ADS5102CPFB [TI]

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE; 1.8 V模拟电源, 10位, 65/40 MSPS模拟数字转换器具有内部参考
ADS5102CPFB
型号: ADS5102CPFB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
1.8 V模拟电源, 10位, 65/40 MSPS模拟数字转换器具有内部参考

转换器
文件: 总23页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5102  
ADS5103  
SLAS351B – OCTOBER 2001 – REVISED DECEMBER 2001  
1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS  
ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE  
D
D
D
Imaging  
FEATURES  
Communications  
Baseband Digitization  
D
D
D
D
ADS5102 (65 MSPS) ADS5103 (40 MSPS)  
Differential Input  
1.8 V Analog/Digital Supply  
DESCRIPTION  
Digital Outputs Compatible With 1.8 V or 3.3 V  
Logic  
The ADS5102/3 are low-power CMOS, 10-bit, analog-  
to-digital converters (ADC) that operate from a single  
1.8-V supply. The internal reference can be bypassed  
to use an external reference to suit the dc accuracy and  
temperature drift requirements of the application. A  
10-bit parallel output data bus is provided with 3-state  
outputs. For power sensitive systems, a standby mode  
is provided which reduces power consumption to  
336 µW. Also, if using external voltage reference, then  
the internal VREF circuit can be powered down. The  
analog input is differential, which provides excellent  
common-mode noise rejection as well as superior  
performance from the ADS5102/3.  
D
D
Signal-to-Noise: 58 dB at 20 MHz (ADS5103)  
Spurious Free Dynamic Range: 71 dB at  
20 MHz (ADS5102)  
D
D
105-mW Power Dissipation (ADS5103)  
336 µW Power-Down Mode  
APPLICATIONS  
D
D
Ultrasound  
Digital Cameras  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DD  
STBY  
DRV  
DD  
DV  
DD  
Timing Circuitry  
CLK  
AIN+  
AIN–  
3-State  
Output  
Buffers  
Sample  
and Hold  
D[0–9]  
OE  
10 Bit  
ADC  
CM  
NC  
RBIAS  
NC  
Internal  
Reference  
Circuit  
AGND  
BG  
PDREF REFT REFB CML  
DRGND  
DGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright 2001, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PFB PACKAGE  
(TOP VIEW)  
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DRV  
NC  
DRGND  
NC  
37  
38  
39  
40  
41  
42  
DD  
DV  
DV  
DD  
DD  
DGND  
CLK  
STBY  
OE  
PDREF  
NC  
NC  
RBIAS  
NC  
DGND  
AV  
DD  
AGND  
AIN43  
AIN+ 44  
AGND 45  
AV  
46  
DD  
NC 47  
NC 48  
1
2
3
4
5
6
7
8
9 10 11 12  
NC No internal connection  
ORDERING INFORMATION  
48-TQFP (PFB)  
Tape and Reel  
48-TQFP (PFB)  
Tray  
48-TQFP (PFB)  
Tape and Reel  
48-TQFP (PFB)  
Tray  
T
A
40 MSPS  
40 MSPS  
65 MSPS  
65 MSPS  
0°C to 70°C  
ADS5103CPFBR ADS5103CPFB  
ADS5102CPFBR ADS5102CPFB  
40°C to 85°C  
Evaluation module  
ADS5103IPFBR  
ADS5103EVM  
ADS5103IPFB  
ADS5103EVM  
ADS5102IPFBR  
ADS5102EVM  
ADS5102IPFB  
ADS5102EVM  
2
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
AV  
2, 41, 46  
I
I
Analog supply, 1.8V ±5%  
DD  
AGND  
3, 9, 42, 45  
Analog ground  
Reference top  
Reference bottom  
REFT  
REFB  
CML  
4
5
I/O  
I/O  
O
O
I
6
Common mode level outputnominally 1.0 V  
BG  
7
Band-gap decouplingdecouple with 1 µF to GND and 100 kto AV  
(refer to Figure 30)  
DD  
PDREF  
17  
Powerdown reference when using external voltage reference 0 = internal VREF, 1 = external VREF.  
In external VREF mode, connect pins BG and REFT together.  
RBIAS  
14  
O
Connect a resistor between this pin and AGND. This resistor value is determined by speed grade  
selected and is used to set amplifier internal bias currents. (see Table 2)  
OE  
18  
19  
I
I
1 = 3-state the data outputs , 0 = data bus enable  
0 = power down mode, 1 = normal operation mode  
Clock Input  
STBY  
CLK  
20  
I
DGND  
21, 40  
22, 39  
24  
I
Digital ground  
DV  
I
Digital supply1.8 V nominally  
Driver digital supply1.8 V or 3.3 V nominally  
Digital Bit 9 (MSB)  
DD  
DRV  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I
DD  
25  
O
O
O
O
O
O
O
O
O
O
I
26  
Digital Bit 8  
27  
Digital Bit 7  
28  
Digital Bit 6  
29  
Digital Bit 5  
30  
Digital Bit 4  
31  
Digital Bit 3  
32  
Digital Bit 2  
33  
Digital Bit 1  
34  
Digital Bit 0 (LSB)  
DRGND  
AIN+  
AIN–  
NC  
37  
Driver digital ground  
Positive analog input  
Negative analog input  
No internal connection on this pin  
44  
I
43  
I
1,8,10,11,12,  
13,15,16,23,35,  
36, 38,47,48  
NA  
3
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage:  
V
DRV  
to AGND, DV  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.2 V  
DD  
DD  
to DRGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 0.3 V  
AV to DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 V to 2.2 V  
DD  
DD  
Reference voltage input range REFT, REFB, to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to AV  
CML, analog input voltage range AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to AV  
Clock input CLK to DRGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DRV  
Digital inputs to DRGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DRV  
Digital outputs to DRGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DRV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
DD  
DD  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 150°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
REFB  
0.8  
TYP  
MAX  
REFT  
1.1  
UNIT  
Analog Inputs  
Analog input voltage (AIN+, AIN)  
Input voltage, differential full scale  
Input common-mode voltage, (REFT+REFB)/2  
V
1
V
pp  
V
pF  
Input capacitance (C ), measured to ground  
i
5
10  
Overvoltage recovery time, 1.8-V input voltage  
Analog input bandwidth  
ns  
950  
38.5  
62.5  
MHz  
ADS5102  
Input impedance (switch capacitor)  
kΩ  
ADS5103  
Supplies and References  
Operating free-air temperature, T  
40  
1.65  
1.65  
1.65  
1.30  
0.78  
0.85  
1.22  
85  
2.00  
2.00  
3.6  
°C  
V
V
V
V
V
V
V
A
Analog supply voltage, AV  
1.80  
1.80  
1.80  
1.34  
0.81  
1.05  
1.27  
DD  
Digital supply voltage, DV  
DD  
Digital driver supply voltage, DRV  
Reference top voltage, VREFT  
DD  
1.39  
0.84  
1.15  
1.32  
Reference bottom voltage, VREFB  
Common-mode voltage, VCML  
Bandgap voltage, VBG  
Clock Inputs CLK  
ADS5102  
ADS5103  
1
1
65  
40  
Sampling rate  
MSPS  
4
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
electrical characteristics over recommended operating conditions, AV  
= DV  
= 1.8 V,  
DD  
DD  
DRV  
= 3.3 V, F = 40, 65 MSPS (as appropriate)/50% duty cycle, 1 dBFS input span, C = 10 pF  
DD  
s
L
at D0D9, internal reference, T  
to T  
, typical data at 25°C (unless otherwise noted)  
(min)  
(max)  
internal reference voltages  
PARAMETER  
MIN  
1.30  
0.78  
0.85  
1.22  
TYP  
1.34  
0.81  
1.05  
1.27  
MAX  
1.39  
0.84  
1.15  
1.32  
UNIT  
VREFT  
VREFB  
VCML  
VBG  
Reference top voltage  
Reference bottom voltage  
Common-mode voltage  
Bandgap voltage  
V
V
V
V
external reference voltages  
PARAMETER  
Reference input voltage (top)  
Reference input voltage (bottom)  
MIN  
1.15  
0.70  
0.45  
TYP  
1.25  
0.75  
0.50  
200  
MAX  
1.35  
0.85  
0.55  
UNIT  
V
REFT  
REFB  
V
REFTREFB  
Differential input  
Input resistance  
V
digital outputs  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
0.2  
TYP  
MAX  
UNIT  
DRV  
DRV  
DRV  
DRV  
= 1.8 V  
= 3.3 V  
= 1.8 V  
= 3.3 V  
DRV  
DRV  
DD  
DD  
DD  
DD  
DD  
V
V
High-level output voltage  
I
I
= 50 µA  
= 50 µA  
V
OH  
OH  
DD  
0.1  
0.2  
Low-level output voltage  
External load capacitance  
V
OL  
OL  
C
15  
pF  
L
digital inputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRV  
DRV  
DRV  
DRV  
= 1.8 V  
= 3.3 V  
= 1.8 V  
= 3.3 V  
0.8 × DRV  
DD  
DD  
DD  
DD  
DD  
V
V
High-level input voltage  
Low-level input voltage  
V
IH  
0.8 × DRV  
DD  
0.2 × DRV  
0.2 × DRV  
DD  
V
IL  
DD  
I
I
High-level input current  
Low-level input current  
V
= DRV  
±5  
µA  
µA  
IH  
IH  
IL  
DD  
V
= 0 V  
±5  
IL  
dc accuracy  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±1  
MAX  
±2.5  
±1.5  
±1  
UNIT  
LSB  
LSB  
LSB  
LSB  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
(INL)  
Integral nonlinearity  
±0.5  
±0.5  
±0.4  
(DNL)  
Differential nonlinearity  
±0.8  
Missing code  
Offset error  
Gain error  
No missing code assured  
REFT = 1.25 V, REFB = 0.75 V  
REFT = 1.25 V, REFB = 0.75 V  
±0.4  
±1.4  
±1.5 %FSR  
±2 %FSR  
5
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
electrical characteristics over recommended operating conditions, AV  
= DV  
= 1.8 V,  
DD  
DD  
DRV  
= 3.3 V, F = 40, 65 MSPS (as appropriate)/50% duty cycle, 1 dBFS input span, C = 10 pF  
DD  
s
L
at D0D9, internal reference, T  
to T  
, typical data at 25°C (unless otherwise noted)  
(max)  
(min)  
(continued)  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
f = 3.5 MHz  
f = 20 MHz  
MIN  
TYP  
9.2  
9
MAX  
UNIT  
8.7  
ADS5102  
Bits  
ENOB  
SFDR  
THD  
Effective number of bits  
9.0  
58  
64  
9.3  
9.2  
73  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
Bits  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
71  
Spurious free dynamic range  
Total harmonic distortion  
Signal-to-noise ratio  
69  
66  
71  
71  
65  
68  
58  
55  
62  
56  
57  
54  
56  
57  
SNR  
59  
58  
58  
57  
SINAD  
Signal-to-noise and distortion  
58  
57  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
1.65  
1.65  
1.65  
TYP  
1.8  
1.8  
1.8  
70  
MAX  
2
UNIT  
AV  
DD  
DV  
2
Operating voltage  
V
DD  
DRV  
3.6  
80  
53  
9
DD  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
ADS5102  
ADS5103  
I(AV  
DD  
)
Analog supply current  
Digital supply current  
Output driver supply current  
Total current consumption  
Power dissipation  
AV  
AV  
AV  
AV  
AV  
= DV  
= 1.8 V,  
DRV  
DRV  
DRV  
DRV  
DRV  
= 3.3 V  
= 3.3 V  
= 3.3 V  
= 3.3 V  
= 3.3 V  
mA  
mA  
mA  
mA  
mW  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
45  
8
I(DV  
DD  
)
= DV = 1.8 V,  
DD  
5
7
6.5  
4.8  
84  
8
I(DRV  
)
= DV  
= DV  
= DV  
= 1.8 V,  
= 1.8 V,  
= 1.8 V,  
DD  
DD  
DD  
DD  
5.5  
97  
66  
188  
126  
390  
I
(TOTAL)  
54  
160  
105  
336  
0.25  
P
D
Standby power  
CLK running  
µW  
Power supply rejection  
%FS  
Sinewave input, f = 3.5 MHz, 1 dBFS input span  
i
6
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
electrical characteristics over recommended operating conditions, AV  
= DV  
= 1.8 V,  
DD  
DD  
DRV  
= 3.3 V, F = 40, 65 MSPS (as appropriate)/50% duty cycle, 1 dBFS input span, C = 10 pF  
DD  
s
L
at D0D9, internal reference, T  
to T  
, typical data at 25°C (unless otherwise noted)  
(max)  
(min)  
(continued)  
timing characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
%
Clock duty cycle  
50 ±10  
t
t
t
t
t
Output propagation delay  
9
6
12  
ns  
d(o)  
OE to outputs enabled time  
ns  
(en)  
OE rising to outputs 3-state disable time  
Pipeline latency  
10  
5.5  
1
ns  
dis  
cyc  
ns  
d(latency)  
d(ap)  
Aperture delay  
Aperture uncertainty  
2
ps rms  
timing diagram  
S1  
S2  
S3  
Analog  
CLK  
10  
1
2
3
4
5
6
7
8
9
t
d(latency)  
OE  
t
t
t
(en)  
d(o)  
S1  
dis  
S3  
D[09]  
S2  
7
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5103  
ANALOG SUPPLY CURRENT  
vs  
ADS5102  
ANALOG SUPPLY CURRENT  
vs  
TEMPERATURE  
TEMPERATURE  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
45.0  
78  
77  
76  
75  
74  
73  
72  
71  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 40 MHz  
DD  
= 65 MHz  
F
clk  
F
clk  
f = 19.99 MHz at 1 dBFS  
f = 32.49 MHz at 1 dBFS  
i
i
40302010 0 10 20 30 40 50 60 70 80 90  
40302010 0 10 20 30 40 50 60 70 80 90  
T Temperature °C  
T Temperature °C  
Figure 1  
Figure 2  
ADS5102  
DIGITAL SUPPLY CURRENT  
vs  
ADS5103  
DIGITAL SUPPLY CURRENT  
vs  
TEMPERATURE  
TEMPERATURE  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
15  
14  
13  
12  
11  
10  
9
AV  
= DV  
= 1.8 V  
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 65 MHz  
DD  
DD  
= 3.3 V  
= 40 MHz  
DRV  
DD  
DRV  
DD  
F
F
clk  
f = 32.49 MHz at 1 dBFS  
clk  
f = 19.99 MHz at 1 dBFS  
i
i
8
7
6
5
40302010 0 10 20 30 40 50 60 70 80 90  
40302010 0 10 20 30 40 50 60 70 80 90  
T Temperature °C  
T Temperature °C  
Figure 3  
Figure 4  
8
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5102  
INTEGRAL NONLINEARITY  
vs  
ADS5103  
INTEGRAL NONLINEARITY  
vs  
TEMPERATURE  
TEMPERATURE  
2.05  
1.85  
1.65  
1.45  
1.25  
1.05  
0.85  
0.65  
0.45  
0.25  
2.05  
1.85  
1.65  
1.45  
1.25  
1.05  
0.85  
0.65  
0.45  
0.25  
AV  
= DV  
= 1.8 V  
AV  
DRV  
DD  
F
clk  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 65 MHz  
DD  
DD  
= 3.3 V  
= 40 MHz  
DRV  
DD  
F
clk  
40302010 0 10 20 30 40 50 60 70 80 90  
40302010 0 10 20 30 40 50 60 70 80 90  
T Temperature °C  
T Temperature °C  
Figure 5  
Figure 6  
ADS5102  
DIFFERENTIAL NONLINEARITY  
0.4  
0.3  
0.2  
0.1  
0
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 65 MHz  
DRV  
DD  
F
clk  
0.1  
0.2  
0.3  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7  
9
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5103  
DIFFERENTIAL NONLINEARITY  
0.3  
0.2  
0.1  
0
0.1  
0.2  
0.3  
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 40 MHz  
DRV  
DD  
0.4  
0.5  
F
clk  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 8  
ADS5102  
INTEGRAL NONLINEARITY  
0.8  
0.6  
0.4  
0.2  
0
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 65 MHz  
DRV  
DD  
F
clk  
0.2  
0.4  
0.6  
0.8  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 9  
ADS5103  
INTEGRAL NONLINEARITY  
0.8  
0.6  
0.4  
0.2  
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 40 MHz  
DRV  
DD  
F
clk  
0
0.2  
0.4  
0.6  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 10  
10  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5102  
INTERNAL VREF VALUES  
vs  
ADS5102  
INTERNAL VREF VALUES  
vs  
TEMPERATURE  
ANALOG SUPPLY VOLTAGE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DV  
DRV  
= 1.8 V  
= 3.3 V  
= 65 MHz  
DD  
DD  
DD  
= 3.3 V  
DD  
F
clk  
= 65 MHz  
F
clk  
f = 32.49 MHz at 1 dBFS  
f = 32.49 MHz at 1 dBFS  
i
i
REFT  
REFT  
REFB  
REFB  
REFT-REFB  
REFT-REFB  
40302010 0 10 20 30 40 50 60 70 80 90  
1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10  
T Temperature °C  
Analog Supply Voltage V  
Figure 11  
Figure 12  
ADS5103  
SPURIOUS FREE DYNAMIC RANGE  
vs  
ADS5102  
SPURIOUS FREE DYNAMIC RANGE  
vs  
ANALOG INPUT LEVEL  
ANALOG INPUT LEVEL  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 40 MHz  
DD  
= 65 MHz  
F
clk  
F
clk  
f = 19.99 MHz  
f = 32.49 MHz  
i
i
20 18 16 14 12 10 8 6 4 2  
0
20 18 16 14 12 10 8 6 4 2  
0
Analog Input Level dB  
Analog Input Level dB  
Figure 13  
Figure 14  
11  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5102  
TOTAL HARMONIC DISTORTION  
vs  
ADS5103  
TOTAL HARMONIC DISTORTION  
vs  
ANALOG INPUT FREQUENCY  
ANALOG INPUT FREQUENCY  
66  
68  
70  
72  
74  
76  
78  
80  
60  
62  
64  
66  
68  
70  
AV  
DRV  
DD  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 40 MHz  
F
clk  
f = 119.99 MHz at 1 dBFS  
i
AV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
= 65 MHz  
DRV  
DD  
F
clk  
f = 132 MHz at 1 dBFS  
i
0
4
8
12  
16  
20  
24  
28  
32  
0
2
4
6
8
10 12 14 16 18 20  
Analog Input Frequency MHz  
Analog Input Frequency MHz  
Figure 15  
Figure 16  
ADS5102  
SIGNAL-TO-NOISE RATIO  
vs  
ADS5103  
SIGNAL-TO-NOISE RATIO  
vs  
ANALOG INPUT FREQUENCY  
ANALOG INPUT FREQUENCY  
61  
60  
59  
58  
57  
56  
61  
60  
59  
58  
57  
56  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 65 MHz  
DD  
= 40 MHz  
F
clk  
F
clk  
f = 132 MHz at 1 dBFS  
f = 119.99 MHz at 1 dBFS  
i
i
0
4
8
12  
16  
20  
24  
28  
32  
0
2
4
6
8
10 12 14 16 18 20  
Analog Input Frequency MHz  
Analog Input Frequency MHz  
Figure 17  
Figure 18  
12  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5102  
SIGNAL-TO-NOISE RATIO and DISTORTION  
vs  
ADS5103  
SIGNAL-TO-NOISE RATIO and DISTORTION  
vs  
ANALOG INPUT FREQUENCY  
ANALOG INPUT FREQUENCY  
61  
60  
59  
58  
57  
56  
61  
60  
59  
58  
57  
56  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 65 MHz  
DD  
= 40 MHz  
F
clk  
F
clk  
f = 132 MHz at 1 dBFS  
f = 119.99 MHz at 1 dBFS  
i
i
0
4
8
12  
16  
20  
24  
28  
32  
0
2
4
6
8
10 12 14 16 18 20  
Analog Input Frequency MHz  
Analog Input Frequency MHz  
Figure 19  
Figure 20  
ADS5102  
EFFECTIVE NUMBER OF BITS  
vs  
ADS5103  
EFFECTIVE NUMBER OF BITS  
vs  
ANALOG INPUT FREQUENCY  
ANALOG INPUT FREQUENCY  
11.0  
10.5  
10.0  
9.5  
11.0  
10.5  
10.0  
9.5  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 65 MHz  
DD  
= 40 MHz  
F
clk  
F
clk  
f = 132 MHz at 1 dBFS  
f = 119.99 MHz at 1 dBFS  
i
i
9.0  
9.0  
8.5  
8.5  
8.0  
8.0  
0
4
8
12  
16  
20  
24  
28  
32  
0
2
4
6
8
10 12 14 16 18 20  
Analog Input Frequency MHz  
Analog Input Frequency MHz  
Figure 21  
Figure 22  
13  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5103  
SPURIOUS FREE DYNAMIC RANGE  
vs  
ADS5102  
SPURIOUS FREE DYNAMIC RANGE  
vs  
ANALOG INPUT FREQUENCY  
ANALOG INPUT FREQUENCY  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
80  
78  
76  
74  
72  
70  
68  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
= 40 MHz  
F
clk  
f = 119.99 MHz at 1 dBFS  
i
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
= 65 MHz  
F
clk  
f = 132 MHz at 1 dBFS  
i
0
2
4
6
8
10 12 14 16 18 20  
0
4
8
12  
16  
20  
24  
28  
32  
Analog Input Frequency MHz  
Analog Input Frequency MHz  
Figure 23  
Figure 24  
ADS5103  
SFDR, SINAD  
vs  
ADS5102  
SFDR, SINAD  
vs  
CLOCK DUTY CYCLE  
CLOCK DUTY CYCLE  
75  
70  
65  
60  
55  
50  
45  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
SFDR  
SFDR  
SINAD  
SINAD  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 40 MHz  
DD  
= 65 MHz  
F
clk  
F
clk  
f = 3.58 MHz at 1 dBFS  
f = 3.58 MHz at 1 dBFS  
i
i
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Clock Duty Cycle %  
Clock Duty Cycle %  
Figure 25  
Figure 26  
14  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ADS5102  
SFDR, SINAD  
vs  
ADS5103  
SFDR, SINAD  
vs  
CLOCK DUTY CYCLE  
CLOCK DUTY CYCLE  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
75  
70  
65  
60  
55  
50  
45  
SFDR  
SFDR  
SINAD  
SINAD  
AV  
DRV  
= DV  
= 1.8 V  
AV  
DRV  
= DV  
= 1.8 V  
DD  
DD  
= 3.3 V  
DD  
DD  
= 3.3 V  
DD  
= 65 MHz  
DD  
= 40 MHz  
F
clk  
F
clk  
f = 32.49 MHz at 1 dBFS  
f = 19.99 MHz at 1 dBFS  
i
i
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Clock Duty Cycle %  
Clock Duty Cycle %  
Figure 27  
Figure 28  
PRINCIPLES OF OPERATION  
analog-to-digital converter  
The ADS5102/3 is designed using a switched capacitor pipeline architecture fabricated in CMOS process. The  
pipeline architecture is implemented with 10 stages, thus allowing for high conversion speed and exceptionally  
low power. Each of these 10 stages produces one digital bit per stage. Both rising and falling edges of the clock  
are used so the signal propagates thru the pipeline every half clock or five total clocks. Digital error correction  
uses another 1/2 clock cycle at the end; thus the total pipeline latency is 5.5 clocks. (Refer to timing diagram  
on page 7)  
10-stage operation  
The signal is sampled by the SHA. The first stage is digitized by 1.5 bits and sent to the digital error correction  
block. This digitized value is then applied to a DAC, which recreates the analog value that has been digitized.  
This value is then fed into a summing junction with the original input signal. The summing junction subtracts the  
converted value from the original signal. This is known as the residue voltage. This residue voltage is then  
amplified by a factor of 2x and transferred to the next stage. This is repeated for each of the 10 stages.  
Each of the 10 pipeline stages, as well as the sample and hold amplifier, is differential in nature. This allows  
rejection of any common mode signal. Thus a signal seen on Ain+ and Ainis differentially seen as 0 V on the  
output. This fully differential architecture allows higher ac performance of the ADC by reducing noise  
susceptibility.  
15  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PRINCIPLES OF OPERATION  
analog input sample and hold amplifier circuit  
The sample and hold amplifier is implemented using switch capacitor techniques. A simplified functional block  
diagram is shown in Figure 29. The SHA is in sample mode when CLK is high and in hold mode when CLK is  
low. In sample mode, the input switches, P1, are closed and the differential input signal is sampled onto caps  
Cs. An internal common-mode voltage is applied to the sampling caps (C ) when the two P1P switches are  
s
closed. As the CLK falling edge occurs, the SHA is now placed into hold or amplification mode. In this mode,  
P1 switches are now opened and switches P2 are closed. This is the amplification state and the signal is  
transferred to the output of the amplifier with a nominal gain of 1. C of Figure 29 represents the load  
L
capacitance of the following stage. R-C values of the input determine the analog input bandwidth of the SHA  
(and therefore the whole ADC) which is 950 MHz for the ADS5102/3. This wide bandwidth assures no distortion  
to the Nyquist frequency of 32.5 MHz. In under sampling applications, it is common to require the analog input  
bandwidth to be 5 times greater than the IF Nyquist frequency. As such, the ADS5102/3 supports IF frequencies  
approaching 200 MHz in under sampling applications.  
P2  
P1  
V
INP  
C
C
S
S
_
+
C
C
+
_
L
L
P1  
P1P  
V
C
C
I
V
IN  
P1  
P2  
Figure 29. Simplified Functional Block Diagram  
Becausetheinputtothesampleandholdamplifierisaswitchedcapacitorcircuit, theinputresistanceisdynamic  
and based on the sampling rate of the converter. The impedance of each input is defined by the equation:  
1
Z +  
Where:  
I
F   C  
s
C = Sampling capacitor = 0.4 pF typical  
s
F = CLK frequency in Hz  
The key for selecting an amplifier to correctly drive the ADS5102/3 is to ensure that the output frequency of the  
amplifier is much lower than the input impedance of the ADS5102/3, which at 65 MSPS is 38.46 k. For system  
accuracy comparable to 1 LSB, this means selecting an amplifier with output impedance of ~ 31 for sampling  
rates of 65 MSPS.  
reference configurations  
The ADS5102/3 provides an internal voltage reference which should be suitable for most 10 bit systems. The  
typical full scale voltage for the device is determined by VFS = VREFT VREFB. Since the input is fully  
differential, the full scale input is twice the single ended value or 1 V differential. It is recommended to externally  
de-couple both VREFT and VREFB with a 0.1 µF capacitor to bypass all high frequency noise to ground. It is  
necessary to connect BG and AV  
to Figure 30 for correct configuration).  
with a 100 kresistor and decouple with a 1 µF capacitor to AGND (refer  
DD  
16  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PRINCIPLES OF OPERATION  
AV  
DD  
100 kΩ  
BG  
1 µF  
Figure 30. BG Reference Configuration  
For systems that require more absolute accuracy or lower temperature coefficient drift than provided by the  
internal VREF, an external voltage reference can be applied to the VREFB and VREFT inputs. To use external  
reference, connect the PDREF pin to a logic high and this internally disconnects the VREF from the ADC. In  
this mode it is also necessary to connect the BG and REFT pins together on the PWB. It is recommended to  
use the input levels of VREFB = 0.75 V and VREFB = 1.25 V to achieve optimum ADC performance. It is also  
recommended to apply a common-mode voltage to the input of 1 V.  
clock input  
The clock input is designed for 1.8 V or 3.3 V CMOS logic levels (depends on DR  
to use standard CMOS logic levels as inputs. The logic threshold internally is set to DRV /2 or nominally 1.65  
) and it is recommended  
VDD  
DD  
V. Since both edges of the clock are used in the switch capacitor architecture, it is important to provide a clock  
with (ideally) a 50% duty cycle. The performance variation with clock duty cycle can be examined from  
Figures 25, 26, 27 and 28.  
ClockjitterisalsoimportantforperformanceoftheADCtobemaintained. Anyclockjitterappearsasnoisewhen  
sampling input frequencies. Clock Jitter reduces the signal to noise ratio (SNR) and is more severe as the input  
frequency increases. The theoretical SNR limits based on clock jitter can be calculated as follows:  
1
Theoretical SNR  
Where:  
(dB) + 20 log  
ǒ
Ǔ
(clock jitter)  
2   p   F   CLK  
I
(jitter)  
F = Highest input frequency to the ADC in Hz  
I
CLK  
= the amount of jitter on the clock in sec  
(jitter)  
Therefore for a Nyquist frequency input of 32.5 MHz and a design trying to achieve the most available  
performance from the ADS5102/3, the clock jitter must be less than 3.98 ps rms. In under sampling applications,  
the same equations apply and clock jitter becomes more critical and may be the limiting factor in system  
performance. The aperture jitter of the SHA also contributes to overall jitter. For worst case designs, the jitter  
of clock and aperture can be considered to add in quadrature, i.e.  
2
2
Total Jitter = Square root of ( CLK  
+ Aperture  
)
jitter  
jitter  
The aperture jitter of the ADS5103 is 2 ps rms and at frequencies approaching Nyquist, the total jitter should  
be accounted for.  
17  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PRINCIPLES OF OPERATION  
digital outputs  
The outputs of the ADS5102/3 are also CMOS and are programmable for either 3.3 V or 1.8 V CMOS logic  
levels. This is controlled by the DRV supply. Either 3.3 V or 1.8 V can be applied to DRV with excellent  
DD  
DD  
results. The output format is offset binary with D0 (LSB) and D9 (MSB). See Table 1 for output coding with a  
differential input signal applied. There is a 5.5 clock latency from the sampling to valid data output on D0D9.  
The outputs can be placed into active mode by taking OE low or 3-state by taking OE high. The timing relations  
between OE and output bus enable/disable times are shown in the timing diagram (refer to page 7). The  
capacitive loading on the digital outputs is very important to achieve best performance. The total load  
capacitance is typically made up of two sources, next stage input capacitance and PWB etch run capacitance.  
The total capacitance of these two loads should be held to less than 15 pF. If for some reason, this cannot be  
met, it is recommended to use logic buffers such as 244 placed physically very close to the ADC output. This  
isolates the ADC output from the load capacitance and performance specs are achieved. Another technique  
is to place a small resistor in series with the outputs. This resistance dampens the current spikes into the  
capacitive loads and thus improve ADC performance. The value of this resistor varies with sampling rate but  
generally 22 is a good value. Again this depends on the load capacitance.  
The digital output of these devices is offset binary and follows the following format.  
Table 1. Output Coding  
DIGITAL OUTPUT CODE  
ANALOG INPUT  
IN +  
SIGNAL VOLTAGE  
STEP  
IN –  
MSB  
LSB  
REFT  
REFB  
1023  
1
1
1
1
1
1
1
1
1
1
512  
511  
(REFT REFB) / 2  
(REFT REFB) / 2  
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
REFB  
REFT  
0
0
0
0
0
0
0
0
0
0
0
Where there is either an internal voltage reference or an external voltage reference applied to the REFT and REFB pins.  
driving the analog input  
Since many real world signals are single ended and most modern high speed ADCs employ differential inputs,  
it is necessary in many cases to perform single ended to differential conversion prior to the ADC. Also, the ADC  
performs optimally if a differential signal is applied to the inputs. In some cases, signal conditioning is required  
in the form of the amplification or filtering. The two preferred techniques for driving the ADC input are: 1) With  
an active amplifier specifically designed to drive ADCs; 2) With an RF transformer.  
driving the analog input with a differential amplifier  
Texas Instruments has developed a family of high quality operational amplifiers that have been designed  
specifically for driving the input stage of modern ADCs. These devices allow for amplification and filtering prior  
to the ADC. This stage can be used to set the maximum signal voltage to match the full scale input of the ADC.  
The best solution for driving the ADS5102/3 ADCs is the THS4501 amplifier. Figure 31 shows how to use this  
device with a gain of 2. The ADC common mode output voltage can be directly connected to the op amp to  
provide the proper levels. The THS4501 provides optimum matching of op amp output to the input of the  
ADS5102/3. This configuration provides signal amplification, filtering, and single-ended to differential  
conversion. It is recommended to provide de-coupling capacitors of 0.1 µF and 0.001 µF on the CML output.  
This filters out any high frequency noise prior the ADC input.  
18  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PRINCIPLES OF OPERATION  
750 Ω  
49.9 Ω  
THS4501  
AIN–  
374 Ω  
374 Ω  
V
+
_
(source)  
68 pF  
68 pF  
ADS5102,  
ADS5103  
V
O–  
Digital  
Outputs  
V
O+  
VOCM  
49.9 Ω  
AIN+  
CML  
750 Ω  
0.1 µF  
0.001 µF  
Figure 31. Driving the ADS5102/3 With Differential Amp (Gain = 2)  
driving the analog input with a transformer  
When little or no signal conditioning is required, a simple transformer is an excellent way to drive the input of  
the ADS5102/3 family. The transformer provides single-ended to differential conversion and at frequencies  
under 200 MHz produces very little distortion of the incoming signal. Figure 32 shows the preferred circuit  
diagram for implementing a transformer-coupled input. The signal source is ac-coupled and fed to the primary  
side of the RF transformer. Since the ADC input must be biased to the correct common mode voltage, the CML  
output of the ADC is connected to the secondary center tap. It is recommended to provide decoupling capacitors  
of 0.1 µF and 0.001 µF on the CML output. This filters out any high frequency noise prior the ADC input.  
0.1 µF  
V
AIN–  
(source)  
ADS5102,  
ADS5103  
Digital  
Outputs  
49.9 Ω  
CML  
AIN+  
T1 1T-KK81  
Mini-Circuits  
0.001 µF  
0.1 µF  
Figure 32. Driving the ADS5102/3 With a Transformer  
19  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
PRINCIPLES OF OPERATION  
REFT  
AIN+  
3 kΩ  
3 kΩ  
AIN+  
ADS5102  
ADS5103  
AIN–  
AIN–  
3 kΩ  
3 kΩ  
REFB  
Figure 33. Driving the Analog Inputs  
setting the bias resistorRBIAS  
Each device in this family requires an external resistor be connected from pin 14 to ground. The value of this  
resistor is determined by which device is being used. Refer to Table 2 for the correct resistor value. This resistor  
only dissipates less than 1 mW of power. The resistor accuracy of 1% is adequate.  
Table 2. Resistor Value  
DEVICE  
ADS5103  
ADS5102  
RBIAS VALUE  
8.25 kΩ  
CONNECT FROM  
Pin 14 to AGND  
4.42 kΩ  
20  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
DEFINITION OF SPECIFICATIONS  
Analog Input BandwidthThe analog input frequency at which the spectral power of the fundamental  
frequency (as determined by the FFT analysis) is reduced by 3 dB.  
Aperture DelayThe delay between the 50% point of the rising edge of the clock and the instant at which the  
analog input is sampled.  
Aperture Uncertainity (Jitter)The sample-to-sample variation in aperture delay.  
Differential Nonlinearity (DNL)The maximum deviation of any single LSB transition at the digital output from  
an ideal 1 LSB step at the analog input. Ideally, each transition step is 1 LSB wide. DNL is the measured error  
from theoretical in step size. A DNL of less than 1 LSB implies no missing codes.  
Integral Nonlinearity (INL)is the summation of the differential nonlinearity errors and indicates the worst  
case deviation from an best fit straight line that is drawn from 1/2 LSB of the first transition to 1/2 LSB above  
the last transition. The best fit is determined using the least squares curve fitting method.  
Duty Cycleis the ratio of the clock time high over the full clock period (time high plus time low) and then also  
the time low over the total clock period. At a given clock rate, these specs define the acceptable duty cycle  
allowed on the clock.  
Sampling Rate (Fs)The rate at which the converter tested to ensure conversion of analog signals to digital.  
The maximum rate specified is the rate and which the device is production tested to ensure performance specs  
are met. Expressed in mega samples per second (MSPS).  
Output Propagation DelayThe delay between the 50% point of the falling edge of clock signal and the time  
when all output data bits are within valid logic levels.  
OffsetErrorIn an ideal ADC the first transition from 0000000000 should occur at 1/2 LSBaboveREFB. Offset  
Error is defined as the difference between this ideal first transition and the voltage level where the first transition  
actuallyoccurs. Expressedin%fullscalerange(%FSR)butmayalsobeexpressedinvolts. Thiscanbethought  
of as shifting the transfer function either left or right along the X-axis.  
Overvoltage Recovery TimeThe amount of time required for the converter to recover to 0.2% accuracy after  
an analog input signal 150% of full scale is reduced to midscale.  
Power Supply Rejection RatioThe ratio of a change in input offset voltage to a change in power supply  
voltage.  
Total Harmonic Distortion (THD)The ratio of the peak signal amplitude to the summation of the harmonic  
components. This is expressed in dB. THD = 20 Log [input amplitude/(summation of harmonic bins)]. For  
calculation purposes, the first 7 harmonics are included in the calculations.  
Signal To Noise Distortion (SINAD)The ratio of the rms signal amplitude (set 1 dB below full scale) to rms  
value of the sum of all other spectral noise and harmonic components, but excluding dc.  
Signal to Noise Ratio (SNR)The ratio of the rms signal amplitude (set at 1 dB below full scale) to the rms  
value of the the sum of all other spectral components, excluding the first five harmonics and dc. Reported in  
dB.  
Spurious Free Dynamic Range (SFDR)The difference between the peak amplitude of a fundamental input  
sine wave and the largest peak spurious component that appears, excluding dc and the input. The peak  
spurious component may or may not be a harmonic frequency. May be reported in dBc (i.e., degrades as signal  
levels is lowered), or in dBFS (always related back to converter full scale).  
21  
www.ti.com  
ADS5102  
ADS5103  
SLAS351B OCTOBER 2001 REVISED DECEMBER 2001  
MECHANICAL DATA  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,50  
M
0,08  
0,17  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°ā7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
22  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TIs terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding thirdparty products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

ADS5102CPFBR

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102CPFBRG4

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48, Analog to Digital Converter
TI

ADS5102EVM

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102IPFB

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5102IPFBG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS5102IPFBR

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5103

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5103CPFB

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5103CPFBG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS5103CPFBR

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI

ADS5103CPFBRG4

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS5103EVM

1.8-V ANALOG SUPPLY, 10-BIT, 65/40 MSPS ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE
TI