUM  
54, 55, 56, 57  
CML Outputs  
The device JESD204B transmitter uses differential CML output drivers. The CML output current is programmable  
from 5 mA to 20 mA using register settings.  
The output driver includes an internal 50-Ω termination to IOVDD supply. External 50-Ω termination resistors  
connected to receiver common-mode voltage should be placed close to receiver pins. AC coupling can be used  
to avoid the common-mode mismatch between transmitter and receiver, as shown in Figure 96.  
Vterm  
Rt= ZO  
0.1uF  
Rt= ZO  
Transmission Line  
Zo  
DA/B[0,1]P  
DA/B[0,1]M  
Receiver  
0.1uF  
Figure 96. CML Output Connections  
Figure 97 and Figure 98 show the data eye measurements of the device JESD204B transmitter against the  
JESD204B transmitter mask at 2.5 GBPS (10x mode) and 3.125 GBPS (20x mode), respectively.  
300  
300  
150  
150  
0
0
-150  
-150  
-300  
-300  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
-300  
-200  
-100  
0
100  
200  
300  
Time (ps)  
Time (ps)  
Figure 97. Eye Diagram: 2.5 Gbps  
Figure 98. Eye Diagram: 3.125 Gbps  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: ADS42JB49 ADS42JB69  
 
 
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay: The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter): The sample-to-sample variation in aperture delay.  
Clock Pulse Width and Duty Cycle: The duty cycle of a clock signal is the ratio of the time the clock signal  
remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate: The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate: The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly 1  
LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL): The INL is the deviation of the ADC transfer function from a best fit line determined  
by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error: Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy (EGREF) and error as a result of the channel (EGCHAN). Both errors are specified  
independently as EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 – 0.5 / 100) x FSideal to (1 + 0.5 / 100) x FSideal  
.
.
.
Offset Error: The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift: The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. Temperature drift is calculated by dividing the  
maximum deviation of the parameter across the TMIN to TMAX range by the difference TMAX – TMIN  
.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental (PS) to the noise floor power  
(PN), excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(4)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(5)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
62  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
www.ti.com  
SLAS900C OCTOBER 2012REVISED JULY 2013  
Effective Number of Bits (ENOB): ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(6)  
Total Harmonic Distortion (THD): THD is the ratio of the power of the fundamental (PS) to the power of the first  
nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(7)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR): The ratio of the power of the fundamental to the highest other spectral  
component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion (IMD3): IMD3 is the ratio of the power of the fundamental (at frequencies  
f1 and f2) to the power of the worst spectral component at either frequency 2f1 – f2 or 2f2 – f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR): DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR): AC PSRR is the measure of rejection of variations in the supply  
voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the ADC  
output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(8)  
Voltage Overload Recovery: The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6 dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR): CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(9)  
Crosstalk (only for multichannel ADCs): Crosstalk is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. Crosstalk is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). Crosstalk is  
usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. Crosstalk is typically expressed in dBc.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: ADS42JB49 ADS42JB69  
ADS42JB49  
ADS42JB69  
SLAS900C OCTOBER 2012REVISED JULY 2013  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (July 2013) to Revision C  
Page  
Added Internal Dither in Features Section ............................................................................................................................ 1  
Changed From "The devices provide excellent" to "The devices employ internal dither algorithms to provide" ................. 1  
Changed 2-VPP Full-Scale INL maximum specification in ADS42JB69 Electrical Characteristics table .............................. 4  
Deleted 2.5-VPP Full-Scale INL maximum specification in ADS42JB69 Electrical Characteristics table .............................. 4  
Changed 2-VPP Full-Scale INL maximum specification in ADS42JB49 Electrical Characteristics table .............................. 5  
Deleted 2.5-VPP Full-Scale INL maximum specification in ADS42JB49 Electrical Characteristics table .............................. 5  
Changed EGREF specifications in General Electrical Characteristics table ........................................................................... 6  
Changes from Revision A (November 2012) to Revision B  
Page  
Moved document status to Mixed Status .............................................................................................................................. 1  
64  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: ADS42JB49 ADS42JB69  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS42JB49IRGCR  
ADS42JB49IRGCT  
ADS42JB69IRGC25  
ADS42JB69IRGCR  
ADS42JB69IRGCT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
PREVIEW  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
64  
64  
64  
64  
64  
2000  
Green (RoHS  
& no Sb/Br)  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
AZ42JB49  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
RGC  
RGC  
RGC  
RGC  
250  
25  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
AZ42JB49  
AZ42JB69  
AZ42JB69  
AZ42JB69  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
2000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS42JB46IRGCR

Dual-Channel, 14-Bit, 160-MSPS Analog-to-Digital Converter (ADC) 64-VQFN -40 to 85
TI

ADS42JB46IRGCT

Dual-Channel, 14-Bit, 160-MSPS Analog-to-Digital Converter (ADC) 64-VQFN -40 to 85
TI

ADS42JB49

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49IRGC25

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49IRGCR

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49IRGCT

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49_13

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49_14

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB49_15

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB69

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB69IRGC25

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI

ADS42JB69IRGCR

Dual-Channel, 14- and 16-Bit, 250-MSPS Analog-to-Digital Converters
TI