ADS58J63IRMPR [TI]

四通道 14 位 500Msps 电信接收器 IC | RMP | 72 | -40 to 85;
ADS58J63IRMPR
型号: ADS58J63IRMPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道 14 位 500Msps 电信接收器 IC | RMP | 72 | -40 to 85

电信
文件: 总86页 (文件大小:6240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
ADS58J63 四通道、14 位、500MSPS 电信接收器  
1 特性  
3 说明  
1
四通道  
ADS58J63 是一款低功耗、高带宽、14 位、  
500MSPS、四通道电信接收器。 ADS58J63 支持  
14 位分辨率  
JESD204B 串行接口,每个通道上具有 1 条信道,数  
据传输速率高达 10Gbps。 经缓冲的模拟输入可在较  
宽频率范围内提供统一输入阻抗,并最大程度地降低采  
样和保持毛刺脉冲能量。 ADS58J63 以超低功耗在宽  
输入频率范围内提供出色的无杂散动态范围 (SFDR)。  
数字信号处理模块包含复混频器,后接低通滤波器。低  
通滤波器具有 2 倍抽取率和 4 倍抽取率两个选项,支  
持高达 200MHz 的接收器带宽。 此外,ADS58J63 在  
突发模式下还支持 14 位、500MSPS 输出,因此适用  
DPD 观测接收器。  
最大时钟速率:500MSPS  
输入带宽 (3dB)900MHz  
片上抖动  
具有高阻抗输入的模拟输入缓冲器  
输出选项:  
Rx2 倍抽取率和 4 倍抽取率(低通滤波器)  
200MHz 复带宽或 100MHz 实带宽支持  
DPD FB:突发模式,14 位输出  
1.9 VPP 差分满量程输入  
JESD204B 接口:  
支持子类 1  
JESD204B 接口减少了接口线路数,从而实现高系统  
集成度。 内部锁相环 (PLL) 会将传入的模数转换器  
(ADC) 采样时钟加倍,以获得串行化各通道的 14 位数  
据时所使用的位时钟。  
每个 ADC 一条信道,速率高达 10Gsps  
专用于通道对的 SYNC 引脚  
支持多芯片同步  
72 引脚超薄型四方扁平无引线 (VQFN) 封装  
(10mm × 10mm)  
器件信息(1)  
器件型号  
ADS58J63  
封装  
封装尺寸(标称值)  
主要技术规格:  
VQFN (72)  
10.00mm x 10.00mm  
功耗:每通道 675mW  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
频谱性能(未抽取)  
fIN = 190MHz 中频 (IF)–1dBFS 时):  
简化框图  
信噪比 (SNR)70.4dBFS  
噪声频谱密度 (NSD)–154.4dBFS/Hz  
Digital Block  
2x  
14bit  
ADC  
Interleaving  
Correction  
INAP/M  
INBP/M  
DAP/M  
C{ꢀ4  
无杂散动态范围  
(SFDR)86dBcHD2HD3),  
95dBFS(非 HD2HD3)  
4x  
2x  
JESD204B  
Digital Block  
Interleaving  
Correction  
Y*C{ꢀ16  
14bit  
ADC  
C{ꢀ8  
DBP/M  
Burst Mode  
TRIGAB  
fIN = 370 MHz IF–3dBFS 时):  
TRIGCD  
TRDYAB  
TRDYCD  
SNR68.5dBFS  
SYSREFP/M  
CLKINP/M  
NSD–152.5dBFS/Hz  
PLL  
x10/x20  
SYNCbAB  
SYNCbCD  
SFDR81dBcHD2HD3),  
86dBFS(非 HD2HD3)  
Burst Mode  
Digital Block  
Interleaving  
Correction  
14bit  
ADC  
INCP/M  
INDP/M  
DCP/M  
DDP/M  
2x  
C{ꢀ4  
JESD204B  
Digital Block  
Interleaving  
Correction  
4x  
2x  
2 应用  
14bit  
ADC  
Y*C{ꢀ16  
C{ꢀ8  
多载波 GSM 蜂窝基础设施基站  
多载波多模式蜂窝基础设施基站  
电信接收器  
Configuration  
Registers  
电信数字预失真 (DPD) 观测接收器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS717  
 
 
 
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 21  
7.3 Feature Description................................................. 22  
7.4 Device Functional Modes........................................ 23  
7.5 Programming .......................................................... 34  
7.6 Register Maps......................................................... 45  
Application and Implementation ........................ 71  
8.1 Application Information............................................ 71  
8.2 Typical Application .................................................. 75  
Power Supply Recommendations...................... 76  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 AC Performance ...................................................... 7  
6.7 Digital Characteristics ............................................. 10  
6.8 Timing Characteristics............................................. 11  
6.9 Typical Characteristics: 14-Bit Burst Mode............. 12  
6.10 Typical Characteristics: Mode 2............................ 19  
6.11 Typical Characteristics: Mode 0............................ 20  
Detailed Description ............................................ 21  
7.1 Overview ................................................................. 21  
8
9
10 Layout................................................................... 77  
10.1 Layout Guidelines ................................................. 77  
10.2 Layout Example .................................................... 77  
11 器件和文档支持 ..................................................... 78  
11.1 社区资源................................................................ 78  
11.2 ....................................................................... 78  
11.3 静电放电警告......................................................... 78  
11.4 Glossary................................................................ 78  
12 机械、封装和可订购信息....................................... 78  
7
4 修订历史记录  
Changes from Original (June 2015) to Revision A  
Page  
已从产品预览更改为量产数据表......................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
5 Pin Configuration and Functions  
RMP Package  
VQFN-72  
Top View  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
TRDYCD  
TRIGCD  
DGND  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
TRDYAB  
TRIGAB  
DGND  
IOVDD  
PDN  
3
IOVDD  
4
5
SDIN  
SCLK  
6
RES  
7
SEN  
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
DVDD  
8
9
AVDD  
AVDD3V  
SDOUT  
AVDD  
ADS58J63  
10  
11  
12  
13  
14  
15  
16  
17  
18  
GND PAD (backside)  
INDP  
INDM  
INAM  
AVDD  
AVDD  
AVDD3V  
AVDD  
INBM  
AVDD3V  
AVDD  
INCM  
35  
36  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Copyright © 2015, Texas Instruments Incorporated  
3
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
INPUT/REFERENCE  
INAP/M  
NUMBER  
42, 41  
36, 37  
19, 18  
13, 14  
I
I
I
I
Differential analog input for channel A  
Differential analog input for channel B  
Differential analog input for channel C  
Differential analog input for channel D  
INBP/M  
INCP/M  
INDP/M  
CLOCK/SYNC  
CLKINP/M  
SYSREFP/M  
CONTROL/SERIAL  
RESET  
27, 28  
33, 34  
I
I
Differential clock input for ADC  
External sync input  
48  
6
I
I
Hardware reset. Active high. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface clock input  
SCLK  
SDIN  
5
I
Serial interface data input.  
SEN  
7
I
Serial interface enable  
SDOUT  
11  
50  
49  
22, 23  
O
Serial interface data output.  
PDN  
I/O Power down. Can be configured via SPI register setting.  
RES  
Reserve Pin. Connect to GND  
No connect  
NC  
Trigger ready output for burst mode for channel A,B. Can be configured via SPI to TRDY signal  
for all four channels in burst mode. Can be left open if not used.  
TRDYAB  
TRIGAB  
TRDYCD  
TRIGCD  
54  
53  
1
O
I
Manual burst mode trigger input channel A,B. Can be configured via SPI to manual trigger input  
signal for all four channels in burst mode. Can be connected to GND if not used.  
Trigger ready output for burst mode for channel C,D. Can be configured via SPI to TRDY signal  
for all four channels in burst mode. Can be left open if not used.  
O
I
Manual burst mode trigger input channel C,D. Can be configured via SPI to manual trigger input  
signal for all four channels in burst mode. Can be connected to GND if not used.  
2
DATA INTERFACE  
DAP/M  
58, 59  
61, 62  
66, 65  
69, 68  
O
O
O
O
JESD204B Serial data output for channel A  
JESD204B Serial data output for channel B  
JESD204B Serial data output for channel C  
JESD204B Serial data output for channel D  
DBP/M  
DCP/M  
DDP/M  
Synchronization input for JESD204B port channel A,B. Can be configured via SPI to SYNCb  
signal for all four channels. Needs external termination.  
SYNCbABP/M  
55, 56  
72, 71  
I
I
Synchronization input for JESD204B port channel C,D. Can be configured via SPI to SYNCb  
signal for all four channels. Needs external termination.  
SYNCbCDP/M  
POWER SUPPLY  
10, 16, 24, 31,  
39, 45  
AVDD3V  
I
I
Analog 3 V for analog buffer  
Analog 1.9-V power supply  
9, 12, 15, 17,  
20, 25, 30, 35,  
38, 40, 43, 44,  
46  
AVDD  
DVDD  
IOVDD  
AGND  
DGND  
8, 47  
I
I
I
I
Digital 1.9-V power supply  
Digital 1.15-V power supply for the JESD204B transmitter  
Analog ground  
4, 51, 57, 64,  
70  
21, 26, 29, 32  
3, 52, 60, 63,  
67  
Digital ground  
4
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.2  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
AVDD3V  
3.6  
AVDD  
Supply voltage range:  
DVDD  
2.1  
V
2.1  
V
IOVDD  
Voltage between AGND and DGND  
INA/BP, INA/BM, INC/DP, INC/DM  
CLKINP, CLKINM  
1.4  
0.3  
V
V
3
V
AVDD + 0.3  
AVDD + 0.3  
V
Voltage applied to input pins  
SYSREFP, SYSREFM, TRIGAB, TRIGCD  
V
SCLK, SEN, SDIN, RESET, SPI_MODE,  
SYNCbABP/M, SYNCbCDP/M, PDN  
–0.2  
–65  
2
V
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1  
kV  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.85  
1.8  
NOM  
3
MAX  
3.6  
2
UNIT  
V
AVDD3V  
AVDD  
1.9  
1.9  
1.15  
1.9  
V
Supply voltage range:  
Analog inputs:  
DVDD  
1.8  
2
V
IOVDD  
1.1  
1.2  
V
Differential input voltage range  
Input common-mode voltage  
VPP  
V
VCM ± 0.025  
250  
Input clock frequency, device clock frequency  
Sine wave, ac-coupled  
500  
MHz  
VPP  
VPP  
VPP  
1.5  
1.6  
Input clock amplitude differential  
(VCLKP – VCLKM  
Clock inputs:  
LVPECL, ac-coupled  
LVDS, ac-coupled  
)
0.7  
Input device clock duty cycle, default after reset  
Operating free-air, TA  
Operating junction, TJ  
45%  
–40  
50%  
55%  
85  
ºC  
ºC  
Temperature:  
105(2)  
125  
(1) SYSREF needs to be applied for the device bring up.  
(2) Prolonged use above this junction temperature can increase the device failure-in-time (FIT) rate.  
Copyright © 2015, Texas Instruments Incorporated  
5
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
6.4 Thermal Information  
ADS58J63  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
2.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.3  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 50% clock duty cycle, AVDD3V = 3 V, AVDD/DVDD = 1.9 V, IOVDD = 1.15 V, –1 -dBFS differential input for IF 250  
MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
PARAMETER  
ADC Sampling Rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
500 MSPS  
Bits  
Resolution  
POWER SUPPLY  
AVDD3V  
AVDD  
14  
2.85  
1.8  
3
1.9  
3.6  
2
V
V
DVDD  
1.8  
1.9  
2
V
IOVDD  
1.1  
1.15  
340  
365  
190  
184  
1.2  
V
IAVDD3V  
IAVDD  
3-V analog supply current  
mA  
mA  
mA  
mA  
1.9-V analog supply current  
2x Decimation (4 ch)  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
370-MHz, full-scale  
input on all four  
channels  
Burst Mode (4 ch)  
1.15-V SERDES supply  
current  
533  
mA  
2x Decimation (4 ch)  
Burst Mode (4 ch)  
2.68  
2.67  
W
W
Total power dissipation  
Global power-down power  
dissipation  
250  
mW  
ANALOG INPUTS  
Differential input full-scale  
1.9  
VPP  
V
voltage  
VCM ±  
0.025  
Input common-mode voltage  
Diffrential input resistance  
Differential input capacitance  
Analog input bandwidth (3 dB)  
at fIN =370MHz  
at fIN =370MHz  
0.5  
2.5  
kΩ  
pF  
900  
MHz  
6
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Electrical Characteristics (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 50% clock duty cycle, AVDD3V = 3 V, AVDD/DVDD = 1.9 V, IOVDD = 1.15 V, –1 -dBFS differential input for IF 250  
MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISOLATION  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
105  
104  
96  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Isolation between near  
channels  
(CHA and CHB are near to  
each other.  
CHC and CHD are near to  
each other)  
97  
93  
85  
Crosstalk  
(1)  
110  
107  
96  
Isolation between far channels  
(for CHA and CHB, CHC and  
CHD are far channels)  
97  
95  
94  
CLOCK INPUT  
Internal clock biasing  
CLKINP and CLKINM pins are connected to  
internal biasing voltage through 400 Ω  
1.15  
V
(1) Crosstalk is measured with a –1-dBFS input signal on aggressor channel and no input on the victim channel.  
6.6 AC Performance  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX UNIT  
14-Bit Burst Mode  
(DDC Mode 8)  
Decimate-by-2 Filter  
(DDC Mode 2)  
fIN = 10 MHz  
70.8  
70.5  
69.5  
74.1  
74  
fIN = 70 MHz  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
73.2  
73.6  
72.6  
72  
fIN = 190 MHz  
65.6  
64.6  
70.3  
69  
SNR  
Signal-to-noise ratio  
dBFS  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
68.7  
68.4  
67.5  
154.8  
154.5  
153.5  
70.7  
154.8  
154.5  
153.5  
154.3  
153.0  
152.7  
152.4  
151.5  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
fIN = 190 MHz  
149.5 154.3  
153  
dBFS/  
Hz  
NSD  
Noise spectral density  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
152.7  
148.5 152.4  
151.5  
Copyright © 2015, Texas Instruments Incorporated  
7
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
MAX UNIT  
AC Performance (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
70.7  
70.4  
69.4  
70.2  
68.9  
68.6  
68.2  
66.9  
89  
MAX  
MIN  
TYP  
73.9  
73.9  
73.1  
73.5  
72.5  
71.7  
fIN = 70 MHz  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
fIN = 190 MHz  
Signal-to-noise and  
distortion ratio  
SINAD  
SFDR  
HD2  
dBFS  
dBc  
dBc  
dBc  
dBc  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
69.7  
88  
87  
95  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
86  
97  
fIN = 190 MHz  
78  
75  
88  
96  
Spurious-free dynamic  
range  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
82  
94  
82  
82  
81  
73  
74  
91  
89  
94  
103  
101  
101  
97  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
86  
fIN = 190 MHz  
78  
75  
88  
Second harmonic  
distortion  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
82  
82  
82  
81  
73  
74  
88  
93  
87  
99  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
98  
100  
98  
fIN = 190 MHz  
78  
75  
97  
HD3  
Third harmonic distortion  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
95  
100  
96  
90  
85  
83  
83  
98  
95  
97  
96  
94  
94  
94  
94  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
93  
fIN = 190 MHz  
Non  
HD2,  
HD3  
Spurious-free dynamic  
range (excluding HD2,  
HD3)  
87  
80  
93  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
92  
91  
90  
87  
93  
8
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
AC Performance (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
88  
85  
85  
86  
81  
79  
78  
72  
MAX  
MIN  
TYP  
86  
MAX UNIT  
fIN = 70 MHz  
92  
AIN = – 1 dBFS  
AIN = – 3 dBFS  
92  
fIN = 190 MHz  
91  
THD  
Total harmonic distortion  
dBc  
fIN = 300 MHz  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
89  
82  
73  
fIN = 185 MHz, fIN  
190 MHz  
=
=
=
AIN = – 7 dBFS  
AIN = – 7 dBFS  
AIN = – 7 dBFS  
89  
82  
77  
Third-tone intermodulation fIN = 365 MHz, fIN  
IMD3  
dBFS  
distortion  
370 MHz  
fIN = 465 MHz, fIN  
470 MHz  
Copyright © 2015, Texas Instruments Incorporated  
9
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
6.7 Digital Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500  
MSPS, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
0.8  
V
All digital inputs support 1.2-V and 1.8-V logic levels  
0.4  
V
SEN  
0
100  
50  
µA  
µA  
µA  
µA  
IIH  
High-level input current  
Low-level input current  
RESET, SCLK, SDIN, PDN  
SEN  
IIL  
RESET, SCLK, SDIN, PDN  
0
DIGITAL INPUTS (SYSREFP, SYSREFM, SYNCbABM, SYNCbABP, SYNCbCDM, SYNCbCDP)  
VD  
Differential Input Voltage  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS (SDOUT, PDN)  
DVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD  
V
V
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)  
VOD  
VOC  
Output differential voltage  
With default swing setting.  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDATA, and PDN pins have a 20-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pull up resistor to IOVDD.  
(2) 50-Ω, single-ended external termination to IOVDD.  
10  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
6.8 Timing Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500  
MSPS, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input,  
unless otherwise noted.  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING CHARACTERISTICS  
Aperture delay  
0.75  
1.6  
ns  
ps  
Aperture delay matching between two channels on the same device  
±70  
±270  
135  
Aperture delay matching between two devices at the same temperature and supply voltage  
Aperture jitter  
ps  
fS rms  
µs  
Wake-up time to valid data after coming out of global power-down  
150  
Input  
Clock  
Cycles  
Data Latency(1)  
ADC sample to digital output  
ADC sample to OVR bit  
77  
Input  
Clock  
Cycles  
OVR Latency  
44  
4
Input clock rising edge cross-over to output clock rising edge  
cross-over  
tPDI  
Clock propagation delay  
ns  
tSU_SYSREF Setup time for SYSREF, referenced to input clock rising edge  
tH_SYSREF Hold time for SYSREF, referenced to input clock rising edge  
300  
100  
900  
ps  
ps  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
100  
2.5  
400  
10  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
26  
0.75  
12  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times measured from 20% to 80%, differential output  
waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
(1) Overall ADC Latency = Data Latency + tPDI  
N+1  
N+2  
N
SAMPLE  
TPD  
Data Latency: 77 Clock Cycles  
CLKINP  
CLKINM  
DAP/M  
DBP/M  
DCP/M  
DDP/M  
D
20  
D
1
D
20  
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 1. Latency Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
11  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
6.9 Typical Characteristics: 14-Bit Burst Mode  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D002  
FIN = 10 MHz , AIN = –1 dBFS  
FIN = 140 MHz , AIN = –1 dBFS  
SNR = 71 dBFS, SFDR = 89 dBc, SFDR = 89 dBc (Non23)  
SNR = 70 dBFS, SFDR = 88 dBc, SFDR = 91 dBc (Non23)  
Figure 2. FFT for 10-MHz Input Signal  
Figure 3. FFT for 140-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
FIN = 190 MHz , AIN = –1 dBFS  
FIN = 230 MHz , AIN = –1 dBFS  
SNR = 69.4 dBFS, SFDR = 88 dBc, SFDR = 96 dBc (Non23)  
SNR = 69.4 dBFS, SFDR = 85 dBc, SFDR = 96 dBc (Non23)  
Figure 4. FFT for 190-MHz Input Signal  
Figure 5. FFT for 230-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D005  
D006  
FIN = 300 MHz , AIN = - 3 dBFS  
FIN = 370 MHz , AIN = - 3 dBFS  
SNR = 69.4 dBFS, SFDR = 80 dBc, SFDR = 95 dBc (Non23)  
SNR = 68.4 dBFS, SFDR = 84 dBc, SFDR = 86 dBc (Non23)  
Figure 6. FFT for 300-MHz Input Signal  
Figure 7. FFT for 370-MHz Input Signal  
12  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D007  
D008  
FIN = 470 MHz , AIN = - 3 dBFS  
SNR = 67.4 dBFS, SFDR = 73 dBc, SFDR = 80 dBc (Non23)  
FIN1 = 185 MHz, FIN2 = 190 MHz, IMD = 89 dBFS  
Each tone at -7 dBFS  
Figure 8. FFT for 470-MHz Input Signal  
Figure 9. FFT for Two-Tone Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D009  
D010  
FIN1 = 185 MHz, FIN2 = 190 MHz, IMD = 103 dBFS  
Each tone at -36 dBFS  
FIN1 = 370 MHz, FIN2 = 365 MHz, IMD = 81.7 dBFS  
Each tone at -7 dBFS  
Figure 10. FFT for Two-Tone Input Signal  
Figure 11. FFT for Two-Tone Input Signal  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-100  
-100  
-120  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D011  
D012  
FIN1 = 370 MHz, FIN2 = 365 MHz, IMD = 102 dBFS  
Each tone at -36 dBFS  
FIN1 = 470 MHz, FIN2 = 465 MHz, IMD = 76.7 dBFS  
Each tone at -7 dBFS  
Figure 12. FFT for Two-Tone Input Signal  
Figure 13. FFT for Two-Tone Input Signal  
Copyright © 2015, Texas Instruments Incorporated  
13  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
-88  
-90  
-20  
-92  
-40  
-94  
-60  
-96  
-98  
-80  
-100  
-102  
-104  
-100  
-120  
0
50  
100  
150  
200  
250  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Input Frequency (MHz)  
Each Tone Amplitude (dBFS)  
D013  
D014  
FIN1 = 470 MHz, FIN2 = 465 MHz, IMD = 98.8 dBFS  
Each tone at -36 dBFS  
FIN1 = 185 MHz, FIN2 = 190 MHz  
Figure 14. FFT for Two-Tone Input Signal  
Figure 15. Intermodulation Distortion Vs Input Amplitude  
-80  
-74  
-84  
-88  
-80  
-86  
-92  
-92  
-96  
-98  
-100  
-104  
-104  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D015  
D016  
FIN1 = 365 MHz, FIN2 = 370 MHz  
FIN1 = 465 MHz, FIN2 = 470 MHz  
Figure 16. Intermodulation Distortion Vs Input Amplitude  
Figure 17. Intermodulation Distortion Vs Input Amplitude  
96  
96  
Ain = -1 dBFS  
Ain = -3 dBFS  
92  
93  
90  
87  
84  
81  
78  
88  
84  
80  
76  
72  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
D017  
D018  
Figure 18. Spurious-Free Dynamic Range vs Input  
Frequency  
Figure 19. IL Spur Vs Input Frequency  
14  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
71.5  
70.5  
69.5  
68.5  
67.5  
66.5  
72  
71.2  
70.4  
69.6  
68.8  
68  
AIN = -1 dBFS  
AIN = -3 dBFS  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
D019  
D020  
FIN = 190 MHz, AIN = – 1 dBFS  
Figure 20. Signal-to-Noise Ratio vs Input Frequency  
Figure 21. Signal-to-Noise Ratio vs AVDD Supply and  
Temperature  
93  
72  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
71  
70  
69  
68  
67  
66  
91  
89  
87  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D021  
D022  
FIN = 190 MHz, AIN = – 1 dBFS  
FIN = 370 MHz, AIN = – 3 dBFS  
Figure 22. Spurious-Free Dynamic Range vs AVDD Supply  
and Temperature  
Figure 23. Signal-to-Noise Ratio vs AVDD Supply and  
Temperature  
84  
71.4  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
71  
70.6  
70.2  
69.8  
69.4  
83  
82  
81  
80  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D023  
D024  
FIN = 370 MHz, AIN = – 3 dBFS  
FIN = 190 MHz, AIN = – 1 dBFS  
Figure 24. Spurious-Free Dynamic Range vs AVDD Supply  
and Temperature  
Figure 25. Signal-to-Noise Ratio vs DVDD Supply and  
Temperature  
Copyright © 2015, Texas Instruments Incorporated  
15  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
92  
91  
90  
89  
88  
87  
86  
71  
70  
69  
68  
67  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D025  
D026  
FIN = 190 MHz, AIN = – 1 dBFS  
FIN = 370 MHz, AIN = – 3 dBFS  
Figure 26. Spurious-Free Dynamic Range vs DVDD Supply  
and Temperature  
Figure 27. Signal-to-Noise Ratio vs DVDD Supply and  
Temperature  
72.2  
84  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
71.7  
71.2  
70.7  
70.2  
69.7  
69.2  
83  
82  
81  
80  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D027  
D028  
FIN = 370 MHz, AIN = – 3 dBFS  
FIN = 190 MHz, AIN = – 1 dBFS  
Figure 28. Spurious-Free Dynamic Range vs DVDD Supply  
and Temperature  
Figure 29. Signal-to-Noise Ratio vs AVDD3V Supply and  
Temperature  
92  
73  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
91  
90  
89  
88  
87  
86  
72  
71  
70  
69  
68  
67  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D029  
D030  
FIN = 190 MHz, AIN = – 1 dBFS  
FIN = 370 MHz, AIN = – 3 dBFS  
Figure 30. Spurious-Free Dynamic Range vs AVDD3V  
Supply and Temperature  
Figure 31. Signal-to-Noise Ratio vs AVDD3V Supply and  
Temperature  
16  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
74  
72  
70  
68  
66  
64  
150  
125  
100  
75  
84  
83  
82  
81  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
50  
25  
-40  
-15  
10  
35  
60  
85  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Temperature (°C)  
Amplitude (dBFS)  
D031  
D032  
FIN = 370 MHz, AIN = – 3 dBFS  
FIN = 190 MHz  
Figure 32. Spurious-Free Dynamic Range vs AVDD3V  
Supply and Temperature  
Figure 33. Performance vs Amplitude  
75  
73  
71  
69  
67  
65  
110  
74  
180  
150  
120  
90  
SNR  
SFDR  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
72.5  
71  
100  
90  
69.5  
68  
80  
60  
70  
66.5  
30  
65  
0
60  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
Amplitude (dBFS)  
Differential Clock Amplitude (Vpp)  
D033  
D034  
FIN = 370 MHz  
FIN = 190 MHz, AIN = – 1 dBFS  
Figure 34. Performance vs Amplitude  
Figure 35. Performance vs Clock Amplitude  
75  
72  
69  
66  
63  
60  
125  
100  
75  
50  
25  
0
73  
95  
SNR  
SFDR  
SNR  
SFDR  
72  
71  
70  
69  
68  
90  
85  
80  
75  
70  
0.2  
0.6  
1
1.4  
1.8  
2.2  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Differential Clock Amplitude (Vpp)  
Input Clock Duty Cycle (%)  
D035  
D036  
FIN = 370 MHz, AIN = – 3 dBFS  
Figure 36. Performance vs Clock Amplitude  
FIN = 190 MHz, AIN = – 1 dBFS  
Figure 37. Performance vs Clock Duty Cycle  
Copyright © 2015, Texas Instruments Incorporated  
17  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: 14-Bit Burst Mode (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500  
Msps, 14-bit Resolution, No Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15  
V, –1-dBFS differential input for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
72  
71  
70  
69  
68  
67  
66  
65  
90  
87  
84  
81  
78  
75  
72  
69  
SNR  
SFDR  
-20  
-40  
-60  
-80  
-100  
-120  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
50  
100  
150  
200  
250  
Input Clock Duty Cycle (%)  
Input Frequency (MHz)  
D037  
D038  
FIN = 370 MHz, AIN = – 3 dBFS  
FIN = 190 MHz , AIN = –1 dBFS  
SFDR = 49 dBc, fPSRR = 5 MHz, APSRR = 50 mVPP  
Figure 39. Power-Supply Rejection Ratio FFT for test signal  
on AVDD Supply  
Figure 38. Performance vs Clock Duty Cycle  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
0
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD3V  
-20  
-40  
-60  
-80  
-100  
-120  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
Frequency of Signal on Supply (MHz)  
Input Frequency (MHz)  
D039  
D040  
FIN = 190 MHz, AIN = – 1 dBFS  
FIN = 190 MHz , AIN = – 1 dBFS  
SFDR = 81 , fCMRR = 5 MHz, ACMRR = 50 mVPP  
Figure 41. Common-Mode Rejection Ratio FFT  
Figure 40. Power-Supply Rejection Ratio vs Supplies  
4
3.2  
2.4  
1.6  
0.8  
0
-20  
AVDD_Power (W)  
DVDD_Power (W)  
AVDD3V_Power (W)  
IOVDD_Power (W)  
TotalPower (W)  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
0
50  
100  
150  
200  
250  
300  
250  
300  
350  
400  
450  
500  
Frequency of Input Common-Mode Signal (MHz)  
Sampling Speed (MSPS)  
D041  
D042  
FIN = 190 MHz, AIN= – 1dBFS  
50-mVPP test-Signal on input common mode  
Figure 42. Common-Mode Rejection Ratio  
Figure 43. Power vs Chip Clock  
18  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
6.10 Typical Characteristics: Mode 2  
Low pass or high pass decimation-by-2 filter selected as per input frequency. Typical values are at TA = 25°C, full  
temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500 Msps, 14-bit Resolution, No  
Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input  
for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D043  
D044  
FIN = 100 MHz , AIN = – 1 dBFS  
FIN = 150 MHz , AIN = – 1 dBFS  
SNR = 74.1 dBFS, SFDR = 98 dBc, SFDR = 100 dBc (Non23)  
SNR = 73.8 dBFS, SFDR = 99 dBc, SFDR = 99 dBc (Non23)  
Figure 44. FFT for 100-MHz Input Signal  
Figure 45. FFT for 150-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D045  
D045  
FIN = 185 MHz , AIN = – 1 dBFS  
FIN = 230 MHz , AIN = – 1 dBFS  
SNR = 73.2 dBFS, SFDR = 98 dBc, SFDR = 98 dBc (Non23)  
SNR = 72.4 dBFS, SFDR = 91 dBc, SFDR = 98 dBc (Non23)  
Figure 46. FFT for 185-MHz Input Signal  
Figure 47. FFT for 230-MHz Input Signal  
Copyright © 2015, Texas Instruments Incorporated  
19  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
6.11 Typical Characteristics: Mode 0  
Low-pass decimation-by-2 filter selected, Complex FFT plotted,mixer frequency 125 MHz. Typical values are at TA = 25°C,  
full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC Sampling Frequency = 500 Msps, 14-bit Resolution, No  
Decimation Filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input  
for IF 250 MHz, and –3-dBFS differential input for IF > 250 MHz, unless otherwise noted.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
-125  
-75  
-25  
25  
75  
125  
-125  
-75  
-25  
25  
75  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D047  
D048  
FIN = 270 MHz , AIN = – 3 dBFS  
FIN = 370 MHz , AIN = – 3 dBFS  
SNR = 69.5 dBFS, SFDR = 83 dBc, SFDR = 87 dBc (Non23)  
SNR = 68.1 dBFS, SFDR = 82 dBc, SFDR = 82 dBc (Non23)  
Figure 48. FFT for 270-MHz Input Signal  
Figure 49. FFT for 370-MHz Input Signal  
0
-20  
-40  
-60  
-80  
-100  
-120  
-125  
-75  
-25  
25  
75  
125  
Input Frequency (MHz)  
D049  
FIN = 470 MHz , AIN = – 3 dBFS  
SNR = 66.3 dBFS, SFDR = 75 dBc, SFDR = 75 dBc (Non23)  
Figure 50. FFT for 470-MHz Input Signal  
20  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7 Detailed Description  
7.1 Overview  
The ADS58J63 is a low power, wide bandwidth 14-bit 500 MSPS quad channel telecom receiver IC. It supports  
the JESD204B serial interface with data rates up to 10 Gbps supporting 1 lane per channel. The buffered analog  
input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch  
energy. The ADS58J63 provides excellent spurious-free dynamic range (SFDR) over a large input frequency  
range with very low power consumption. Its digital block includes a 2x and 4x decimation low pass filter with FS/4  
and k×FS/16 mixers to support a receive bandwidth up to 200 MHz and a output burst mode for use as DPD  
observation receiver.  
The JESD204B interface reduces the number of interface lines allowing high system integration density. An  
internal phase locked loop (PLL) multiplies the incoming ADC sampling clock to derive the bit clock which is used  
to serialize the 14bit data from each channel.  
7.2 Functional Block Diagram  
Digital Block  
Interleaving  
Correction  
2x  
14bit  
ADC  
INAP/M  
INBP/M  
DAP/M  
C{ꢀ4  
4x  
2x  
JESD204B  
Digital Block  
Interleaving  
Correction  
Y*C{ꢀ16  
14bit  
ADC  
C{ꢀ8  
DBP/M  
Burst Mode  
TRIGAB  
TRIGCD  
TRDYAB  
TRDYCD  
SYSREFP/M  
CLKINP/M  
PLL  
x10/x20  
SYNCbAB  
SYNCbCD  
Burst Mode  
Digital Block  
Interleaving  
Correction  
14bit  
ADC  
INCP/M  
INDP/M  
DCP/M  
DDP/M  
2x  
C{ꢀ4  
JESD204B  
4x  
2x  
Digital Block  
Interleaving  
Correction  
14bit  
ADC  
Y*C{ꢀ16  
C{ꢀ8  
Configuration  
Registers  
Copyright © 2015, Texas Instruments Incorporated  
21  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Inputs  
The ADS58J63 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source which enables great flexibility  
in the external analog filter design as well as excellent 50 matching for RF applications. The buffer also helps  
to isolate the external driving circuit from the internal switching currents of the sampling circuit which results in a  
more constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to 1.9 V using 600-resistors which allows  
for AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM – 0.475 V), resulting in a 1.9-Vpp (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 900 MHz.  
7.3.2 Recommended Input Circuitry  
In order to achieve optimum AC performance the following circuitry is recommended at the analog inputs.  
Ç1  
Ç2  
0.1uC  
10  
Lbxt  
0.1uC  
25 Ω  
25 Ω  
25 Ω  
0.1uC  
win  
/in  
3.3 pF  
25 Ω  
Lbxa  
1:1  
10 Ω  
1:1  
0.1uC  
5evice  
Figure 51. Analog Input Driving Circuit  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4 Device Functional Modes  
7.4.1 Digital Features  
The ADS58J63 supports decimation by 2 and 4 and burst mode output. The 4 channels can be configured as  
pairs (A and B and C and D) to either burst or decimation mode (must be same decimation mode for all 4  
channels).  
Table 1. Overview of Operating Modes  
MAX  
OUTPUT  
RATE  
OPERATING  
MODE  
DIGITAL  
MIXER  
BANDWIDTH BANDWIDTH  
OUTPUT  
FORMAT  
DESCRIPTION  
DECIMATION  
AT 491Msps  
AT 368Msps  
0
2
4
5
6
7
8
±FS/4  
2
2
2
2
4
2
200 MHz  
100 MHz  
100 MHz  
200 MHz  
100 MHz  
100 MHz  
245.76 MHz  
150 MHz  
75 MHz  
Complex  
Real  
250 Msps  
250 Msps  
250 Msps  
250 Msps  
125 Msps  
500 Msps  
500 Msps  
N×Fs/16  
N×Fs/16  
N×Fs/16  
N×Fs/16  
75 MHz  
Real  
Decimation  
Burst Mode  
150 MHz  
75 MHz  
Complex  
Complex  
Real  
75 MHz  
184.32 MHz  
Real  
Figure 52 shows signal processing in Digital Down-Conversion (DDC) Block in ADS58J63.  
L dꢀtꢀ  
Filter  
N
weꢀl dꢀtꢀ  
0
2
4
5
6
7
8
L[  
9
n
g
i
cos(2nfmix2/f{ )  
sin(2nfmix2/f{ )  
cos(2nfmix1/f{ )  
ꢃ00a{ꢄ{  
dꢀtꢀ, x(n)  
ꢁI x  
2
Üpscꢀled  
Ço W9{5  
9ncoder  
n
e
ùero-  
pꢀdded  
dꢀtꢀ  
sin(2nfmix1/f{ )  
N
Filter  
v dꢀtꢀ  
14-bit  
Burst Mode  
14/ꢂ-bit .urst aode dꢀtꢀ  
aode  
{election  
Figure 52. Digital Down-Conversion (DDC) Block  
Table 2 shows characteristics of different blocks of DDC signal processing blocks active in different modes.  
Table 2. Features of DDC Block in Different Modes  
Mode  
fmix1  
fS/4  
Filter and Decimation  
fmix 2  
not used  
not used  
fS/8  
Output  
0
2
4
5
6
LPF cut off freq at fS/4, decimation by 2  
LPF or HPF cut off at fS/4, decimation by 2  
LPF cutoff at fS/8, decimation by 2  
LPF cutoff at fS/8, decimation by 2  
LPF cutoff at fS/8, decimation by 4  
I, Q data at 250 MSPS each is given out  
Straight 250 MSPS data is given out  
Real data at 250 MSPS is given out  
I, Q data at 250 MSPS each is given out  
I, Q data at 125 MSPS each is given out  
not used  
k fS/16  
k fS/16  
k fS/16  
not used  
not used  
Real data is up-scaled, zero-padded and given out  
at 500 MSPS  
7
8
k fS/16  
LPF cutoff at fS8, decimation by 2  
not used  
fS/8  
not used  
not used  
Straight 500 MSPS Burst mode data is given out  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.4.2 Mode 0 – Decimation by 2 with IQ Outputs for up to 220 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a fixed frequency ±Fs/4 complex digital mixer preceding the digital  
filter – so the IQ passband is ± ~110 MHz (3 dB) centered at Fs/4. Mixing with +FS/4 inverts the spectrum. The  
stop band attenuation is approximately 90 dB and the passband flatness is ±0.1 dB. Figure 53 shows mixing  
operation in DDC Mode 0.  
± Fs/4  
500 Msps  
IQ: 500 Msps  
14-bit  
ADC  
IQ: 250 Msps  
2x  
FS/4  
FS/2  
FS/4  
Figure 53. Mixing in Mode 0  
Table 3. Filter Specification Details – Mode 0  
CORNERS  
LOW PASS  
0.204 × Fs  
0.211 × Fs  
0.216 × Fs  
0.226 × Fs  
–0.1 dB  
–0.5 dB  
–1 dB  
–3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
Frequency Response  
D052  
D053  
Figure 54. Frequency Response of Filter in Mode 0  
Figure 55. Zoomed view of Frequency Response  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4.3 Mode 2 – Decimation by 2 for up to 110 MHz of Real Bandwidth  
In this configuration, the DDC block only includes a 2x decimation filter (high pass or low pass) with real outputs.  
The passband is ~110 MHz (3 dB). Figure 56 shows filtering operation in DDC Mode 2.  
500 Msps  
14-bit  
250 Msps  
2x  
ADC  
FS/4  
FS/2  
FS/4  
Figure 56. Filtering in Mode 2  
Table 4. Filter Specification Details – Mode 2  
CORNERS  
–0.1 dB  
–0.5 dB  
–1 dB  
LOW PASS  
0.204 × Fs  
0.211 × Fs  
0.216 × Fs  
0.226 × Fs  
HIGH PASS  
0.296 × Fs  
0.290 × Fs  
0.284 × Fs  
0.274 × Fs  
–3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D056  
D057  
Figure 57. Frequency Response for Decimate-by-2 Low  
Pass and High Pass Filter (in Mode 2)  
Figure 58. Zoomed View of Frequency Response  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.4.4 Mode 4/7 – Decimation by 2 with Real Outputs for up to 110 MHz of Bandwidth  
In this configuration, the DDC block includes a selectable N×Fs/16 complex digital mixer (N from –8 to +7)  
preceding the decimation by 2 digital filter also with an IQ passband of ± ~55 MHz (3 dB) centered at N×Fs/16. A  
positive value for N inverts the spectrum. In addition a Fs/8 complex digital mixer is added after the decimation  
filter transforming the output back to real format while centering the output spectrum within the Nyquist zone.  
In addition the ADS58J63 supports a 0-pad feature where a sample with value = 0 gets added after each  
sample. In that way the output data rate gets interpolated to 500 Msps (real) with a 2nd image inverted at Fs/2-  
Fin.  
The stop band attenuation is approximately 90 dB for in-band aliases from negative frequencies and ~55 dB for  
out of band aliases. The passband flatness is ±0.1 dB.  
FS/8  
2nd Image  
N*Fs/16  
Fs/8  
Real: 500 Msps  
Real: 250 Msps  
0 Pad  
500 Msps  
IQ: 500 Msps  
IQ: 250 Msps  
14-bit  
ADC  
2x  
FS/4  
FS/2  
Example:  
N= -4  
FS/8  
FS/4  
FS/2  
0
FS/8  
FS/4  
FS/4  
Figure 59. Mixing and Filtering in Mode 4/7  
Table 5. Filter Specification Details – Mode 4/7  
CORNERS  
–0.1 dB  
–0.5 dB  
–1 dB  
LOW PASS  
0.102 × Fs  
0.105 × Fs  
0.108 × Fs  
0.113 × Fs  
–3 dB  
0.5  
0
20  
0
-0.5  
-1  
-20  
-40  
-60  
-80  
-100  
-120  
-1.5  
-2  
-2.5  
-3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
Frequency Response  
D050  
D051  
Figure 60. Frequency Response for Decimate-by-2 Low-  
Pass Filter (in Mode 4 and Mode 7)  
Figure 61. Zoomed View of Frequency Response  
26  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4.5 Mode 5 – Decimation by 2 with IQ Outputs for up to 110 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a selectable N×Fs/16 complex digital mixer (N from –8 to +7)  
preceding the decimation by 2 digital filter – so the IQ passband is ± ~55 MHz (3 dB) centered at N×Fs/16. A  
positive value for N inverts the spectrum.  
The stop band attenuation is approximately 90 dB for in-band aliases from negative frequencies. The passband  
flatness is ±0.1 dB.  
N*Fs/16  
500 Msps  
IQ: 500 Msps  
14-bit  
ADC  
IQ: 250 Msps  
2x  
Example:  
N= -4  
FS/4  
FS/2  
FS/8  
FS/4  
Figure 62. Mixing and Filtering in Mode 5  
Table 6. Filter Specification Details – Mode 5  
CORNERS  
LOW PASS  
0.102 × Fs  
0.105 × Fs  
0.108 × Fs  
0.113 × Fs  
–0.1 dB  
–0.5 dB  
–1 dB  
–3 dB  
0.5  
0
20  
0
-0.5  
-1  
-20  
-40  
-60  
-80  
-100  
-120  
-1.5  
-2  
-2.5  
-3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
Frequency Response  
D050  
D051  
Figure 63. Frequency Response for Decimate-by-2 Low-  
Pass Filter (in Mode 5)  
Figure 64. Zoomed View of Frequency Response  
Copyright © 2015, Texas Instruments Incorporated  
27  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.4.6 Mode 6 – Decimation by 4 with IQ Outputs for up to 110 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a selectable n×Fs/16 complex digital mixer (n from –8 to +7)  
preceding the decimation by 4 digital filter – so the IQ passband is ± ~55 MHz (3 dB) centered at n×Fs/16. A  
positive value for N inverts the spectrum. The decimaiton by 4 filter is a cascade of two decimation by 2 filters  
with frequency response shown in Figure 66.  
The stop band attenuation is approximately 90 dB for in-band aliases from negative frequencies and ~55 dB for  
out of band aliases. The passband flatness is ±0.1 dB.  
N*Fs/16  
500 Msps  
IQ: 500 Msps  
14-bit  
ADC  
IQ: 250 Msps  
IQ: 125 Msps  
2x  
2x  
Example:  
N= -6  
3FS/8  
FS/4  
FS/2  
FS/8  
FS/4  
Figure 65. Mixing and Filtering in Mode 6  
Table 7. Filter Specification Details – Mode 6  
CORNERS  
–0.1 dB  
–0.5 dB  
–1 dB  
LOW PASS  
0.102 × Fs  
0.105 × Fs  
0.108 × Fs  
0.113 × Fs  
–3 dB  
0.5  
0
20  
0
-0.5  
-1  
-20  
-40  
-60  
-80  
-100  
-120  
-1.5  
-2  
-2.5  
-3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
Frequency Response  
D050  
D051  
Figure 66. Frequency Response for Decimate-by-2 Low-  
Pass Filter (in Mode 6)  
Figure 67. Zoomed View of Frequency Response  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4.7 Mode 8 – Burst Mode  
In burst mode the output data is alternated between low resolution (L, 9-bit) and high resolution (H, 14-bit)  
output. The burst mode can be configured via SPI register writes independently for channel A/B and channel  
C/D.  
The high resolution output is 14 bit and the number (#) of high and low resolution samples is set with two user  
programmable counters – one for high resolution (HC) and one for low resolution (LC). There is one counter pair  
(HC, LC) for channel A/B and one pair for channel C/D. The internal logic checks if the maximum duty cycle is  
exceeded and if necessary resets the counters to its default values.  
Each output cycle starts with a low resolution and the counter values can be reconfigured for the next cycle  
during prior to the start of the next cycle.  
Enable  
Burst Mode  
New cycle  
starts again  
L times out  
DA  
DB  
DC  
DD  
L
H
L
H
Update Counter Values  
HRES  
14-bit high resolution  
9-bit low resolution  
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
OVR HR  
13 12 11 10  
16-bit data going into 8b/10b encoder  
Figure 68. Timing Diagram for 14-bit Burst Mode (DDC Mode 8)  
The counter values for high and low resolution can be programmed to:  
High resolution counter (HC): 1 to 225  
Low resolution counter (LC); 1 to 228  
The output duty cycle limit is illustrated in Table 8.  
Table 8. Output Duty Cycle Limit  
MAXIMUM ALLOWED DUTY CYCLE  
(high : low resolution output)  
DEFAULT VALUE  
HC  
DEFAULT VALUE  
LC  
HIGH RESOLUTION  
OUTPUT  
LOW RESOLUTION  
OUTPUT  
14 bit  
9 bit  
1/3  
1
3
Copyright © 2015, Texas Instruments Incorporated  
29  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.4.8 Trigger Input  
The burst mode can be operated in auto trigger or manual trigger mode. In manual trigger mode the TRIGGER  
input (TRIGAB, TRIGCD) is used to release the high resolution data (HC) burst after the low resolution data  
counter LC has timed out. In auto trigger mode the high resolution data is released immediately after completion  
of the last low resolution sample.  
Using SPI control the ADS58J63 can be configured to use TRIGAB or TRIGCD as the manual trigger input.  
7.4.9 Manual Trigger Mode  
Upon enabling manual trigger mode, the ADS58J63 starts transmission of low resolution data. As soon as the LC  
counter is finished, the manual trigger is unlocked, the trigger ready flag (TRDY) is raised and the high resolution  
output H can be triggered. Once the low resolution counter LC is finished, the next high resolution output or burst  
mode sequence can be triggered again. The HRES flag is embedded in the JESD204B output data stream. The  
counter values can be updated until a new burst mode cycles starts with transmission of low resolution samples.  
Example of burst mode with manual trigger:  
Enable  
Burst Mode  
LC times out  
Ready for trigger  
Trigger Event  
New cycle  
starts again  
DA  
DB  
DC  
DD  
L
H
L
H
Update Counter Values  
TRDYAB/CD  
TRIGAB/CD  
HRES  
14 bit high resolution  
9 bit low resolution  
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
OVR HR  
13 12 11 10  
16 bit data going into 8b/10b encoder  
Figure 69. Timing Diagram for Manual Trigger Mode  
30  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4.10 Auto Trigger Mode  
Upon enabling auto trigger mode, the ADS58J63 starts transmission of low resolution data. As soon as the low  
resolution samples counter (LC) is finished, the ADS58J63 immediately begins transmitting the high resolution  
output H. The HRES flag can also be embedded in the JESD204B output data stream. The counter values can  
be updated until a new burst mode cycles starts with transmission of low resolution samples. Any input on the  
trigger input pins is ignored.  
Example of burst mode with automatic trigger:  
Enable  
Burst Mode  
New cycle  
starts again  
LC times out  
DA  
DB  
DC  
DD  
L
H
L
H
Update Counter Values  
HRES  
14-bit high resolution  
9-bit low resolution  
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
OVR HR  
13 12 11 10  
16-bit data going into 8b/10b encoder  
Figure 70. Timing Diagram for Auto Trigger Mode  
Copyright © 2015, Texas Instruments Incorporated  
31  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.4.11 Over-range Indication  
The ADS58J63 provides a fast over-range indication (FOVR) which can be presented in the digital output data  
stream via SPI configuration. When the FOVR indication is embedded in the output data stream, it replaces the  
LSB (normal 0) of the 16 bit going to the 8b/10b encoder.  
One threshold is set per channel pair A/B and C/D.  
14-bit data output  
0/  
OVR  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
16-bit data going into 8b/10b encoder  
Figure 71. Timing Diagram for FOVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and it gets  
presented after just 44 input clock cycles enabling a quicker reaction to an overrange event.  
The input voltage level at which the overload is detected is referred to as the threshold. It is programmable using  
the FOVR THRESHOLD bits.  
The input voltage level at which fast OVR is triggered is:  
Full-scale × [the decimal value of the FOVR Threshold bits] / 255)  
The default threshold is E3h (227) which corresponds to a threshold of –1 dBFS.  
In terms of full scale input, the fast OVR threshold can be calculated as shown in Equation 1:  
20 × log (<FOVR Threshold>/255).  
(1)  
Following is an example register write to set the FOVR threshold for all 4 channels:  
Table 9. Register Sequence for FOVR Configuration  
ADDRESS  
11h  
DATA  
80h  
20h  
FFh  
FFh  
68h  
00h  
01h  
03h  
01h  
00h  
COMMENT  
Go to Master page  
59h  
Enable FOVR  
11h  
Go to ADC page  
5Fh  
Set FOVR threshold for chCD to 255  
4004h  
4003h  
60ABh  
60ADh  
6000h  
6000h  
Go to main digital page  
Enable bit D0 overwrite  
Select FOVR to replace bit D0  
Issue and clear digital reset  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.4.12 Power-Down Mode  
The ADS58J63 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN  
pin or SPI register writes.  
A power-down mask can be configured, which allows a trade-off between wake-up time and power consumption  
in power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2 as shown  
in Table 10. See the master page registers in Table 15 for further details.  
Table 10. Register Address for Power-Down Modes  
REGISTER  
ADDRESS  
REGISTER DATA  
COMMENT  
A[7:0] (Hex)  
MASTER PAGE (80h)  
20  
7
6
5
4
3
2
1
0
PDN ADC CHAB  
PDN ADC CHCD  
MASK 1  
21  
23  
24  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0
0
0
0
PDN ADC CHAB  
PDN ADC CHCD  
MASK 2  
CONFIG  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0
0
0
0
0
0
0
0
GLOBAL  
PDN  
OVERRIDE  
PDN PIN  
PDN MASK  
26  
0
SEL  
MASK  
SYSREF  
53  
55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN MASK  
To save power, the device can be put in complete power down by using the GLOBAL PDN register bit. However,  
when JESD link must remain up while putting the device in power down, the ADC and analog buffer can be  
powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK  
register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. Table 11  
shows power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx  
register bits.  
Table 11. Power Consumption in Different Power-Down Settings  
TOTAL  
IAVDD3V  
(mA)  
IAVDD  
(mA)  
IDVDD  
(mA)  
IIOVDD  
(mA)  
POWER  
(W)  
REGISTER BIT  
Default  
COMMENT  
After reset, with a full-scale input signal to  
both channels  
0.340  
0.002  
0.365  
0.006  
0.184  
0.012  
0.533  
0.181  
2.675  
0.247  
The device is in complete power-down  
state  
GBL PDN = 1  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = AB or CD)  
The ADCs of one pair of channels are  
powered down  
0.277  
0.266  
0.225  
0.361  
0.123  
0.187  
0.496  
0.527  
2.063  
2.445  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = AB or CD)  
The input buffers of one pair of channels  
iarepowered down  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = AB or CD)  
The ADCs and input buffers of one pair of  
channels are powered down  
0.200  
0.060  
0.224  
0.080  
0.126  
0.060  
0.492  
0.448  
1.830  
0.960  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = AB and CD)  
The ADCs and input buffers of all channels  
are powered down  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
 
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.5 Programming  
7.5.1 Device Configuration  
The ADS58J63 can be configured using a serial programming interface, as described below. In addition, the  
device has one dedicated parallel pin (PDN) for controlling the power down modes. The ADS58J63 supports a  
24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see detailed register map info) to access all  
register bits.  
7.5.1.1 Details of Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock) and SDIN (serial interface data) pins. Serial shift of bits into the  
device is enabled when SEN is low. Serial data on SDIN are latched at every SCLK rising edge when SEN is  
active (low). The interface can work with SCLK frequencies from 5 MHz down to very low speeds (of a few hertz)  
and also with non-50% SCLK duty cycle.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 72. Serial Interface Timing Diagram  
Table 12. Programing Details of Serial Interface  
SPI BITS  
DESCRIPTION  
OPTIONS  
0 = SPI write  
1 = SPI read back  
R/W  
Read/write bit  
0 = Analog SPI bank (Master and ADC page)  
1 = JDigital SPI bank (Main Digital, Analog JESD, and  
Digital JESD pages)  
M
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P
0 = Channel AB  
1 = Channel CD  
By default, both channels are being addressed.  
SPI access for a specific channel of the digital SPI  
bank  
CH  
ADDR [11:0]  
DATA [7:0]  
SPI address bits  
SPI data bits  
34  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.5.1.2 Serial Register Write: Analog Bank  
The analog SPI bank contains of two pages (the master and ADC page). The internal register of the ADS58J63  
analog SPI bank can be programmed by:  
1. Drive the SEN pin low.  
2. Initiate a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Write the register content as shown in Figure 73. When a page is selected, multiple writes into the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 73. Serial Register Write Timing Diagram  
7.5.1.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Drive the SEN pin low.  
2. Select the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Set the R/W bit to 1 and write the address to be read back.  
4. Read back the register content on the SDOUT pin, as shown in Figure 74. When a page is selected, multiple  
read backs from the same page can be done.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 74. Serial Register Read Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
35  
 
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.5.1.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains four pages (main digital, interleaving engine, digital, and analog JESD pages). The  
individual pages can be selected by:  
1. Drive the SEN pin low.  
2. Set the M bit to 1 and specify the page with two register writes. Note that the P bit must be set to 0, as  
shown in Figure 75.  
Write address 4003h with 00h (LSB byte of page address).  
Write address 4004h with the MSB byte of the page address.  
For Main digital page: write address 4004h with 68h.  
For Digital JESD page: write address 4004h with 69h.  
For Analog JESD page: write address 4004h with 6Ah.  
For Interleaving engine page: write address 4004h with 61h.  
Register Address[11:0]  
Register Data[7:0]  
D5 D4 D3 D2  
0
1
0
0
SDIN  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SCLK  
SEN  
RESET  
Figure 75. SPI Page Selection  
7.5.1.5 Serial Register Write: Analog Bank  
The analog SPI bank contains two pages (Master and ADC page). The internal register of the ADS58J63 analog  
SPI bank can be programmed following these steps:  
1. Drive the SEN pin low.  
2. Initiate a serial interface cycle specifying the page address of the register whose content has to be written  
Master page: write address 11h with 80h  
ADC page: write address 11h with 0Fh  
3. Write register content. Once a page is selected, multiple writes into the same page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 76. Serial Register Write Timing Diagram  
36  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.5.1.6 Serial Register Readout: Analog Bank  
SPI read out of content in one of the two analog banks can be accomplished with the following steps:  
1. Drive the SEN pin low.  
2. Select the page address of the register which content has to be read.  
Master page: write Address = 11h with 80h  
ADC page: write Address 11h with 0Fh.  
3. Set the R/W bit to '1' and write the address to be read back.  
4. Read back register content on the SDOUT pin. Once a page is selected, multiple read backs from the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 77. Serial Register Read Timing Diagram  
7.5.1.7 Digital Bank SPI Page Selection  
The Digital SPI bank contains five pages (Main digital, Interleaving Engine, Decimation filter, JESD digital, and  
JESD analog). The individual pages can be selected following these steps:  
1. Drive the SEN pin low.  
2. Set the M bit to ‘1’ and specify the page with two register writes (Note: P bit set to 0)  
Write address 4003h with 00h (LSB byte of page address)  
Write address 4004h MSB byte of page address  
spacer  
Main digital page: write Address = 4004h with 68h (default)  
Digital JESD page: write Address = 4004h with 69h  
Analog JESD page: write Address = 4004h with 6Ah  
Interleaving Engine page: write Address = 4004h with 61h  
Decimation Filter page: write Address = 4004h with 61h and 4003h with 41h  
Register Address <11:0>  
Register Data <7:0>  
D5 D4 D3 D2  
0
1
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SEN  
RESET  
Figure 78. SPI Timing Diagram for Digital Bank Page Selection  
Copyright © 2015, Texas Instruments Incorporated  
37  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.5.1.8 Serial Register Write – Digital Bank  
The ADS58J63 is a quad channel device and the JESD204B portion is configured individually for 2 channel (A/B  
and C/D) using the CH bit. Note the P bit needs to be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the digital bank page (Note: M bit = 1, P bit = 0)  
Write address 4003h with 00h  
Main digital page: write Address = 4004h with 68h (default)  
Digital JESD page: write Address = 4004h with 69h  
Analog JESD page: write Address = 4004h with 6Ah  
Interleaving Engine page: write Address = 4004h with 61h  
Decimation Filter page: write Address = 4004h with 61h and 4003h with 41h  
3. Set M and P bit to 1 and select ChAB (CH=0) or ChCD (CH=1) and write register content. Once a page is  
selected, multiple writes into the same page can be done.  
By default, register writes are applied to both channel pairs (broadcast mode). To disable broadcast mode  
and enable individual channel writes, write address 4005h with 01h (default is 00h).  
Register Address <11:0>  
Register Data <7:0>  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 79. Serial Register Write Timing Diagram  
7.5.1.9 Individual Channel Programming  
By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h  
with 01h (default is 00h).  
7.5.1.10 Serial Register Readout – Digital Bank  
SPI read out of content in one of the three digital banks can be accomplished with the following steps:  
1. Drive the SEN pin low.  
2. Select the digital bank page (Note: M bit = 1, P bit = 0)  
Write address 4003h with 00h  
Main digital page: write Address = 4004h with 68h  
Digital JESD page: write Address = 4004h with 69h  
Analog JESD page: write Address = 4004h with 6Ah  
Interleaving Engine page: write Address = 4004h with 61h  
Decimation Filter page: write Address = 4004h with 61h and 4003h with 41h  
3. Set the R/W bit, M and P bit to '1' and select ChAB) or ChCD and write the address to be read back.  
4. Read back register content on the SDOUT pin. Once a page is selected, multiple read backs from the same  
page can be done.  
38  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Register Address <11:0>  
A7 A6 A5 A4  
Register Data <7:0> = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT <7:0>  
Figure 80. Serial Register Read Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
39  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.5.2 JESD204B Interface  
The ADS58J63 supports device subclass 1 with a maximum output data rate of 10 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multi frame clock to a specific  
sampling clock edge. This allows synchronization of multiple devices in a system and minimizes timing and  
alignment uncertainty. The ADS58J63 supports single (for all 4 JESD links) or dual (for channel A/B and C/D)  
SYNCb inputs and can be configured via SPI.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b/10b  
encoding  
Scrambler  
1+x14+x15  
DX  
Comma characters  
Initial lane alignment  
Test Patterns  
SYNCb  
Figure 81. JESD Interface Block Diagram  
Depending on the ADC sampling rate, the JESD204B output interface can be operated with 1 lane per channel.  
The JESD204B setup and configuration of the frame assembly parameters is handled via SPI interface.  
The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The  
transport layer maps the ADC output data into the selected JESD204B frame data format and manages if the  
ADC output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as well  
as the synchronization and initial lane alignment using the SYNC input signal. Optionally data from the transport  
layer can be scrambled.  
SYSREFSYNCbAB  
JESD204B  
JESD  
204B  
INA  
DA  
JESD204B  
JESD  
204B  
INB  
DB  
JESD204B  
JESD  
204B  
INC  
DC  
JESD204B  
JESD  
204B  
IND  
DD  
Sample  
Clock  
SYNCbCD  
Figure 82. JESD204B Transmitter Block  
40  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.5.2.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started by the receiving device by de-asserting the SYNCb signal. Upon  
detecting a logic low on the SYNC input pins, the ADS58J63 starts transmitting comma (K28.5) characters to  
establish code group synchronization.  
Once synchronization is completed the receiving device re-asserts the SYNCb signal and the ADS58J63 starts  
the initial lane alignment sequence with the next local multi frame clock boundary. The ADS58J63 transmits 4  
multi-frames each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the 2nd multi-frame also contains the JESD204 link configuration data.  
{ò{w9C  
[aC/ /lock  
[aC/ .oundꢁry  
aulti  
Crꢁme  
{òb/ꢀ  
Çrꢁnsmit 5ꢁtꢁ  
xxx  
Y28ꢂꢃ  
/ode Droup  
{ynchronizꢁtion  
Figure 83. ILA Sequence  
Y28ꢂꢃ  
Lnitiꢁl [ꢁne  
!lignment  
L[!  
L[!  
5!Ç!  
5ꢁtꢁ Çrꢁnsmission  
5!Ç!  
7.5.2.2 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link.  
M is the number of converters per device.  
F is the number of octets per frame clock period.  
S is the number of samples per frame.  
Table 13 lists the available JESD204B formats and valid ranges for the ADS58J63. The ranges are limited by the  
Serdes line rate and the maximum ADC sample frequency.  
Table 13. Available JESD204B Formats and Valid Ranges for the ADS58J63  
JESD  
MODE  
(69h, 01h) (6Ah, 01h6)  
JESD PLL  
MODE  
MAX ADC  
OUTPUT  
RATE (Msps)  
MAX fSERDES  
(Gbps)  
OPERATING  
MODE  
OUTPUT  
FORMAT  
L
M
F
S
DIGITAL MODE  
4
4
2
4
2
4
8
4
4
8
8
4
4
2
4
4
8
2
1
1
1
1
1
1
0,5  
2,4  
2,4  
6
2x Decimation  
2x Decimation  
2x Decimation  
4x Decimation  
4x Decimation  
Complex  
Real  
40 x  
20 x  
40 x  
40 x  
80 x  
20 x  
40 x  
20 x  
40 x  
20 x  
40 x  
40 x  
250  
250  
250  
125  
125  
500  
10.0  
5.0  
Real  
10.0  
5.0  
Complex  
Complex  
Real  
6
10.0  
10.0  
7
2x Decimation with  
‘0-Pad’  
4
4
2
1
8
Burst Mode  
Real  
20 x  
40 x  
500  
10.0  
Copyright © 2015, Texas Instruments Incorporated  
41  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
The detailed frame assembly is shown in Table 14.  
Table 14. Detailed Frame Assembly  
LMFS = 4841  
LMFS = 4421  
LMFS = 4421 (0-Pad)  
DA  
DB  
DC  
DD  
AI0[15:8]  
BI0[15:8]  
CI0[15:8]  
DI0[15:8]  
AI0[7:0] AQ0[15:8 AQ0[7:0]  
]
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
A0[7:0]  
A1[15:8]  
B1[15:8]  
C1[15:8]  
D1[15:8]  
A1[7:0]  
B1[7:0]  
C1[7:0]  
D1[7:0]  
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
A0[7:0]  
B0[7:0]  
C0[7:0]  
D0[7:0]  
0000  
0000  
0000  
0000  
BI0[7:0] BQ0[15:8 BQ0[7:0]  
]
B0[7:0]  
C0[7:0]  
D0[7:0]  
0000  
0000  
0000  
0000  
CI0[7:0] CQ0[15:8 CQ0[7:0]  
]
0000  
0000  
0000  
0000  
DI0[7:0] DQ0[15:8 DQ0[7:0]  
]
0000  
0000  
0000  
0000  
LMFS = 2441  
LMFS = 2881  
DB  
DC  
A0[15:8]  
C0[15:8]  
A0[7:0]  
C0[7:0]  
B0[15:8]  
D0[15:8]  
B0[7:0]  
D0[7:0]  
AI0[15:8]  
CI0[15:8]  
AI0[7:0] AQ0[15:8] AQ0[7:0] BI0[15:8]  
CI0[7:0] CQ0[15:8] CQ0[7:0] DI0[15:8]  
BI0[7:0] BQ0[15:8] BQ0[7:0]  
DI0[7:0] DQ0[15:8] DQ0[7:0]  
42  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.5.2.3 JESD Output Switch  
The ADS58J63 provides a digital cross point switch in the JESD204B block which allows internal routing of any  
output of the 2 ADCs within one channel pair to any of the 2 JESD204B serial transmitters in order to ease layout  
constraints. The cross point switch routing is configured via SPI (address 21h in JESD digital page).  
JESD SWITCH  
ADCA  
ADCB  
DAP/M  
DBP/M  
JESD SWITCH  
ADCC  
ADCD  
DCP/M  
DDP/M  
Figure 84. Switching the Output Lanes  
7.5.2.3.1 Serdes Transmitter Interface  
Each of the 10 Gbps serdes transmitter outputs requires AC coupling between transmitter and receiver. The  
differential pair should be terminated with 100 Ω as close to the receiving device as possible to avoid unwanted  
reflections and signal degradation.  
0.1 uF  
DA/B/C/DP  
R t = Z O  
Transmission Line  
VCM  
Receiver  
Zo  
R t = Z O  
DA/B/C/DM  
0.1 uF  
Figure 85. Serdes Transmitter Connection to Receiver  
7.5.2.3.2 SYNCb Interface  
The ADS58J63 supports single (either SYNCb input controls all 4 JESD204B links) or dual (1 SYNCb input  
controls 2 JESD204B lanes (DA/DB and DC/DD) SYNCb control. When using single SYNCb control, the unused  
input should be connected to differential logic low (SYNCbxxP = 0 V, SYNCbxxM = IOVDD).  
Copyright © 2015, Texas Instruments Incorporated  
43  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.5.2.3.3 Eye Diagram  
Figure 86 to Figure 89 show the serial output eye diagrams of the ADS58J63 at 5 Gbps and 10 Gbps with default  
and increased output voltage swing against the JESD204B mask.  
Figure 86. Eye at 5-Gbps Bit Rate with  
Default Output Swing  
Figure 87. Eye at 5-Gbps Bit Rate with  
Increased Output Swing  
Figure 89. Eye at 10-Gbps Bit Rate with  
Increased Output Swing  
Figure 88. Eye at 10-Gbps Bit Rate with  
Default Output Swing  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6 Register Maps  
The conceptual diagram of Serial Registers is shown in Figure 90.  
SPI CYCLE Initiated  
M, P, CH, Bits Decoder  
M = 0  
M = 1  
Analog Page Selection  
JESD Bank Page Address  
Value 6800h  
Addr 18h  
Value 6100h  
Addr 00h  
Value 6141h  
Value 6900h  
Addr 12h  
Value 6900h  
Addr 20h  
Addr 74h  
Addr 0h  
Addr 0h  
ADC Page  
[Test Patterns  
and  
Fast OVR]  
Main  
Digital Page  
[Nyquist Zone,  
OVR Select]  
Decimation Filter  
Page  
[Signal Processing  
Modes 0 to 8]  
JESD Analog Page  
[PLL configuration,  
Output Swing,  
JESD Digital  
Page  
[JESD config]  
IL Engine Page  
[Engine bypass,  
DC Correction]  
Master Page  
[PDN, OVR, DC  
Coupling]  
Pre-emphasis]  
Addr 59h  
Addr 78h  
Addr 68h  
Addr 22h  
Addr 1Bh  
Addr F7h  
Addr 02h  
Figure 90. Serial Interface Registers  
7.6.1 Detailed Register Info  
The ADS58J63 contains two main SPI banks. The analog SPI bank gives access to the ADC cores while the digital SPI bank controls the serial interface.  
The analog SPI bank is divided into two pages (MASTER and ADC) while the digital SPI bank is divided into five pages (Main digital, Interleaving Engine,  
Decimation filter, JESD digital, and JESD analog).  
Table 15. Register Map  
Register Address  
Register Data  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
3
4
5
RESET  
0
0
0
0
0
0
RESET  
JESD BANK PAGE SEL [7:0]  
JESD BANK PAGE SEL [15:8]  
0
0
0
0
0
0
0
DIS BROADCAST  
Copyright © 2015, Texas Instruments Incorporated  
45  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 15. Register Map (continued)  
Register Address  
Register Data  
A7-A0 in hex  
D7  
D6  
D5  
D4  
ANALOG PAGE SELECTION [7:0]  
MASTER PAGE (80h)  
D3  
D2  
D1  
D0  
11  
20  
21  
23  
24  
26  
3A  
PDN ADC CHAB  
PDN ADC CHAB  
PDN ADC CHCD  
PDN ADC CHCD  
PDN BUFFER CHCD  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0
0
0
0
PDN BUFFER CHAB  
0
0
0
0
0
0
0
0
0
0
0
0
GLOBAL PDN  
0
OVERRIDE PDN PIN  
PDN MASK SEL  
0
0
0
BUFFER CURR  
INCREASE  
39  
53  
55  
56  
59  
ALWAYS WRITE 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLK DIV  
MASK SYSREF  
0
0
0
0
0
0
0
0
0
0
PDN MASK  
0
0
0
INPUT BUFF CURR EN  
0
ALWAYS WRITE 1  
0
ADC PAGE (0Fh)  
5F  
60  
61  
6C  
6D  
74  
75  
76  
77  
78  
FOVR CHCD THRESH  
0
0
0
0
0
0
0
0
0
0
0
0
PULSE BIT CHC  
HD3 NYQ2 CHCD  
PULSE_BIT_CHA  
HD3_NYQ2_CHAB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PULSE BIT CHD  
0
PULSE BIT CHB  
0
TEST PATTERN ON CHANNEL  
CUSTOM PATTERN 1 [13:6]  
CUSTOM PATTERN 1 [5:0]  
0
0
0
0
CUSTOM PATTERN 2 [13:6]  
CUSTOM PATTERN 2 [5:0]  
INTERLEAVING ENGINE PAGE (6100h)  
18  
68  
0
0
0
0
0
0
0
0
0
IL BYPASS  
0
0
DC CORR DIS  
DDC MODE  
0
DECIMATION FILTER PAGE (6141h)  
0
1
2
CHB/C FINE MIX  
0
0
0
0
0
0
DDC MODE6 EN1  
ALWAYS WRITE 1  
CHB/C HPF EN  
CHB/C COARSE MIX  
IL RESET  
CHA/D HPF EN  
CHA/D COARSE MIX  
CHA/D FINE MIX  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
42  
4E  
AB  
AD  
0
NYQUIST ZONE  
CTRL NYQUIST ZONE  
0
0
0
0
0
0
0
OVR EN  
OVR ON LSB  
46  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
Register Maps (continued)  
Table 15. Register Map (continued)  
Register Address  
Register Data  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
F7  
0
0
0
0
0
0
0
DIG RESET  
JESD DIGITAL PAGE (6900h)  
0
1
CTRL K  
JESD MODE EN  
SYNC REG EN  
DDC MODE6 EN2  
SYNCB SEL AB/CD  
TESTMODE EN  
0
LANE ALIGN  
FRAME ALIGN  
0
TX LINK DIS  
0
SYNC REG  
0
DDC MODE6 EN3  
LMFC MASK RESET  
0
0
JESD MODE  
2
LINK LAYER TESTMODE  
LINK LAYER RPAT  
LMFC COUNT INIT  
0
3
FORCE LMFC COUNT  
RELEASE ILANE SEQ  
5
SCRAMBLE EN  
0
0
0
0
0
0
0
0
0
0
0
0
6
FRAMES PER MULTI FRAME (K)  
17  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
HIRES FLAG ON LSB  
TRIG SET AB/CD  
0
AUTO TRIG EN  
0
RATIO INVALID  
0
0
0
LC [27:24]  
LC [23:16]  
LC [15:8]  
LC [7:0]  
0
0
0
HC [27:24]  
HC [23:16]  
HC [15:8]  
HC [7:0]  
OUPUT CHA MUX SEL  
OUTPUT CHB MUX SEL  
OUTPUT CHC MUX SEL  
OUTPUT CHD MUX SEL  
0
0
0
0
0
0
OUT CHA INV  
OUT CHB INV  
OUT CHC INV  
OUT CHD INV  
JESD ANALOG PAGE (6A00h)  
SEL EMP LANE A/D  
SEL EMP LANE B/C  
12  
13  
16  
1B  
0
0
0
0
0
0
0
0
0
0
0
JESD PLL MODE  
JESD SWING  
0
0
Copyright © 2015, Texas Instruments Incorporated  
47  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.2 Example Register Writes  
Global Power Down  
ADDRESS  
11h  
DATA  
COMMENT  
80h  
80h  
Set Master Page  
00h26  
Set Global Power Down  
Change decimation mode 0 (default) to mode 4 adjusting both the LMFS configuration (LMFS = 4841 to 4421) as  
well as serial output data rate (10 Gbps to 5 Gbps).  
ADDRESS  
4004h  
4003h  
6000h  
6001h  
4004h  
6016h  
4004h  
4003h  
6000h  
DATA  
69h  
00h  
40h  
01h  
6Ah  
00h  
61h  
41h  
CCh  
COMMENT  
Select digital JESD page  
Enables JESD mode overwrite  
Select digital to 20x mode  
Select analog JESD page  
Set serdes PLL to 20x mode  
Select decimation filter page  
Select mode 4  
Digital mixer for chAB set to –4 (FS/4)  
6002h  
0Ch  
Digital mixer for chCD set to –4 (FS/4)  
48  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3 Register Descriptions  
7.6.3.1 Register 0h (offset = 0h) [reset = 0h]  
Figure 91. Register 0h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
0
RESET  
0
0
0
0
0
0
RESET  
LEGEND: W = Write only; -n = value after reset  
Table 16. Register 0h Field Description  
Bit(1)  
Name  
Type  
Reset  
Description  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
D7  
RESET  
R/W  
0
0 = Normal operation  
1 = Internal software reset, clears back to 0  
D0  
RESET  
R/W  
0
(1) Both bits (D7, D0) must be set simultaneously to exercise reset  
7.6.3.2 Register 3h/4h (offset = 3h/4h) [reset = 0h]  
Figure 92. Register 3h/4h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
3
4
JESD BANK PAGE SEL [7:0]  
JESD BANK PAGE SEL [16:8]  
LEGEND: W = Write only; -n = value after reset  
Table 17. Register 3h/4h Field Description  
Bit  
Name  
Type  
Reset  
Description  
Program these bits to access desired page in JESD Bank  
6100h = Interleaving Engine Page selected  
6141h = Decimation Filter Page Selected  
6800h = Main Digital Page Selected  
D7 - D0 JESD BANK PAGE SEL  
R/W  
0
6900h = JESD Digtial Page selected  
6A00h = JESD Analog Page selected  
7.6.3.3 Register 5h (offset = 5h) [reset = 0h]  
Figure 93. Register 5h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
DIS  
BROADCAST  
5
0
0
0
0
0
0
0
LEGEND: W = Write only; -n = value after reset  
Table 18. Register 5h Field Description  
Bit  
Name  
Type  
Reset  
Description  
0 = Normal operation. Channel A and B are programmed as a pair. Channel  
C and D are programmed as a pair.  
D0  
DIS BROADCAST  
R/W  
0
1 = channel A and B can be individually programmed based on bit 'CH'.  
Similarly channel C and D can be individually programmed based on bit  
'CH'.  
7.6.3.4 Register 11h (offset = 11h) [reset = 0h]  
Copyright © 2015, Texas Instruments Incorporated  
49  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Figure 94. Register 11h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
11  
ANALOG PAGE SELECTION [7:0]  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 19. Register 11h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Register page (only one page at a time can be addressed).  
Master page = 80h  
ANALOG PAGE  
SELECTION [7:0]  
ADC page = 0Fh  
D7-D0  
R/W  
0
The 5 digital pages (Main digital, Interleaving Engine, Analog JESD, Digital  
JESD, and Decimation filter) are selected via the M bit. See Serial Interface  
Read/Write section for more details.  
7.6.3.5 Master Page (80h)  
7.6.3.5.1 Register 20h (address = 20h) [reset = 0h] , Master Page (080h)  
Figure 95. Register 20h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
PDN ADC CHAB  
R/W-0h  
PDN ADC CHCD  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 20. Registers 20h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PDN ADC CHAB  
R/W  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
3-0  
PDN ADC CHCD  
R/W  
0h  
Power-down mask 2: addresses 23h and 24h.  
See Power-Down Mode for details.  
50  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.5.2 Register 21h (address = 21h) [reset = 0h] , Master Page (080h)  
Figure 96. Register 21h  
A7-A0 in Hex  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHCD  
R/W-0h  
PDN BUFFER CHAB  
R/W-0h  
W-0h  
R/W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 21. Register 21h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
3
0
0
W
W
0h  
0h  
Power-down mask 2: addresses 23h and 24h.  
See Power-Down Mode for details.  
2-0  
Must write 0.  
7.6.3.5.3 Register 23h (address = 23h), Master Page (080h)  
Figure 97. Register 23h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
PDN BUFFER CHAB  
PDN BUFFER CHCD  
R/W-0h R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
R/W-0h  
W-0h  
W-0h  
Table 22. Register 23h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PDN ADC CHAB  
R/W  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
3-0  
PDN ADC CHCD  
R/W  
0h  
Power-down mask 2: addresses 23h and 24h.  
See Power-Down Mode for details.  
Copyright © 2015, Texas Instruments Incorporated  
51  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.5.4 Register 24h (address = 24h) [reset = 0h] , Master Page (080h)  
Figure 98. Register 24h  
A7-A0 in Hex  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHCD  
R/W-0h  
PDN BUFFER CHAB  
R/W-0h  
W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 23. Register 24h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
3
0
0
W
W
0h  
0h  
Power-down mask 2: addresses 23h and 24h.  
See Power-Down Mode for details.  
2-0  
Must write 0.  
7.6.3.5.5 Register 26h (address = 26h), Master Page (080h)  
Figure 99. Register 26h  
A7-A0 in Hex  
7
6
5
4
3
2
0
1
0
0
0
GLOBAL  
PDN  
OVERRIDE  
PDN PIN  
PDN MASK  
SEL  
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 24. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
7
GLOBAL PDN  
R/W  
0h  
1 = Global power-down via the SPI  
This bit ignores the power-down pin control.  
0 = Normal operation  
6
OVERRIDE PDN PIN  
R/W  
0h  
1 = Ignores inputs on the power-down pin  
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
5
PDN MASK SEL  
0
R/W  
R/W  
0h  
0h  
4-0  
Must write 0  
52  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.5.6 Register 3Ah (address = 3Ah) [reset = 0h] , Master Page (80h)  
Figure 100. Register 3Ah  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
3Ah  
0
BUFFER  
CURR  
0
0
0
0
0
0
INCREASE  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 3Ah Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7, [5-0]  
0
W
0h  
Must write 0  
0 = normal operation  
BUFFER CURR  
INCREASE  
1 = Increases AVDD3V current by 30 mA., improves HD3, helpful for second  
Nyquist application. Ensure that regiset bit INPUT BUF CUR EN is also set to  
1.  
6
R/W  
0h  
7.6.3.5.7 Register 39h (address = 39h) [reset = 0h] , Master Page (80h)  
Figure 101. Register 39h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
39h  
ALWAYS WRITE 1  
0
0
0
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 39h Field Descriptions  
Bit  
Name  
Type  
R/W  
W
Reset  
0h  
Description  
[7:5]  
[5-0]  
ALWAYS WRITE 1  
0
Always set these bits to 11.  
Must write 0  
0h  
7.6.3.5.8 Register 53h (address = 53h) [reset = 0h] , Master Page (80h)  
Figure 102. Register 53h Register  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
53h  
CLK DIV  
MASK  
0
0
0
0
0
0
SYSREF  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 27. Register 53h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Configures input clock divider  
0 = Divide by 4  
7
CLK DIV  
R/W  
0
1= Divide by 2 (must be enabled for proper operation of ADS58J63)  
0 = normal operation  
1 = ignores SYSREF input  
6
MASK SYSREF  
R/W  
0
Copyright © 2015, Texas Instruments Incorporated  
53  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.5.9 Register 55h (address = 55h) [reset = 0h] , Master Page (80h)  
Figure 103. Register 55h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
PDN MASK  
55h  
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 55h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
4
PDN MASK  
R/W  
0
Power down via register bit  
0 = normal operation  
1 = power down enabled powering down internal blocks specified in the  
selected power down mask  
7.6.3.5.10 Register 56h (address = 56h) [reset = 0h] , Master Page (80h)  
Figure 104. Register 56h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
56h  
0
0
0
0
INPUT BUFF  
CURR EN  
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 56h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
3
INPUT BUFF CURR EN R/W  
0
0 = normal operation  
1 = Increases AVDD3V current by 30 mA., improves HD3, helpful for  
second Nyquist application. Ensure that regiset bit BUFFER CURR  
INCREASE is also set to 1.  
7.6.3.5.11 Register 59h (address = 59h) [reset = 0h] , Master Page (80h)  
Figure 105. Register 59h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
39h  
0
0
ALWAYS  
WRITE 1  
0
0
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register 59h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
5
ALWAYS WRITE 1  
R/W  
0h  
Always set these bits to 1.  
54  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.6 ADC Page (0Fh)  
7.6.3.6.1 Register 5Fh (address = 5Fh) [reset = 0h] , ADC Page (0Fh)  
Figure 106. Register 5Fh  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
ADC Page (0Fh)  
5Fh  
FOVR CHCD THRESH  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 5Fh Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Controls the location of FAST OVR threshold for channel C and D. Refer to  
Over-range Indication.  
D [7:0]  
FOVR CHCD THRESH  
R/W  
0h  
7.6.3.6.2 Register 60h (address = 60h) [reset = 0h] , ADC Page (0Fh)  
Figure 107. Register 60h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
ADC Page (0Fh)  
60Fh  
0
0
0
PULSE BIT  
CHC  
0
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register 60h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Pulse (1) this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz)  
for channel C.  
4
PULSE BIT CHC  
R/W  
0h  
Before pulsing this bit, register bit HD3 NYQ2 CHCD must be set to 1.  
(1) Pulsing = Set the bit to 1 and then reset to 0.  
7.6.3.6.3 Register 60h (address = 61h) [reset = 0h], ADC Page (0Fh)  
Figure 108. Register 61h  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
ADC Page (0Fh)  
61Fh  
0
0
0
HD3 NYQ2  
CHCD  
0
0
0
PULSE BIT  
CHD  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 61h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Se this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz) for  
channel C and D. Once this bit is set, it is required to pulse the PULSE BIT  
CHx register bits to see the improvement in corresponding channels.  
4
HD3 NYQ2 CHCD  
R/W  
0h  
Pulse (1) this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz)  
for channel D.  
0
PULSE BIT CHD  
R/W  
0h  
Before pulsing this bit, register bit HD3 NYQ2 CHCD must be set to 1.  
(1) Pulsing = Set the bit to 1 and then reset to 0.  
Copyright © 2015, Texas Instruments Incorporated  
55  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.6.4 Register 6Ch (address = 6Ch) [reset = 0h], ADC Page (0Fh)  
Figure 109. Register 6Ch  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
ADC Page (0Fh)  
6Ch  
0
0
0
PULSE BIT  
CHA  
0
0
0
0
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 6Ch Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Pulse (1) this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz)  
for channel A.  
4
PULSE BIT CHA  
R/W  
0h  
Before pulsing this bit, register bit HD3 NYQ2 CHCAB must be set to 1.  
(1) Pulsing = Set the bit to 1 and then reset to 0.  
7.6.3.6.5 Register 6Dh (address = 6Dh) [reset = 0h], ADC Page (0Fh)  
Figure 110. Register 6Dh  
A7-A0 in Hex  
7
6
5
4
3
2
1
0
ADC Page (0Fh)  
6Dh  
0
0
0
HD3 NYQ2  
CHAB  
0
0
0
PULSE BIT  
CHB  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 35. Register 6Dh Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Se this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz) for  
channel A and B. Once this bit is set, it is required to pulse the PULSE BIT  
CHx register bits to see the improvement in corresponding channels.  
4
HD3 NYQ2 CHAB  
R/W  
0h  
Pulse (1) this bit to improve HD3 for 2nd Nyquist frequiencies (fIN > 250 MHz)  
for channel B.  
0
PULSE BIT CHB  
R/W  
0h  
Before pulsing this bit, register bit HD3 NYQ2 CHAB must be set to 1.  
(1) Pulsing = Set the bit to 1 and then reset to 0.  
56  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.6.6 Register 74h(address = 74h) [reset = 0h], ADC Page (0Fh)  
Figure 111. Register 74h  
A7-A0 in Hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADC Page (0Fh)  
74  
TEST PATTERN ON CHANNEL  
0
0
0
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 36. Register 74h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Test pattern output on channel A and B  
0000 Normal Operation using ADC output data  
0001 Outputs all 0s  
0010 Outputs all 1s  
0011 Outputs toggle pattern: Output data are an alternating sequence of  
101010101010 and 010101010101  
TEST PATTERN ON  
CHANNEL  
0100 Output digital ramp: output data increments by one LSB every clock  
cycle from code 0 to 16384  
D7-D4  
R/W  
0000  
0110 Single pattern: output data is custom pattern 1 (75h and 76h)  
0111 Double pattern: output data alternates between custom patter 1 and  
custom pattern 2  
1000 Deskew pattern: output data is 2AAAh  
1001 SYNC pattern: output data is 3FFFh  
See ADC Test Pattern for more details.  
7.6.3.6.7 Register 75h/76h/77h/78h (address = 75h/76h/77h/78h) [reset = 0h], ADC Page (0Fh)  
Figure 112. Register 75h/76h/77h/78h  
A7-A0 in Hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADC Page (0Fh)  
75  
76  
77  
78  
CUSTOM PATTERN 1[13:6]  
CUSTOM PATTERN 1[ 5:0]  
CUSTOM PATTERN 2[13:6]  
CUSTOM PATTERN 2[ 5:0]  
0
0
0
0
LEGEND: R/78W = Read/Write; -n = value after reset  
Table 37. Register 75h/76h/77h/78h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-0  
CUSTOM PATTERN  
R/W  
0
Address 75/76/77/78  
Sets the custom pattern (13:6, 5:0) for all channels.  
See ADC Test Pattern for more details.  
Copyright © 2015, Texas Instruments Incorporated  
57  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.7 Interleaving Engine Page (6100h)  
7.6.3.7.1 Register 18h (address = 18h) [reset = 0h], Interleaving Engine Page (6100h)  
Figure 113. Register 18h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INTERLEAVING ENGINE PAGE (6100h)  
18  
0
0
0
0
0
0
IL BYPASS  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 38. Register 18h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Allows bypassing of the interleaving correction. To be used when ADC  
test patterns are enabled.  
00 = interleaving correction enabled  
D1-D0  
IL BYPASS  
R/W  
00  
11= interleaving correction bypassed  
7.6.3.7.2 Register 68h (address = 68h) [reset = 0h], Interleaving Engine Page (6100h)  
Figure 114. Register 68h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INTERLEAVING ENGINE PAGE (6100h)  
68  
0
0
0
0
0
DC CORR DIS  
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 39. Register 68h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Enables DC offset correction loop.  
00 = DC offset correction enabled  
11 = DC offset correction disabled  
Others = Do not use  
D2  
DC CORR DIS  
R/W  
0
58  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.8 Decimation Filter Page (6141h) Registers  
7.6.3.8.1 Register 0h (address = 0h) [reset = 0h]  
Figure 115. Register 0h  
A7-A0 in hex  
D7  
D6  
D5  
DECIMATION FILTER PAGE (6141h)  
CHB/C FINE MIX  
D4  
D3  
D2  
D1  
DDC MODE  
D0  
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 40. 0h Field Descriptions  
Bit  
Field  
Type Reset Description  
Selects fine mixing frequency for N × fS/16 mixer where N is a 2's complement number  
varynig from -8 to 7.  
0000 = N is 0  
0001 = N is 1  
0010 = N is 2  
...  
D7-D4 CHB/C FINE MIX  
R/W  
0000  
0111 = N is 7  
1000 = N is -8  
...  
1111 = N is -1  
Selects the DDC Mode for all channels  
SETTING  
000  
MODE  
DESCRIPTION  
fS/4 mixing with decimation by 2, complex output  
N/A  
0
2
4
5
6
001  
010  
Decimation by 2, high or low pass filter, real output  
N/A  
011  
100  
Decimation by 2, N × fS/16 mixer, real output  
Decimation by 2, N × fS/16 mixer, complex output  
D3-D0 DDC MODE  
R/W  
0h  
101  
Decimation by 4, N × fS/16 mixer, complex output.  
Ensure that register bits DDC MODE 6 EN [3:1 ] are  
also set to '111'.  
110  
111  
1000  
7
8
Decimation by 2, N × fS/16 mixer, insert 0, real output  
14-bit burst mode selected.  
Others  
Do not use  
Copyright © 2015, Texas Instruments Incorporated  
59  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.8.2 Register 1h (address = 1h) [reset = 0h]  
Figure 116. Register 1h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DECIMATION FILTER PAGE (6141h)  
1
0
0
0
0
DDC MODE6  
EN1  
ALWAYS  
WRITE 1  
CHB/C HPF  
EN  
CHB/C  
COARSE MIX  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 41. Register 1h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
D7-D4  
0
W
0
Set this bit aong with register bits DDC MODE6 EN2 and DDC  
MODE6 EN3 for proper operation of Mode 6.  
0 = Default  
D3  
DDC MODE6 EN1  
R/W  
0
1 = Use for proper operation of DDC Mode 6.  
D2  
D1  
ALWAYS WRITE 1  
CHB/C HPF EN  
R/W  
R/W  
0
0
Always write this bit to 1.  
Enables high pass filter for DDC Mode 2 for channel B and C.  
0 = Low pass filter enabled  
1 = High pass filter enabled  
Selects fS/4 mixer phase for DDC Mode 0 for channel B and C.  
D0  
CHB/C COARSE MIX  
R/W  
0
0 = Mix with +fS/4  
1 = Mix with –fS/4  
7.6.3.8.3 Register 2h (address = 2h) [reset = 0h]  
Figure 117. Register 2h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DECIMATION FILTER PAGE (6141h)  
2
0
0
CHA/D HPF  
EN  
CHA/D  
COARSE  
MIX  
CHA/D FINE MIX  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 42. 2h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
D7-D6  
0
CHA/D HPF EN  
Enables high pass filter for DDC Mode 2 for channel A and D.  
0 = Low pass filter enabled  
1 = High pass filter enabled  
D5  
D4  
R/W  
R/W  
0
0
CHA/D COARSE MIX  
Selects fS/4 mixer phase for DDC Mode 0 for channel A and D.  
0 = Mix with +fS/4  
1 = Mix with –fS/4  
Selects fine mixing frequency for N × fS/16 mixer where N is a  
2's complement number varynig from -8 to 7.  
0000 = N is 0  
0001 = N is 1  
0010 = N is 2  
...  
D3-D0  
CHA/D FINE MIX  
R/W  
0000  
0111 = N is 7  
1000 = N is -8  
...  
1111 = N is -1  
60  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.9 Main Digital Page (6800h) Registers  
7.6.3.9.1 Register 0h (address = 0h) [reset = 0h], Main Digital Page (6800h)  
Figure 118. Register 0h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
IL RESET  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 43. Register 0h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Resets the interleaving engine. This bit is not a self-clearing bit  
and must be pulsed(1)  
.
Any register bit in Main Digital Page (6800h) takes effect only  
after this bit is pulsed. Also, note that pulsing this bit clears  
registers in interleaving page (6100h).  
D0  
IL RESET  
R/W  
0
0 = normal operation  
0 1 0 = interleaving engine reset.  
(1) Pulsing = Set the bit to 1 and then reset to 0.  
7.6.3.9.2 Register 42h(address = 42h) [reset = 0h], Main Digital Page (6800h)  
Figure 119. Register 42h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (6800h)  
42  
0
0
0
0
0
NYQUIST ZONE  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 44. Register 42h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Provide Nyquist zone information to IL engine. Ensure that register bit CTRL  
NYQUIST is set to 1.  
000 = 1st Nyquist zone (input frequencies between 0 to fS/2)  
001 = 2nd Nyquist zone (input frequencies between fS/2 to fS)  
010 = 3rd Nyquist zone (input frequencies between fS to 3fS/2)  
...  
NYQUIST  
ZONE  
D2-D0  
R/W  
000  
111 = 8th Nyquist zone (input frequencies between 7fS/2 to 4fS)  
7.6.3.9.3 Register 4Eh (address = 4Eh) [reset = 0h], Main Digital Page (6800h)  
Figure 120. Register 4Eh  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (6800h)  
4E  
CTRL  
0
0
0
0
0
0
0
NYQUIST  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 45. Register 4Eh Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Enables Nyquist zone control using register bits NYQUIST ZONE.  
0 = Selection disabled  
D7  
CTRL NYQUIST R/W  
0
1 = Selection enabled  
Copyright © 2015, Texas Instruments Incorporated  
61  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.9.4 Register ABh (address = ABh) [reset = 0h], Main Digital Page (6800h)  
Figure 121. Register ABh  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (68h)  
AB  
0
0
0
0
0
0
0
OVR EN  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 46. Register ABh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set this bit to enable register bit OVR ON LSB.  
0 = normal operation  
D0  
OVR EN  
R/W  
0
1 = OVR ON LSB enabled  
7.6.3.9.5 Register ADh (address = ADh) [reset = 0h], Main Digital Page (6800h)  
Figure 122. Register ADh  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (68h)  
AD  
0
0
0
0
OVR ON LSB  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 47. Register ADh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set this bit to bring OVR on two LSBs of 16-bit output. Ensure that register bit OVR  
EN is set to 1  
0000 = Bits D0 and D1 of 16-bit data are noise bits  
0011 = OVR comes on bit D0 of 16-bit data  
D0  
OVR EN  
R/W  
0
1100 = OVR comes on bit D1 of 16-bit data  
1111 = OVR comes on both D0 and D1 bits of 16-bit data  
7.6.3.9.6 Register F7h (address = F7h) [reset = 0h], Main Digital Page (68h)  
Figure 123. Register F7h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAIN DIGITAL PAGE (68h)  
F7  
0
0
0
0
0
0
0
DIG RESET  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 48. Register F7h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Self clearing reset for the digital block. Does not include the interleaving correction.  
D0  
DIG RESET  
R/W  
0
0 = normal operation  
1 = digital reset  
62  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.10 JESD Digital Page (6900h) Registers  
7.6.3.10.1 Register 0h (address = 0h) [reset = 0h], JESD Digital Page (6900h)  
Figure 124. Register 0h  
A7-A0 in hex  
D7  
D6  
D5  
JESD DIGITAL PAGE (6900h)  
JESD MODE DDC MODE6 TESTMODE  
EN EN2 EN  
LEGEND: R/W = Read/Write; -n = value after reset  
D4  
D3  
D2  
D1  
D0  
0
CTRL K  
0
LANE ALIGN  
FRAME  
ALIGN  
TX LINK DIS  
Table 49. Register 0h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Enable bit for a number of frames per multi frame.  
0 = Default is 5 frames per multi frame  
D7  
CTRL K  
R/W  
0
1 = Frames per multi frame can be set in register 06h  
Allows changing the JESD MODE setting in register 01h (D1-D0)  
0 = Disabled  
1 = Enables changing the JESD MODE setting  
JESD MODE  
EN  
D6  
D5  
R/W  
R/W  
0
0
Set this bit aong with register bits DDC MODE6 EN1 and DDC MODE6 EN3 for  
proper operation of Mode 6.  
0 = Default  
DDC MODE6  
EN2  
1 = Use for proper operation of DDC Mode 6.  
This bit generates the long transport layer test pattern mode, as per section 5.1.6.3 of  
the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
D4  
D2  
D1  
D0  
TESTMODE EN R/W  
0
0
0
0
This bit inserts the lane alignment character (K28.3) for the receiver to align to lane  
boundary, as per section 5.3.3.5 of the JESD204B specification.  
0 = Normal operation  
LANE ALIGN  
R/W  
1 = Inserts lane alignment characters  
This bit inserts the lane alignment character (K28.7) for the receiver to align to lane  
boundary, as per section 5.3.3.5 of the JESD204B specification.  
0 = Normal operation  
FRAME ALIGN R/W  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence when SYNC is de-  
asserted.  
0 = Normal operation  
1 = ILA disabled  
TX LINK DIS  
R/W  
Copyright © 2015, Texas Instruments Incorporated  
63  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.10.2 Register 1h (address = 1h) [reset = 0h], JESD Digital Page (6900h)  
Figure 125. Register 1h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD MODE  
JESD DIGITAL PAGE (6900h)  
1
SYNC REG  
SYNC REG SYNCB SEL  
EN AB/CD  
0
DDC MODE6  
EN3  
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 50. Register 1h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
SYNC Register (Bit D6 must be enabled)  
0 = Normal operation  
D7  
SYNC REG  
R/W  
0
1 = ADC output data are replaced with K28.5 characters.  
Enables bit for SYNC operation  
0 = Normal operation  
1 = ADC output data over-write enabled  
D6  
D5  
SYNC REG EN R/W  
0
0
Selects which SYNCb input controls the JESD interface. Needs to be configured for  
SYNCB SEL  
R/W  
chAB and chCD  
0 = SYLNCbAB  
1 = SYNCbCD  
AB/CD  
Set this bit aong with register bits DDC MODE6 EN1 and DDC MODE6 EN2 for  
proper operation of Mode 6.  
0 = Default  
DDC MODE6  
R/W  
D5  
0
0
EN3  
1 = Use for proper operation of DDC Mode 6.  
Selects number of serial JESD output lanes per ADC. Also need to set the JESD  
MODE EN (00h) and JESD PLL MODE register (JESD ANALOG page, register 16h)  
accordingly.  
01 = 20x mode  
10 = 40x mode  
11 = 80x mode  
All others = Not used  
D1-D0  
JESD MODE  
R/W  
7.6.3.10.3 Register 2h (address = 2h) [reset = 0h], JESD Digital Page (6900h)  
Figure 126. Register 2h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (6900h)  
2
LINK LAYER TESTMODE  
LINK LAYER LMFC MASK  
0
0
0
RPAT  
RESET  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 51. Register 2h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
These bits generate a pattern according to clause 5.3.3.8.2 of  
the JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12 octet RPAT jitter pattern  
D7-D5  
LINK LAYER TESTMODE  
R/W  
000  
This bit changes the running disparity in the modified RPAT  
pattern test mode (only when the link layer test mode = 100).  
0 = Normal operation  
D4  
D3  
LINK LAYER RPAT  
LMFC MASK RESET  
R/W  
R/W  
0
0
1 = Changes disparity  
0 = Default  
1 = Resets LMFC mask  
64  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.10.4 Register 3h (address = 3h) [reset = 0h], JESD Digital Page (6900h)  
Figure 127. Register 3h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
3
FORCE  
LMFC  
LMFC COUNT INIT  
RELEASE ILANE SEQ  
COUNT  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 52. 3h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Force LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC  
counter  
D7  
FORCE LMFC COUNT  
R/W  
0
SYSREF coming to the digital block will reset the LMFC count to  
0 and K28.5 will stop coming when the LMFC count reaches 31.  
The initial value to which LMFC count resets to can be set using  
LMFC COUNT INIT. This way the Rx can get synchronized early  
since it will get the LANE ALIGNMENT SEQUENCE early.  
Register bit FORCE LMFC COUNT must be enabled.  
D6-D2  
D1-D0  
LMFC COUNT INIT  
R/W  
R/W  
00000  
Delays the generation of lane alignment sequence by 0, 1, 2, or  
3 multi frames after code group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
RELEASE ILANE SEQ  
00  
7.6.3.10.5 Register 5h (address = 5h) [reset = 0h], JESD Digital Page (6900h)  
Figure 128. Register 5h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
5h  
SCRAMBLE  
EN  
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 53. 5h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
D7  
SCRAMBLE EN  
R/W  
1 = Scrambling enabled  
Copyright © 2015, Texas Instruments Incorporated  
65  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.10.6 Register 6h (address = 6h) [reset = 0h], JESD Digital Page (6900h)  
Figure 129. Register 6h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
6
0
0
0
FRAMES PER MULTI FRAME (K)  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 54. 6h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
D7-D5  
FRAMES PER MULTI  
FRAME (K)  
set the number of multi frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
D4-D0  
R/W  
00000  
7.6.3.10.7 Register 17h (address = 17h) [reset = 0h], JESD Digital Page (6900h)  
Figure 130. Register 17h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
17  
HIRES FLAG ON LSB  
0
TRIG SET  
AB/CD  
AUTO TRIG  
EN  
0
RATIO  
INVALID  
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 55. 17h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Applicable only in 14-bit Burst mode. Program two LSBs of 16-bit data as flag  
for 14-bit high resolution samples. Flag is '1' when the sample belongs to 14-  
bit resolution.  
D7 - D6 HIRES FLAG ON LSB  
R/W  
0
00 = LSB Bits D0 and D1 of 16-bit data noise bits.  
01 = Bit D0 carries high-resolution flag.  
10 = Bit D1 carries high-resolution flag.  
11 = Both bits D0 and D1 carry high-resolution flag.  
TRIG SET AB/CD  
D4  
Determines if triggerAB or triggerCD pin is used for burst mode. Needs to be  
configured individually for chAB and chCD with paging.  
0 = uses TRIGGERAB pin  
R/W  
0
1 = uses TRIGGERCD pin  
Enables automatic trigger in burst mode (ignores TRIGGERAB/CD inputs)  
0 = auto trigger disabled  
1= auto trigger enabled  
D3  
D1  
AUTO TRIG EN  
RATIO INVALID  
R/W  
R/W  
0
0
Alarm flag when duty cycle ratio between high and low resolution counter is  
set incorrectly.  
66  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.10.8 Register 19h/1Ah/1Bh/1Ch (address = 19h/1Ah/1Bh/1Ch) [reset = 0h], JESD Digital Page (6900h)  
Figure 131. Register 19h/1Ah/1Bh/1Ch  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
19  
1A  
1B  
1C  
0
0
0
0
LC[27:24]  
LC[23:16]  
LC[15:8]  
LC[7:0]  
Table 56. 19h/1Ah/1Bh/1Ch Field Descriptions  
Bit  
Name  
LC [xx:xx]  
Type  
Reset  
Description  
Sets the low resolution counter value. While programming LC[27:0], first  
program LC[7:0], then LC[15:8], then LC[23:16], and then LC[27:24] in the  
same order.  
D7-D0  
R/W  
0
7.6.3.10.8.1 Register 1Dh/1Eh/1Fh/20h (address = 1Dh/1Eh/1Fh/20h) [reset = 0h], JESD Digital Page (6900h)  
Figure 132. Register 1Dh/1Eh/1Fh/20h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
1D  
1E  
1F  
20  
0
0
0
0
HC[27:24]  
HC[23:16]  
HC[15:8]  
HC[7:0]  
Table 57. 1Dh/1Eh/1Fh/20h Field Descriptions  
Bit  
Name  
HC [xx:xx]  
Type  
Reset  
Description  
Sets the high resolution counter value. While programming HC[27:0], first  
program HC[7:0], then HC[15:8], then HC[23:16], and then HC[27:24] in  
the same order.  
D7-D0  
R/W  
0
Copyright © 2015, Texas Instruments Incorporated  
67  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.10.8.2 Register 21h (address = 21h) [reset = 0h], JESD Digital Page (6900h)  
Figure 133. Register 21h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD DIGITAL PAGE (69h)  
21  
OUTPUT CHA MUX SEL  
OUTPUT CHB MUX SEL  
OUTPUT CHC MUX SEL  
OUTPUT CHD MUX SEL  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 58. 21h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Serdes lane swap with chB  
00 = ChA is output on lane DA  
10 = ChA is output on lane DB  
01/11 = Do not use  
D7-D6  
OUTPUT CHA MUX SEL  
R/W  
00  
Serdes lane swap with chA  
00 = ChB is output on lane DB  
10 = ChB is output on lane DA  
01/11 = Do not use  
D5-D4  
D3-D2  
D1-D0  
OUTPUT CHB MUX SEL  
OUTPUT CHC MUX SEL  
OUTPUT CHD MUX SEL  
R/W  
R/W  
R/W  
00  
00  
00  
Serdes lane swap with chD  
00 = ChC is output on lane DC  
10 = ChC is output on lane DD  
01/11 = Do not use  
Serdes lane swap with chC  
00 = ChD is output on lane DD  
10 = ChD is output on lane DC  
01/11 = Do not use  
68  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
7.6.3.10.8.3 Register 22h (address = 22h) [reset = 0h], JESD Digital Page (6900h)  
Figure 134. Register 22h  
A7-A0 in hex  
D7  
D6  
D5  
JESD DIGITAL PAGE (6900h)  
OUT CHA  
INV  
D4  
D3  
D2  
D1  
D0  
22  
0
0
0
0
OUT CHB  
INV  
OUT CHC  
INV  
OUT CHD INV  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 59. 22h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
D7-D4  
0
Polarity inversion of JESD output of chA  
0 = normal operation  
1 = output polarity inverted  
D3  
D2  
D1  
D0  
OUT CHA INV  
OUT CHB INV  
OUT CHC INV  
OUT CHD INV  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Polarity inversion of JESD output of chB  
0 = normal operation  
1 = output polarity inverted  
Polarity inversion of JESD output of chC  
0 = normal operation  
1 = output polarity inverted  
Polarity inversion of JESD output of chD  
0 = normal operation  
1 = output polarity inverted  
7.6.3.11 JESD Analog Page (6A00h) Register  
7.6.3.11.1 Register 12h/13h (address 12h/13h) [reset = 0h], JESD Analog Page (6Ah)  
Figure 135. Register 12h/13h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD ANALOG PAGE (6A00h)  
SEL EMP LANE DA/DD  
12  
13  
0
0
0
0
SEL EMP LANE DB/DC  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 60. 12h/13h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
Selects the amount of de-emphasis for the JESD output transmitter. The  
de-emphasis value in dB is measured as the ratio between the peak  
value after the signal transition to the settled value of the voltage in one  
bit period.  
0 = 0 dB  
1 = –1 dB  
3 = –2 dB  
SEL EMP LANE DA/DD  
SEL EMP LANE DB/DC  
D7-D2  
R/W  
000000  
7 = –4.1 dB  
15 = –6.2 dB  
31 = –8.2 dB  
63 = –11.5 dB  
Copyright © 2015, Texas Instruments Incorporated  
69  
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7.6.3.11.2 16h (address = 16h) [reset = 0h], JESD Analog Page (6A00h)  
Figure 136. Register 16h  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD ANALOG PAGE (6A00h)  
16  
0
0
0
0
0
0
JESD PLL MODE  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 61. 16h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
D7-D1  
Selects the JESD PLL multiplication factor  
0 = 20x mode  
D0  
JESD PLL MODE  
R/W  
0
1 = 40x mode  
7.6.3.11.3 Register 1Bh (address = 1Bh) [reset = 0h], JESD Analog Page (6Ah)  
Figure 137. Register 1Bh  
A7-A0 in hex  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD ANALOG PAGE (6Ah)  
1B  
JESD SWING  
0
0
0
0
0
LEGEND: R/W = Read/Write; -n = value after reset  
Table 62. 1Bh Field Descriptions  
Bit  
Name  
Type  
Reset Description  
Programs SERDES output swing  
0 = 860 mVPP  
1 = 810 mVPP  
2 = 770 mVPP  
D7-D5  
D4-D3  
JESD SWING  
R/W  
000  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
0
70  
Copyright © 2015, Texas Instruments Incorporated  
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Start-Up Sequence  
The following steps are recommended as the power up sequence with the ADS58J63 in 2x complex decimation  
mode (DDC Mode 0) with LMFS = 4841 (shown in Table 63).  
Table 63. Recommended Power-Up Sequence  
REGISTER  
ADDRESS  
REGISTE  
R DATA  
STEP  
DESCRIPTION  
COMMENT  
1
Supply all supply voltages. There is no  
required power supply sequence for the 1.15-  
V supply, 1.9-V supply and 3-V supply, and  
these may be supplied in any order.  
2
Pulse a hardware reset (low to high to low) on  
pin 48.  
Alternatively it can be reset with:  
Analog reset and Digital reset  
00h  
81h  
68h  
00h  
00h  
00h  
01h  
4004h  
4003h  
4002h  
4001h  
60F7h  
3
4
5
Set input clock divider  
11h  
53h  
80h  
80h  
Select master page  
Set clock divider to /2  
Reset interleaving correction engine. Register  
access default into page 68h  
6000h  
6000h  
01h  
00h  
Channel AB (and channel CD since device  
is in broadcast mode)  
Default registers for JESD analog page  
4003h  
4004h  
6016h  
00h  
6Ah  
02h  
Select JESD analog page  
m
PLL mode 40x for Channel AB and CD  
6
Default registers for JESD digital page  
4003h  
4004h  
6000h  
6006h  
00h  
69h  
80h  
0Fh  
Select JESD digital page  
m
Set CTRL K for channel AB and CD  
Set K to 16  
7
8
Enable single SYNCb input (SYNCAB)  
4005h  
7001h  
01h  
22h  
Disable broadcast mode  
Use SYNCAB for channel C/D  
Pulse SYNCb (pin 55/56) from low to high to  
transmit data from k28.5 sync mode  
Copyright © 2015, Texas Instruments Incorporated  
71  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.1.2 Hardware Reset  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 138. Hardware Reset Timing Diagram  
Table 64. Timing Requirements for Figure 138  
MIN  
1
TYP MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay  
Delay from power up to active high RESET pulse  
Active high RESET pulse duration  
Reset pulse duration  
Register write delay  
10  
Delay from RESET disable to SEN active  
100  
ns  
8.1.3 SNR and Clock Jitter  
The signal to noise ratio of the ADC is limited by three different factors: the quantization noise is typically not  
noticeable in pipeline converters and is 84 dB for a 14-bit ADC. The thermal noise limits the SNR at low input  
frequencies while the clock jitter sets the SNR for higher input frequencies.  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated following:  
(3)  
The total clock jitter (TJitter) has two components – the internal aperture jitter (120 fs for ADS58J63) which is set  
by the noise of the clock input buffer and the external clock jitter. It can be calculated as following:  
(4)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input while a faster clock slew rate also improves the ADC aperture jitter.  
The ADS58J63 has a thermal noise of approximately 72 dBFS and an internal aperture jitter of 120 fs.  
72  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
8.1.4 ADC Test Pattern  
The ADS58J63 provides several different options to output test patterns instead of the actual output data of the  
ADC in order to simplify bring up of the JESD204B digital interface link. The output data path is shown in  
Figure 139  
!5/ {ection  
Çransport [ayer  
[ink [ayer  
ꢀIò [ayer  
DDC  
Data Mapping  
Frame  
Construction  
ADC  
8b/10b  
Interleaving  
Correction  
Burst  
Mode  
encoding  
Scrambler  
1+x14+x15  
Serializer  
ADC Test  
Pattern  
JESD204B Long  
Transport Layer  
Test Pattern  
JESD204B  
Link Layer  
Test Pattern  
Figure 139. ADC Test Pattern  
8.1.4.1 ADC Section  
The ADC test pattern replaces the actual output data of the ADC. The following test patterns are available in  
register 74h. In order to get the test pattern output propoerly, the interleaving correction needs to be disabled  
(6100h, address 18h) and burst mode enabled (DDC disabled).  
Burst mode only supports LMFS = 4421 (DDC Modes have different configurations) and test pattern switches  
between 9-bit (low resolution) and 14-bit (high resolution) output. See Table 65  
Table 65. ADC Test Pattern Settings  
Bit  
Name  
Default  
Description  
Test pattern output on channel A and B  
0000 Normal Operation using ADC output data  
0001 Outputs all 0s  
0010 Outputs all 1s  
0011 Outputs toggle pattern: Output data are an  
alternating sequence of 101010101010 and  
010101010101  
D7-D4  
TEST PATTERN  
0000  
0100 Output digital ramp: output data increments by  
one LSB every clock cycle from code 0 to 16384  
0110 Single pattern: output data is custom pattern 1  
(75h and 76h)  
0111 Double pattern: output data alternates between  
custom patter 1 and custom pattern 2  
1000 Deskew pattern: output data is 2AAAh  
1001 SYNC pattern: output data is 3FFFh  
8.1.4.2 Transport Layer Pattern  
The Transport Layer maps the ADC output data into 8bit octets and constructs the JESD204B frames using the  
LMFS parameters. Tail bits or ‘0’s are added when needed. Alternatively the JESD204B long transport layer test  
pattern can be substituted as shown in Table 66 .  
Table 66. Transport Layer Test-mode  
Bit  
Name  
Default  
Description  
Generates long transport layer test pattern mode  
according to clause 5.1.6.3 of JESD204B specification  
0 = test mode disabled  
D4  
TESTMODE EN  
0
1 = test mode enabled  
Copyright © 2015, Texas Instruments Incorporated  
73  
 
 
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.1.4.3 Link Layer Pattern  
The Link Layer contains the scrambler and the 8b/10b encoding of any data passed on from the Transport Layer.  
Additionally it also handles the initial lane alignment sequence which can be manually restarted. The Link Layer  
test patterns are intended for testing the quality of the link (jitter testing etec). The test patterns do not pass  
through the 8b/10b encoder and contain the options shown in Table 67.  
Table 67. Link Layer Test-mode  
Bit  
Name  
Default  
Description  
Generates pattern according to clause 5.3.3.8.2 of the  
JESD204B document  
000 normal ADC data  
001 D21.5 (high frequency jitter pattern)  
010 K28.5 (mixed frequency jitter pattern)  
011 Repeat initial lane alignment (generates K28.5  
character and repeat lane alignment sequences  
continuously)  
D7-D5  
LINK LAYER TESTMODE  
000  
100 12 octet RPAT jitter pattern  
Furthermore a 215 PRBS can be enabled by setting up a custom test pattern (AAAA) in the ADC section and  
running that through the 8b/10b encoder with scrambling enabled.  
74  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
8.2 Typical Application  
The ADS58J63 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an AC coupled dual receiver (dual FPGA with dual SYNC) is  
shown below.  
DVDD  
5 ꢀ  
10 kꢀ  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
0.1 uF  
0.1 uF  
GND  
Driver  
Driver  
SPI Master  
25 ꢀ  
5 ꢀ  
GND  
IOVDD GND  
0.1 uF  
0.1 uF  
GND  
0.1 uF  
AVDD  
0.1 uF  
DVDD  
AVDD3V  
AVDD  
AVDD3V  
5 ꢀ  
5 ꢀ  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
25 ꢀ  
0.1 uF  
0.1 uF  
100 Differential  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GND  
INCP  
SYNCbCDP  
SYNCbCDM  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
50 ꢀ  
50 ꢀ  
Vterm=1.2 V  
AVDD  
AGND  
AVDD  
0.1 uF  
GND  
IOVDD  
FPGA  
IOVDD  
DDP  
10 nF  
GND  
10 nF  
10 nF  
NC  
NC  
DDM  
GND  
0.1 uF  
AVDD3V  
AVDD3V  
AVDD  
DGND  
DCP  
GND  
AVDD  
0.1 uF  
GND  
DCM  
AGND  
10 nF  
IOVDD  
0.1 uF  
GND  
IOVDD  
DGND  
DBM  
CLKINP  
CLKINM  
AGND  
100 ꢀ  
ADS58J63  
GND  
0.1 uF  
AVDD  
GND PAD (backside)  
Low Jitter  
Clock  
Generator  
DBP  
AVDD  
DGND  
DAM  
AVDD3V  
AGND  
AVDD3V  
0.1 uF  
GND  
10 nF  
10 nF  
GND  
DAP  
SYSREFP  
100 ꢀ  
IOVDD  
10 nF  
IOVDD  
SYNCbABM  
SYNCbABP  
SYSREFM  
AVDD  
AVDD  
GND  
50 ꢀ  
50 ꢀ  
Vterm=1.2 V  
5 ꢀ  
INBP  
FPGA  
25 ꢀ  
25 ꢀ  
25 ꢀ  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
0.1 uF  
100 Differential  
0.1 uF  
GND  
3.3 pF  
Driver  
Driver  
25 ꢀ  
5 ꢀ  
AVDD3V  
AVDD  
DVDD  
AVDD  
AVDD3V  
0.1 uF  
GND  
GND  
GND  
0.1 uF  
IOVDD  
0.1 uF  
GND  
5 ꢀ  
5 ꢀ  
25 ꢀ  
25 ꢀ  
0.1 uF  
0.1 uF  
GND  
3.3 pF  
25 ꢀ  
GND = AGND + DGND connected in Layout  
25 ꢀ  
NOTE: GND = AGND and DGND connected in the PCB layout.  
Figure 140. Application Diagram ADS58J63  
8.2.1 Design Requirements  
By using the simple drive circuit of Figure 140 (when AMP drives ADC) or Figure 51 (when transformers drive  
ADC), uniform performance can be obtained over a wide frequency range. The buffers present at the analog  
inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.  
8.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with  
each input pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 140.  
Copyright © 2015, Texas Instruments Incorporated  
75  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.3 Application Curves  
Figure 141 and Figure 142 show the typical performance at 190 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
FIN = 190 MHz , AIN = –1 dBFS  
FIN = 230 MHz , AIN = –1 dBFS  
SNR = 69.4 dBFS, SFDR = 88 dBc, SFDR = 96 dBc (Non23)  
SNR = 69.4 dBFS, SFDR = 85 dBc, SFDR = 96 dBc (Non23)  
Figure 141. FFT for 190-MHz Input Signal  
Figure 142. FFT for 230-MHz Input Signal  
9 Power Supply Recommendations  
The device requires a 1.9-V nominal supply for DVDD, a 1.9-V nominal supply for AVDD, and a 3-V nominal  
supply for AVDD3V. There is no specific sequence for power-supply requirements during device power-up.  
AVDD, DVDD, and AVDD3V can power-up in any order.  
76  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS58J63  
www.ti.com.cn  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
10 Layout  
10.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in Figure 143. Complete layout of EVM is available at  
ADS58J63's EVM folder. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as shown  
in the reference layout of Figure 143 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 143  
as much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be  
matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
10.2 Layout Example  
Figure 143. ADS58J63 EVM Layout  
版权 © 2015, Texas Instruments Incorporated  
77  
 
ADS58J63  
ZHCSDU3A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
78  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS58J63IRMPR  
ADS58J63IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
1500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ58J63  
AZ58J63  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS58J63IRMPR  
VQFN  
RMP  
72  
1500  
330.0  
24.4  
10.25 10.25 2.25  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RMP 72  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADS58J63IRMPR  
1500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY