ADS5401IZAYR [TI]

12 位、800MSPS 模数转换器 (ADC) | ZAY | 196 | -40 to 85;
ADS5401IZAYR
型号: ADS5401IZAYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位、800MSPS 模数转换器 (ADC) | ZAY | 196 | -40 to 85

转换器 模数转换器
文件: 总41页 (文件大小:1632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
Dual Channel 12-Bit 900Msps Analog-to-Digital Converter  
Check for Samples: ADS5409  
1
FEATURES  
APPLICATIONS  
Dual Channel  
Test and Measurement Instrumentation  
Ultra-Wide Band Software Defined Radio  
12-Bit Resolution  
Maximum Clock Rate: 900 Msps  
Low Swing Full-Scale Input: 1.0 Vpp  
Analog Input Buffer with High Impedance Input  
Input Bandwidth (3dB): >1.2GHz  
Data Output Interface: DDR LVDS  
Data Acquisition  
Power Amplifier Linearization  
Signal Intelligence and Jamming  
Radar and Satellite Systems  
Microwave Receivers  
Optional 2x Decimation with Low Pass or High  
Pass Filter  
Cable Infrastructure  
Non-Destructive Testing  
196-Pin BGA Package (12x12mm)  
KEY SPECIFICATIONS  
Number of  
Device Part No.  
Speed Grade  
Channels  
Power Dissipation: 1.1W/ch  
ADS5402  
ADS5401  
ADS5404  
ADS5403  
ADS5407  
ADS5409  
2
1
2
1
2
2
800Msps  
800Msps  
500Msps  
500Msps  
500Msps  
900Msps  
Spectral Performance at fin = 230 MHz IF  
SNR: 61.0 dBFS  
SFDR: 76 dBc  
Spectral Performance at fin = 700 MHz IF  
SNR: 59.4 dBFS  
SFDR: 70 dBc  
DESCRIPTION  
The ADS5409 is a high linearity dual channel 12-bit, 900 Msps analog-to-digital converter (ADC) easing front end  
filter design for wide bandwidth receivers. The analog input buffer isolates the internal switching of the on-chip  
track-and-hold from disturbing the signal source as well as providing a high-impedance input. Optionally the  
output data can be decimated by two. Designed for high SFDR, the ADC has low-noise performance and  
outstanding spurious-free dynamic range over a large input-frequency range. The device is available in a 196pin  
BGA package and is specified over the full industrial temperature range (–40°C to 85°C).  
12bit  
900Msps  
Digital  
Block  
INA  
DA[11:0]  
DACLK  
Clk  
Buffer  
CLKIN  
SYNCIN  
12bit  
900Msps  
Digital  
Block  
INB  
DB[11:0]  
DBCLK  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
DETAILED BLOCK DIAGRAM  
SCLK  
PROGRAMMING  
DATA  
SDIO  
SDO  
CONTROL  
OVERRANGE  
THRESHOLD  
VREF  
VCM  
VOLTAGE  
SDENB  
REFERENCE  
CLKOUT  
DACLKP/N  
DC or  
Fs/2  
GEN  
BUFFER  
INTERLEAVING  
CORRECTION  
Estimator  
INA_P/N  
ADC  
DEC  
x2  
FIR FILTER  
Gain Correction  
Offset Correction  
DA[11:0]P/N  
CLOCK  
CLKP/N  
DISTRIBUTION  
MULTICHIP  
SYNC  
SYNCP/N  
DB[11:0]P/N  
INTERLEAVING  
CORRECTION  
DEC  
x2  
FIR FILTER  
INB_P/N  
ADC  
Estimator  
Gain Correction  
Offset Correction  
DC or  
Fs/2  
CLKOUT  
GEN  
BUFFER  
DBCLKP/N  
OVERRANGE  
THRESHOLD  
SYNCOUTP/M  
SYNCOUTP/N  
Figure 1. Detailed Block Diagram  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
PINOUT INFORMATION  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
14  
13  
12  
11  
10  
9
VREF  
SDENB  
SCLK  
SDIO  
SDO  
VCM  
GND  
GND  
GND  
GND  
GND  
GND  
DVDD  
INB_N  
GND  
INB_P  
GND  
GND  
GND  
AVDDC AVDDC  
GND  
GND  
INA_P  
GND  
INA_N  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DVDD  
GND  
GND  
CLKINP  
14  
13  
12  
11  
10  
9
TEST  
GND  
GND  
CLKINN  
MODE  
SRESET  
B
AVDD33 AVDD33 AVDD33 AVDD33 AVDD33 AVDD33 AVDD33 AVDD33  
AVDD18 AVDD18 AVDD18 AVDD18 AVDD18 AVDD18 AVDD18 AVDD18  
AVDD33 AVDD33  
AVDD18 AVDD18  
ENABLE  
IOVDD  
DVDD  
DVDD  
DB0P  
DB1P  
DB2P  
DB3P  
DB4P  
DB5P  
DB6P  
B
AVDD18  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
DA0P  
DA0N  
GND  
GND  
GND  
GND  
GND  
GND  
DA2P  
DA2N  
DA1P  
DA1N  
J
GND  
GND  
GND  
GND  
GND  
GND  
DA4P  
DA4N  
DA3P  
DA3N  
K
AVDD18  
GND  
NC  
NC  
DVDD  
DVDD  
DB0N  
DB1N  
DB2N  
DB3N  
DB4N  
DB5N  
DB6N  
A
SYNCN SYNCP  
8
DVDD  
DVDD  
DVDD  
NC  
DVDD  
NC  
8
DVDD  
LVDS  
DVDD  
LVDS  
DVDD  
LVDS  
DVDD  
LVDS  
7
7
DVDD  
LVDS  
DVDD  
LVDS  
DVDD  
LVDS  
DVDD  
LVDS  
6
NC  
NC  
6
SYNC  
OUTN  
SYNC  
OUTP  
5
OVRBN OVRBP  
OVRAN OVRAP  
5
4
DB8P  
DB8N  
DB7P  
DB7N  
C
DB10P  
DB10N  
DB9P  
DB9N  
D
DA6P  
DA6N  
DA5P  
DA5N  
L
DA8P  
DA8N  
DA7P  
DA7N  
M
NC  
DA11N  
DA10N  
DA9N  
N
NC  
DA11P  
DA10P  
DA9P  
P
4
3
NC  
NC  
NC  
3
SYNC  
OUTP  
2
DB11P  
DB11N  
E
DBCLKP DACLKP  
DBCLKN DACLKN  
2
SYNC  
OUTN  
1
1
F
G
H
Figure 2. Pinout in DDR output mode (top down view)  
PIN ASSIGNMENTS  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
INPUT/REFERENCE  
INA_P/N  
K14, L14  
D14, E14  
I
I
Analog ADC A differential input signal.  
Analog ADC B differential input signal.  
INB_P/N  
Output of the analog input common mode (nominally 1.9V). A 0.1μF capacitor to AGND is  
recommended.  
VCM  
B14  
A14  
O
O
Reference voltage output (2V nominal). A 0.1μF capacitor to AGND is recommended, but not  
required.  
VREF  
CLOCK/SYNC  
CLKINP/N  
P14, P13  
P9, N9  
I
I
Differential input clock  
Synchronization input. Inactive if logic low. When clocked in a high state initially, this is used  
for resetting internal clocks and digital logic and starting the SYNCOUT signal. Internal 100Ω  
termination.  
SYNCP/N  
CONTROL/SERIAL  
Serial interface reset input. Active low. Initialized internal registers during high to low  
transition. Asynchronous. Internal 50kΩ pull up resistor to IOVDD.  
SRESET  
B12  
I
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
PIN ASSIGNMENTS (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
ENABLE  
SCLK  
NUMBER  
B11  
Chip enable – active high. Power down function can be controlled through SPI register  
assignment. Internal 50kΩ pull up resistor to IOVDD.  
I
I
A12  
Serial interface clock. Internal 50kΩ pull-down resistor.  
Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register x00, D16),  
the SDIO pin is an input only. Internal 50kΩ pull-down.  
SDIO  
A11  
I/O  
I
SDENB  
SDO  
A13  
Serial interface enable. Internal 50kΩ pull-down resistor.  
Uni-directional serial interface data in 4 pin mode (register x00, D16). The SDO pin is tri-  
stated in 3-pin interface mode (default). Internal 50kΩ pull-down resistor.  
A10  
O
TESTMODE  
B13  
Factory internal test, do not connect  
DATA INTERFACE  
P3, N3, P2, N2,  
P1, N1, M4, M3,  
M2, M1, L4, L3,  
L2, L1, K4, K3,  
K2, K1, J4, J3,  
J2, J1, H4, H3  
DA[11:0]P/N  
DB[11:0]P/N  
O
O
ADC A Data Bits 11 (MSB) to 0 (LSB) in DDR output mode. Standard LVDS output.  
E2, E1, D4, D3,  
D2, D1, C4, C3,  
C2, C1, B1, A1,  
B2, A2, B3, A3,  
B4, A4, B5, A5,  
B6, A6, B7, A7  
ADC B Data Bits 11 (MSB) to 0 (LSB) in DDR output mode. Standard LVDS output.  
DDR differential output data clock for Bus A. Register programmable to provide either rising  
or falling edge to center of stable data nominal timing.  
DACLKP/N  
DBCLKP/N  
H2, H1  
O
O
DDR differential output data clock for Bus B. Register programmable to provide either rising  
or falling edge to center of stable data nominal timing. Optionally Bus B can be latched with  
DACLKP/N.  
G2, G1  
SYNCOUTP/N  
OVRAP/N  
F2, F1, P5, N5  
M5, L5  
O
O
Synchronization output signal for synchronizing multiple ADCs. Can be disabled via SPI.  
Bus A, Overrange indicator, LVDS output. A logic high signals an analog input in excess of  
the full-scale range. Optional SYNC output.  
Bus B, Overrange indicator, LVDS output. A logic high signals an analog input in excess of  
the full-scale range. Optional SYNC output.  
OVRBP/N  
D5, C5  
O
E3, E4, F3, F4,  
G3, G4, N4, N6,  
N7, N10, P4, P6,  
P7, P10  
NC  
Don’t connect to pin  
POWER SUPPLY  
AVDD33  
AVDDC  
D12, E12, F12,  
G12, H12, J12,  
K12, L12, N12,  
P12  
I
I
I
3.3V analog supply  
G14, H14  
1.8V supply for clock input  
1.8V analog supply  
D10, D11, E11,  
F11, G11, H11,  
J11, K11, L10,  
L11, N11, P11  
AVDD18  
A8, A9, B8, B9,  
C8, D8, L8, M8,  
N8, P8  
DVDD  
I
I
1.8V supply for digital block  
1.8V supply for LVDS outputs  
C6, C7, D6, D7,  
L6, L7, M6, M7  
DVDDLVDS  
IOVDD  
GND  
B10  
I
I
1.8V for digital I/Os  
Ground  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
LEAD/  
BALL  
FINISH  
TRANSPORT  
MEDIA,  
QUANTITY  
ECO  
PLAN(2)  
ORDERING  
NUMBER  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
GREEN  
ADS5409IZAY  
Tray  
ADS5409  
196-BGA  
ZAY  
–40C to 85C  
ADS5409I  
(RoHS & no  
Sb/Br)  
ADS5409IZAYR  
Tape and Reel  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
MAX  
MIN  
Supply voltage range, AVDD33  
Supply voltage range, AVDDC  
Supply voltage range, AVDD18  
Supply voltage range, DVDD  
Supply voltage range, DVDDLVDS  
Supply voltage range, IOVDD  
INA/B_P, INA/B_N  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–40  
4
V
V
2.3  
2.3  
V
2.3  
V
2.3  
V
4
AVDD33 + 0.5  
AVDDC + 0.5  
AVDD33 + 0.5  
IOVDD + 0.5  
85  
V
V
CLKINP, CLKINN  
Voltage applied to input pins  
V
SYNCP, SYNCN  
V
SRESET, SDENB, SCLK, SDIO, SDO, ENABLE  
Operating free-air temperature range, TA  
Operating junction temperature range, TJ  
Storage temperature range  
V
°C  
°C  
°C  
kV  
150  
–65  
150  
ESD, Human Body Model  
2
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
THERMAL INFORMATION  
ADS5409  
THERMAL METRIC(1)  
nFBGA  
196 PINS  
37.6  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
6.8  
16.8  
°C/W  
ψJT  
0.2  
ψJB  
16.4  
θJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
Recommended operating junction temperature  
Maximum rated operating junction temperature(1)  
105  
°C  
TJ  
125  
TA  
Recommended free-air temperature  
–40  
25  
85  
°C  
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.  
ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, –1dBFS differential input (unless  
otherwise noted).  
PARAMETER  
ADC Clock Frequency  
TEST CONDITIONS  
MIN  
100  
12  
TYP MAX UNITS  
900 MSPS  
Bits  
Resolution  
SUPPLY  
AVDD33  
3.15  
1.7  
3.3 3.45  
1.8 1.9  
V
V
V
AVDDC, AVDD18, DVDD, DVDDLVDS  
IOVDD  
1.7  
1.8 3.45  
POWER SUPPLY  
IAVDD33  
IAVDD18  
IAVDDC  
IDVDD  
3.3V Analog supply current  
1.8V Analog supply current  
1.8V Clock supply current  
1.8V Digital supply current  
1.8V Digital supply current  
1.8V Digital supply current  
325 365  
106 120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
W
46  
60  
Auto Correction Enabled  
370 420  
214  
IDVDD  
Auto Correction Disabled  
IDVDD  
Auto Correction Disabled, decimation filter enabled  
254  
IDVDDLVDS 1.8V LVDS supply current  
150 170  
IIOVDD  
Pdis  
1.8V I/O Voltage supply current  
Total power dissipation  
1
2.27  
1.9  
2
Auto Correction Enabled, decimation filter disabled  
Auto Correction Disabled, decimation filter disabled  
250kHz to 500MHz  
2.6  
Pdis  
Total power dissipation  
W
PSRR  
40  
dB  
Shut-down power dissipation  
Shut-down wake up time  
Standby power dissipation  
Standby wake up time  
7
2.5  
7
mW  
ms  
mW  
µs  
100  
435  
570  
20  
Auto correction disabled  
Auto correction enabled  
mW  
mW  
µs  
Deep-sleep mode power dissipation  
Deep-sleep mode wakeup time  
Light-sleep mode power dissipation  
Light-sleep mode wakeup time  
Auto correction disabled  
Auto correction enabled  
770  
900  
2
mW  
mW  
µs  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDD/DRVDD/IOVDD = 1.8V, –1dBFS differential input (unless otherwise noted).  
PARAMETER  
ANALOG INPUTS  
TEST CONDITIONS  
MIN  
TYP MAX UNITS  
Differential input full-scale  
Input common mode voltage  
Input resistance  
1.0 1.25  
1.9 ±0.1  
Vpp  
V
Differential at DC  
1
2
kΩ  
pF  
Input capacitance  
Each input to GND  
VCM common mode voltage output  
Analog input bandwidth (3dB)  
DYNAMIC ACCURACY  
1.9  
V
1200  
MHz  
Auto Correction Disabled  
Auto Correction Enabled  
-20  
-1  
±6  
0
20  
1
mV  
mV  
Offset Error  
Offset temperature coefficient  
Gain error  
-10  
µV/°C  
%FS  
%FS/°C  
LSB  
-10  
±2  
10  
Gain temperature coefficient  
Differential nonlinearity  
Integral nonlinearity  
CLOCK INPUT  
0.003  
±0.8  
±0.5  
fIN = 230 MHz  
fIN = 230 MHz  
-1  
2
-10  
10  
LSB  
Input clock frequency  
Input clock amplitude  
Input clock duty cycle  
Internal clock biasing  
100  
40  
900  
60  
MHz  
Vpp  
%
2
50  
0.9  
V
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, –1dBFS differential input (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
58  
65  
65  
63  
56  
63  
TYP MAX  
Enabled  
MIN  
TYP MAX UNITS  
Auto Correction  
DYNAMIC AC CHARACTERISTICS(1)  
Disabled  
Vpp  
fIN = 10 MHz  
61.5  
61.5  
61.0  
60.2  
59.4  
78  
61.5  
61.4  
61.0  
60.3  
59.8  
81  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 230 MHz  
fIN = 400 MHz  
fIN = 700 MHz  
Signal to Noise Ratio  
SNR  
dBFS  
(excluding Fs/2-Fin spur)  
77  
80  
Second and third harmonic  
distortion  
HD2,3  
77  
77  
dBc  
dBc  
71  
72  
75  
76  
78  
78  
Spur Free Dynamic Range  
79  
78  
Non  
HD2,3  
(excluding second and third  
harmonic distortion and  
Fs/2 – FIN spur)  
79  
79  
76  
76  
72  
77  
88  
80  
80  
77  
IL  
Fs/2-Fin interleaving spur  
76  
71  
dBc  
72  
68  
70  
66  
61.3  
61.2  
60.9  
59.7  
59.2  
74  
61.3  
61.2  
60.8  
59.8  
59.5  
74  
Signal to noise and distortion  
ratio  
SINAD  
dBFS  
73  
74  
THD  
Total Harmonic Distortion  
Inter modulation distortion  
75  
74  
dBc  
68  
68  
72  
72  
Fin = 229.5 and 230.5 MHz,  
-7dBFS  
79  
73  
77  
71  
IMD3  
dBFS  
Fin = 649.5 and 650.5 MHz,  
-7dBFS  
Crosstalk  
90  
90  
dB  
Bit  
ENOB  
Effective number of bits  
fIN = 230 MHz  
9.8  
9.8  
(1) SFDR and SNR calculations do not include the DC or Fs/2 bins when Auto Correction is disabled.  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, –1dBFS differential input (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
OVER-DRIVE RECOVERY ERROR  
Recovery to within 5% (of final value) for 6dB  
overload with sine wave input  
Output  
Clock  
Input overload recovery  
2
SAMPLE TIMING CHARACTERISTICS  
rms  
Aperture Jitter  
Sample uncertainty  
100  
38  
fs rms  
ADC sample to digital output, auto correction disabled  
ADC sample to digital output, auto correction enabled  
Clock  
Cycles  
50  
Data Latency  
Sampling  
Clock  
Cycles  
ADC sample to digital output, Decimation filter  
enabled, Auto correction disabled  
74  
12  
Clock  
Cycles  
Over-range Latency  
ADC sample to over-range output  
ELECTRICAL CHARACTERISTICS  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
DIGITAL INPUTS – SRESET, SCLK, SDENB, SDIO, ENABLE  
0.7 x  
IOVDD  
High-level input voltage  
V
All digital inputs support 1.8V and 3.3V logic  
levels.  
0.3 x  
V
Low-level input voltage  
IOVDD  
High-level input current  
Low-level input current  
–50  
–50  
200  
µA  
µA  
pF  
50  
Input capacitance  
5
DIGITAL OUTPUTS – SDO  
IOVDD –  
0.2  
Iload = -100µA  
High-level output voltage  
V
V
0.8 x  
IOVDD  
Iload = -2mA  
Iload = 100µA  
Iload = 2mA  
0.2  
Low-level output voltage  
0.22 x  
IOVDD  
DIGITAL INPUTS – SYNCP/N  
VID  
VCM  
tSU  
Differential input voltage  
250  
1.125  
500  
350  
1.2  
450  
mV  
V
Input common mode voltage  
1.375  
ps  
DIGITAL OUTPUTS – DA[11:0]P/N, DACLKP/N, OVRAP/N, SYNCOUTP/N, DB[11:0]P/N, DBCLKP/N, OVRBP/N  
VOD  
Output differential voltage  
Iout = 3.5mA  
Iout = 3.5mA  
250  
350  
450  
mV  
V
VOCM  
Output common mode voltage  
1.125  
1.25  
1.375  
Fs = 900Msps, Data valid to zero-crossing of  
DACLK, DBCLK  
tsu  
th  
230  
230  
336  
380  
ps  
ps  
ns  
Fs = 900Msps, Zero-crossing of DACLK,  
DBCLK to data becoming invalid  
Fs = 900Msps, CLKIN falling edge to  
DACLK, DBCLK rising edge  
tPD  
3.36  
3.69  
3.92  
tRISE  
tFALL  
10% - 90%  
90% - 10%  
100  
100  
150  
150  
200  
200  
ps  
ps  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
Data Latency ? Clock Cycles  
SAMPLE N  
CLKINP  
tPD  
DACLKP  
DBCLKP  
DCLK edges are centered within  
the data valid window  
DA[11:0]P/N  
DB[11:0]P/N  
OVRAP/N  
N-1  
N
N+1  
ORVBP/N  
CLKIN, DCLK are differential:  
Only the ‘P’ positive signal shown for clarity  
tsu  
th  
Figure 3. Timing Diagram for 12-bit DDR Output  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
TYPICAL CHARACTERISTICS  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
FFT FOR 10 MHz INPUT SIGNAL (auto on)  
FFT FOR 10 MHz INPUT SIGNAL (auto off)  
0
−20  
0
−20  
SNR = 61.3dBFS  
SFDR = 75dBc  
THD = 72dBc  
SNR = 61.5dBFS  
SFDR = 78dBc  
THD = 78dBc  
SINAD = 61.0dBFS  
SINAD = 61.4dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
0
0
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
0
0
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
G000  
G000  
Figure 4.  
Figure 5.  
FFT FOR 230 MHz INPUT SIGNAL (auto on)  
FFT FOR 230 MHz INPUT SIGNAL (auto off)  
0
−20  
0
−20  
SNR = 61.1dBFS  
SFDR = 78dBc  
THD = 78dBc  
SNR = 61.1dBFS  
SFDR = 75dBc  
THD = 77dBc  
SINAD = 61.0dBFS  
SINAD = 61.0dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
G000  
G000  
Figure 6.  
Figure 7.  
FFT FOR 400 MHz INPUT SIGNAL (auto on)  
FFT FOR 400 MHz INPUT SIGNAL (auto off)  
0
−20  
0
−20  
SNR = 60.6dBFS  
SFDR = 67dBc  
THD = 67dBc  
SNR = 60.7dBFS  
SFDR = 69dBc  
THD = 69dBc  
SINAD = 59.8dBFS  
SINAD = 60.2dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
G000  
G000  
Figure 8.  
Figure 9.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
FFT FOR 700 MHz INPUT SIGNAL (auto on)  
FFT FOR 700 MHz INPUT SIGNAL (auto off)  
0
0
SNR = 60.1dBFS  
SFDR = 71dBc  
THD = 71dBc  
SNR = 60.2dBFS  
SFDR = 68dBc  
THD = 74dBc  
−20  
−20  
SINAD = 59.9dBFS  
SINAD = 60.2dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
G000  
G000  
Figure 10.  
Figure 11.  
FFT FOR TWO TONE INPUT SIGNAL (auto on)  
FFT FOR TWO TONE INPUT SIGNAL (auto off)  
0
−20  
0
−20  
Ain = −7dBFS  
Worst Spur = −80dBFS  
F1 = 229.5MHz  
Ain = −7dBFS  
Worst Spur = −82dBFS  
F1 = 229.5MHz  
F2 = 230.5MHz  
F2 = 230.5MHz  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
0
50  
100 150 200 250 300 350 400 450  
Frequency (MHz)  
G000  
G000  
Figure 12.  
Figure 13.  
SFDR  
vs  
INPUT FREQUENCY  
SNR  
vs  
INPUT FREQUENCY  
80  
75  
70  
65  
60  
55  
62  
61  
60  
59  
58  
57  
56  
55  
Auto Correction Off  
Auto Correction On  
Auto Correction Off  
Auto Correction On  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
G000  
G000  
Figure 14.  
Figure 15.  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SFDR  
SNR  
vs  
vs  
AMPLITUDE (fin = 230MHz)  
Amplitude (fin = 230 MHz)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
63  
62.5  
62  
61.5  
61  
dBc, auto off  
dBc, auto on  
dBFS, auto off  
dBFS, auto on  
60.5  
60  
auto off  
auto on  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
G000  
G000  
Figure 16.  
Figure 17.  
SFDR  
vs  
Vref (auto on)  
Tow Tone Performance Across Input Amplitude  
(fin = 170 MHz)  
−60  
−70  
75  
70  
65  
60  
55  
dBFS, auto off  
dBFS, auto on  
Vref = 0.8V  
Vref = 0.9V  
Vref = 1.0V  
Vref = 1.15V  
Vref = 1.25V  
−80  
−90  
−100  
−90 −80 −70 −60 −50 −40 −30 −20 −10  
Input Amplitude (dB)  
0
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
G000  
G000  
Figure 18.  
Figure 19.  
SFDR  
vs  
Vref (auto off)  
SNR  
vs  
Vref (auto on)  
80  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
Vref = 0.8V  
Vref = 0.9V  
Vref = 1.0V  
Vref = 1.15V  
Vref = 1.25V  
Vref = 0.8V  
Vref = 0.9V  
Vref = 1.0V  
Vref = 1.15V  
Vref = 1.25V  
75  
70  
65  
60  
55  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
G000  
G000  
Figure 20.  
Figure 21.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SNR  
vs  
Performance Across Input Common Mode Voltage  
Vref (auto off)  
(fin = 230 MHz)  
75  
70  
65  
60  
55  
50  
45  
40  
62  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
Vref = 0.8V  
Vref = 0.9V  
Vref = 1.0V  
Vref = 1.15V  
Vref = 1.25V  
61  
60  
59  
58  
SFDR (auto off)  
SFDR (auto on)  
SNR (auto off)  
SNR (auto on)  
57  
56  
55  
1.6  
1.8  
2
2.2  
2.4  
0
250  
500  
750  
1000  
1250  
1500  
Common Mode Input Voltage (VCM) (V)  
G000  
Input Frequency (MHz)  
G000  
Figure 22.  
Figure 23.  
Performance Across Temperature (fin = 230MHz)  
Performance Across AVDD33 (fin = 230MHz)  
85  
80  
75  
70  
65  
63  
SFDR (auto off)  
SFDR (auto on)  
SNR (auto off)  
80  
75  
70  
65  
60  
64  
62  
63  
62  
61  
60  
SNR (auto on)  
61  
60  
59  
SFDR (auto off)  
SFDR (auto on)  
SNR (auto off)  
SNR (auto on)  
−40  
−20  
0
20  
40  
60  
80  
100  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
AVDD33 (V)  
G000  
G000  
Figure 24.  
Figure 25.  
Performance Across AVDD18 (fin = 230MHz)  
Performance Across Clock Amplitude  
75  
70  
65  
60  
62  
75  
70  
65  
60  
55  
50  
45  
62  
61  
60  
59  
58  
57  
56  
61  
60  
59  
SFDR (auto off)  
SFDR (auto on)  
SNR (auto off)  
SNR (auto on)  
dBc, auto off  
dBc, auto on  
dBFS, auto off  
dBFS, auto on  
1.6  
1.7  
1.8  
1.9  
2.0  
0
0.5  
1
1.5  
2
2.5  
3
AVDD18 (V)  
Differential Clock Amplitude (Vpp)  
G000  
G000  
Figure 26.  
Figure 27.  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
INL  
DNL  
2
1.5  
1
1.5  
1
Auto off  
Auto on  
0.5  
0
0.5  
0
−0.5  
−1  
−0.5  
−1  
Auto off  
Auto on  
−1.5  
−2  
−1.5  
0
1k  
2k  
3k  
4k  
0
1k  
2k  
3k  
4k  
Output Code (LSB)  
Figure 28.  
Output Code (LSB)  
Figure 29.  
G015  
G016  
CMRR Across Frequency  
PSRR Across Frequency  
0
−10  
−20  
−30  
−40  
−50  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
AVDD33  
AVDD18  
AVDDC  
DVDD  
1
10  
100  
500  
1
10  
100  
Frequency Of common mode signal (MHz)  
Frequency (MHz)  
G017  
G018  
Figure 30.  
Figure 31.  
Power Across Sampling Frequency  
2.2  
2.1  
2
Auto Correction Off  
Auto Correction On  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
0
100 200 300 400 500 600 700 800 900 1000  
Sampling Frequency (Msps)  
G016  
Figure 32.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SFDR Across Input and Sampling Frequencies (auto on)  
Figure 33.  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SFDR Across Input and Sampling Frequencies (auto off)  
Figure 34.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SNR Across Input and Sampling Frequencies (auto on)  
Figure 35.  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 900Msps, 50%  
clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8V, -1dBFS differential input, unless  
otherwise noted.  
SNR Across Input and Sampling Frequencies (auto on)  
Figure 36.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
DESCRIPTION  
POWER DOWN MODES  
The ADS5409 can be configured via SPI write (address x37) to a stand-by, light or deep sleep power mode  
which is controlled by the ENABLE pin. The sleep modes are active when the ENABLE pin goes low. Different  
internal functions stay powered up which results in different power consumption and wake up time between the  
two sleep modes.  
Power Consumption Auto  
correction disabled  
Power Consumption Auto  
correction enabled  
Sleep mode  
Wake up time  
Complete Shut Down  
Stand-by  
2.5 ms  
100µs  
20µs  
2µs  
7mW  
7mW  
7mW  
7mW  
Deep Sleep  
435mW  
770mW  
570mW  
900mW  
Light Sleep  
TEST PATTERN OUTPUT  
The ADS5409 can be configured to output different test patterns that can be used to verify the digital interface is  
connected and working properly. To enable the test pattern mode, the high performance mode 1 has to be  
disabled first via SPI register write. Then different test patterns can be selected by configuring registers x3C, x3D  
and x3E. All three registers must be configured for the test pattern to work properly.  
First set HP1 = 0 (Addr 0x01, D01)  
Register Address  
All 0s  
0x8000  
0x0000  
0x0000  
All 1s  
0xBFFC  
0x3FFC  
0x3FFC  
Toggle (0xAAA => 0x555)  
Toggle (0xFFF => 0x000)  
0xBFFC  
0x3C  
0x3D  
0x3E  
0x9554  
0x2AA8  
0x1554  
0x0000  
0x3FFC  
Register  
Address  
Custom Pattern  
D15  
1
D14  
0
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
x3C  
x3D  
x3E  
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
For normal operation, set HP1 = 1 (Addr 0x01, D01) and 0x3C, 0x3D, 0x3E all to 0.  
CLOCK INPUT  
The ADS5409 clock input can be driven differentially with a sine wave, LVPECL or LVDS source with little or no  
difference in performance. The common mode voltage of the clock input is set to 0.9V using internal 2k  
resistors. This allows for AC coupling of the clock inputs. The termination resistors should be placed as close as  
possible to the clock inputs in order to minimize signal reflections and jitter degradation.  
0.1uF  
CLKINP  
CLKINP  
2kΩ  
2kΩ  
RT  
0.9V  
0.1uF  
RT  
CLKINN  
CLKINN  
0.1uF  
Recommended differential clock driving circuit  
Figure 37. Recommended Differential Clock Driving Circuit  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
SNR AND CLOCK JITTER  
The signal to noise ratio of the ADC is limited by three different factors: the quantization noise is typically not  
noticeable in pipeline converters and is 74dB for a 12bit ADC. The thermal noise limits the SNR at low input  
frequencies while the clock jitter sets the SNR for higher input frequencies.  
ö2  
æ
ö2  
æ
ö2  
SNRQuantization _Noise  
æ
SNRThermalNoise  
SNRJitter  
20  
SNRADC[dBc] = -20´log 10 -  
+ 10 -  
+ 10 -  
ç
÷
ç
÷
ç
÷
ç
è
÷
20  
20  
è
ø
è
ø
ø
(1)  
(2)  
The SNR limitation due to sample clock jitter can be calculated as following:  
SNRJitter [dBc] = -20´log(2p´ fin ´ TJitter  
)
The total clock jitter (TJitter) has three components – the internal aperture jitter (100fs for ADS5409) which is set  
by the noise of the clock input buffer, the external clock jitter and the jitter from the analog input signal. It can be  
calculated as following:  
2
TJitter  
=
(TJitter,Ext.Clock _Input )2 + (TAperture _ ADC )2 + (TJitter,Analog_input  
)
(3)  
External clock jitter can be minimized by using high quality clock sources and jitter cleaners as well as bandpass  
filters at the clock input while a faster clock slew rate improves the ADC aperture jitter.  
The ADS5409 has a thermal noise of 61.5 dBFS and internal aperture jitter of 100fs. The SNR depending on  
amount of external jitter for different input frequencies is shown in the following figure.  
SNR vs Input Frequency and External Clock Jitter  
62  
61  
35 fs  
60  
50 fs  
100 fs  
59  
150 fs  
200 fs  
58  
57  
56  
55  
10  
100  
1000  
Fin (MHz)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
ANALOG INPUTS  
The ADS5409 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source which enables great flexibility  
in the external analog filter design as well as excellent 50matching for RF applications. The buffer also helps to  
isolate the external driving circuit from the internal switching currents of the sampling circuit which results in a  
more constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to 1.9V using 500resistors which allows for  
AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.25V) and (VCM – 0.25V), resulting in a 1.0Vpp (default) differential input swing. The input sampling circuit has  
a 3dB bandwidth that extends up to 1.2GHz.  
2nH  
0.5Ω  
20Ω  
INA_P  
1.3pF  
1.4pF  
500Ω  
Vcm= 1.9V  
500Ω  
2nH  
0.5Ω  
20Ω  
INA_N  
1.3pF  
1.4pF  
OVER-RANGE INDICATION  
The ADS5409 provides a fast over-range indication on the OVRA/B pins. The fast OVR is triggered if the input  
voltage exceeds the programmable overrange threshold and it gets presented after just 12 clock cycles enabling  
a quicker reaction to an overrange event. The OVR threshold can be configured using SPI register writes.  
The input voltage level at which the overload is detected is referred to as the threshold and is programmable  
using the Over-range threshold bits. The threshold at which fast OVR is triggered is (full-scale × [the decimal  
value of the FAST OVR THRESH bits] /16). After reset, the default value of the over-range threshold is set to 15  
(decimal) which corresponds to a threshold of 0.56dB below full scale (20*log(15/16)).  
OVR Detection Threshold  
0
-5  
-10  
-15  
-20  
-25  
0
2
4
6
8
10  
12  
14  
16  
Programmed Value (1-15)  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
INTERLEAVING CORRECTION  
Each of the two data converter channels consists of two interleaved ADCs each operating at half of the ADC  
sampling rate but 180º out of phase from each other. The front end track and hold circuitry is operating at the full  
ADC sampling rate which minimizes the timing mismatch between the two interleaved ADCs. In addition the  
ADS5409 is equipped with internal interleaving correction logic that can be enabled via SPI register write.  
ADC  
ODD  
Interleaving  
Correction  
Track &  
Input  
Hold  
Fs/2  
0 deg  
ADC  
EVEN  
Estimator  
Fs  
Fs/2  
180 deg  
The interleaving operation creates 2 distinct and interleaving products:  
Fs/2 – Fin: this spur is created by gain timing mismatch between the ADCs. Since internally the front end  
track and hold is operated at the full sampling rate, this component is greatly improved and mostly dependent  
on gain mismatch.  
Fs/2 Spur: due to offset mismatch between ADCs  
Input  
Signal  
Fs/2 Spur  
Fs/2 - Fin  
Fs/2  
The auto correction loop can be enabled via SPI register write in address 0x01 and resetting the correction circuit  
in addresses 0x03 and 0x1A. By default it is disabled for lowest possible power consumption. The default  
settings for the auto correction function should work for most applications. However please contact Texas  
Instruments if further fine tuning of the algorithm is required.  
The auto correction function yields best performance for input frequencies below 250MHz. For input frequencies  
greater than 250MHz it is recommended to disable the auto gain correction loop.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
RECEIVE MODE: DECIMATION FILTER  
Each channel has a digital filter in the data path as shown in Figure 38. The filter can be programmed as a low-  
pass or a high-pass filter and the normalized frequency response of both filters is shown in Figure 39.  
Lowpass/  
Highpass  
selection  
900 MSPS  
Low Latency Filter  
450 MSPS  
ADC  
2
0, Fs/2  
Figure 38.  
The decimation filter response has a 0.1dB pass band ripple with approximately 41% pass-band bandwidth. The  
stop-band attenuation is approximately 40dB.  
Decimation Filter Response  
Decimation Filter Response  
10  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
LowPass Filter  
High Pass Filter  
-10  
-20  
-30  
-40  
-50  
-60  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
LowPass Filter  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(MHz)  
Frequency(MHz)  
Figure 39.  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
 
 
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
MULTI DEVICE SYNCHRONIZATION  
The ADS5409 simplifies the synchronization of data from multiple ADCs in one common receiver. Upon receiving  
the initial SYNC input signal, the ADS5409 resets all the internal clocks and digital logic while also starting a  
SYNCOUT signal which operates on a 5bit counter (32 clock cycles). Therefore by providing a common SYNC  
signal to multiple ADCs their output data can be synchronized as the SYNCOUT signal marks a specific sample  
with the same latency in all ADCs. The SYNCOUT signal then can be used in the receiving device to  
synchronize the FIFO pointers across the different input data streams. Thus the output data of multiple ADCs can  
be aligned properly even if there are different trace lengths between the different ADCs.  
ADS5409  
FIFO  
Pointer  
DxCLK  
SYNCOUT  
Dx[11:0]  
Sample x  
Sample 1  
Sample 2  
Sample 3  
Sample 4  
Sample 5  
Sample 6  
ChA  
ChB  
FPGA  
ASIC  
SYNC  
ADS5409  
FIFO  
Pointer  
DxCLK  
SYNCOUT  
Dx[11:0]  
Sample x  
Sample 1  
Sample 2  
Sample 3  
Sample 4  
Sample 5  
Sample 6  
ChA  
ChB  
The SYNC input signal should be a periodic signal repeating every 32 CLKIN clock cycles. It gets registered on  
the rising edge of the ADC input clock (CLKIN). Upon registering the initial rising edge of the SYNC signal, the  
internal clocks and logic get reset which results in invalid output data for 36 samples (1 complete sync cycle and  
4 additional samples). The SYNCOUT signal starts with the next output clock (DACLK) rising edge and operates  
on a 5-bit counter independent from the SYNC signal frequency and duty cycle.  
Since the ADS5409 output interface operates with a DDR clock, the synchronization can happen on the rising  
edge or falling edge sample. Synchronization on the falling edge sample will result in a half cycle clock stretch of  
DA/BCLK. For convenience the SYNCOUT signal is available on the ChA/B output LVDS bus. When using  
decimation the SYNCOUT signal still operates on 32 clock cycles of CLKIN but since the output data is  
decimated by 2, only the first 18 samples should be discarded.  
CLKIN  
16 clock cycles  
SYNC  
16 clock cycles  
DACLK  
16 clock cycles  
SYNCOUT  
16 clock cycles  
DA[11:0]  
Data invalid – 36 samples  
16 clock cycles  
SYNC  
16 clock cycles  
DACLK  
16 clock cycles  
SYNCOUT  
16 clock cycles  
DA[11:0]  
Data invalid – 36 samples  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
PROGRAMMING INTERFACE  
The serial interface (SIF) included in the ADS5409 is a simple 3 or 4 pin interface. In normal mode, 3 pins are  
used to communicate with the device. There is an enable (SDENB), a clock (SCLK) and a bi-directional IO port  
(SDIO). If the user would like to use the 4 pin interface one write must be implemented in the 3 pin mode to  
enable 4 pin communications. In this mode, the SDO pin becomes the dedicated output. The serial interface has  
an 8-bit address word and a 16-bit data word. The first rising edge of SCLK after SDENB goes low will latch the  
read/write bit. If a high is registered then a read is requested, if it is low then a write is requested. SDENB must  
be brought high again before another transfer can be requested. The signal diagram is shown below:  
Register Initialization  
After power up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one of two ways:  
1. Either through hardware reset by applying a low pulse on SRESET pin  
2. By applying a software reset. When using the serial interface, a reset can be performed by addressing  
register x2C. This setting initializes the internal registers to the default values and then self-resets the  
RESET register to 0. In this case the SRESET pin can be kept high.  
Serial Register Write  
The internal register of the ADS5409 can be programmed following these steps:  
1. Drive SDENB pin low  
2. Set the R/W bit to ‘0’ (bit A7 of the 8 bit address)  
3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be  
written  
4. Write 16bit data which is latched on the rising edge of SCLK  
SCLK  
SDENB  
RWB  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIO  
Read = 1  
Write = 0  
7 bit address space  
16bit data: D15 is MSB, D0 is LSB  
Figure 40. Serial Register Write Timing Diagram  
PARAMETER  
MIN  
>DC  
25  
TYP(1)  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency (equal to 1/tSCLK)  
SDENB to SCLK setup time  
SCLK to SDENB hold time  
SDIO setup time  
20  
tSLOADS  
tSLOADH  
tDSU  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD33 =  
3.3V, AVDD, DRVDD = 1.9V, unless otherwise noted.  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDO/SDIO  
pins. This read-back mode may be useful as a diagnostic check to verify the serial interface communication  
between the external controller and the ADC.  
1. Drive SDENB pin low  
2. Set the RW bit (A7) to '1'. This setting disables any further writes to the registers  
3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be  
read.  
4. The device outputs the contents (D15 to D0) of the selected register on the SDO/SDIO pin  
5. The external controller can latch the contents at the SCLK rising edge.  
6. To enable register writes, reset the RW register bit to '0'.  
SCLK  
SDENB  
RWB  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIO  
Read = 1  
Write = 0  
7 bit address space  
16bit data: D15 is MSB, D0 is LSB  
Figure 41. Serial Register Read Timing Diagram  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
SERIAL REGISTER MAP(2)  
(2) Multiple functions in a register can be programmed in a single write operation.  
Register  
Address  
Register Data  
A7–A0 IN  
HEX  
D15  
D14  
D13  
D12  
D11  
D10  
0
D9  
D8  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Decima-  
tion  
Filter  
EN  
ChA  
High/  
Low  
ChB  
High/  
Low  
3/4 Wire  
SPI  
0
0
0
0
0
0
0
0
0
0
Pass  
Pass  
ChA  
Corr EN  
ChB  
Corr EN  
Data  
Format  
Hp  
Mode1  
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Over-range threshold  
0
1
0
0
Start  
Auto  
Corr  
ChA  
3
0
0
1
0
1
1
0
0
0
1
0
0
E
F
Sync Select  
0
0
0
0
Sync Select  
0
1
0
0
0
0
0
1
0
0
0
0
0
VREF Set  
0
0
1
0
0
Start  
Auto  
Corr  
ChB  
1A  
0
0
0
0
0
0
1
0
0
1
0
0
2B  
2C  
37  
0
Temp Sensor  
0
Reset  
Sleep Modes  
0
0
0
0
0
0
0
0
0
0
0
0
0
BIAS  
EN  
SYNC  
EN  
LP  
Mode 1  
38  
3A  
HP Mode2  
Internal LVDS  
Termination  
DACLK DBCLK  
EN EN  
OVRA  
EN  
OVRB  
EN  
LVDS Current Strength  
LVDS SW  
0
0
0
66  
67  
LVDS Output Bus A EN  
LVDS Output Bus B EN  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
DESCRIPTION OF SERIAL INTERFACE REGISTERS  
Register  
Address  
Register Data  
A7-A0 in hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
3/4  
Wire ima-  
SPI  
Dec-  
0
ChA  
High/  
Low  
0
0
ChB  
High/  
Low  
0
0
0
0
0
0
0
0
0
tion  
Filter  
EN  
Pass  
Pass  
D15  
3/4 Wire SPI  
Enables 4-bit serial interface when set  
Default 0  
0
1
3 wire SPI is used with SDIO pin operating as bi-directional I/O port  
4 wire SPI is used with SDIO pin operating as data input and SDO pin as data output port.  
D14  
Decimation  
Filter EN  
Default 0  
2x decimation filter is enabled when bit is set  
0
1
Normal operation with data output at full sampling rate  
2x decimation filter enabled  
D12  
ChA High/Low  
Pass  
(Decimation filter must be enabled first: set bit D14)  
Default 0  
0
1
Low Pass  
High Pass  
D9  
ChB High/Low  
Pass  
(Decimation filter must be enabled first: set bit D14)  
Default 0  
0
1
Low Pass  
High Pass  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
Register  
Address  
Register Data  
A7-A0 in hex  
1
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
D0  
0
ChA  
Corr  
EN  
ChB  
Corr  
EN  
Data  
Format  
HP  
Mode1  
D15  
ChA Corr EN (should be enabled for maximum performance)  
Default 0  
0
1
Auto correction disabled  
Auto correction enabled  
D9  
ChB Corr EN (should be enabled for maximum performance)  
Default 0  
0
1
Auto correction disabled  
Auto correction enabled  
D3  
Data Format  
Default 0  
0
1
Two's complement  
Offset Binary  
D1  
1
HP Mode 1  
Default 1  
Must be set to 1 for optimum performance  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
Register  
Address  
Register Data  
D8 D7  
Over-range threshold  
A7-A0 in  
hex  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
D9  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
2
D10-D7 Over-range threshold The over-range detection is triggered 12 output clock cycles after the  
overload condition occurs. The threshold at which the OVR is triggered =  
1.0V x [decimal value of <Over-range threshold>]/16. After power up or  
reset, the default value is 15 (decimal) which corresponds to a OVR  
threshold of 0.56dB below fullscale (20*log(15/16)). This OVR threshold is  
applicable to both channels.  
Default 1111  
OVR Detection Threshold  
0
-5  
-10  
-15  
-20  
-25  
0
2
4
6
8
10  
12  
14  
16  
Programmed Value (1-15)  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
0
D14  
D13  
0
D12  
0
D11  
1
D10  
0
D9  
1
D8  
1
D7  
0
D6  
0
D5  
0
D4  
1
D3  
1
D2  
0
D1  
0
D0  
0
3
Start  
Auto  
Coff  
ChA  
D14  
Start Auto Corr ChA  
Starts DC offset and Gain correction loop for ChA  
Default 1  
0
1
Starts the DC offset and Gain correction loops  
Clears DC offset correction value to 0 and Gain correction value to 1  
D11, 9, 8, 4, 3 Must be set to 1 for maximum performance  
Default 1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
Register  
Address  
Register Data  
D8 D7  
Sync Select  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
E
0
D15-D2  
Sync Select  
Default 1010 1010  
1010 10  
Sync selection for the clock generator block (also  
need to see address 0x0F)  
0000 0000 0000 00  
0101 0101 0101 01  
1010 1010 1010 10  
1111 1111 1111 11  
Sync is disabled  
Sync is set to one shot (one time synchronization only)  
Sync is derived from SYNC input pins  
not supported  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
F
Sync Select  
VREF Sel  
D15-D12  
Sync Select  
Sync selection for the clock generator block  
Default 1010  
0000  
0101  
1010  
1111  
Sync is disabled  
Sync is set to one shot (one time synchronization only)  
Sync is derived from SYNC input pins  
not supported  
D6-D4  
VREF SEL  
Internal voltage reference selection  
Default 000  
000  
1.0V  
001  
1.25V  
010  
0.9V  
011  
0.8V  
100  
1.15V  
Others  
external reference  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
0
D14  
D13  
0
D12  
0
D11  
1
D10  
0
D9  
1
D8  
1
D7  
0
D6  
0
D5  
0
D4  
1
D3  
1
D2  
0
D1  
0
D0  
0
1A  
Start  
Auto  
Corr  
ChB  
D14  
Start Auto Corr ChB  
Starts DC offset and Gain correction loop for ChB  
Default 1  
0
1
Starts the DC offset and Gain correction loops  
Clears DC offset correction value to 0 and Gain correction value to 1  
D11, 9, 8, 4, 3  
Must be set to 1 for maximum performance  
Default 1  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
Register  
Address  
Register Data  
D8 D7  
A7-A0 in  
hex  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2B  
Temp Sensor  
D8-D0  
Temp Sensor  
Internal temperature sensor value – read only  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2C  
Reset  
D15-D0  
Reset  
Default  
0000  
This is a software reset to reset all SPI registers to their default value. Self  
clears to 0.  
1101001011110000  
Perform software reset  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
37  
Sleep Modes  
D15-D14  
Sleep Modes  
Default 00  
Sleep mode selection which is controlled by the ENABLE pin. Sleep modes are active when  
ENABLE pin goes low.  
000000  
100000  
110000  
110101  
Complete shut down  
Stand-by mode  
Wake up time 2.5 ms  
Wake up time 100 µs  
Wake up time 20 µs  
Wake up time 2 µs  
Deep sleep mode  
Light sleep mode  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
Register  
Address  
Register Data  
D8 D7  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
D0  
0
38  
HP Mode 2  
Bias SYNC  
EN EN  
LP  
Mode  
1
0
D15-D7 HP Mode 2  
Default 111111111  
1
Set to 1 for normal operation  
D6  
BIAS EN  
Default 1  
Enables internal fuse bias voltages – can be disabled after  
power up to save power.  
0
Internal bias powered  
down  
1
Internal bias enabled  
D5  
SYNC EN  
Enables the SYNC input buffer.  
Default 1  
0
SYNC input buffer  
disabled  
1
SYNC input bffer enabled  
D4  
LP Mode 1  
Low power mode 1 to disable unused internal input buffer.  
Default 1  
0
1
Internal input buffer  
disabled  
Internal input buffer  
enabled  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
ADS5409  
www.ti.com  
SLAS935 MAY 2013  
Register  
Address  
Register Data  
A7-A0 in hex D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
0
D6  
D5  
0
D4  
DACLK DBCLK  
EN EN  
D3  
D2  
0
D1  
OVRA OVRB  
EN EN  
D0  
3A  
LVDS Current  
Strength  
LVDS SW  
Internal  
0
0
LVDS  
Termination  
D15-D13  
LVDS Current  
LVDS output current strength.  
Strength  
Default 110  
000  
001  
010  
011  
2 mA  
100 3 mA  
2.25 mA  
2.5 mA  
2.75 mA  
101 3.25 mA  
110 3.5 mA  
111 3.75 mA  
D12-D11  
LVDS SW  
LVDS driver internal switch setting – correct range must be set for setting in D15-D13  
Default 01  
01  
2 mA to 2.75 mA  
3mA to 3.75mA  
11  
D10-D9  
Internal LVDS  
Termination  
Default 00  
Internal termination  
00  
01  
10  
11  
2 kΩ  
200 Ω  
200 Ω  
100 Ω  
D4  
DACLK EN  
Enable DACLK output buffer  
Default 1  
0
1
DACLK output buffer powered down  
DACLK output buffer enabled  
D3  
DBCLK EN  
Enable DBCLK output buffer  
Default 1  
0
1
DBCLK output buffer powered down  
DBCLK output buffer enabled  
D1  
OVRA EN  
Enable OVRA output buffer  
Default 1  
0
1
OVRA output buffer powered down  
OVRA output buffer enabled  
D0  
OVRB EN  
Enable OVRB output buffer  
Default 1  
0
1
OVRB output buffer powered down  
OVRB output buffer enabled  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS5409  
ADS5409  
SLAS935 MAY 2013  
www.ti.com  
Register  
Address  
Register Data  
D8 D7  
LVDS Output Bus A EN  
Individual LVDS output pin power down for channel A  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
66  
D15-D10  
LVDS Output Bus A EN  
Default FFFF  
0
1
Output is powered down  
Output is enabled  
D15  
D14  
Pins N7, P7 (no connect pins) which are not used and should be powered down for  
power savings  
Pins N6, P6 (no connect pins) which are not used and should be powered down for  
power savings  
D13  
D12  
SYNCOUTP/N (pins P5, N5)  
Pins N4, P4 (no connect pins) which are not used and should be powered down for  
power savings  
D11-D0  
corresponds to DA11-DA0  
Register  
Address  
Register Data  
A7-A0 in  
hex  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
LVDS Output Bus B EN  
Individual LVDS output pin power down for channel B  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
67  
D15-D10  
LVDS Output Bus B EN  
Default FFFF  
0
1
Output is powered down  
Output is enabled  
D15  
D14  
Pins G3, G4 (no connect pins) which are not used and should be powered down for  
power savings  
Pins F3, F4 (no connect pins) which are not used and should be powered down for  
power savings  
D13  
D12  
SYNCOUTP/N (pins F1, F2)  
Pins E3, E4 (no connect pins) which are not used and should be powered down for  
power savings  
D11-D0  
corresponds to DB11-DB0  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS5409  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS5409IZAY  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
NFBGA  
NFBGA  
ZAY  
196  
196  
160  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
ADS5409I  
ADS5409I  
ADS5409IZAYR  
ACTIVE  
ZAY  
1000  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS5409IZAYR  
NFBGA  
ZAY  
196  
1000  
330.0  
24.4  
12.3  
12.3  
2.3  
16.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZAY 196  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 31.8  
ADS5409IZAYR  
1000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS5402

Dual Channel 12-Bit 900Msps Analog-to-Digital Converter
TI

ADS5402IZAY

Dual 12-Bit 800Msps Analog-to-Digital Converter
TI

ADS5402IZAYR

Dual 12-Bit 800Msps Analog-to-Digital Converter
TI

ADS5403

Dual Channel 12-Bit 900Msps Analog-to-Digital Converter
TI

ADS5403IZAY

12 位 500MSPS 模数转换器 (ADC) | ZAY | 196 | -40 to 85
TI

ADS5403IZAYR

12 位 500MSPS 模数转换器 (ADC) | ZAY | 196 | -40 to 85
TI

ADS5404

Dual Channel 12-Bit 900Msps Analog-to-Digital Converter
TI

ADS5404IZAY

Dual Channel 12-Bit 500Msps Analog-to-Digital Converter
TI

ADS5404IZAYR

Dual Channel 12-Bit 500Msps Analog-to-Digital Converter
TI

ADS5407

Dual Channel 12-Bit 900Msps Analog-to-Digital Converter
TI

ADS5407IZAY

Dual Channel 12-Bit 500 Msps Analog to Digital Converter
TI

ADS5407IZAYR

Dual Channel 12-Bit 500 Msps Analog to Digital Converter
TI