ADS5560EVM [TI]

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS;
ADS5560EVM
型号: ADS5560EVM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS

双倍数据速率 输出元件
文件: 总53页 (文件大小:1338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS  
1
FEATURES  
Internal/External Reference Support  
3.3-V Analog and Digital Supply  
Pin-for-pin with ADS5547 Family  
48-QFN Package (7 mm × 7 mm)  
16-Bit Resolution  
Maximum Sample Rate  
ADS5562 - 80 MSPS  
ADS5560 - 40 MSPS  
APPLICATIONS  
Total Power  
Medical Imaging - MRI  
Wireless Communications Infrastructure  
Software Defined Radio  
Test and Measurement Instrumentation  
High Definition Video  
865 mW at 80MSPS  
674 mW at 40MSPS  
No Missing Codes  
High SNR 84 dBFS (3 MHz IF)  
85 dBc SFDR (3 MHz IF)  
Low Frequency Noise Suppression Mode  
Programmable Fine Gain, 1dB steps till 6dB  
Double Data Rate (DDR) LVDS and Parallel  
CMOS Output Options  
DESCRIPTION  
ADS556X is a high performance 16-bit A/D converter family with sampling rates up to 80 MSPS. It supports very  
high SNR for input frequencies in the first Nyquist zone. The device includes a low frequency noise suppression  
mode that improves the noise from dc to about 1MHz.  
In addition to high performance, the device offers several flexible features such as output interface (either Double  
Data Rate LVDS or parallel CMOS) and fine gain (in 1 dB steps till 6 dB).  
Innovative techniques, such as DDR LVDS and an internal reference that does not require external decoupling  
capacitors, have been used to achieve significant savings in pin-count. This results in a compact 7 mm x 7 mm  
48 pin QFN package.  
The device can be put in an external reference mode, where the VCM pin behaves as the external reference  
input. For applications where power is important, ADS556X offers power down modes and automatic power  
scaling at lower sample rates.  
It is specified over the industrial temperature range (-40°C to +85°C).  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2008, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
CLOCKGEN  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
INP  
INM  
Digital  
Encoder  
and  
Sample  
and  
Hold  
16-Bit ADC  
D6_D7_P  
D6_D7_M  
Serializer  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
Control  
Interface  
VCM  
Reference  
D12_D13_P  
D12_D13_M  
D14_D15_P  
D14_D15_M  
OVR  
ADS556x  
LVDS INTERFACE  
B0095-05  
PACKAGE/ORDERING INFORMATION(1)  
PRODUCT  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
ADS5562  
QFN-48  
RGZ  
RGZ  
–40°C to 85°C  
–40°C to 85°C  
AZ5562  
AZ5560  
ADS5562IRGZT  
ADS5562IRGZR  
ADS5560IRGZT  
ADS5560IRGZR  
Tape and Reel,  
small  
Tape and Reel,  
large  
ADS5560  
QFN-48  
Tape and Reel,  
small  
Tape and Reel,  
large  
(1) θJA = 25.41 °C/W (0 LFM Air Flow), θJC = 16.5 °C/W when used with 2 oz. copper trace and the thermal pad is soldered directly to a  
JEDEC standard four layer 3 in. x 3 in. (7.62 cm x 7.62 cm) PCB. Thermal pad is 5.2 x 5.2 mm. Please see mechanical drawings in the  
back of the datasheet for details.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
V
AVDD  
DRVDD Supply voltage range  
Voltage between AGND and DRGND  
Supply voltage range  
–0.3 V to 3.9  
–0.3 V to 3.9  
V
-0.3 to 0.3  
V
Voltage between AVDD to DRVDD  
-0.3 to 3.3  
V
Voltage applied to VCM pin (in external reference mode)  
Voltage applied to analog input pins  
-0.3 to 1.8  
V
–0.3 V to minimum (3.6, AVDD + 0.3 V)  
V
TA  
Operating free-air temperature range  
–40 to 85  
125  
°C  
°C  
°C  
°C  
Tjmax  
TSTG  
Operating junction temperature range  
Storage temperature range  
–65 to 150  
220  
Lead temperature 1,6 mm (1/16") from the case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX UNIT  
SUPPLIES AND REFERENCES  
AVDD Analog supply voltage  
3
3
3.3  
3.3  
3.6  
3.6  
V
V
DRVDD Digital supply voltage  
ANALOG INPUTS  
Differential input voltage range (with default fine gain=1 dB)  
3.56  
VPP  
V
Input common-mode voltage  
1.5 ±0.1  
Voltage applied on VCM in external reference mode  
1.5  
V
±0.05  
CLOCK INPUT  
Sample rate  
DEFAULT SPEED mode  
> 30  
1
80  
30  
40  
30  
MSP  
S
ADS5562  
ADS5560  
(1)  
LOW SPEED mode  
MSP  
S
DEFAULT SPEED mode  
LOW SPEED mode  
> 30  
1
MSP  
S
MSP  
S
Sine wave, LVPECL,  
LVDS, LVCMOS  
Supported clock waveform formats  
Clock amplitude, ac-coupled, differential (VCLKP - VCLKM  
)
0.4  
VPP  
pF  
Clock duty cycle  
45%  
50%  
55%  
DIGITAL OUTPUTS  
CL  
Maximum external load capacitance from each output pin to DRGND (LVDS and CMOS  
modes)  
5
RL  
Differential external load resistance between the LVDS output pairs (LVDS mode)  
Operating free-air temperature  
100  
-40  
85  
°C  
(1) See Low sampling frequency operation in application section for details.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling rate = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB).  
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = DRVDD = 3.3 V, sampling  
rate = Max Rated, unless otherwise noted.  
ADS5562  
TYP  
ADS5560  
TYP  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
RESOLUTION  
ANALOG INPUT  
Differential input voltage  
16  
16  
bits  
VPP  
pF  
3.56  
5
3.56  
5
(1)  
range  
Differential input  
capacitance  
Analog input bandwidth  
300  
6.6  
300  
6.6  
MHz  
Analog input common  
µA/MSPS  
mode current (per input pin)  
VCM  
Common mode output  
voltage  
Internal reference  
mode  
1.5  
±4  
1.5  
±4  
V
VCM output current  
capability  
Internal reference  
mode  
mA  
DC ACCURACY  
No Missing Codes  
0 dB gain  
Assured  
0.5  
Assured  
0.5  
DNL  
INL  
Differential non-linearity  
Integral non-linearity  
Offset error  
-0.95  
-8.5  
-25  
3
-0.95  
-8.5  
-25  
3
LSB  
LSB  
±3  
8.5  
25  
±3  
8.5  
25  
±10  
±10  
mV  
Offset error temperature  
coefficient  
0.005  
0.005  
mV/°C  
Variation of offset error  
across AVDD supply  
1.5  
1.5  
±1  
mV/V  
%FS  
There are two sources of gain error: i) internal reference inaccuracy and ii) channel gain  
error  
EGREF  
ECHAN  
Gain error due to internal  
reference inaccuracy alone  
-2.5  
±1  
2.5  
-2.5  
2.5  
2.5  
Channel gain error alone  
-2.5  
± 1  
2.5  
-2.5  
± 1  
%FS  
Channel gain error  
0.01  
0.01  
Δ%/°C  
temperature coefficient  
POWER SUPPLY  
IAVDD  
Analog supply current  
210  
52  
250  
160  
44  
190  
mA  
mA  
LVDS mode  
IO = 3.5 mA, RL  
100 Ω  
=
Digital supply current  
CL = 5 pF  
IDRVDD  
CMOS mode  
FIN = 3 MHz  
60  
37  
mA  
Total power  
LVDS mode  
865  
155  
1100  
150  
674  
135  
810  
150  
mW  
mW  
Standby power  
STANDBY mode  
with clock running  
Clock stop power  
125  
125  
mW  
(1) The full-scale voltage range is a function of the fine gain settings. See Table 23.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
ELECTRICAL CHARACTERISTICS (Continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling rate = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, 0 dB fine  
(1)  
gain  
.
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = DRVDD = 3.3 V, sampling  
rate = Max Rated, default fine gain (1dB), unless otherwise noted.  
ADS5562  
ADS5560  
Fs = 80 MSPS  
Fs = 40 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
AC CHARACTERISTICS  
FIN = 3 MHz  
84  
84.3  
84  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
79  
83.8  
83.2  
82.8  
81.7  
81.4  
80.7  
80.4  
1.42  
80.5  
80.5  
79.5  
79  
80  
LVDS  
interface  
dBFS  
82.5  
81.8  
83.5  
83.1  
81.8  
81.6  
1.42  
83.2  
83  
SNR  
Signal to noise  
ratio  
77  
78  
CMOS  
interface  
dBFS  
LSB  
RMS output noise Inputs tied to common-mode  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
75  
76  
75  
LVDS  
interface  
dBFS  
79  
SINAD  
Signal to noise and  
distortion ratio  
77  
80.5  
80.2  
79.3  
77.9  
82  
73.5  
81.4  
79.3  
78  
CMOS  
interface  
dBFS  
bits  
ENOB  
Effective number  
of bits  
LVDS  
interface  
FIN = 10 MHz  
12.2  
77  
13.1  
12.4  
78  
13.5  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
85  
85  
83  
80  
90  
89  
88  
88  
90  
88  
83  
79  
94  
92  
90  
88  
SFDR  
Spurious free  
dynamic range  
dBc  
77  
78  
HD2  
Second harmonic  
dBc  
(1) Note that after reset, the device is initialized to 1 dB fine gain setting. For SFDR and SNR performance across fine gains, see Typical  
Characteristics section.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (Continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling rate = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, default fine gain (1dB),internal reference mode, DDR  
LVDS interface 0 dB fine gain(1)  
.
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = DRVDD = 3.3 V, sampling  
rate = Max Rated, default fine gain (1dB), unless otherwise noted.  
ADS5562  
TYP  
85  
ADS5560  
TYP  
90  
PARAMETER  
TEST CONDITIONS  
FIN = 3 MHz  
UNIT  
MIN  
MAX  
MIN  
MAX  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
FIN = 3 MHz  
FIN = 10 MHz  
FIN = 25 MHz  
FIN = 30 MHz  
77  
85  
78  
88  
HD3  
Third harmonic  
dBc  
83  
83  
80  
79  
104  
102  
100  
100  
84  
104  
102  
101  
101  
88  
Worst harmonic  
other than HD2,  
HD3  
dBc  
THD  
Total harmonic  
distortion  
75.5  
83  
76.5  
86  
dBc  
82  
81  
80  
78  
IMD  
Two-tone  
intermodulation  
distortion  
FIN1 = 5 MHz, FIN2 = 10 MHz  
each tone -7 dBFS  
92  
1
98  
1
dBFS  
Voltage overload  
recovery time  
Recovery to 1% for 6-dB  
overload  
clock  
cycles  
(1) Note that after reset, the device is initialized to 1 dB fine gain setting. For SFDR and SNR performance across fine gains, see Typical  
Characteristics section.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
DIGITAL CHARACTERISTICS  
DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0  
or 1, AVDD = 3.0V to 3.6V, IO = 3.5 mA, RL = 100 (1)(2)  
PARAMETER  
DIGITAL INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
2.4  
V
0.8  
V
33  
-33  
4
µA  
µA  
pF  
DIGITAL OUTPUTS – CMOS MODE  
High-level output voltage  
Low-level output voltage  
Output capacitance  
DRVDD  
V
V
0
4
Capacitance inside the device from each output pin to  
ground  
pF  
DIGITAL OUTPUTS – LVDS MODE  
VODH High-level output voltage  
VODL Low-level output voltage  
+350  
-350  
1.2  
mV  
mV  
V
VOCM Output common-mode  
voltage  
Output capacitance  
Capacitance inside the device from each output pin to  
ground  
4
pF  
(1) All LVDS and CMOS specifications are characterized, but not tested at production.  
(2) IO refers to the LVDS buffer current setting; RL is the differential load resistance between the LVDS output pair.  
Dn_Dn + 1_P  
Dn_Dn+1_P  
Logic 0  
VODL = –350 mV*  
Logic 1  
VODH = 350 mV*  
Dn_Dn+1_M  
Dn_Dn + 1_M  
VOCM  
V
GND  
GND  
* With external 100-W termination  
T0334-01  
Figure 1. LVDS Output Voltage Levels  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
TIMING CHARACTERISTICS – LVDS AND CMOS MODES(1)  
Typical values are at 25°C, AVDD = 3.3 V, DRVDD = 3.0 to 3.6V, Sampling frequency = 80 MSPS, sine wave input clock,  
(3)  
50% clock duty cycle, 1.5 VPP clock amplitude, CL = 5 pF(2) , no internal termination, IO = 3.5 mA, RL = 100 Ω  
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = DRVDD = 3.0 to 3.6V,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
90  
MAX  
UNIT  
ns  
ta  
tj  
Aperture delay  
0.5  
2
Sampling frequency = 80 MSPS  
fs rms  
fs rms  
µs  
Aperture jitter  
Sampling frequency = 40 MSPS  
Time to data stable (4) after coming out of STANDBY mode  
135  
60  
200  
Wake-up time  
Latency  
Time to valid data after stopping and restarting the input clock  
80  
µs  
Clock  
cycles  
16  
DDR LVDS MODE(5)  
LVDS bit clock duty  
47%  
50%  
53%  
12.5  
cycle  
tsu  
th  
Data setup time(6)  
Data hold time(6)  
Data valid(7) to zero-crossing of CLKOUTP  
Zero-crossing of CLKOUTP to data becoming invalid(7)  
2.0  
2.0  
9.5  
3.0  
3.0  
11  
ns  
ns  
ns  
tPDI  
Clock propagation delay Input clock rising edge cross-over to output clock rising edge  
cross-over  
tr  
Data rise time  
Rise time measured from –100 mV to 100 mV  
Fall time measured from 100 mV to –100 mV  
Rise time measured from –100 mV to 100 mV  
Fall time measured from 100 mV to –100 mV  
Time to data valid after OE becomes active  
0.15  
0.15  
0.15  
0.15  
0.22  
0.22  
0.22  
0.22  
700  
0.3  
0.3  
0.3  
0.3  
ns  
ns  
ns  
ns  
ns  
tf  
Data fall time  
tr  
Output clock rise time  
Output clock fall time  
tf  
tOE  
Output enable (OE) to  
data delay  
PARALLEL CMOS MODE  
CMOS output clock duty  
50%  
cycle  
tsu  
th  
Data setup time  
Data hold time  
Data valid(8) to 50% of CLKOUT rising edge  
6.5  
2.0  
6.3  
8.0  
3.0  
7.8  
ns  
ns  
ns  
(8)  
50% of CLKOUT rising edge to data becoming invalid  
tPDI  
Clock propagation delay Input clock rising edge cross-over to 50% of CLKOUT rising  
edge  
9.3  
tr  
Data rise time  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
Time to data valid after OE becomes active  
1.0  
1.0  
0.7  
1.2  
1.5  
1.5  
1.0  
1.5  
200  
2.0  
2.0  
1.2  
1.8  
ns  
ns  
ns  
ns  
ns  
tf  
Data fall time  
tr  
Output clock rise time  
Output clock fall time  
tf  
tOE  
Output enable (OE) to  
data delay  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) CL is the effective external single-ended load capacitance between each output pin and ground.  
(3) Io refers to the LVDS buffer current setting; RL is the differential load resistance between the LVDS output pair.  
(4) Data stable is defined as the point at which the SNR is within 2dB of its normal value.  
(5) Measurements are done with a transmission line of 100 characteristic impedance between the device and the load.  
(6) Setup and hold time specifications take into account the effect of jitter on the output data and clock.  
(7) Data valid refers to logic high of +100 mV and logic low of -100 mV.  
(8) Data valid refers to logic high of 2.6 V and logic low of 0.66 V.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Table 1. Timing Characteristics at lower sampling frequencies  
Sampling  
Frequency,  
MSPS  
tsu,Setup time, ns  
tho,Hold time, ns  
tPDI,Clock propagation delay, ns  
DDR LVDS  
65  
2.7  
5
3.7  
6
2.7  
5
3.7  
6
11.5  
16.5  
30.5  
13  
18  
32  
14.5  
19.5  
33.5  
40  
20  
8
11  
8
11  
Parallel CMOS  
65  
40  
20  
8
9.5  
3
4
7
8
5
8.5  
9.5  
10  
11  
15  
14  
14  
15.5  
6.5  
6.5  
7.5  
10.5  
N+19  
N+18  
N+4  
N+3  
N+17  
N+2  
Sample  
N
N+1  
N+16  
Input  
Signal  
ta  
CLKP  
Input  
Clock  
CLKM  
CLKOUTM  
CLKOUTP  
tsu  
th  
tPDI  
16 Clock Cycles  
DDR  
LVDS  
Output Data  
DXP, DXM  
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
N–16  
N–15  
N–14  
N–13  
N–12  
N–1  
N
N+1  
N+2  
E – Even Bits D0,D2,D4,D6,D8,D10,D12,D14  
O – Odd Bits D1,D3,D5,D7,D9,D11,D13,D15  
tPDI  
CLKOUT  
tsu  
Parallel  
CMOS  
16 Clock Cycles  
th  
Output Data  
D0–D15  
N–16  
N–15  
N–14  
N–13  
N–12  
N–1  
N
N+1  
N+2  
T0105-08  
Figure 2. Latency  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
CLKM  
Input  
Clock  
CLKP  
tPDI  
CLKOUTP  
Output  
Clock  
CLKOUTM  
th  
tsu  
tsu  
th  
Dn(1)  
Dn+1(2)  
Output  
Data Pair  
Dn_Dn+1_P,  
Dn_Dn+1_M  
(1)Dn – Bits D0, D2, D4, D6, D8, D10, D12, D14  
(2)Dn+1 – Bits D1, D3, D5, D7, D9, D11, D13, D15  
T0106-06  
Figure 3. LVDS Mode Timing  
CLKM  
Input  
Clock  
CLKP  
tPDI  
Output  
CLKOUT  
Clock  
th  
tsu  
Dn(1)  
Output  
Data  
Dn  
(1)Dn – Bits D0–D15  
T0107-04  
Figure 4. CMOS Mode Timing  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
DEVICE PROGRAMMING MODES  
ADS5562 offers flexibility with several programmable features that are easily configured.  
The device can be configured independently using either parallel interface control or serial interface  
programming.  
In addition, the device supports a third configuration mode, where both the parallel interface and the serial control  
registers are used. In this mode, the priority between the parallel and serial interfaces is determined by a priority  
table (Table 3). If this additional level of flexibility is not required, the user can select either the serial interface  
programming or the parallel interface control.  
USING PARALLEL INTERFACE CONTROL ONLY  
To control the device using parallel interface, keep RESET tied to high (DRVDD). Pins DFS, MODE, SEN,  
SCLK, and SDATA are used to directly control certain modes of the ADC. The device is configured by  
connecting the parallel pins to the correct voltage levels (as described in Table 4 to Table 8). There is no need to  
apply reset.  
In this mode, SEN, SCLK, and SDATA function as parallel interface control pins. Frequently used functions are  
controlled in this mode—standby, selection between LVDS/CMOS output format, internal/external reference,  
two's complement/offset binary output format, and position of the output clock edge.  
Table 2 has a description of the modes controlled by the parallel pins.  
Table 2. Parallel Pin Definition  
PIN  
DFS  
CONTROL MODES  
DATA FORMAT and the LVDS/CMOS output interface  
MODE  
SEN  
Internal or external reference  
CLKOUT edge programmability  
SCLK  
SDATA  
LOW SPEED mode control for low sampling frequencies (30 MSPS)  
STANDBY mode – Global (ADC, internal references and output buffers are powered down)  
USING SERIAL INTERFACE PROGRAMMING ONLY  
To program using the serial interface, the internal registers must first be reset to their default values, and the  
RESET pin must be kept low. In this mode, SEN, SDATA, and SCLK function as serial interface pins and are  
used to access the internal registers of ADC. The registers are reset either by applying a pulse on the RESET  
pin, or by a high setting on the <RST> bit (D1 in register 0x6C). The serial interface section describes the  
register programming and register reset in more detail.  
Since the parallel pins DFS and MODE are not used in this mode, they must be tied to ground.  
USING BOTH SERIAL INTERFACE AND PARALLEL CONTROLS  
For increased flexibility, a combination of serial interface registers and parallel pin controls (DFS, MODE) can  
also be used to configure the device.  
The serial registers must first be reset to their default values and the RESET pin must be kept low. In this mode,  
SEN, SDATA, and SCLK function as serial interface pins and are used to access the internal registers of ADC.  
The registers are reset either by applying a pulse on RESET pin or by a high setting on the <RST> bit (D1 in  
register 0x6C). The serial interface section describes the register programming and register reset in more detail.  
The parallel interface control pins DFS and MODE are used and their function is determined by the appropriate  
voltage levels as described in Table 7 and Table 8. The voltage levels are derived by using a resistor string as  
illustrated in Figure 5. Since some functions are controlled using both the parallel pins and serial registers, the  
priority between the two is determined by a priority table (Table 3).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
Table 3. Priority Between Parallel Pins and Serial Registers  
PIN  
FUNCTIONS SUPPORTED  
PRIORITY  
When using the serial interface, bit <REF> (register 0x6D, bit D4) controls this mode, ONLY  
if the MODE pin is tied low.  
MODE  
Internal/External reference  
When using the serial interface, bit <DF> (register 0x63, bit D3) controls this mode, ONLY if  
the DFS pin is tied low.  
DATA FORMAT  
LVDS/CMOS  
DFS  
When using the serial interface, bit <ODI> (register 0x6C, bits D3-D4) controls LVDS/CMOS  
selection independent of the state of DFS pin  
DRVDD  
(5/8) DRVDD  
3R  
(5/8) DRVDD  
GND  
DRVDD  
2R  
3R  
(3/8) DRVDD  
(3/8) DRVDD  
To Parallel Pin  
GND  
S0321-02  
Figure 5. Simple Scheme to Configure Parallel Pins  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
DESCRIPTION OF PARALLEL PINS  
Table 4. SCLK Control Pin  
SCLK  
0
DESCRIPTION  
DEFAULT SPEED mode - Use for sampling frequencies > 30 MSPS.  
LOW SPEED mode Enabled - Use for sampling frequencies 30 MSPS.  
DRVDD  
Table 5. SDATA Control Pin  
SDATA  
0
DESCRIPTION  
Normal operation (Default)  
DRVDD  
STANDBY. This is a global power down, where ADC, internal references and the output buffers are powered down.  
Table 6. SEN Control Pin  
SEN  
With CMOS interface  
0
CLKOUT Rising edge later by (3/36)Ts  
CLKOUT Falling edge later by (3/36)Ts  
(3/8)DRVDD  
(5/8)DRVDD  
DRVDD  
CLKOUT Rising edge later by (5/36)Ts  
CLKOUT Falling edge later by (5/36)Ts  
CLKOUT Rising edge earlier by (3/36)Ts  
CLKOUT Falling edge earlier by (3/36)Ts  
Default CLKOUT position  
With LVDS interface  
0
CLKOUT Rising edge later by (7/36)Ts  
CLKOUT Falling edge later by (6/36)Ts  
(3/8)DRVDD  
(5/8)DRVDD  
DRVDD  
CLKOUT Rising edge later by (7/36)Ts  
CLKOUT Falling edge later by (6/36)Ts  
CLKOUT Rising edge later by (3/36)Ts  
CLKOUT Falling edge later by (3/36)Ts  
Default CLKOUT position  
Table 7. DFS Control Pin  
DFS  
0
DESCRIPTION  
2's complement data and DDR LVDS output (Default)  
2's complement data and parallel CMOS output  
Offset binary data and parallel CMOS output  
(3/8)DRVDD  
(5/8)DRVDD  
DRVDD  
Offset binary data and DDR LVDS output  
Table 8. MODE Control Pin  
MODE  
0
DESCRIPTION  
Internal reference  
External reference  
External reference  
Internal reference  
(3/8)AVDD  
(5/8)AVDD  
AVDD  
SERIAL INTERFACE  
The ADC has a set of internal registers, which can be accessed through the serial interface formed by pins SEN  
(Serial interface Enable), SCLK (Serial Interface Clock), SDATA (Serial Interface Data) and RESET. After device  
power-up, the internal registers must be reset to their default values by applying a high-going pulse on RESET  
(of width greater than 10 ns).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS5560 ADS5562  
 
 
 
 
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every falling edge  
of SCLK when SEN is active (low). The serial data is loaded into the register at every 16th SCLK falling edge  
when SEN is low. If the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data is loaded in  
multiples of 16-bit words within a single active SEN pulse.  
The first 8 bits form the register address and the remaining 8 bits form the register data. The interface can work  
with SCLK frequency from 20 MHz down to very low speeds (few Hertz) and also with non-50% SCLK duty  
cycle.  
REGISTER INITIALIZATION  
After power-up, the internal registers must be reset to their default values. This is done in one of two ways:  
1. Either through hardware reset by applying a high-going pulse on RESET pin (of width greater than 10 ns) as  
shown in Figure 6.  
OR  
2. By applying software reset. Using the serial interface, set the <RST> bit (D1 in register 0x6C) to high. This  
initializes the internal registers to their default values and then self-resets the <RST> bit to low. In this case  
the RESET pin is kept low.  
Register Address  
Register Data  
SDATA  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
t(DH)  
D1  
D0  
t(SCLK)  
t(DSU)  
SCLK  
t(SLOADH)  
t(SLOADS)  
SEN  
RESET  
Figure 6. Serial Interface Timing Diagram  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C,  
AVDD = DRVDD = 3.3 V (unless otherwise noted)  
MIN  
> DC  
25  
TYP  
MAX  
20  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
SDATA hold time  
25  
ns  
25  
ns  
tDH  
25  
ns  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
RESET TIMING  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C,  
AVDD = DRVDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
Power-on delay  
Delay from power-up of AVDD and DRVDD to RESET pulse active  
10  
Reset pulse width  
Pulse width of active RESET signal  
1
µs  
t3  
Register write delay  
Power-up time  
Delay from RESET disable to SEN active  
25  
ns  
tPO  
Delay from power-up of AVDD and DRVDD to output stable  
6.5  
ms  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset.  
For parallel interface operation, RESET has to be tied permanently HIGH.  
Figure 7. Reset Timing Diagram  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
SERIAL REGISTER MAP  
Table 9 gives a summary of all the modes that can be programmed through the serial interface.  
Table 9. Summary of Functions Supported by Serial Interface(1)(2)  
REGISTER  
ADDRESS  
IN HEX  
REGISTER FUNCTIONS  
D4 D3  
A7 - A0  
D7  
D6  
D5  
D2  
D1  
D0  
<LF NOISE  
SUPPRESSION>  
5D  
<CLKOUT POSN>  
OUTPUT CLOCK POSITION PROGRAMMABILITY  
62  
<LOW SPEED>  
ENABLE LOW  
SAMPLING  
FREQUENCY  
OPERATION  
<STBY>  
GLOBAL  
POWER  
DOWN  
<DF>  
DATA FORMAT -  
2's COMP or  
63  
OFFSET BINARY  
<TEST PATTERN> – ALL 0S, ALL 1s,  
TOGGLE, RAMP, CUSTOM PATTERN  
65  
68  
<GAIN>  
FINE GAIN 0dB to 6dB, in 1dB steps  
69  
6A  
<CUSTOM A> CUSTOM PATTERN (D7 TO D0)  
<CUSTOM B> CUSTOM PATTERN (D15 TO D8)  
<ODI> OUTPUT DATA INTERFACE  
DDR LVDS or PARALLEL CMOS  
6C  
<REF>  
INTERNAL or  
EXTERNAL  
REFERENCE  
6D  
<RST>  
SOFTWARE  
RESET  
6E  
<DATA TERM>  
INTERNAL TERMINATION – DATA  
OUTPUTS  
<LVDS CURR>  
LVDS CURRENT  
PROGRAMMABILITY  
<CLKOUT TERM>  
INTERNAL TERMINATION – OUTPUT CLOCK  
7E  
7F  
<CURR DOUBLE>  
LVDS CURRENT DOUBLE  
(1) The unused bits in each register (shown by blank cells in above table) must be programmed as ‘0’.  
(2) Multiple functions in a register can be programmed in a single write operation.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
DESCRIPTION OF SERIAL REGISTERS  
Each register function is explained in detail below.  
Table 10.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<LF NOISE  
SUPPRESSION>  
5D  
D0  
0
<LF NOISE SUPPRESSION> Low frequency noise suppression  
Disable low frequency noise suppression  
1
Enable low frequency noise suppression  
Table 11.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
<CLKOUT POSN>  
OUTPUT CLOCK POSITION PROGRAMMABILITY  
D1  
D0  
62  
D4 - D0  
<CLKOUT POSN> Output Clock Position Programmability  
00000  
Register value after reset (corresponds to default CLKOUT position)  
Setup/hold timings with this clock position are specified in the timing  
characteristics table.  
00001  
Default CLKOUT position.  
Setup/hold timings with this clock position are specified in the timing  
characteristics table.  
XX011  
XX101  
XX111  
01XX1  
10XX1  
11XX1  
CMOS - Rising edge earlier by (3/36) Ts  
LVDS - Falling edge later by (3/36) Ts  
CMOS - Rising edge later by (3/36) Ts  
LVDS - Falling edge later by (6/36) Ts  
CMOS - Rising edge later by (5/36) Ts  
LVDS - Falling edge later by (6/36) Ts  
CMOS - Falling edge earlier by (3/36) Ts  
LVDS - Rising edge later by (3/36) Ts  
CMOS - Falling edge later by (3/36) Ts  
LVDS - Rising edge later by (7/36) Ts  
CMOS - Falling edge later by (5/36) Ts  
LVDS - Rising edge later by (7/36) Ts  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
Table 12.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<DF>  
DATA  
FORMAT  
2's COMP or  
OFFSET  
BINARY  
<LOW SPEED>  
ENABLE LOW  
SAMPLING  
FREQUENCY  
OPERATION  
<STBY>  
GLOBAL  
POWER  
DOWN  
63  
D3  
0
<DF> Output Data Format  
2's complement  
1
Offset binary  
D0  
0
<LOW SPEED> Low Sampling Frequency Operation  
DEFAULT SPEED mode (for Fs > 30 MSPS)  
LOW SPEED mode eabled (for Fs 30 MSPS)  
1
D7  
0
<STBY> Global STANDBY  
Normal operation  
1
Global power down (includes ADC, internal references and output buffers)  
Table 13.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<TEST PATTERNS> — ALL 0S, ALL 1s,  
TOGGLE, RAMP, CUSTOM PATTERN  
65  
D7 - D5  
000  
<TEST PATTERN> Outputs selected test pattern on data lines  
Normal operation  
All 0s  
001  
010  
All 1s  
011  
Toggle pattern - alternate 1s and 0s on each data output and across data  
outputs  
100  
101  
111  
Ramp pattern - Output data ramps from 0x0000 to 0xFFFF by one code  
every clock cycle  
Custom pattern - Outputs the custom pattern in CUSTOM PATTERN  
registers A and B  
Unused  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Table 14.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
68  
<GAIN> FINE GAIN 0 dB to 6 dB, in 1 dB steps  
D3 - D0  
0XXX  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
<GAIN> Programmable Fine Gain  
1 dB  
0 dB  
1 dB, default register value after reset  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
Table 15.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
69  
6A  
<CUSTOM A> CUSTOM PATTERN (D7 TO D0)  
<CUSTOM B> CUSTOM PATTERN (D15 TO D8)  
Reg 69  
Reg 6A  
D7 - D0  
Program bits D7 to D0 of custom pattern  
Program bits D15 to D8 of custom pattern  
D15 - D8  
Table 16.  
A7 - A0 (hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<ODI> OUTPUT DATA  
INTERFACE - DDR LVDS OR  
PARALLEL CMOS  
6C  
D4 - D3  
<ODI> Output Interface  
00  
default after reset, state of DFS pin determines  
interface type. See Table 7.  
01  
11  
DDR LVDS outputs, independent of state of DFS  
pin.  
Parallel CMOS outputs, independent of state of  
DFS pin.  
Table 17.  
A7 - A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<REF>  
6D  
INTERNAL or EXTERNAL  
REFERENCE  
D4  
0
<REF> Reference  
Internal reference  
1
External reference mode, force voltage on VCM to set reference.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
Table 18.  
A7 - A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<RST> SOFTWARE  
6E  
RESET  
D0  
<RST> Software resets the ADC  
1
Resets all registers to default values  
Table 19.  
A7 - A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<LVDS CURR> LVDS  
CURRENT  
PROGRAMMABILITY  
<DATA TERM> INTERNAL TERMINATION –  
<CLKOUT TERM> INTERNAL  
TERMINATION – OUTPUT CLOCK  
7E  
DATA OUTPUTS  
D1 - D0  
00  
<LVDS CURR> LVDS Buffer Current Programmability  
3.5 mA, default  
2.5 mA  
01  
10  
4.5 mA  
11  
1.75 mA  
D4 - D2  
000  
<CLKOUT TERM> LVDS Buffer Internal Termination  
No internal termination  
001  
325  
200  
125  
170  
120  
100  
75  
010  
011  
100  
101  
110  
111  
D7 - D5  
000  
<DATA TERM> LVDS Buffer Internal Termination  
No internal termination  
001  
325  
200  
125  
170  
120  
100  
75  
010  
011  
100  
101  
110  
111  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Table 20.  
A7 - A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<CURR DOUBLE> LVDS  
CURRENT DOUBLE  
7F  
D7 - D6  
00  
<CURR DOUBLE> LVDS Buffer Internal Termination  
Value specified by <LVDS CURR>  
2x data, 2x clockout currents  
01  
10  
1x data, 2x clockout currents  
11  
2x data, 4x clockout currents  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
PIN CONFIGURATION (LVDS MODE)  
ADS556x  
RGZ PACKAGE  
(TOP VIEW)  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DRGND  
DRVDD  
OVR  
DRGND  
DRVDD  
D2_D3_P  
D2_D3_M  
D0_D1_P  
D0_D1_M  
RESET  
SCLK  
2
Thermal Pad  
3
4
CLKOUTM  
CLKOUTP  
DFS  
5
6
7
OE  
8
AVDD  
9
AGND  
CLKP  
SDATA  
SEN  
10  
11  
12  
CLKM  
AVDD  
AGND  
AGND  
P0023-09  
Figure 8. LVDS Mode Pinout  
Table 21. PIN ASSIGNMENTS – LVDS Mode  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
AVDD  
DESCRIPTION  
Analog power supply  
Analog ground  
I
8, 18, 20,  
22, 24, 26  
6
AGND  
I
9, 12, 14, 17,  
19, 25  
6
CLKP, CLKM  
INP, INM  
VCM  
Differential clock input  
Differential analog input  
I
I
10, 11  
15, 16  
13  
2
2
1
Internal reference mode – Common-mode voltage output.  
External reference mode – Reference input. The voltage forced on this  
pin sets the internal reference.  
I/O  
RESET  
Serial interface reset input.  
I
30  
1
When using the serial interface, the user should apply a high-going  
pulse on this pin to reset the internal registers.  
When the serial interface is not used, the user should tie RESET  
permanently high. (SCLK, SDATA and SEN can be used as parallel  
pin controls).  
The pin has an internal 100-kpull-down resistor to DRGND.  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Table 21. PIN ASSIGNMENTS – LVDS Mode (continued)  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
SCLK  
DESCRIPTION  
This pin functions as serial interface clock input when RESET is low.  
It functions as LOW SPEED MODE control when RESET is tied high.  
See Table 4 for detailed information.  
I
29  
1
The pin has an internal 100-kpull-down resistor to DRGND.  
SDATA  
SEN  
This pin functions as serial interface data input when RESET is low.  
It functions as STANDBY control pin when RESET is tied high.  
I
28  
1
See Table 5 for detailed information.  
The pin has an internal 100-kpull-down resistor to DRGND.  
This pin functions as serial interface enable input when RESET is low.  
It functions as CLKOUT edge programmability when RESET is tied  
high. See Table 6 for detailed information.  
I
27  
1
The pin has an internal 100-kpull-up resistor to DRVDD.  
OE  
Output buffer enable input, active high.  
The pin has an internal 100-kpull-up resistor to DRVDD.  
I
I
7
6
1
1
DFS  
Data Format Select input.  
This pin sets the DATA FORMAT (Twos complement or Offset binary)  
and the LVDS/CMOS output mode type. See Table 7 for detailed  
information.  
The pin has an internal 100-kpull-down resistor to DRGND.  
MODE  
Mode select input.  
I
23  
1
This pin selects the Internal or External reference mode. See Table 8  
for detailed information.  
The pin has an internal 100-kpull-down resistor to AGND.  
CLKOUTP  
CLKOUTM  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
D12_D13_P  
D12_D13_M  
D14_D15_P  
D14_D15_M  
OVR  
Differential output clock, true  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
5
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
Differential output clock, complement  
Differential output data D0 and D1 multiplexed, true  
Differential output data D0 and D1 multiplexed, complement.  
Differential output data D2 and D3 multiplexed, true  
Differential output data D2 and D3 multiplexed, complement  
Differential output data D4 and D5 multiplexed, true  
Differential output data D4 and D5 multiplexed, complement  
Differential output data D6 and D7 multiplexed, true  
Differential output data D6 and D7 multiplexed, complement  
Differential output data D8 and D9 multiplexed, true  
Differential output data D8 and D9 multiplexed, complement  
Differential output data D10 and D11 multiplexed, true  
Differential output data D10 and D11 multiplexed, complement  
Differential output data D12 and D13 multiplexed, true  
Differential output data D12 and D13 multiplexed, complement  
Differential output data D14 and D15 multiplexed, true  
Differential output data D14 and D15 multiplexed, complement  
Out-of-range indicator, CMOS level signal  
32  
31  
34  
33  
38  
37  
40  
39  
42  
41  
44  
43  
46  
45  
48  
47  
3
DRVDD  
Digital and output buffer supply  
2, 35  
1, 36  
DRGND  
Digital and output buffer ground  
I
PAD  
Connect the PAD to the ground plane. See in application section.  
Do not connect  
NC  
-
21  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
PIN CONFIGURATION (CMOS MODE)  
ADS556x  
RGZ PACKAGE  
(TOP VIEW)  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DRGND  
DRVDD  
OVR  
DRGND  
DRVDD  
D3  
2
Thermal Pad  
3
4
UNUSED  
CLKOUT  
DFS  
D2  
5
D1  
6
D0  
7
OE  
RESET  
SCLK  
SDATA  
SEN  
8
AVDD  
AGND  
CLKP  
9
10  
11  
12  
CLKM  
AGND  
AVDD  
AGND  
P0023-10  
Figure 9. CMOS Mode Pinout  
Table 22. PIN ASSIGNMENTS – CMOS Mode  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
AVDD  
DESCRIPTION  
Analog power supply  
Analog ground  
I
8, 18, 20,  
22, 24, 26  
6
AGND  
I
9, 12, 14, 17,  
19, 25  
6
CLKP, CLKM  
INP, INM  
VCM  
Differential clock input  
Differential analog input  
I
I
10, 11  
15, 16  
13  
2
2
1
Internal reference mode – Common-mode voltage output.  
External reference mode – Reference input. The voltage forced on this pin  
sets the internal references.  
I/O  
RESET  
Serial interface reset input.  
I
30  
1
When using the serial interface, the user should apply a high-going pulse on  
this pin to reset the internal registers.  
When the serial interface is not used, the user should tie RESET  
permanently high. (SCLK, SDATA and SEN can be used as parallel pin  
controls).  
The pin has an internal 100-kpull-down resistor to DRGND.  
SCLK  
This pin functions as serial interface clock input when RESET is low.  
It functions as LOW SPEED MODE control when RESET is tied high. See  
Table 4 for detailed information.  
I
29  
1
The pin has an internal 100-kpull-down resistor to DRGND.  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Table 22. PIN ASSIGNMENTS – CMOS Mode (continued)  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
SDATA  
DESCRIPTION  
This pin functions as serial interface data input when RESET is low.  
It functions as STANDBY control pin when RESET is tied high.  
I
28  
1
See Table 5 for detailed information.  
The pin has an internal 100-kpull-down resistor to DRGND.  
SEN  
This pin functions as serial interface enable input when RESET is low.  
It functions as CLKOUT edge programmability when RESET is tied high. See  
Table 6 for detailed information.  
I
27  
1
The pin has an internal 100-kpull-up resistor to DRVDD.  
OE  
Output buffer enable input, active high.  
The pin has an internal 100-kpull-up resistor to DRVDD.  
I
I
7
6
1
1
DFS  
Data Format Select input.  
This pin sets the DATA FORMAT (Twos complement or Offset binary) and  
the LVDS/CMOS output mode type. See Table 7 for detailed information.  
The pin has an internal 100-kpull-down resistor to DRGND.  
MODE  
Mode select input.  
I
23  
1
This pin selects the Internal or External reference mode. See Table 8 for  
detailed information.  
The pin has an internal 100-kpull-down resistor to AGND.  
CLKOUT  
D0  
CMOS output clock  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
5
31  
32  
33  
34  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
CMOS output data D0  
D1  
CMOS output data D1  
D2  
CMOS output data D2  
D3  
CMOS output data D3  
D4  
CMOS output data D4  
D5  
CMOS output data D5  
D6  
CMOS output data D6  
D7  
CMOS output data D7  
D8  
CMOS output data D8  
D9  
CMOS output data D9  
D10  
D11  
D12  
D13  
D14  
D15  
OVR  
DRVDD  
DRGND  
UNUSED  
PAD  
NC  
CMOS output data D10  
CMOS output data D11  
CMOS output data D12  
CMOS output data D13  
CMOS output data D14  
CMOS output data D15  
Out-of-range indicator, CMOS level signal  
Digital and output buffer supply  
Digital and output buffer ground  
Unused pin in CMOS mode  
Connect the PAD to the ground plane. See in application section.  
Do not connect  
2, 35  
1, 36  
4
I
-
-
21  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
ADS5562 - 80MSPS  
FFT for 5 MHz, -1dBFS Input Signal  
FFT for 20 MHz, -1dBFS Input Signal  
0
−20  
0
−20  
SFDR = 88.88 dBc  
SINAD = 81.4 dBFS  
SNR = 82.86 dBFS  
THD = 85.87 dBc  
SFDR = 91.54 dBc  
SINAD = 81.53 dBFS  
SNR = 82.64 dBFS  
THD = 87.02 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
−180  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G001  
G002  
Figure 10.  
Figure 11.  
FFT for 5 MHz, -80dBFS Input Signal (Small signal)  
Inter-modulation Distortion  
0
−20  
0
−20  
F1 = 5.01 MHz, –7 dBFS  
A
= −80 dBFS  
IN  
F2 = 10.1 MHz, –7 dBFS  
F1 + 2F2 = –92.1 dBFS  
2F2 − F1 = –92.4 dBFS  
2F1 + F2 = –94.2 dBFS  
2F1 − F2 = –95.5 dBFS  
3F1 = –99 dBFS  
SFDR = 21.9 dBc  
SINAD = 84.3 dBFS  
SNR = 84.3 dBFS  
THD = 33 dBc  
−40  
−40  
−60  
−60  
3F2 = −102 dBFS  
−80  
−80  
Worst Spur = −103.5 dBFS  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
−180  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G004  
G003  
Figure 12.  
Figure 13.  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
SNR vs Fin, 0 dB gain  
SFDR vs Fin  
86  
85  
84  
83  
82  
81  
80  
79  
78  
96  
92  
88  
84  
80  
76  
LVDS  
CMOS  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G006  
G007  
Figure 14.  
Figure 15.  
SFDR Across Fine Gain  
SNR Across Fine Gain  
Input adjusted to get −1dBFS input  
0 dB  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
Input adjusted to get −1dBFS input  
2 dB  
3 dB  
4 dB  
2 dB  
3 dB  
1 dB  
5 dB  
6 dB  
0 dB  
1 dB  
4 dB  
5
5 dB  
10  
6 dB  
15  
0
5
10  
15  
20  
25  
30  
0
20  
25  
30  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G009  
G010  
Figure 16.  
Performance vs AVDD Supply  
Figure 17.  
Performance vs DRVDD Supply  
96  
94  
92  
90  
88  
86  
84  
82  
80  
90  
92  
90  
88  
86  
84  
82  
80  
78  
76  
90  
f
= 5.01 MHz  
f
= 5.01 MHz  
IN  
IN  
89  
88  
87  
86  
85  
84  
83  
82  
89  
88  
87  
86  
85  
84  
83  
82  
DRV = 3.3 V  
DD  
AV = 3.3 V  
DD  
SFDR  
SFDR  
SNR  
3.3  
SNR  
3.3  
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
AV − Supply Voltage − V  
DD  
DRV − Supply Voltage − V  
DD  
G013  
G014  
Figure 18.  
Figure 19.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS5560 ADS5562  
 
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
Performance vs Temperature  
Performance vs Input Amplitude, 0 dB gain  
92  
90  
88  
86  
84  
82  
80  
88  
87  
86  
85  
84  
83  
82  
120  
110  
100  
90  
91  
f
IN  
= 10.1 MHz  
SFDR (dBFS)  
89  
87  
85  
83  
81  
79  
77  
75  
SFDR  
SNR (dBFS)  
80  
70  
SFDR (dBc)  
SNR  
60  
50  
f
IN  
= 5.01 MHz  
−10  
40  
−60  
−40  
−20  
0
20  
40  
60  
80  
−50  
−40  
−30  
−20  
0
T − Temperature − °C  
Input Amplitude − dBFS  
G015  
G016  
G018  
G020  
Figure 20.  
Figure 21.  
Performance vs Clock Amplitude  
Performance vs Clock Duty Cycle  
94  
92  
90  
88  
86  
84  
82  
80  
78  
88  
87  
86  
85  
84  
83  
82  
81  
80  
96  
92  
88  
84  
80  
76  
72  
87  
86  
85  
84  
83  
82  
81  
f
= 5.01 MHz  
SFDR  
SNR  
50  
f
= 10.1 MHz  
IN  
IN  
SFDR  
SNR  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
35  
40  
45  
55  
60  
65  
Input Clock Duty Cycle − %  
Input Clock Amplitude − V  
PP  
G017  
Figure 22.  
Figure 23.  
Output Noise Histogram  
Performance in External Reference Mode  
90  
88  
86  
84  
82  
80  
87  
86  
85  
84  
83  
82  
40  
35  
30  
25  
20  
15  
10  
5
f
IN  
= 5.01 MHz  
RMS (LSB) = 1.424  
External Reference Mode  
SFDR  
SNR  
0
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
Output Code  
G019  
Figure 24.  
Figure 25.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
ADS5560 - 40MSPS  
FFT for 5 MHz, -1dBFS Input Signal  
FFT for 20 MHz, -1dBFS Input Signal  
0
−20  
0
−20  
SFDR = 92.7 dBc  
SINAD = 82.5 dBFS  
SNR = 83.2 dBFS  
THD = 90 dBc  
SFDR = 83.43 dBc  
SINAD = 80.2 dBFS  
SNR = 82.9 dBFS  
THD = 82.55 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
−180  
0
5
10  
15  
20  
0
5
10  
15  
20  
f − Frequency − MHz  
f − Frequency − MHz  
G022  
G023  
Figure 26.  
Figure 27.  
FFT for 5 MHz, -80dBFS Input Signal  
Inter-modulation Distortion  
0
−20  
0
−20  
F1 = 10.1 MHz, –7 dBFS  
A
= −80 dBFS  
IN  
F2 = 5.01 MHz, –7 dBFS  
F2 − 2F1 = –98.1 dBFS  
2F2 − F1 = –101.7 dBFS  
2F2 + F1 = –102.7 dBFS  
2F1 + F2 = –106 dBFS  
3F2 = –104.7 dBFS  
SFDR = 31.1 dBc  
SINAD = 84.7 dBFS  
SNR = 84.8 dBFS  
THD = 29.1 dBc  
−40  
−40  
−60  
−60  
3F1 = −105.4 dBFS  
−80  
−80  
Worst Spur = −101.7 dBFS  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
−180  
0
5
10  
15  
20  
0
5
10  
15  
20  
f − Frequency − MHz  
f − Frequency − MHz  
G024  
G025  
Figure 28.  
Figure 29.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
SNR vs Fin, 0 dB gain  
SFDR vs Fin  
86  
85  
84  
83  
82  
81  
80  
79  
78  
96  
92  
88  
84  
80  
76  
LVDS  
CMOS  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G027  
G028  
Figure 30.  
Figure 31.  
SFDR Across Fine Gain  
SNR Across Fine Gain  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
Input adjusted to get −1dBFS input  
2 dB  
Input adjusted to get −1dBFS input  
2 dB  
0 dB  
3 dB  
3 dB  
6 dB  
1 dB  
5 dB  
4 dB  
0 dB  
1 dB  
4 dB  
5
5 dB  
10  
6 dB  
15  
0
5
10  
15  
20  
25  
30  
0
20  
25  
30  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G030  
G031  
Figure 32.  
Performance vs AVDD Supply  
Figure 33.  
Performance vs DRVDD Supply  
98  
90  
100  
98  
96  
94  
92  
90  
88  
86  
84  
90  
f
= 5.01 MHz  
f
= 5.01 MHz  
IN  
IN  
96  
94  
92  
90  
88  
86  
84  
82  
89  
88  
87  
86  
85  
84  
83  
82  
89  
88  
87  
86  
85  
84  
83  
82  
DRV = 3.3 V  
DD  
AV = 3.3 V  
DD  
SFDR  
SFDR  
SNR  
3.3  
SNR  
3.3  
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
AV − Supply Voltage − V  
DD  
DRV − Supply Voltage − V  
DD  
G034  
G035  
Figure 34.  
Figure 35.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
Performance vs Temperature  
Performance vs Input Amplitude, 0 dB gain  
98  
96  
94  
92  
90  
88  
86  
88  
87  
86  
85  
84  
83  
82  
120  
110  
100  
90  
91  
89  
87  
85  
83  
81  
79  
77  
75  
f
IN  
= 10.1 MHz  
SFDR (dBFS)  
SFDR  
SNR (dBFS)  
SFDR (dBc)  
80  
70  
SNR  
60  
50  
f
IN  
= 5.01 MHz  
−10  
40  
−60  
−40  
−20  
0
20  
40  
60  
80  
−50  
−40  
−30  
−20  
0
T − Temperature − °C  
Input Amplitude − dBFS  
G036  
G037  
G039  
G041  
Figure 36.  
Figure 37.  
Performance vs Clock Amplitude  
Performance vs Clock Duty Cycle  
94  
92  
90  
88  
86  
84  
82  
80  
78  
88  
87  
86  
85  
84  
83  
82  
81  
80  
100  
96  
92  
88  
84  
80  
76  
86  
84  
82  
80  
78  
76  
74  
f
= 5.01 MHz  
f
= 10.1 MHz  
IN  
SFDR  
SNR  
IN  
SFDR  
SNR  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
35  
40  
45  
50  
55  
60  
65  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G038  
Figure 38.  
Figure 39.  
Output Noise Histogram  
Performance in External Reference Mode  
92  
90  
88  
86  
84  
82  
87  
86  
85  
84  
83  
82  
40  
35  
30  
25  
20  
15  
10  
5
f
IN  
= 5.01 MHz  
RMS (LSB) = 1.429  
External Reference Mode  
SFDR  
SNR  
0
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
Output Code  
G040  
Figure 40.  
Figure 41.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
Valid Up to Max Clock Rate (ADS5562 or ADS5560)  
CMRR vs Common-Mode Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
f
IN  
− Input Frequency − MHz  
G043  
Figure 42.  
Power Dissipation vs Sampling Frequency  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
CMOS, No-Load Capacitance  
CMOS, 5-pF Load Capacitance  
CMOS, 10-pF Load Capacitance  
LVDS  
25  
40  
50  
65  
80  
f
S
− Sampling Frequency − MSPS  
G044  
Figure 43.  
32  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = DRVDD = 3.3 V, sampling frequency = Max Rated, sine wave input clock, 1.5 VPP clock  
amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, DDR LVDS interface, default fine  
gain (1dB), (unless otherwise noted)  
SFDR Contour, 0 dB Gain  
80  
84  
84  
84  
70  
82  
84  
84  
84  
84  
60  
86  
86  
88  
50  
40  
30  
88  
82  
90  
84  
90  
88  
92  
86  
82  
5
10  
15  
fIN - Input Frequency - MHz  
20  
25  
30  
94  
80  
82  
84  
86  
88  
90  
92  
SFDR - dBc  
M0049-04  
Figure 44.  
SNR Contour, 0 dB Gain  
80  
70  
60  
50  
40  
30  
83  
83.5  
84  
83.5  
82.5  
83  
84  
82  
82.5  
83.5  
84  
82  
83  
81.5  
5
10  
15  
fIN - Input Frequency - MHz  
20  
25  
30  
81  
81.5  
82  
82.5  
83  
83.5  
84  
84.5  
SNR - dBFS  
M0048-04  
Figure 45.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
ADS556X is a high performance 16-bit A/D converter family with sampling rates up to 80 MSPS. It is based on  
switched capacitor technology and runs off a single 3.3-V supply. Once the signal is captured by the input  
sample and hold, the input sample is sequentially converted by a series of small resolution stages. At every clock  
edge, the sample propagates through the pipeline resulting in a data latency of 16 clock cycles. The output is  
available as 16-bit data, in DDR LVDS or parallel CMOS and coded in either offset binary or binary 2’s  
complement format.  
Analog Input Circuit  
The analog input consists of a switched-capacitor based differential sample and hold architecture, shown in  
Figure 46.  
This differential topology results in good ac-performance even for high input frequencies at high sampling rates.  
The INP and INM pins have to be externally biased around a common-mode voltage of 1.5 V (VCM). For a  
full-scale differential input, each input pin INP, INM has to swing symmetrically between VCM + 0.9 V and VCM –  
0.9 V, resulting in a 3.6-VPP differential input swing.  
Sampling  
Switch  
Lpkg  
» 1 nH  
Sampling  
Capacitor  
INP  
Ron  
10 W  
10 W  
Csamp  
6 pF  
Cp4  
1 pF  
Cbond  
» 1 pF  
Cp2  
0.5 pF  
Cp3  
2 pF  
Resr  
100 W  
Cp1  
2 pF  
Ron  
10 W  
Lpkg  
» 1 nH  
Cp4  
1 pF  
Csamp  
6 pF  
Ron  
10 W  
10 W  
INM  
Sampling  
Capacitor  
Cbond  
» 1 pF  
Cp2  
0.5 pF  
Cp3  
2 pF  
Resr  
100 W  
Sampling  
Switch  
S0322-02  
Figure 46. Input Stage  
Drive Circuit Recommendations  
For optimum performance, the analog inputs have to be driven differentially. This improves the common-mode  
noise immunity and even order harmonic rejection. A resistor in series with each input pin (about 15 Ω) is  
recommended to damp out ringing caused by package parasitics. It is also necessary to present low impedance  
(< 50 Ω) for the common mode switching currents. This can be achieved by using two resistors from each input  
terminated to the common mode voltage (VCM).  
Note that the device includes an internal R-C filter from each input to ground. The purpose of this filter is to  
absorb the glitches caused by the opening and closing of the sampling capacitors. The filtering of the glitches  
can be improved further using an external R-C-R filter.  
In addition to the above, the drive circuit may have to be designed to provide a low insertion loss over the  
desired frequency range and matched impedance to the source. While doing this, the ADC input impedance  
must be considered. Figure 47 and Figure 48 show the impedance (Zin = Rin || Cin) looking into the ADC input  
pins.  
34  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
100  
10  
1
0.1  
0.01  
0
100  
200  
300  
400  
500  
f − Frequency − MHz  
G045  
Figure 47. ADC Analog Input Resistance (Rin) Across Frequency  
10  
8
6
4
2
0
0
100  
200  
300  
400  
500  
f − Frequency − MHz  
G046  
Figure 48. ADC Analog Input Capacitance (Cin) Across Frequency  
Example Driving Circuit  
An example input configuration using RF transformers is shown in Figure 49. Here, an external R-C-R filter using  
22pF has been used. Together with the series inductor (39nH), this combination forms a filter and absorbs the  
sampling glitches. Due to the relatively large capacitor (22pF) in the R-C-R and the 15 ohms resistors in series  
with each input pin, this drive circuit has low bandwidth and is suited for low input frequencies.  
Note that the drive circuit has been terminated by 50 ohms near the ADC side. The termination is accomplished  
by a 25 ohms resistor from each input to the 1.5V common-mode (VCM) from the device. This allows the analog  
inputs to be biased around the required common-mode voltage.  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back to back helps minimize this mismatch and  
good performance is obtained for high frequency input signals. An additional termination resistor pair may be  
required between the two transformers (enclosed by the dashed lines in Figure 49). The centre point of this  
termination is connected to ground to improve the balance between the P and M sides. The values of the  
terminations between the transformers and on the secondary side have to be chosen to get an effective 50 ohms  
(in the case of 50 ohms source impedance).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
ADS556x  
39 nH  
0.1 mF  
0.1 mF  
15 W  
INP  
50 W  
0.1 mF  
25 W  
25 W  
50 W  
22 pF  
50 W  
50 W  
INM  
15 W  
0.1 mF  
1:1  
1:1  
39 nH  
VCM  
S0329-01  
Figure 49. Drive Circuit Using RF transformers  
Input Common-Mode  
To ensure a low-noise common-mode reference, the VCM pin is filtered with a 0.1-µF low-inductance capacitor  
connected to ground. The VCM pin is designed to directly drive the ADC inputs. Each input pin of the ADC sinks  
a common-mode current in the order of 6uA/MSPS(about 1mA at 80 MSPS) from the external drive circuit.  
Reference  
ADS556X has built-in internal reference that does not require external components. Design schemes are used to  
linearize the converter load seen by the reference; this and the integration of the requisite reference capacitors  
on-chip eliminates the need for external decoupling capacitors. The full-scale input range of the converter can be  
controlled in the external reference mode as explained below. The internal or external reference modes can be  
selected by controlling the MODE pin 23 (see Table 8 for details) or by programming the serial interface register  
bit <REF>.  
Internal Reference  
When the device is in internal reference mode, the REFP and REFM voltages are generated internally.  
Common-mode voltage (1.5 V nominal) is output on VCM pin, which can be used to externally bias the analog  
input pins.  
External Reference  
When the device is in external reference mode, the VCM acts as a reference input pin. The voltage forced on the  
VCM pin is buffered and gained internally, generating the REFP and REFM voltages. The differential input  
voltage corresponding to full-scale is given by Equation 1. In this mode, the 1.5 V common-mode voltage to bias  
the input pins has to be generated externally.  
Full-scale differential input voltage, pp = (Voltage forced on VCM pin)´ 2.67´G  
where G = 10-(Fine gain in dB/20)  
(1)  
36  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
INTREF  
Internal  
Reference  
VCM  
INTREF  
EXTREF  
REFM  
REFP  
ADS556x  
S0165-08  
Figure 50. Reference Section  
Programmable Fine Gain  
ADS556x has programmable fine gain from 0 dB to 6dB in steps of 1 dB. The corresponding full-scale input  
range varies from 3.6VPP down to 2VPP. The fine gain is useful, when lower full-scale input ranges are used to  
get SFDR improvement (See Figure 15 and Figure 31). This is accompanied by corresponding degradation in  
SNR (see Figure 16 and Figure 32). The gain can be programmed using the register bits GAIN (Table 14).  
After reset, the device is initialized to 1 dB fine gain.  
Table 23. Full-scale Input Range Across Gains  
Gain, dB  
Corresponding full-scale input range, Vpp  
(1)  
0
3.56  
1, default after reset  
3.56  
3.20  
2.85  
2.55  
2.27  
2.00  
2
3
4
5
6
(1) Note that with 0 dB gain, the full-scale input range continues to be 3.56Vpp. This means that the output code range will be 58409 LSBs  
(or 1dB below 65536).  
Low Frequency Noise Suppression  
The low-frequency noise suppression mode is specifically useful in applications where good noise performance is  
desired in the low frequency band of dc to 1 MHz. Setting this mode shifts the low-frequency noise of the  
ADS556x to approximately (Fs/2), thereby moving the noise floor around dc to a much lower value. Register bit  
<LF NOISE SUPPRESSION> enables this mode. As Figure 52 shows, when the mode is enabled, the noise floor  
from dc-1 MHz improves significantly. The low frequency noise components get shifted to the region around Fs/2  
(Figure 53).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
0
−20  
−40  
−60  
−80  
−100  
−120  
−140  
0
5
10  
15  
20  
25  
30  
35  
40  
f − Frequency − MHz  
G047  
Figure 51. Spectrum with LF Noise Suppression Enabled (Fs=80 MSPS)  
0
−20  
−40  
−60  
LF Noise Suppression Enabled  
−80  
LF Noise Suppression Disabled  
−100  
−120  
−140  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
f − Frequency − MHz  
G048  
Figure 52. Zoomed Spectrum (dc to 1 MHz) with LF Noise Suppression Enabled (Fs=80 MSPS)  
0
−20  
−40  
−60  
−80  
LF Noise Suppression Disabled  
LF Noise Suppression Enabled  
−100  
−120  
−140  
39.0 39.1 39.2 39.3 39.4 39.5 39.6 39.7 39.8 39.9 40.0  
f − Frequency − MHz  
G049  
Figure 53. Zoomed Spectrum (39 to 40 MHz) with LF Noise Suppression Enabled (Fs=80 MSPS)  
Low Sampling Frequency Operation  
For best performance at high sampling frequencies, ADS556X uses a clock generator circuit to derive internal  
timing for the ADC. The clock generator operates from 80 MSPS down to 30 MSPS in the DEFAULT SPEED  
mode. The ADC enters this mode after applying reset (with serial interface configuration) or by tying SCLK pin to  
low (with parallel configuration).  
38  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
For low sampling frequencies (below 30 MSPS), the ADC must be put in the LOW SPEED mode. This mode can  
be entered by  
setting the register bit <LOW SPEED> (Table 12) through the serial interface, OR  
tying the SCLK pin to high (see Table 4) using the parallel configuration.  
Clock Input  
ADS556X clock input can be driven with either a differential clock signal or a single-ended clock input, with little  
or no difference in performance between both configurations. The common-mode voltage of the clock inputs is  
set to VCM using internal 5-kresistors that connect CLKP and CLKM to VCM, as shown in Figure 54.  
VCM  
VCM  
5 kW  
5 kW  
CLKP  
CLKM  
ADS556x  
S0166-05  
Figure 54. Clock Inputs  
For the best performance, it is recommended to drive the clock inputs differentially, reducing susceptibility to  
common-mode noise. In this case, it is best to connect both clock inputs to the differential input clock signal with  
0.1-µF capacitors, as shown in Figure 55.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
0.1 mF  
CLKP  
Differential Sine-Wave  
or Square Wave  
0.1 mF  
CLKM  
ADS556x  
S0167-08  
Figure 55. Differential Clock Drive  
When driven with a single-ended CMOS clock input, connect CLKM to ground with a 0.1-µF capacitor and CLKP  
with a 0.1-µF capacitor to the clock source, as shown in Figure 56.  
0.1 mF  
Square or Sine-Wave  
Input  
CLKP  
0.1 mF  
CLKM  
ADS556x  
S0168-12  
Figure 56. Single-Ended Clock Drive  
For high input frequency sampling, it is recommended to use a clock source with very low jitter. Bandpass  
filtering of the clock source can help reduce the effect of jitter. There is little change in performance with a  
non-50% duty cycle clock input.  
Power Down  
ADS556X has three power-down modes – global STANDBY, output buffer disabled, and input clock stopped.  
Global STANDBY  
This mode can be initiated by controlling SDATA or by setting the register bit <STBY> through the serial  
interface. In this mode, the A/D converter, reference block and the output buffers are powered down resulting in  
reduced total power dissipation of about 155 mW. The wake-up time from global power down to valid data is  
typically 60 µs.  
Output Buffer Disable  
The output buffers can be disabled using OE pin in both the LVDS and CMOS modes. With the buffers disabled,  
the digital outputs are three-stated. The wake-up time from this mode to data becoming valid in normal mode is  
typically 700 ns in LVDS mode and 200 ns in CMOS mode.  
40  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
 
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
Input Clock Stop  
The converter enters this mode when the input clock frequency falls below 1 MSPS. The power dissipation is  
about 125 mW and the wake-up time from this mode to data becoming valid in normal mode is typically 80 µs.  
Power Supply Sequence  
During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are  
separated inside the device. Externally, they can be driven from separate supplies or from a single supply.  
Output Interface  
ADS556X provides 16-bit data, an output clock synchronized with the data and an out-of-range indicator that  
goes high when the output reaches the full-scale limits. In addition, output enable control (OE) is provided to  
power down the output buffers and put the outputs in high-impedance state.  
Two output interface options are available – Double Data Rate (DDR) LVDS and parallel CMOS. They can be  
selected using the DFS or the serial interface register bit <ODI> (see Table 7).  
DDR LVDS Outputs  
In this mode, the 16 data bits and the output clock are put out using LVDS (Low Voltage Differential Signal)  
levels. Two successive data bits are multiplexed and output on each LVDS differential pair as shown in  
Figure 57. So, there are 8 LVDS output pairs for the data bits and 1 LVDS output pair for the output clock.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
Pins  
CLKOUTP  
Output Clock  
CLKOUTM  
D0_D1_P  
Data Bits D0. D1  
D0_D1_M  
D2_D3_P  
Data Bits D2, D3  
D2_D3_M  
D4_D5_P  
Data Bits D4, D5  
D4_D5_M  
D6_D7_P  
Data Bits D6, D7  
D6_D7_M  
D8_D9_P  
Data Bits D8, D9  
D8_D9_M  
D10_D11_P  
Data Bits D10, D11  
D10_D11_M  
D12_D13_P  
Data Bits D12, D13  
D12_D13_M  
D14_D15_P  
Data Bits D14, D15  
D14_D15_M  
OVR  
Out-of-Range Indicator  
ADS556x  
S0169-03  
Figure 57. DDR LVDS Outputs  
Even data bits (D0, D2...D14) are output at the falling edge of CLKOUTP and the odd data bits (D1, D3...D15)  
are output at the rising edge of CLKOUTP. Both the rising and falling edges of CLKOUTP have to be used to  
capture all the data bits (see Figure 58).  
42  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
CLKOUTP  
CLKOUTM  
D0_D1_P,  
D0_D1_M  
D0  
D2  
D1  
D3  
D0  
D2  
D1  
D3  
D2_D3_P,  
D2_D3_M  
D4_D5_P,  
D4_D5_M  
D4  
D5  
D4  
D5  
D6_D7_P,  
D6_D7_M  
D6  
D7  
D6  
D7  
D8_D9_P,  
D8_D9_M  
D8  
D9  
D8  
D9  
D10_D11_P,  
D10_D11_M  
D10  
D12  
D14  
D11  
D13  
D15  
D10  
D12  
D14  
D11  
D13  
D15  
D12_D13_P,  
D12_D13_M  
D14_D15_P,  
D14_D15_M  
Sample N  
Sample N+1  
T0110-04  
Figure 58. DDR LVDS Interface  
LVDS Buffer Current Programmability  
The default LVDS buffer output current is 3.5 mA. When terminated by 100 , this results in logic HIGH of +350  
mV and logic LOW of -350 mV. The LVDS buffer currents can also be programmed to 2.5 mA, 4.5 mA, and 1.95  
mA using the serial interface. In addition, there exists a current double mode, where this current is doubled for  
the data and output clock buffers.  
Both the buffer current programming and the current double mode can be done separately for the data buffers  
and the output clock buffer (register bits <LVDS CURR>).  
LVDS Buffer Internal Termination  
An internal termination option is available (using the serial interface), by which the LVDS buffers are differentially  
terminated inside the device. These termination resistances are available – 325, 200, and 175 (nominal with  
±20% variation). Any combination of these three terminations can be programmed; the effective termination will  
be the parallel combination of the selected resistances. This results in eight effective terminations from open (no  
termination) to 75 .  
The internal termination helps to absorb any reflections coming from the receiver end, improving the signal  
integrity. With 100 internal and 100 external termination, the voltage swing at the receiver end will be halved  
(compared to no internal termination). The terminations can be controlled using register bits <DATA TERM> and  
<CLKOUT TERM>.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
The voltage swing can be restored by using the LVDS current double mode (register bit <CURR DOUBLE>).  
Parallel CMOS  
In this mode, the digital data and output clock are put out as 3.3-V CMOS voltage levels. Each data bit and the  
output clock is available on a separate pin in parallel. By default, the data outputs are valid during the rising edge  
of the output clock. The output clock is CLKOUT.  
Output Clock Position Programmability  
In both the LVDS and CMOS modes, the output clock can be moved around its default position. This can be  
done using SEN pin (as described in Table 6) or using the serial interface register bits <CLKOUT POSN>  
(Table 11).  
Output Data Format  
Two output data formats are supported – 2s complement and offset binary. They can be selected using DFS pin  
or the serial interface register bit <DFS> ( see Table 9). In the event of an input voltage overdrive, the digital  
outputs go to the appropriate full scale level. For a positive overdrive, the output code is 0xFFFF in offset binary  
output format, and 0x7FFF in 2s complement output format. For a negative input overdrive, the output code is  
0x0000 in offset binary output format and 0x8000 in 2s complement output format.  
Board Design Considerations  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital and clock sections of  
the board are cleanly partitioned. See the EVM User Guide (SLWU028) for details on layout and grounding.  
Supply de-coupling  
As ADS556X already includes internal decoupling, minimal external decoupling can be used without loss in  
performance. Note that decoupling capacitors can help to filter external power supply noise, so the optimum  
number of capacitors would depend on the actual application. The decoupling capacitors should be placed very  
close to the converter supply pins. It is recommended to use separate supplies for the analog and digital supply  
pins to isolate digital switching noise from sensitive analog circuitry. In case only a single 3.3V supply is  
available, it should be routed first to AVDD. It can then be tapped and isolated with a ferrite bead (or inductor)  
with decoupling capacitor, before being routed to DRVDD.  
Exposed thermal pad  
It is necessary to solder the exposed pad at the bottom of the package to a ground plane for best thermal  
performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON  
PCB Attachment (SLUA271).  
44  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
www.ti.com ....................................................................................................................................................................................................... SLWS207MAY 2008  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low  
frequency value.  
Aperture Delay  
The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling  
occurs.  
Aperture Jitter  
The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle  
The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width)  
to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential  
sine-wave clock results in a 50% duty cycle.  
Maximum Sample Rate  
The maximum conversion rate at which certified operation is given. All parametric testing is performed at this  
sampling rate unless otherwise noted.  
Minimum Sample Rate  
The minimum conversion rate at which the ADC functions.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. The DNL is the  
deviation of any single step from this ideal value, measured in units of LSBs  
Integral Nonlinearity (INL)  
The INL is the deviation of the ADC’s transfer function from a best fit line determined by a least squares curve fit  
of that transfer function, measured in units of LSBs.  
Gain Error  
The gain error is the deviation of the ADC’s actual input full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale range.  
Offset Error  
The offset error is the difference, given in number of LSBs, between the ADC’s actual average idle channel  
output code and the ideal average idle channel output code. This quantity is often mapped into mV.  
Temperature Drift  
The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree  
Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation of the parameter  
across the TMIN to TMAX range by the difference TMAX–TMIN  
.
Signal-to-Noise Ratio  
SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN), excluding the power at dc  
and the first nine harmonics.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS5560 ADS5562  
ADS5560  
ADS5562  
SLWS207MAY 2008....................................................................................................................................................................................................... www.ti.com  
P
P
s
SNR + 10Log10  
N
(2)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Signal-to-Noise and Distortion (SINAD)  
SINAD is the ratio of the power of the fundamental (PS) to the power of all the other spectral components  
including noise (PN) and distortion (PD), but excluding dc.  
P
s
SINAD + 10Log10  
P
) P  
N
D
(3)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Effective Number of Bits (ENOB)  
The ENOB is a measure of a converter’s performance as compared to the theoretical limit based on quantization  
noise.  
SINAD * 1.76  
ENOB +  
6.02  
(4)  
(5)  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to the power of the first nine harmonics (PD).  
P
P
s
THD + 10Log10  
N
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic).  
SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion  
IMD3 is the ratio of the power of the fundamental (at frequencies f1 and f2) to the power of the worst spectral  
component at either frequency 2f1–f2 or 2f2–f1. IMD3 is either given in units of dBc (dB to carrier) when the  
absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the  
fundamental is extrapolated to the converter’s full-scale range.  
Voltage Overload Recovery  
The number of clock cycles taken to recover to less than 1% error for a 6-dB overload on the analog inputs.  
46  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS5560 ADS5562  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-May-2008  
PACKAGING INFORMATION  
Orderable Device  
ADS5560IRGZR  
ADS5560IRGZT  
ADS5562IRGZR  
ADS5562IRGZT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGZ  
48  
48  
48  
48  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
QFN  
QFN  
RGZ  
RGZ  
RGZ  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-May-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
ADS5560IRGZR  
ADS5560IRGZT  
ADS5562IRGZR  
ADS5562IRGZT  
QFN  
QFN  
QFN  
QFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-May-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS5560IRGZR  
ADS5560IRGZT  
ADS5562IRGZR  
ADS5562IRGZT  
QFN  
QFN  
QFN  
QFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
333.2  
333.2  
333.2  
333.2  
345.9  
345.9  
345.9  
345.9  
28.6  
28.6  
28.6  
28.6  
2500  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

ADS5560IRGZR

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5560IRGZT

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5560IRGZTG4

1-CH 16-BIT PROPRIETARY METHOD ADC, SERIAL/PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI

ADS5562

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5562IRGZR

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS
TI

ADS5562IRGZRG4

1-CH 16-BIT PROPRIETARY METHOD ADC, SERIAL/PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI

ADS5562IRGZT

16-BIT, 40/80 MSPS ADCs WITH DDR LVDS/CMOS OUTPUTS
TI

ADS574

Microprocessor-Compatible Sampling CMOS ANALOG-TO-DIGITAL CONVERTER
BB

ADS574

Microprocessor-Compatible Sampling CMOS ANALOG-TO-DIGITAL CONVERTER
TI

ADS574AU/1K

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO28, SOIC-28
ROCHESTER

ADS574AU/1K

Microprocessor-Compatible Sampling CMOS ANALOG-TO-DIGITAL CONVERTER
TI

ADS574HP

A/D Converter, 12-Bit, 1 Func, PDIP28,
BB