ADS5424IPJYR [TI]

14 BIT, 105 MSPS ANALOG TO DIGITAL CONVERTER; 14位, 105 MSPS模数转换器
ADS5424IPJYR
型号: ADS5424IPJYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 BIT, 105 MSPS ANALOG TO DIGITAL CONVERTER
14位, 105 MSPS模数转换器

转换器 模数转换器
文件: 总25页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢀꢆ ꢇ ꢈ ꢉꢊ ꢉ  
ꢋ ꢌ ꢍꢎ ꢏꢐꢑ ꢄ ꢏꢑ ꢒ ꢃꢐ ꢃꢄ ꢍꢎ ꢓꢏ ꢌꢔꢕ ꢖ ꢄꢕ ꢖ  
D
52 Pin HTQFP Package With Exposed  
Heatsink  
FEATURES  
D
D
D
D
D
D
D
D
D
D
14 Bit Resolution  
105 MSPS Maximum Sample Rate  
SNR = 74 dBc at 105 MSPS and 50-MHz IF  
D
Pin Compatible to the AD6644/45  
D
Industrial Temperature Range = −405C to 855C  
SFDR = 93 dBc at 105 MSPS and 50-MHz IF  
APPLICATIONS  
2.2 V Differential Input Range  
pp  
5 V Supply Operation  
D
D
D
D
Single and Multichannel Digital Receivers  
Base Station Infrastructure  
Instrumentation  
3.3 V CMOS Compatible Outputs  
1.9 W Total Power Dissipation  
2s Complement Output Format  
Video and Imaging  
RELATED DEVICES  
On-Chip Input Analog Buffer, Track and Hold,  
and Reference Circuit  
D
Clocking: CDC7005  
Amplifiers: OPA695, THS4509  
D
DESCRIPTION  
The ADS5424 is a 14 bit 105 MSPS analog-to-digital converter (ADC) that operates from a 5 V supply, while providing 3.3 V  
CMOS compatible digital outputs. The ADS5424 input buffer isolates the internal switching of the on-chip Track and Hold  
(T&H) from disturbing the signal source. An internal reference generator is also provided to further simplify the system  
design. The ADS5424 has outstanding low noise and linearity, over input frequency. With only a 2.2 VPP input range,  
simplifies the design of multicarrier applications, where the carriers are selected on the digital domain.  
The ADS5424 is available in a 52 pin HTQFP with heatsink package and is pin compatible to the AD6645. The ADS5424  
is built on state of the art Texas Instruments complementary bipolar process (BiCom3) and is specified over full industrial  
temperature range (−40°C to 85°C).  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DD  
DRV  
DD  
A
IN  
A
IN  
+
+
A3  
A2  
TH3  
TH2  
TH1  
ADC3  
Σ
Σ
A1  
ADC1  
DAC1  
ADC2  
DAC2  
VREF  
Reference  
5
5
6
C1  
C2  
Digital Error Correction  
CLK+  
CLK−  
Timing  
DMID OVR DRY  
D[13:0]  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPad is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.  
ꢊꢘ ꢙ ꢒꢚ ꢓ ꢛꢜ ꢙꢝ ꢒ ꢋꢛꢋ ꢃꢌ ꢞꢏ ꢖ ꢟꢍ ꢄꢃꢏꢌ ꢃꢠ ꢡꢢ ꢖ ꢖ ꢕꢌꢄ ꢍꢠ ꢏꢞ ꢣꢢꢤ ꢎꢃꢡ ꢍꢄꢃ ꢏꢌ ꢥꢍ ꢄꢕꢦ ꢊꢖ ꢏꢥꢢ ꢡꢄꢠ  
ꢡ ꢏꢌ ꢞꢏꢖ ꢟ ꢄꢏ ꢠ ꢣꢕ ꢡ ꢃ ꢞꢃ ꢡ ꢍ ꢄꢃ ꢏꢌꢠ ꢣ ꢕꢖ ꢄꢧꢕ ꢄꢕ ꢖ ꢟꢠ ꢏꢞ ꢛꢕꢨ ꢍꢠ ꢜꢌꢠ ꢄꢖ ꢢꢟ ꢕꢌꢄ ꢠ ꢠꢄ ꢍꢌꢥ ꢍꢖ ꢥ ꢩ ꢍꢖ ꢖ ꢍ ꢌꢄꢪꢦ  
ꢊꢖ ꢏ ꢥꢢꢡ ꢄ ꢃꢏ ꢌ ꢣꢖ ꢏ ꢡ ꢕ ꢠ ꢠ ꢃꢌ ꢐ ꢥꢏ ꢕ ꢠ ꢌꢏꢄ ꢌꢕ ꢡꢕ ꢠꢠ ꢍꢖ ꢃꢎ ꢪ ꢃꢌꢡ ꢎꢢꢥ ꢕ ꢄꢕ ꢠꢄꢃ ꢌꢐ ꢏꢞ ꢍꢎ ꢎ ꢣꢍ ꢖ ꢍꢟ ꢕꢄꢕ ꢖ ꢠꢦ  
Copyright 2005, Texas Instruments Incorporated  
www.ti.com  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE LEAD  
(1)  
HTQFP-52  
PowerPAD  
ADS5424IPJY  
Tray, 160  
ADS5424  
PJY  
−40°C to +85°C  
ADS5424I  
ADS5424IPJYR  
Tape and Reel, 1000  
(1)  
Thermal pad size: Octagonal 2,5 mm side  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
proper handling and installation procedures can cause damage.  
ADS5424  
UNIT  
AV  
DD  
to GND  
to GND  
6
5
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because small parametric changes could cause  
the device not to meet its published specifications.  
Supply voltage  
V
V
DRV  
DD  
−0.3 to  
AV  
DD  
Analog input to GND  
+ 0.3  
−0.3 to  
AV + 0.3  
Clock input to GND  
CLK to CLK  
V
V
V
RECOMMENDED OPERATING CONDITIONS  
DD  
2.5  
−0.3 to  
MIN  
TYP  
MAX  
UNIT  
PARAMETER  
Supplies  
Digital data output to GND  
DRV  
+ 0.3  
DD  
Analog supply voltage, AV  
4.75  
3
5
5.25  
3.6  
V
V
DD  
Operating temperature range  
Maximum junction temperature  
Storage temperature range  
−40 to 85  
°C  
°C  
°C  
Output driver supply voltage,  
DRV  
DD  
3.3  
150  
−65 to 150  
Analog Input  
Differential input range  
2.2  
2.4  
V
(1)  
PP  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
Input common-mode voltage,  
V
V
CM  
Digital Output  
Maximum output load  
Clock Input  
10  
pF  
(1)  
THERMAL CHARACTERISTICS  
ADCLK input sample rate (sine  
TEST  
CONDITIONS  
30  
105  
85  
MSPS  
PARAMETER  
TYP  
22.5  
15.8  
33.3  
25.9  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
wave) 1/t  
C
Clock amplitude, sine wave,  
Soldered slug, no  
airflow  
3
V
PP  
(1)  
differential  
θ
JA  
(2)  
Clock duty cycle  
50%  
Soldered slug,  
200-LPFM airflow  
θ
JA  
θ
JA  
θ
JA  
Open free-air temperature range −40  
°C  
(1)  
(2)  
See Figure 22 and Figure 23 for more information.  
See Figure 21 for more information.  
Unsoldered slug,  
no airflow  
Unsoldered slug,  
200-LPFM airflow  
Bottom of  
package  
(heatslug)  
θ
JC  
2
°C/W  
(1)  
Using 25 thermal vias (5 x 5 array). See the Application Section.  
2
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
ELECTRICAL CHARACTERISTICS  
Over full temperature range (T  
= −40°C to T  
MAX  
= 85°C), sampling rate = 105 MSPS, 50% clock duty cycle, AV  
= 5 V, DRV = 3.3 V,  
DD  
MIN  
DD  
−1 dBFS differential input, and 3 V  
differential sinusoidal clock, unless otherwise noted  
PP  
PARAMETER  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
14  
Bits  
Analog Inputs  
Differential input range  
Differential input resistance  
Differential input capacitance  
Analog input bandwidth  
Internal Reference Voltages  
2.2  
1
V
PP  
kΩ  
pF  
See Figure 32  
See Figure 32  
1.5  
570  
MHz  
Reference voltage, V  
Dynamic Accuracy  
No missing codes  
2.4  
V
REF  
Tested  
0.5  
1.5  
0
Differential linearity error, DNL  
Integral linearity error, INL  
Offset error  
f
IN  
f
IN  
= 5 MHz  
= 5 MHz  
−0.95  
−5  
1.5  
5
LSB  
LSB  
mV  
Offset temperature coefficient  
Gain error  
1.7  
0.9  
1
ppm/°C  
%FS  
−5  
5
PSRR  
mV/V  
ppm/°C  
Gain temperature coefficient  
Power Supply  
77  
F
S
F
S
F
S
F
S
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
355  
355  
38  
Analog supply current, I  
AVDD  
V
= full scale, f = 70 MHz  
IN  
mA  
mA  
IN  
410  
47  
Output buffer supply current, I  
V
= full scale, f = 70 MHz  
DRVDD  
IN IN  
40  
Total power with 10-pF load  
on each digital output to  
F
= 92.16 MSPS  
1.9  
S
Power dissipation  
Power-up time  
W
F
= 105 MSPS  
= 105 MSPS  
1.9  
20  
2.2  
S
S
ground, f = 70 MHz  
IN  
F
100  
ms  
3
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
ELECTRICAL CHARACTERISTICS  
Over full temperature range (T  
= −40°C to T  
MAX  
= 85°C), sampling rate = 105 MSPS, 50% clock duty cycle, AV  
= 5 V, DRV = 3.3 V,  
DD  
MIN  
DD  
−1 dBFS differential input, and 3 V  
differential sinusoidal clock, unless otherwise noted  
PP  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dynamic AC Characteristics  
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
F
S
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
= 92.16 MSPS  
= 105 MSPS  
74.5  
74.4  
74.4  
74.3  
74.2  
74.2  
74  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 70 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 70 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 70 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
dBc  
dBc  
dBc  
73  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Signal-to-noise ratio, SNR  
72.5  
74  
73.5  
73.5  
72  
72  
71.5  
71.5  
94  
93  
95  
dBc  
dBc  
85  
95  
94  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
93  
89  
Spurious-free dynamic range, SFDR  
88  
88  
87  
73  
73  
64  
64  
74.4  
74.3  
74.3  
74.3  
74.1  
74  
72.8  
74  
Signal-to-noise + distortion, SINAD  
73.9  
73.3  
73.3  
69.3  
69.1  
63.4  
63.4  
4
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
ELECTRICAL CHARACTERISTICS  
Over full temperature range (T  
= −40°C to T  
MAX  
= 85°C), sampling rate = 105 MSPS, 50% clock duty cycle, AV  
= 5 V, DRV  
= 3.3 V,  
MIN  
DD  
DD  
−1 dBFS differential input, and 3 V  
differential sinusoidal clock, unless otherwise noted  
PP  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
105  
98  
98  
98  
98  
96  
93  
95  
93  
87  
73  
64  
93  
95  
93  
88  
88  
88  
88  
0.9  
MAX  
UNIT  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 70 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
= 10 MHz  
= 30 MHz  
= 50 MHz  
= 70 MHz  
= 100 MHz  
= 170 MHz  
= 230 MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
LSB  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Second harmonic, HD2  
Third harmonic, HD3  
Worst-harmonic / spur (other than HD2  
and HD3)  
RMS idle channel noise  
Input pins tied together  
DIGITAL CHARACTERISTICS  
Over full temperature range (T  
= −40°C to T  
MAX  
= 85°C), AV  
DD  
= 5 V, DRV = 3.3 V, unless otherwise noted  
DD  
MIN  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Outputs  
(1)  
= 10 pF  
(1)  
= 10 pF  
Low-level output voltage  
High-level output voltage  
Output capacitance  
DMID  
C
LOAD  
C
LOAD  
0.1  
0.6  
V
V
2.6  
3.2  
3
pF  
V
DRV /2  
DD  
(1)  
Equivalent capacitance to ground of (load + parasitics of transmission lines).  
5
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
(3)  
TIMING CHARACTERISTICS  
Over full temperature range, AV  
= 5 V, DRV  
DD  
= 3.3 V, sampling rate = 105 MSPS  
DD  
PARAMETER  
Aperture Time  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
t
t
Aperture delay  
500  
150  
50  
ps  
fs  
A
J
Clock slope independent aperture uncertainity (jitter)  
Clock slope dependent jitter factor  
k
µV  
J
Clock Input  
t
t
t
Clock period  
9.5  
ns  
ns  
ns  
CLK  
(1)  
Clock pulsewidth high  
Clock pulsewidth low  
4.75  
4.75  
CLKH  
(1)  
CLKL  
Clock to DataReady (DRY)  
t
t
t
Clock rising 50% to DRY falling 50%  
2.8  
7.6  
3.9  
4.7  
9.5  
ns  
ns  
ns  
DR  
t
t
+
DR  
Clock rising 50% to DRY rising 50%  
C_DR  
CLKH  
Clock rising 50% to DRY rising 50% with 50% duty cycle clock  
8.7  
C_DR_50%  
(4)  
Clock to DATA, OVR  
t
t
Data V  
Data V  
to data V  
OH  
to data V  
OL  
(rise time)  
(fall time)  
2
2
ns  
ns  
r
OL  
f
OH  
L
Latency  
Valid DATA to clock 50% with 50% duty cycle clock (setup time)  
(2)  
3
Cycles  
ns  
(2)  
t
t
1.8  
2.6  
3.4  
3.6  
su(C)  
Clock 50% to invalid DATA (hold time)  
(4)  
ns  
H(C)  
DataReady (DRY) to DATA, OVR  
(2)  
Valid DATA to DRY 50% with 50% duty cycle clock (setup time)  
(2)  
DRY 50% to invalid DATA with 50% duty cycle clock (hold time)  
t
t
1.8  
3.9  
2.6  
4.4  
ns  
ns  
su(DR)_50%  
h(DR)_50%  
(1)  
(2)  
(3)  
(4)  
See Figure 21 for more information.  
See V and V levels.  
All values obtained from design and characterization.  
OH OL  
Data is updated with clock rising edge or DRY falling edge.  
t
A
N+3  
N
AIN  
N+1  
N+2  
N+4  
t
t
CLKL  
t
CLKH  
CLK  
CLK, CLK  
N + 1  
N + 2  
N + 3  
N + 4  
N
t
h(C)  
t
t
su(C)  
C_DR  
D[13:0], OVR  
DRY  
N−3  
N−2  
N−1  
N
t
t
h(DR)  
su(DR)  
t
r
t
f
t
DR  
Figure 1. Timing Diagram  
6
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
PIN CONFIGURATION  
PJY PACKAGE  
(TOP VIEW)  
52 51 50 49 48 47 46 45 44 43 42 41 40  
1
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
DRV  
D3  
D2  
D1  
D0 (LSB)  
DMID  
GND  
DRV  
OVR  
DNC  
DD  
2
GND  
VREF  
GND  
CLK  
CLK  
GND  
3
4
5
6
7
GND  
DD  
8
AV  
AV  
DD  
9
DD  
10  
11  
12  
13  
GND  
AIN  
AIN  
AV  
DD  
GND  
AV  
DD  
GND  
GND  
14 15 16 17 18 19 20 21 22 23 24 25 26  
PIN ASSIGNMENTS  
TERMINAL  
DESCRIPTION  
NAME  
DRV  
NO.  
1, 33, 43  
3.3 V power supply, digital output stage only  
DD  
GND  
2, 4, 7, 10, 13, 15, Ground  
17, 19, 21, 23, 25,  
27, 29, 34, 42  
VREF  
CLK  
3
5
6
2.4 V reference. Bypass to ground with a 0.1-µF microwave chip capacitor.  
Clock input. Conversion initiated on rising edge.  
Complement of CLK, differential input  
CLK  
AV  
DD  
8, 9, 14, 16, 18,  
22, 26, 28, 30  
5 V analog power supply  
AIN  
11  
Analog input  
AIN  
12  
Complement of AIN, differential analog input  
C1  
20  
Internal voltage reference. Bypass to ground with a 0.1-µF chip capacitor.  
Internal voltage reference. Bypass to ground with a 0.1-µF chip capacitor.  
Do not connect  
C2  
24  
DNC  
31  
OVR  
32  
Overrange bit. A logic level high indicates the analog input exceeds full scale.  
DMID  
35  
Output data voltage midpoint. Approximately equal to (DV )/2  
CC  
D0 (LSB)  
D1−D5, D6−D12  
D13 (MSB)  
DRY  
36  
Digital output bit (least significant bit); two’s complement  
Digital output bits in two’s complement  
Digital output bit (most significant bit); two’s complement  
Data ready output  
37−41, 44−50  
51  
52  
7
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
DEFINITION OF SPECIFICATIONS  
Offset Error  
Analog Bandwidth  
The analog input frequency at which the power of the  
fundamental is reduced by 3 dB with respect to the low  
frequency value.  
The offset error is the difference, given in number of  
LSBs, between the ADC’s actual value average idle  
channel output code and the ideal average idle channel  
output code. This quantity is often mapped into mV.  
Aperture Delay  
Temperature Drift  
The temperature drift coefficient (with respect to gain  
error and offset error) specifies the change per degree  
celcius of the paramter from T  
computed as the maximum variation of that parameter  
over the whole temperature range divided by T  
The delay between the rising edge of the input sampling  
clock and the actual time at which the sampling occurs.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
or T  
. It is  
MIN  
MAX  
MAX  
Clock Pulse Width/Duty Cycle  
T
.
MIN  
The duty cycle of a clock signal is the ratio of the time  
the clock signal remains at a logic high (clock pulse  
width) to the period of the clock signal. Duty cycle is  
typically expressed as a percentage. A perfect  
differential sine wave clock results in a 50% duty cycle.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the power of the fundamental (P )  
S
to the noise floor power (P ), excluding the power at dc  
N
and the first five harmonics.  
Maximum Conversion Rate  
PS  
SNR + 10Log  
10 PN  
The maximum sampling rate at which certified  
operation is given. All parametric testing is performed  
at this sampling rate unless otherwise noted.  
SNR is either given in units of dBc (dB to carrier) when  
the absolute power of the fundamental is used as the  
reference or dBFS (dB to full scale) when the power of  
the fundamental is extrapolated to the converter’s  
full-scale range.  
Minimum Conversion Rate  
The minimum sampling rate at which the ADC  
functions.  
Differential Nonlinearity (DNL)  
Signal-to-Noise and Distortion (SINAD)  
An ideal ADC exhibits code transitions at analog input  
values spaced exactly 1 LSB apart. The DNL is the  
deviation of any single step from this ideal value,  
measured in units of LSB.  
SINAD is the ratio of the power of the fundamental (P )  
to the power of all the other spectral components  
S
including noise (P ) and distortion (P ), but excluding  
N
D
dc.  
Integral Nonlinearity (INL)  
PS  
SINAD + 10Log  
10 PN ) PD  
The INL is the deviation of the ADC’s transfer function  
from a best fit line determined by a least squares curve  
fit of that transfer function, measured in units of LSB.  
SINAD is either given in units of dBc (dB to carrier) when  
the absolute power of the fundamental is used as the  
reference or dBFS (dB to full scale) when the power of  
the fundamental is extrapolated to the converter’s  
full-scale range.  
Gain Error  
The gain error is the deviation of the ADC’s actual input  
full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale range.  
8
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Total Harmonic Distortion (THD)  
Two-Tone Intermodulation Distortion  
THD is the ratio of the fundamental power (P ) to the  
IMD3 is the ratio of the power of the fundamental (at  
frequiencies f1, f2) to the power of the worst spectral  
component at either frequency 2f1 − f2 or 2f2 − f1). IMD3 is  
either given in units of dBc (dB to carrier) when the  
absolute power of the fundamental is used as the  
reference or dBFS (dB to full scale) when it is referred to  
the full-scale range.  
S
power of the first five harmonics (P ).  
D
PS  
THD + 10Log  
10 PD  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the power of the fundamental to the highest  
other spectral component (either spur or harmonic). SFDR  
is typically given in units of dBc (dB to carrier).  
9
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
TYPICAL CHARACTERISTICS  
Typical values are at T = 25°C, AV  
= 5 V, DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
DD PP  
A
DD  
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
SPECTRAL PERFORMANCE  
SPECTRAL PERFORMANCE  
1
1
0
0
−20  
f
f
= 105 MSPS  
f = 105 MSPS  
S
S
= 2 MHz  
f
IN  
= 30 MHz  
IN  
−20  
−40  
SNR = 74.4 dBc  
SINAD = 74.4 dBc  
SFDR = 93 dBc  
THD = 95 dBc  
SNR = 74.4 dBc  
SINAD = 74.3 dBc  
SFDR = 94 dBc  
THD = 93 dBc  
−40  
−60  
−60  
−80  
−80  
X
X
3
4
5
5
3
2
6
−100  
−120  
−100  
−120  
6
2
0
0
0
10  
20  
30  
40  
50  
0
0
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2  
Figure 3  
SPECTRAL PERFORMANCE  
SPECTRAL PERFORMANCE  
1
1
0
−20  
0
−20  
f
f
= 105 MSPS  
= 70 MHz  
SNR = 74 dBc  
SINAD = 73.9 dBc  
SFDR = 92 dBc  
THD = 91 dBc  
f = 105 MSPS  
S
= 100 MHz  
IN  
SNR = 73.5 dBc  
SINAD = 73.3 dBc  
SFDR = 87 dBc  
THD = 86 dBc  
S
IN  
f
−40  
−40  
−60  
−60  
−80  
−80  
3
3
X
5
X
2
4
−100  
−120  
−100  
−120  
4
2
5
6
6
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 4  
Figure 5  
SPECTRAL PERFORMANCE  
SPECTRAL PERFORMANCE  
1
1
0
−20  
0
−20  
f
f
= 105 MSPS  
= 170 MHz  
SNR = 71.9 dBc  
SINAD = 69.1 dBc  
SFDR = 72 dBc  
THD = 72 dBc  
f = 105 MSPS  
S
= 230 MHz  
SNR = 71 dBc  
SINAD = 64.2 dBc  
SFDR = 65 dBc  
THD = 65 dBc  
S
IN  
f
IN  
−40  
−40  
−60  
−60  
3
3
X
−80  
−80  
5
X
2
4
4
6
5
2
6
−100  
−120  
−100  
−120  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 6  
Figure 7  
10  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Typical values are at T = 25°C, AV  
DD  
= 5 V, DRV  
DD  
= 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
PP  
A
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
SPECTRAL PERFORMANCE  
SPECTRAL PERFORMANCE  
1
1
0
0
−20  
f
f
= 92.16 MSPS  
f = 92.16 MSPS  
S
S
= 70 MHz  
f
IN  
= 170 MHz  
IN  
−20  
−40  
SNR = 73.9 dBc  
SINAD = 73.8 dBc  
SFDR = 96 dBc  
THD = 95 dBc  
SNR = 71.6 dBc  
SINAD = 69 dBc  
SFDR = 73 dBc  
THD = 73 dBc  
−40  
−60  
−60  
3
−80  
−80  
X
4
2
X
5
4
5
2
6
6
−100  
−120  
−100  
−120  
0
0
0
10  
20  
30  
40  
40  
40  
0
0
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 8  
Figure 9  
SPECTRAL PERFORMANCE  
SPECTRAL PERFORMANCE  
0
−20  
0
−20  
f
f
f
= 92.16 MSPS  
1 = 69.2 MHz, −7 dBFS  
2 = 70.7 MHz, −7 dBFS  
S
IN  
IN  
f
f
f
= 92.16 MSPS  
1 = 169.6 MHz, −7 dBFS  
2 = 170.4 MHz, −7 dBFS  
S
IN  
IN  
IMD3 = −93 dBFS  
IMD3 = −82 dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−100  
−120  
−140  
10  
20  
30  
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 10  
Figure 11  
WCDMA CARRIER  
WCDMA CARRIER  
0
−20  
0
−20  
f
= 92.16 MSPS  
= 70 MHz  
PAR = 5 dB  
ACPR Adj Top = 79.2 dB  
ACPR Adj Low = 79.7 dB  
f = 92.16 MSPS  
S
S
f
IN  
f
= 170 MHz  
IN  
PAR = 5 dB  
ACPR Adj Top = 73.3 dB  
ACPR Adj Low = 74 dB  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−100  
−120  
−140  
10  
20  
30  
f − Frequency − MHz  
Figure 12  
10  
20  
30  
40  
f − Frequency − MHz  
Figure 13  
11  
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Typical values are at T = 25°C, AV  
DD  
= 5 V, DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
DD PP  
A
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
AC PERFORMANCE  
AC PERFORMANCE  
vs  
INPUT AMPLITUDE  
vs  
INPUT AMPLITUDE  
120  
120  
100  
80  
100  
SFDR (dBFS)  
SFDR (dBFS)  
SNR (dBFS)  
80  
SNR (dBFS)  
60  
60  
SFDR (dBc)  
40  
SFDR (dBc)  
40  
20  
20  
SNR (dBc)  
SNR (dBc)  
f
= 92.16 MSPS  
S
f
f
= 92.16 MSPS  
0
S
0
f
IN  
= 170 MHz  
= 70 MHz  
IN  
−20  
−20  
−90 −80 −70 −60 −50 −40 −30 −20 −10  
0
−90 −80 −70 −60 −50 −40 −30 −20 −10  
0
A
− Input Amplitude − dB  
IN  
A
− Input Amplitude − dBFS  
IN  
Figure 14  
Figure 15  
TWO-TONE SPURIOUS-FREE DYNAMIC RANGE  
vs  
INPUT AMPLITUDE  
NOISE HISTOGRAM WITH INPUTS SHORTED  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
SFDR (dBFS)  
60  
40  
SFDR (dBc)  
20  
90 dBFS Line  
f
f
f
= 69 MHz  
= 71 MHz  
= 92.16 MSPS  
IN1  
IN2  
S
0
−20  
0
8174  
8175  
8176  
8177  
8178  
8179  
−110−100 −90 −80 −70 −60 −50 −40 −30 −20 −10  
0
Code Number  
A
− Input Amplitude − dBFS  
IN  
Figure 16  
Figure 17  
TOTAL POWER  
vs  
SAMPLING FREQUENCY  
INPUT BANDWIDTH  
1.90  
1.89  
1.88  
1.87  
1.86  
1.85  
1.84  
1.83  
1.82  
1.81  
2
0
f
= 70 MHz  
IN  
−2  
−4  
−6  
−8  
−10  
f
A
= 105 MSPS  
S
= −1 dBFS  
IN  
0
20  
40  
60  
80  
100  
120  
140  
1
10  
100  
1k  
f
− Sampling Frequency − MSPS  
f − Frequency − MHz  
S
Figure 18  
Figure 19  
12  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Typical values are at T = 25°C, AV  
DD  
= 5 V, DRV  
DD  
= 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
PP  
A
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
AC PERFORMANCE  
vs  
SPURIOUS-FREE DYNAMIC RANGE  
vs  
CLOCK COMMON MODE  
DUTY CYCLE  
100  
100  
95  
90  
85  
80  
75  
70  
65  
f
f
= 105 MSPS  
= 69.6 MHz  
S
IN  
f
= 2 MHz  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR (dBc)  
f
= 50 MHz  
IN  
f
= 70 MHz  
IN  
SNR (dBc)  
0
1
2
3
4
5
40  
45  
50  
55  
60  
Clock Common Mode − V  
Duty Cycle − %  
Figure 20  
Figure 21  
AC PERFORMANCE  
vs  
AC PERFORMANCE  
vs  
CLOCK LEVEL  
CLOCK LEVEL  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
SFDR (dBc)  
SFDR (dBc)  
SNR (dBc)  
SNR (dBc)  
f
f
= 105 MSPS  
= 70 MHz  
f
f
= 105 MSPS  
S
IN  
S
= 170 MHz  
IN  
0
1
2
3
4
0
1
2
3
4
Differential Clock Level − V  
Differential Clock Level − V  
PP  
PP  
Figure 22  
Figure 23  
SPURIOUS-FREE DYNAMIC RANGE  
vs  
SIGNAL-TO-NOISE RATIO  
vs  
SUPPLY VOLTAGE AND AMBIENT TEMPERATURE  
SUPPLY VOLTAGE AND AMBIENT TEMPERATURE  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
74.8  
74.6  
74.4  
74.2  
74.0  
73.8  
73.6  
73.4  
73.2  
73.0  
f
f
= 105 MSPS  
= 69.6 MHz  
f
f
= 105 MSPS  
= 69.6 MHz  
S
IN  
S
IN  
−40°C  
100°C  
85°C  
−20°C  
85°C  
60°C  
−20°C  
20°C  
60°C  
100°C  
20°C  
−40°C  
2.6  
2.8  
3.0  
DRV  
3.2  
3.4  
3.6  
3.8  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
− Supply Voltage − V  
DRV  
DD  
− Supply Voltage − V  
DD  
Figure 24  
Figure 25  
13  
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Typical values are at T = 25°C, AV  
DD  
= 5 V, DRV  
DD  
= 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
PP  
A
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
SPURIOUS-FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE RATIO  
vs  
vs  
SUPPLY VOLTAGE AND AMBIENT TEMPERATURE  
SUPPLY VOLTAGE AND AMBIENT TEMPERATURE  
74.6  
74.4  
74.2  
74.0  
73.8  
73.6  
73.4  
73.2  
73.0  
91.0  
f
f
= 105 MSPS  
= 69.6 MHz  
f
f
= 105 MSPS  
= 69.6 MHz  
S
IN  
S
IN  
90.5  
90.0  
89.5  
89.0  
88.5  
88.0  
87.5  
87.0  
86.5  
86.0  
60°C  
−40°C  
0°C  
−20°C  
85°C  
40°C  
60°C  
100°C  
85°C  
20°C  
−40°C  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
4.6  
4.8  
AV  
5.0  
5.2  
5.4  
AV  
DD  
− Supply Voltage − V  
− Supply Voltage − V  
DD  
Figure 26  
Figure 27  
DIFFERENTIAL NONLINEARITY  
INTEGRAL NONLINEARITY  
1.0  
0.8  
1.5  
1.0  
0.6  
0.4  
0.5  
0.2  
−0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
0.0  
−0.5  
−1.0  
−1.5  
0
5000  
10000  
15000  
0
5000  
10000  
Code  
15000  
Code  
Figure 28  
Figure 29  
14  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
Typical values are at T = 25°C, AV  
DD  
= 5 V, DRV  
DD  
= 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 105 MSPS, 3 V  
PP  
A
sinusoidal clock, 50% duty cycle, 16k FFT points, unless otherwise noted  
73  
120  
71  
71  
74  
110  
74  
72  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
73  
72  
74  
72  
73  
70  
71  
74  
69  
68  
72  
70  
74  
69  
73  
71  
70  
67  
68  
67  
69  
66  
65  
62  
73  
68  
71  
70  
66  
69  
64  
65  
63  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
f
IN  
− Input Frequency − MHz  
62  
64  
66  
68  
70  
72  
74  
SNR − dBc  
Figure 30.  
79  
82  
85  
76  
64  
73  
70  
120  
110  
100  
90  
88  
88  
91  
67  
85  
82  
79  
91  
94  
85  
91  
88  
73  
76  
70  
94  
91  
94  
67  
80  
94  
82  
94  
94  
94  
85  
70  
79  
94  
91  
60  
94  
94  
76  
73  
94  
88  
73  
50  
94  
94  
67  
70  
40  
91  
94  
85  
82  
91  
94  
91  
30  
79  
94  
64  
20  
91  
61  
70  
76  
85  
10  
0
20  
40  
60  
80  
100  
120  
140  
160  
85  
180  
200  
220  
f
IN  
− Input Frequency − MHz  
60  
65  
70  
75  
80  
90  
SFDR − dBc  
Figure 31.  
15  
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
EQUIVALENT CIRCUITS  
AV  
DD  
AIN  
BUF  
T/H  
AV  
DD  
500 Ω  
+
25 Ω  
V
REF  
BUF  
V
REF  
Bandgap  
AV  
DD  
1.2 kΩ  
500 Ω  
1.2 kΩ  
AIN  
BUF  
T/H  
Figure 35. Reference  
Figure 32. Analog Input  
DRV  
DD  
AV  
DD  
+
I
I
P
OUT  
OUT  
DAC  
M
Bandgap  
C1, C2  
Figure 33. Digital Output  
Figure 36. Decoupling Pin  
AV  
DD  
DRV  
DD  
10 kΩ  
CLK  
1 kΩ  
1 kΩ  
Clock Buffer  
DMID  
Bandgap  
AV  
DD  
10 kΩ  
CLK  
Figure 37. DMID Generation  
Figure 34. Clock Input  
16  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
APPLICATION INFORMATION  
of 2.2 V . The maximum swing is determined by the  
PP  
internal reference voltage generator eliminating any  
external circuitry for this purpose.  
THEORY OF OPERATION  
The ADS5424 is a 14 bit, 105 MSPS, monolithic  
pipeline analog to digital converter. Its bipolar analog  
core operates from a 5 V supply, while the output uses  
3.3 V supply for compatibility with the CMOS family. The  
conversion process is initiated by the rising edge of the  
external input clock. At that instant, the differential input  
signal is captured by the input track and hold (T&H) and  
the input sample is sequentially converted by a series  
of small resolution stages, with the outputs combined in  
a digital correction logic block. Both the rising and the  
falling clock edges are used to propagate the sample  
through the pipeline every half clock cycle. This process  
results in a data latency of three clock cycles, after  
which the output data is available as a 14 bit parallel  
word, coded in binary two’s complement format.  
The ADS5424 obtains optimum performance when the  
analog inputs are driven differentially. The circuit in  
Figure 38 shows one possible configuration using an  
RF transformer with termination either on the primary or  
on the secondary of the transformer. If voltage gain is  
required a step up transformer can be used. For higher  
gains that would require impractical higher turn ratios on  
the transformer, a single-ended amplifier driving the  
transformer can be used (see Figure 39). Another  
circuit optimized for performance would be the one on  
Figure 40, using the THS4304 or the OPA695. Texas  
Instruments has shown excellent performance on this  
configuration up to 10 dB gain with the THS4304 and at  
14 dB gain with the OPA695. For the best performance,  
they need to be configured differentially after the  
transformer (as shown) or in inverting mode for the  
OPA695 (see SBAA113); otherwise, HD2 from the op  
amps limits the useful frequency.  
INPUT CONFIGURATION  
The analog input for the ADS5424 (see Figure 32)  
consists of an analog differential buffer followed by a  
bipolar track-and-hold. The analog buffer isolates the  
source driving the input of the ADC from any internal  
switching. The input common mode is set internally  
through a 500 resistor connected from 2.4 V to each  
of the inputs. This results in a differential input  
impedance of 1 k.  
R0  
Z0  
W
50  
W
50  
AIN  
1:1  
R
50  
AC Signal  
Source  
ADS5424  
W
For a full-scale differential input, each of the differential  
lines of the input signal (pins 11 and 12) swings  
symmetrically between 2.4 +0.55 V and 2.4 –0.55 V.  
This means that each input is driven with a signal of up  
to 2.4 0.55 V, so that each input has a maximum signal  
AIN  
ADT11WT  
Figure 38. Converting a Single-Ended Input to a  
Differential Signal Using RF Transformers  
swing of 1.1 V for a total differential input signal swing  
PP  
5 V  
−5 V  
R
100 Ω  
S
0.1 µF  
+
V
IN  
R
1:1  
IN  
AIN  
OPA695  
R
100 Ω  
T
ADS5424  
AIN  
C
IN  
R
IN  
1000 µF  
R
400 Ω  
1
A
= 8V/V  
R
V
2
(18 dB)  
57.5 Ω  
Figure 39. Using the OPA695 With the ADS5424  
17  
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
APPLICATION INFORMATION  
R
G
R
F
CM  
5 V  
THS4304  
+
1:1  
V
IN  
AIN  
ADS5424  
CM  
49.9 Ω  
5 V  
V
REF  
From  
50 Ω  
Source  
AIN  
+
THS4304  
CM  
R
G
R
F
CM  
Figure 40. Using the THS4304 With the ADS5424  
Besides these, Texas Instruments offers a wide  
selection of single-ended operational amplifiers  
(including the THS3201, THS3202 and OPA847) that  
can be selected depending on the application. An RF  
gain block amplifier, such as Texas Instrument’s  
THS9001, can also be used with an RF transformer for  
high input frequency applications. For applications  
requiring dc-coupling with the signal source, instead of  
using a topology with three single ended amplifiers, a  
differential input/differential output amplifier like the  
THS4509 (see Figure 41) can be used, which  
minimizes board space and reduce number of  
components.  
For this test, an Agilent signal generator is used for the  
signal source. The generator is an ac-coupled 50 Ω  
source. A band-pass filter is inserted in series with the  
input to reduce harmonics and noise from the signal  
source.  
Input termination is accomplished via the 69.8 Ω  
resistor and 0.22 µF capacitor to ground in conjunction  
with the input impedance of the amplifier circuit. A  
0.22 µF capacitor and 49.9 resistor is inserted to  
ground across the 69.8 resistor and 0.22 µF capacitor  
on the alternate input to balance the circuit.  
Gain is a function of the source impedance, termination,  
and 348 feedback resistor. See the THS4509 data  
sheet for further component values to set proper 50 Ω  
termination for other common gains.  
Figure 43 shows their combined SNR and SFDR  
performance versus frequency with −1 dBFS input  
signal level and sampling at 80MSPS.  
Since  
common-mode voltage is +2.4 V, the THS4509 is  
operated from a single power supply input with V  
the  
ADS5424  
recommended  
input  
On this configuration, the THS4509 amplifier circuit  
provides 10 dB of gain, converts the single-ended input  
to differential, and sets the proper input common-mode  
voltage to the ADS5424.  
=
S+  
+5 V and V = 0 V (ground). This maintains maximum  
S−  
headroom on the internal transistors of the THS4509.  
The 225 resistors and 2.7 pF capacitor between the  
THS4509 outputs and ADS5424 inputs (along with the  
input capacitance of the ADC) limit the bandwidth of the  
signal to about 100 MHz (−3 dB).  
18  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
APPLICATION INFORMATION  
V
IN  
From  
50 Ω  
Source  
100 Ω  
348 Ω  
+5V  
configurations. In low input frequency applications,  
where jitter may not be a big concern, the use of  
single-ended clock (see Figure 43) could save some  
cost and board space without any trade-off in  
performance. When driven on this configuration, it is  
best to connect CLKM (pin 11) to ground with a 0.01 µF  
capacitor, while CLKP is ac-coupled with a 0.01 µF  
capacitor to the clock source, as shown in Figure 40.  
14-Bit  
105 MSPS  
69.8 Ω  
225 Ω  
225 Ω  
0.22 µF  
100 Ω  
A
IN  
2.7 pF  
ADS5424  
THS4509  
CM  
A
IN  
V
REF  
49.9 Ω  
69.8 Ω  
49.9 Ω  
0.1 µF  
0.22 µF  
0.22 µF  
0.1 µF  
348 Ω  
0.1 µF  
1:4  
Clock  
CLK  
Figure 41. Using the THS4509 With the ADS5424  
Source  
ADS5424  
MA3X71600LCT−ND  
PERFORMANCE  
vs  
CLK  
INPUT FREQUENCY  
95  
90  
Figure 44. Differential Clock  
Nevertheless, for jitter sensitive applications, the use of  
a differential clock will have some advantages (as with  
any other ADCs) at the system level. The first  
advantage is that it allows for common-mode noise  
rejection at the PCB level. A further analysis (see  
Clocking High Speed Data Converters, SLYT075)  
reveals one more advantage. The following formula  
describes the different contributions to clock jitter:  
SFDR (dBc)  
85  
80  
SNR (dBFS)  
75  
70  
2
2
2
2
(Jittertotal) = (EXT_jitter) + (ADC_jitter) =  
10  
20  
30  
40  
50  
60  
70  
2
2
(EXT_jitter) + (ADC_int) + (K/clock_slope)  
f
− Input Frequency − MHz  
IN  
The first term would represent the external jitter, coming  
from the clock source, plus noise added by the system  
on the clock distribution, up to the ADC. The second  
term is the ADC contribution, which can be divided in  
two portions. The first does not depend directly on any  
external factor. That is the best we can get out of our  
ADC. The second contribution is a term inversely  
proportional to the clock slope. The faster the slope, the  
smaller this term will be. As an example, we could  
compute the ADC jitter contribution from a sinusoidal  
Figure 42. Performance vs Input Frequency for  
the THS4509 + ADS5424 Configuration  
CLK  
Square Wave or  
Sine Wave  
0.01 µF  
0.01 µF  
ADS5424  
CLK  
input clock of 3 V amplitude and Fs = 80 MSPS:  
pp  
2
−5  
ADC_jitter = sqrt ((150fs) + (5 x 10 /(1.5 x 2 x PI x 80  
x 10 )) ) = 164fs  
6 2  
Figure 43. Single-Ended Clock  
The use of differential clock allows for the use of bigger  
clock amplitudes without exceeding the absolute  
maximum ratings. This, on the case of sinusoidal clock,  
results on higher slew rates which minimizes the impact  
of the jitter factor inversely proportional to the clock  
slope.  
CLOCK INPUTS  
The ADS5424 clock input can be driven with either a  
differential clock signal or a single-ended clock input,  
with little or no difference in performance between both  
19  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
APPLICATION INFORMATION  
Figure 44 shows this approach. The back-to-back  
Schottky can be added to limit the clock amplitude in  
cases where this would exceed the absolute maximum  
ratings, even when using a differential clock. Figure 22  
and Figure 23 show the performance versus input clock  
amplitude for a sinusoidal clock.  
DIGITAL OUTPUTS  
The ADC provides 14 data outputs (D13 to D0, with D13  
being the MSB and D0 the LSB), a data-ready signal  
(DRY, pin 52), and an out-of-range indicator (OVR, pin  
32) that equals 1 when the output reaches the full-scale  
limits.  
The output format is two’s complement. When the input  
voltage is at negative full scale (around −1.1 V  
differential), the output will be, from MSB to LSB, 10  
0000 0000 0000. Then, as the input voltage is  
increased, the output switches to 10 0000 0000 0001,  
10 0000 0000 0010 and so on until 11 1111 1111 1111  
right before mid-scale (when both inputs are tight  
together if we neglect offset errors). Further increases  
on input voltage, outputs the word 00 0000 0000 0000,  
to be followed by 00 0000 0000 0001, 00 0000 0000  
0010 and so on until reaching 01 1111 1111 1111 at  
full-scale input (1.1-V differential).  
100 nF  
MC100EP16DT  
Q
100 nF  
100 nF  
CLK  
D
D
V
BB  
Q
ADS5424  
CLK  
100 nF  
499 W  
499 W  
50 Ω  
50 Ω  
100 nF  
113 Ω  
Although the output circuitry of the ADS5424 has been  
designed to minimize the noise produced by the  
transients of the data switching, care must be taken  
when designing the circuitry reading the ADS5424  
outputs. Output load capacitance should be minimized  
by minimizing the load on the output traces, reducing  
their length and the number of gates connected to them,  
and by the use of a series resistor with each pin. Typical  
numbers on the data sheet tables and graphs are  
obtained with 100 series resistor on each digital  
output pin, followed by a 74AVC16244 digital buffer as  
the one used in the evaluation board.  
Figure 45. Differential Clock Using PECL Logic  
Another possibility is the use of a logic based clock, as  
PECL. In this case, the slew rate of the edges will most  
likely be much higher than the one obtained for the  
same clock amplitude based on a sinusoidal clock. This  
solution would minimize the effect of the slope  
dependent ADC jitter. Nevertheless, observe that for  
the ADS5424, this term is small and has been  
optimized. Using logic gates to square a sinusoidal  
clock may not produce the best results as logic gates  
may not have been optimized to act as comparators,  
adding too much jitter while squaring the inputs.  
POWER SUPPLIES  
The use of low noise power supplies with adequate  
decoupling is recommended, being the linear supplies  
the first choice versus switched ones, which tend to  
generate more noise components that can be coupled  
to the ADS5424.  
The common-mode voltage of the clock inputs is set  
internally to 2.4 V using internal 1 kresistors. It is  
recommended to use an ac coupling, but if for any  
reason, this scheme is not possible, due to, for  
instance, asynchronous clocking, the ADS5424  
presents a good tolerance to clock common-mode  
variation (see Figure 20).  
Additionally, the internal ADC core uses both edges of  
the clock for the conversion process. This means that,  
ideally, a 50% duty cycle should be provided. Figure 21  
shows the performance variation of the ADC versus  
clock duty cycle.  
20  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
APPLICATION INFORMATION  
The ADS5424 uses two power supplies. For the analog  
portion of the design, a 5 V AV is used, while for the  
LAYOUT INFORMATION  
DD  
The evaluation board represents a good guideline of  
how to layout the board to obtain the maximum  
performance out of the ADS5424. General design rules  
as the use of multilayer boards, single ground plane for  
both, analog and digital ADC ground connections and  
local decoupling ceramic chip capacitors should be  
applied. The input traces should be isolated from any  
external source of interference or noise, including the  
digital outputs as well as the clock traces. Clock should  
also be isolated from other signals, especially on  
applications where low jitter is required, as high IF  
sampling.  
digital outputs supply (DRV ), we recommend the use  
DD  
of 3.3 V. All the ground pins are marked as GND,  
although AGND pins and DRGND pins are not tied  
together inside the package. Customers willing to  
experiment with different grounding schemes should  
know that AGND pins are 4, 7, 10, 13, 15, 17, 19, 21,  
23, 25, 27, and 29, while DRGND pins are 2, 34, and 42.  
Nevertheless, we recommend that both grounds are  
tied together externally, using a common ground plane.  
That is the case on the production test boards and  
modules provided to customer for evaluation. In order  
to obtain the best performance, user should layout the  
board to guarantee that the digital return currents do not  
flow under the analog portion of the board. This can be  
achieved without the need to split the board and just  
with careful component placing and increasing the  
number of vias and ground planes.  
Besides performance oriented rules, special care has  
to be taken when considering the heat dissipation out  
of the device. The thermal heat sink (octagonal, with  
2,5 mm on each side) should be soldered to the board,  
and provision for more than 16 ground vias should be  
made. The thermal package information describes the  
Finally, notice that the metallic heat sink under the  
package is also connected to analog ground.  
T
values obtained on the different configurations.  
JA  
21  
ꢋꢒ ꢉꢇ ꢁ ꢗ ꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
MECHANICAL DATA  
Center Power Pad Solder Stencil Opening  
Stencil Thicknes s  
0.1m m  
X
7.0  
6.5  
Y
7.0  
6.5  
0.127m m  
0.152m m  
0.178m m  
6.0  
5.6  
6.0  
5.6  
22  
ꢋ ꢒꢉ ꢇꢁ ꢗꢁ  
www.ti.com  
SLWS157A − JANUARY 2005 − REVISED MAY 2005  
MECHANICAL DATA  
PJY (S−PQFP−G52)  
PLASTIC QUAD FLATPACK  
23  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY