ADS6122IRHBTG4 [TI]

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS; 12位, 125/105/80/65 MSPS的DDR LVDS / CMOS输出的ADC
ADS6122IRHBTG4
型号: ADS6122IRHBTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
12位, 125/105/80/65 MSPS的DDR LVDS / CMOS输出的ADC

转换器 模数转换器 输出元件 双倍数据速率
文件: 总67页 (文件大小:2167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS  
1
FEATURES  
DESCRIPTION  
Maximum Sample Rate: 125 MSPS  
12-Bit Resolution with No Missing Codes  
ADS6125/ADS6124/ADS6123/ADS6122 (ADS612X)  
is a family of 12-bit A/D converters with sampling  
frequencies up to 125 MSPS. It combines high  
3.5 dB Coarse Gain and up to 6 dB  
Programmable Fine Gain for SNR/SFDR  
Trade-Off  
performance and low power consumption in  
a
compact 32 QFN package. Using an internal high  
bandwidth sample and hold and a low jitter clock  
buffer helps to achieve high SNR and high SFDR  
even at high input frequencies.  
Parallel CMOS and Double Data Rate (DDR)  
LVDS Output Options  
Supports Sine, LVCMOS, LVPECL, LVDS Clock  
Inputs and Clock Amplitude Down to 400 mVPP  
It features coarse and fine gain options that are used  
to improve SFDR performance at lower full-scale  
analog input ranges.  
Clock Duty Cycle Stabilizer  
Internal Reference with Support for External  
Reference  
The digital data outputs are either parallel CMOS or  
DDR LVDS (Double Data Rate). Several features  
exist to ease data capture such as — controls for  
output clock position and output buffer drive strength,  
and LVDS current and internal termination  
programmability.  
No External Decoupling Required for  
References  
Programmable Output Clock Position and  
Drive Strength to Ease Data Capture  
3.3 V Analog and 1.8 V to 3.3 V Digital Supply  
32-QFN Package (5 mm × 5 mm)  
The output interface type, gain, and other functions  
are programmed using a 3-wire serial interface.  
Alternatively, some of these functions are configured  
using dedicated parallel pins so that the device  
comes up in the desired state after power-up.  
Pin Compatible 12-Bit Family (ADS612X)  
APPLICATIONS  
Wireless Communications Infrastructure  
Software Defined Radio  
Power Amplifier Linearization  
802.16d/e  
Test and Measurement Instrumentation  
High Definition Video  
ADS612X includes internal references, while  
eliminating the traditional reference pins and  
associated external decoupling. External reference  
mode is also supported.  
The devices are specified over the industrial  
temperature range (–40°C to 85°C).  
Medical Imaging  
Radar Systems  
ADS612X Performance Summary  
ADS6125  
90  
ADS6124  
91  
ADS6123  
93  
ADS6122  
95  
Fin = 10 MHz (0 dB gain)  
Fin = 170 MHz (3.5 dB gain)  
Fin = 10 MHz (0 dB gain)  
Fin = 170 MHz (3.5 dB gain)  
Power, mW  
SFDR, dBc  
78  
82  
83  
84  
71.1  
67.6  
417  
71.3  
69.1  
374  
71.5  
69.2  
318  
71.6  
69.8  
285  
SINAD, dBFS  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2008, Texas Instruments Incorporated  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
CLKP  
CLKOUTP  
CLKOUTM  
CLOCK  
GEN  
CLKM  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
Digital  
Encoder  
and  
INP  
INM  
12-Bit  
ADC  
D6_D7_P  
D6_D7_M  
SHA  
Serializer  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
Control  
Interface  
VCM  
Reference  
ADS612X  
LVDS MODE  
ADS61XX FAMILY  
125 MSPS  
105 MSPS  
80 MSPS  
65 MSPS  
ADS614X  
14 Bits  
ADS6145  
ADS6144  
ADS6143  
ADS6142  
ADS612X  
12 Bits  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
2
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT  
TRANSPORT MEDIA  
ADS6125IRHBT  
ADS6125IRHBR  
ADS6124IRHBT  
ADS6124IRHBR  
ADS6123IRHBT  
ADS6123IRHBR  
ADS6122IRHBT  
ADS6122IRHBR  
Tape and Reel, small  
Tape and Reel, large  
Tape and Reel, small  
Tape and Reel, large  
Tape and Reel, small  
Tape and Reel, large  
Tape and Reel, small  
Tape and Reel, large  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
QFN-32(2)  
QFN-32(2)  
QFN-32(2)  
QFN-32(2)  
RHB  
RHB  
RHB  
RHB  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
AZ6125  
AZ6124  
AZ6123  
AZ6122  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) For thermal pad size on the package, see the mechanical drawings at the end of this data sheet. θJA = 34 °C/W (0 LFM air flow),  
θJC = 30 °C/W when used with 2 oz. copper trace and pad soldered directly to a JEDEC standard four layer 3 in × 3 in (7.62 cm ×  
7.62 cm) PCB.  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.3 to 3.9  
UNIT  
V
Supply voltage range, AVDD  
VI  
Supply voltage range, DRVDD  
–0.3 to 3.9  
V
Voltage between AGND and DRGND  
Voltage between AVDD to DRVDD  
–0.3 to 0.3  
V
–0.3 to 3.3  
V
Voltage applied to VCM pin (in external reference mode)  
Voltage applied to analog input pins, INP and INM  
Voltage applied to analog input pins, CLKP and CLKM  
Operating free-air temperature range  
Operating junction temperature range  
Storage temperature range  
–0.3 to 2  
V
–0.3 to minimum ( 3.6, AVDD + 0.3)  
–0.3 to (AVDD + 0.3)  
–40 to 85  
V
V
TA  
°C  
°C  
°C  
TJ  
125  
Tstg  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
3
3.3  
3.6  
V
CMOS Interface  
LVDS Interface  
1.65 1.8 to 3.3  
3.6  
3.6  
V
V
(1)  
DRVDD Output buffer supply voltage  
3
3.3  
ANALOG INPUTS  
Differential input voltage range  
Input common-mode voltage  
2
1.5 ± 0.1  
1.5  
Vpp  
V
VIC  
Voltage applied on VCM in external reference mode  
CLOCK INPUT  
1.45  
1.55  
V
ADS6125  
1
1
125  
105  
80  
ADS6124  
FS  
Input clock sample rate  
MSPS  
ADS6123  
1
ADS6122  
1
65  
Sine wave, ac-Coupled  
LVPECL, ac-Coupled  
LVDS, ac-Coupled  
LVCMOS, ac-Coupled  
0.4  
1.5  
± 0.8  
± 0.35  
3.3  
Input clock amplitude differential  
(VCLKP – VCLKM  
Vpp  
)
Input Clock duty cycle  
DIGITAL OUTPUTS  
35%  
50%  
65%  
For CLOAD 5 pF and DRVDD 2.2  
V
DEFAULT  
strength  
For CLOAD > 5 pF and DRVDD 2.2  
V
MAXIMUM  
strength  
(2)  
Output buffer drive strength  
MAXIMUM  
strength  
For DRVDD < 2.2 V  
CMOS Interface, maximum buffer  
strength  
10  
Maximum external load capacitance from each LVDS Interface, without internal  
5
CLOAD  
pF  
output pin to DRGND  
termination  
LVDS Interface, with internal  
termination  
10  
RLOAD  
TA  
Differential load resistance (external) between the LVDS output pairs  
Operating free-air temperature  
100  
-40  
85  
°C  
(1) For easy migration to next generation, higher sampling speed devices (> 125 MSPS), use 1.8V DRVDD supply.  
(2) See Output Buffer Strength Programmability in application section  
4
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD =  
DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input, internal  
reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
RESOLUTION  
12  
12  
12  
12  
Bits  
ANALOG INPUT  
Differential input voltage range  
2
2
2
2
VPP  
Differential input resistance (at dc)  
see Figure 91  
> 1  
> 1  
> 1  
> 1  
M  
Differential input capacitance  
see Figure 92  
7
450  
180  
7
450  
151  
7
450  
114  
7
450  
92  
pF  
MHz  
µA  
Analog input bandwidth  
Analog input common mode current  
(per input pin of each ADC)  
REFERENCE VOLTAGES  
VREFB  
VREFT  
ΔVREF  
Internal reference bottom voltage  
Internal reference top voltage  
1
2
1
2
1
2
1
2
V
V
Internal reference error  
(VREFT–VREFB)  
-20  
-10  
± 5  
1.5  
20  
10  
-20  
-10  
± 5  
1.5  
20  
10  
-20  
-10  
± 5  
1.5  
20  
10  
-20  
-10  
± 5  
1.5  
20  
10  
mV  
V
VCM  
Common mode output voltage  
DC ACCURACY  
No missing codes  
Specified  
± 2  
Specified  
± 2  
Specified  
± 2  
Specified  
± 2  
EO  
Offset error  
mV  
Offset error temperature coefficient  
0.05  
0.05  
0.05  
0.05  
mV/°C  
There are two sources of gain error – internal reference inaccuracy and channel gain error  
Gain error due to internal reference  
EGREF  
-1  
0.25  
1
-1  
0.25  
1
-1  
-1  
0.25  
±0.3  
1
1
-1  
-1  
0.25  
±0.3  
1
1
% FS  
% FS  
Δ%/°C  
inaccuracy alone, (ΔVREF /2) %  
EGCHAN  
Gain error of channel alone(1)  
-1  
±0.3  
1
-1  
±0.3  
1
Channel gain error temperature  
coefficient  
0.005  
0.005  
0.005  
0.005  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
-0.75 ± 0.6  
2
2
-0.75 ± 0.6  
2
2
-0.75 ± 0.5  
2
2
-0.75 ± 0.5  
2
2
LSB  
LSB  
-2  
± 1  
123  
6.1  
-2  
± 1  
110  
5.4  
-2  
± 1  
-2  
± 1  
POWER SUPPLY  
IAVDD  
Analog supply current  
94  
84  
mA  
mA  
Digital supply current, CMOS  
interface  
DRVDD = 1.8 V  
IDRVDD  
4.5  
4.0  
(2)  
No load capacitance, FIN= 2 MHZ  
Digital supply current, LVDS interface  
DRVDD = 3.3 V  
IDRVDD  
42  
42  
42  
42  
mA  
With 100 external termination  
Total power, CMOS  
417  
30  
625  
60  
374  
30  
525  
60  
318  
30  
440  
60  
285  
30  
400  
60  
mW  
mW  
Global power down  
(1) This is specified by design and characterization; it is not tested in production.  
(2) In CMOS mode, the DRVDD current scales with the sampling frequency and the load capacitance on output pins (see Figure 84).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD =  
DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input, internal  
reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
DYNAMIC AC CHARACTERISTICS  
Fin = 10 MHz  
71.3  
71.1  
70.9  
69.5  
71.4  
71.1  
71  
71.6  
71.4  
71.3  
70.3  
71.7  
71.5  
71.5  
70.6  
Fin = 50 MHz  
68.5  
68.5  
68  
69  
Fin = 70 MHz  
68.5  
68.5  
68  
69  
SNR  
Signal to noise  
ratio, CMOS  
0 dB Gain  
70  
Fin = 170  
MHz  
dBFS  
3.5 dB Coarse  
gain  
68.7  
68.6  
67.9  
69.4  
69.2  
68.6  
69.7  
69.6  
69.1  
69.9  
69.9  
69.4  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
71.5  
71.4  
71.3  
70.3  
71.5  
71.3  
71.3  
70.3  
71.8  
71.5  
71.5  
70.6  
71.8  
71.6  
71.6  
70.7  
69  
69  
SNR  
Signal to noise  
ratio, LVDS  
0 dB Gain  
Fin = 170  
MHz  
dBFS  
3.5 dB Coarse  
gain  
69.8  
69.6  
69  
69.8  
69.6  
69  
70.1  
70  
70.1  
70.1  
69.6  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
69.5  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
71.1  
70.3  
70.4  
67.7  
71.3  
70.7  
70.9  
69.5  
71.5  
71.3  
70.9  
69.6  
71.6  
71.4  
71.4  
70.2  
68.5  
68.5  
SINAD  
Signal to noise  
and distortion  
ratio  
0 dB Gain  
Fin = 170  
MHz  
dBFS  
3.5 dB Coarse  
gain  
67.6  
66.6  
66.3  
69.1  
68  
69.2  
68.9  
68.6  
69.8  
69.1  
69  
CMOS  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
68  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
71.5  
70.6  
71  
71.5  
70.7  
71  
71.7  
71.4  
71.1  
70.1  
71.7  
71.5  
71.5  
70.3  
SINAD  
Signal to noise  
and distortion  
ratio  
0 dB Gain  
69.1  
69.7  
Fin = 170  
MHz  
dBFS  
3.5 dB Coarse  
gain  
69.3  
68.2  
68.3  
11.4  
69.5  
68.1  
68.3  
69.9  
69.4  
69.2  
70  
69.1  
69.1  
LVDS  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
ENOB  
Effective  
number of bits  
Fin = 50 MHz  
Fin = 70 MHz  
11  
76  
11 11.55  
Bits  
11  
76  
11.5  
11 11.56  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
90  
80  
84  
76  
91  
83  
84  
80  
93  
95  
89  
79  
89  
84  
81  
79  
86  
82  
SFDR  
Spurious free  
dynamic range  
0 dB Gain  
Fin = 170  
MHz  
dBc  
3.5 dB Coarse  
gain  
78  
75  
76  
82  
77  
79  
83  
79  
81  
84  
79  
82  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
6
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD =  
DRVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input, internal  
reference mode, applies to CMOS and LVDS interfaces, unless otherwise noted.  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
Fin = 10 MHz  
88.5  
79.5  
82  
90  
82.5  
83  
91.5  
88  
93  
88  
85  
80  
Fin = 50 MHz  
Fin = 70 MHz  
73  
76  
76  
76  
79  
79  
73  
76  
76  
83  
76  
79  
79  
THD  
0 dB Gain  
73.5  
79  
78  
Fin = 170  
MHz  
Total harmonic  
distortion  
dBc  
3.5 dB Coarse  
gain  
75  
71.5  
72.5  
81  
75.5  
77.5  
79  
76  
78  
82  
76  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
78.5  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
96  
95  
91  
81  
96  
96  
92  
83  
97  
96  
93  
83  
98  
96  
93  
86  
HD2  
0 dB Gain  
Second  
harmonic  
distortion  
Fin = 170  
MHz  
dBc  
3.5 dB Coarse  
gain  
82  
75  
76  
84  
79  
81  
84  
80  
81  
87  
79  
81  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
90  
80  
84  
76  
91  
83  
84  
80  
93  
89  
84  
81  
95  
89  
86  
82  
HD3  
0 dB Gain  
Fin = 170  
MHz  
Third harmonic  
distortion  
dBc  
3.5 dB Coarse  
gain  
78  
75  
76  
82  
77  
79  
83  
79  
81  
84  
79  
82  
0 dB Gain  
Fin = 230  
MHz  
3.5 dB Coarse  
gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
93  
92  
91  
94  
90  
90  
96  
93  
92  
97  
96  
95  
Worst spur  
(Other than  
HD2, HD3)  
dBc  
Fin = 170  
MHz  
90  
90  
89  
88  
89  
89  
91  
90  
Fin = 230  
MHz  
IMD  
2-Tone  
F1 = 185 MHz, F2 = 190 MHz  
83  
1
82  
1
84  
1
88  
1
dBFS  
intermodulation Each tone at -7 dBFS  
distortion  
Recovery to within 1% (of final  
value) for 6-dB overload with sine  
wave input  
Input overload  
recovery  
clock  
cycles  
PSRR  
AC Power  
supply rejection supply  
ratio  
For 100 mVpp signal on AVDD  
35  
35  
35  
35  
dBc  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DIGITAL CHARACTERISTICS(1)  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1 AVDD = 3.3 V  
ADS6125/ADS6124  
ADS6123/ADS6122  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUTS  
(2)  
PDN, SCLK, SEN & SDATA  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
2.4  
V
0.8  
V
33  
–33  
4
µA  
µA  
pF  
DIGITAL OUTPUTS  
CMOS INTERFACE, DRVDD = 1.8 to 3.3 V  
High-level output voltage  
Low-level output voltage  
DRVDD  
0
V
V
Output capacitance inside the device, from  
each output to ground  
Output capacitance  
2
pF  
DIGITAL OUTPUTS  
LVDS INTERFACE, DRVDD = 3.3 V, IO = 3.5 mA, RL = 100  
(3)  
High-level output voltage  
1375  
1025  
350  
mV  
mV  
mV  
mV  
Low-level output voltage  
Output differential voltage, |VOD  
|
225  
VOS Output offset voltage, single-ended  
Common-mode voltage of OUTP, OUTM  
1200  
Output capacitance inside the device, from  
either output to ground  
Output capacitance  
2
pF  
(1) All LVDS and CMOS specifications are characterized, but not tested at production.  
(2) SCLK & SEN function as digital input pins when they are used for serial interface programming. When used as parallel control pins,  
analog voltage needs to be applied as per Table 1 & Table 2.  
(3) IO Refers to the LVDS buffer current setting, RL is the differential load resistance between the LVDS output pair.  
8
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TIMING CHARACTERISTICS – LVDS AND CMOS MODES(1)  
Typical values are at 25°C, min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD =  
DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP clock amplitude, CL = 5 pF(2), IO = 3.5  
mA, RL = 100 (3), no internal termination, unless otherwise noted.  
For timings at lower sampling frequencies, see section Output Timings in the APPLICATION INFORMATION of this data  
sheet.  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
0.7  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
Aperture  
delay  
ta  
tj  
1.5  
150  
15  
2.5  
0.7  
1.5  
150  
15  
2.5  
0.7  
1.5  
150  
15  
2.5  
0.7  
1.5  
150  
15  
2.5  
ns  
fs rms  
µs  
Aperture  
jitter  
From global power  
down  
50  
50  
50  
50  
Wake-up  
time  
From standby  
15  
50  
15  
50  
15  
50  
15  
50  
µs  
(to valid  
data)  
From output CMOS  
100  
200  
100  
200  
100  
200  
100  
200  
ns  
buffer  
LVDS  
200  
9
500  
200  
9
500  
200  
9
500  
200  
9
500  
ns  
disable  
clock  
cycles  
Latency  
DDR LVDS MODE(4), DRVDD = 3.3 V  
Data valid (6) to  
zero-cross of  
CLKOUTP  
Data setup  
time(5)  
tsu  
1.7  
0.7  
2.3  
1.7  
2.5  
0.7  
3.1  
1.7  
3.9  
0.7  
4.5  
1.7  
5.4  
0.7  
6.0  
1.7  
ns  
ns  
Zero-cross of  
Data hold  
time(5)  
th  
CLKOUTP to data  
becoming invalid(6)  
Input clock rising edge  
zero-cross to output  
clock rising edge  
zero-cross  
Clock  
propagation  
delay  
tPDI  
4.3  
5.8  
7.3  
4.3  
5.8  
7.3  
4.3  
5.8  
7.3  
4.3  
5.8  
7.3  
ns  
Duty cycle of  
LVDS bit  
clock duty  
cycle  
differential clock,  
(CLKOUTP-  
CLKOUTM)  
40%  
47%  
55%  
40%  
47%  
55%  
40%  
47%  
55%  
40%  
47%  
55%  
10 Fs 125 MSPS  
Rise time measured  
from –50 mV to 50 mV  
Fall time measured  
from 50 mV to –50 mV  
1 Fs 125 MSPS  
Data rise  
time,  
Data fall  
time  
tr  
tf  
70  
70  
100  
100  
170  
170  
70  
70  
100  
100  
170  
170  
70  
70  
100  
100  
170  
170  
70  
70  
100  
100  
170  
170  
ps  
ps  
Rise time measured  
from –50 mV to 50 mV  
Fall time measured  
from 50 mV to –50 mV  
1 Fs 125 MSPS  
tCLKRI Output clock  
rise time,  
tCLKFA Output clock  
SE  
fall time  
LL  
(7)  
PARALLEL CMOS MODE, DRVDD = 2.5 V to 3.3 V, default output buffer drive strength  
Data setup  
time(5)  
Data valid(8) to 50% of  
CLKOUT rising edge  
tsu  
2.9  
1.3  
4.4  
2.7  
3.6  
2.1  
5.1  
3.5  
5.1  
3.6  
6.6  
5.0  
6.5  
5.1  
8.0  
6.5  
ns  
ns  
50% of CLKOUT  
Rising edge to data  
becoming invalid(8)  
Data hold  
time(5)  
th  
Clock  
Input clock rising edge  
tPDI  
propagation zero-cross to 50% of  
delay CLKOUT rising edge  
5
6.5  
7.9  
5
6.5  
7.9  
5
6.5  
7.9  
5
6.5  
7.9  
ns  
(1) Timing parameters are specified by design and characterization and not tested in production.  
(2) CL is the Effective external single-ended load capacitance between each output pin and ground.  
(3) IO Refers to the LVDS buffer current setting; RL is the differential load resistance between the LVDS output pair.  
(4) Measurements are done with a transmission line of 100 characteristic impedance between the device and the load.  
(5) Setup and hold time specifications take into account the effect of jitter on the output data and clock.  
(6) Data valid refers to logic high of +100 mV and logic low of –100 mV.  
(7) For DRVDD < 2.2V, it is recommended to use external clock for data capture and NOT the device output clock signal (CLKOUT). See  
Parallel CMOS interface in application section.  
(8) Data valid refers to logic high of 2V (1.7V) and logic low of 0.8 V (0.7V) for DRVDD = 3.3V (2.5V).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TIMING CHARACTERISTICS – LVDS AND CMOS MODES (continued)  
For timings at lower sampling frequencies, see section Output Timings in the APPLICATION INFORMATION of this data  
sheet.  
ADS6125  
ADS6124  
ADS6123  
ADS6122  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
Duty cycle of output  
clock (CLKOUT)  
10 Fs 125 MSPS  
Output clock  
duty cycle  
45%  
0.8  
50%  
1.5  
55%  
2.4  
45%  
0.8  
50%  
1.5  
55%  
2.4  
45%  
0.8  
50%  
1.5  
55%  
2.4  
45%  
0.8  
50%  
1.5  
55%  
2.4  
Rise time measured  
from 20% to 80% of  
DRVDD  
Fall time measured  
from 80% to 20% of  
DRVDD  
Data rise  
time,  
Data fall  
time  
tr  
tf  
ns  
ns  
1 Fs 125 MSPS  
Rise time measured  
from 20% to 80% of  
DRVDD  
Fall time measured  
from 80% to 20% of  
DRVDD  
tCLKRI Output clock  
rise time,  
SE  
0.8  
1.5  
2.4  
0.8  
1.5  
2.4  
0.8  
1.5  
2.4  
0.8  
1.5  
2.4  
tCLKFA Output clock  
fall time  
LL  
1 Fs 125 MSPS  
10  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
N+12  
N+11  
N+4  
N+3  
N+10  
N+2  
Sample  
N
N+1  
N+9  
Input  
Signal  
ta  
CLKP  
Input  
Clock  
CLKM  
CLKOUTM  
CLKOUTP  
tsu  
th  
tPDI  
9 Clock Cycles  
DDR  
LVDS  
Output Data  
DXP, DXM  
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
E – Even Bits D0,D2,D4,D6,D8,D10  
O – Odd Bits D1,D3,D5,D7,D9,D11  
N–9  
N–8  
N–7  
N–6  
N–5  
N–1  
N
N+1  
N+2  
tPDI  
CLKOUT  
tsu  
Parallel  
CMOS  
9 Clock Cycles  
th  
Output Data  
D0–D11  
N–9  
N–8  
N–7  
N–6  
N–5  
N–1  
N
N+1  
N+2  
Figure 1. Latency  
CLKM  
Input  
Clock  
CLKP  
CLKM  
CLKP  
Input  
Clock  
tPDI  
tPDI  
CLKOUTM  
Output  
Clock  
Output  
Clock  
CLKOUTP  
CLKOUT  
th  
tsu  
th  
tsu  
th  
tsu  
Dn(1)  
Dn+1(2)  
Output  
Data Pair  
Dn_Dn+1_P,  
Dn_Dn+1_M  
Dn(1)  
Output  
Data  
Dn  
(1)Dn – Bits D0, D2, D4, D6, D8, D10  
(2)Dn+1 – Bits D1, D3, D5, D7, D9, D11  
(1)Dn – Bits D0–D11  
Figure 3. CMOS Mode Timing  
Figure 2. LVDS Mode Timing  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DEVICE PROGRAMMING MODES  
ADS612X has several features that can be easily configured using either parallel interface control or serial  
interface programming.  
USING SERIAL INTERFACE PROGRAMMING ONLY  
To program using the serial interface, the internal registers must first be reset to their default values, and the  
RESET pin must be kept low. In this mode, SEN, SDATA, and SCLK function as serial interface pins and are  
used to access the internal registers of ADC. The registers are reset either by applying a pulse on the RESET  
pin, or by a high setting on the <RST> bit (D4 in register 0x00). The Serial Interface section describes register  
programming and register reset in more detail.  
USING PARALLEL INTERFACE CONTROL ONLY  
To control the device using parallel interface, keep RESET tied to high (AVDD). Now, SEN, SCLK, SDATA and  
PDN function as parallel interface control pins. These pins can be used to directly control certain modes of the  
ADC by connecting them to the correct voltage levels (as described in Table 1 to Table 3). There is no need to  
apply a reset pulse.  
Frequently used functions are controlled in this mode — standby, selection between LVDS/CMOS output format,  
internal/external reference and 2s complement/straight binary output format. Table 1,Table 2, and Table 3  
describe the modes controlled by the parallel pins.  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
(3/8) AVDD  
To Parallel Pin  
(SCLK, SDATA, SEN)  
GND  
Figure 4. Simple Scheme to Configure Parallel Pins  
DESCRIPTION OF PARALLEL PINS  
Table 1. SCLK Control Pin  
SCLK  
0
DESCRIPTION  
Internal reference and 0 dB gain (Full-scale = 2 VPP  
)
(3/8) AVDD  
(5/8) AVDD  
AVDD  
External reference and 0 dB gain (Full-scale = 2 VPP)  
External reference and 3.5 dB coarse gain (Full-scale = 1.34 VPP  
Internal reference and 3.5 dB coarse gain (Full-scale = 1.34 VPP  
)
)
Table 2. SEN Control Pin  
SEN  
0
DESCRIPTION  
2s Complement format and DDR LVDS interface  
(3/8) AVDD  
(5/8) AVDD  
AVDD  
Straight binary format and DDR LVDS interface  
Straight binary and parallel CMOS interface  
2s Complement format and parallel CMOS interface  
12  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 3. SDATA, PDN Control Pins  
SDATA  
Low  
PDN  
DESCRIPTION  
Low  
Normal operation  
Low  
High (AVDD) Standby - only the ADC is powered down  
Low Output buffers are powered down, fast wake-up time  
High (AVDD) Global power down. ADC, internal reference and output buffers are powered down, slow wake-up time  
High (AVDD)  
High (AVDD)  
SERIAL INTERFACE  
The ADC has a set of internal registers, which can be accessed through the serial interface formed by pins SEN  
(Serial interface Enable), SCLK (Serial Interface Clock), SDATA (Serial Interface Data) and RESET. After device  
power-up, the internal registers must be reset to their default values by applying a high-going pulse on RESET  
(of width greater than 10 ns).  
Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every falling edge  
of SCLK when SEN is active (low). The serial data is loaded into the register at every 16th SCLK falling edge  
when SEN is low. If the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data is loaded in  
multiples of 16-bit words within a single active SEN pulse.  
The first 5 bits form the register address and the remaining 11 bits form the register data.  
The interface can work with SCLK frequency from 20 MHz down to very low speeds (few Hertz) and also with  
non-50% SCLK duty cycle.  
REGISTER ADDRESS  
REGISTER DATA  
A4  
A3  
A2  
A1  
A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
t
t
DH  
DSU  
t
SCLK  
SCLK  
SEN  
t
SLOADH  
t
SLOADS  
RESET  
Figure 5. Serial Interface Timing Diagram  
REGISTER INITIALIZATION  
After power-up, the internal registers must be reset to their default values. This is done in one of two ways:  
1. Either through hardware reset by applying a high-going pulse on RESET pin (of width greater than 10 ns) as  
shown in Figure 5.  
OR  
2. By applying software reset. Using the serial interface, set the <RST> bit (D4 in register 0x00) to high. This  
initializes the internal registers to their default values and then self-resets the <RST> bit to low. In this case  
the RESET pin is kept low.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
SERIAL INTERFACE TIMING  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C,  
AVDD = DRVDD = 3.3 V (unless otherwise noted)  
MIN TYP MAX  
> DC 20  
UNIT  
MHz  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK Frequency = 1/tSCLK  
SEN to SCLK Setup time  
SCLK to SEN Hold time  
SDATA Setup time  
25  
25  
25  
25  
ns  
ns  
ns  
ns  
tDH  
SDATA Hold time  
RESET TIMING  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C,  
AVDD = DRVDD = 3.3 V (unless otherwise noted)  
PARAMETER  
Power-on delay  
Reset pulse width  
Register write delay  
Power-up time  
TEST CONDITIONS  
MIN  
5
TYP  
MAX  
UNIT  
ms  
ns  
t1  
Delay from power-up of AVDD and DRVDD to RESET pulse active  
Pulse width of active RESET signal  
t2  
10  
25  
t3  
Delay from RESET disable to SEN active  
ns  
tPO  
Delay from power-up of AVDD and DRVDD to output stable  
6.5  
ms  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset.  
For parallel interface operation, RESET has to be tied permanently HIGH.  
Figure 6. Reset Timing Diagram  
14  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
SERIAL REGISTER MAP  
Table 4 provides a summary of all the modes that can be programmed through the serial interface.  
Table 4. Summary of Functions Supported by Serial Interface(1)(2)  
REGISTER  
ADDRESS  
IN HEX  
REGISTER FUNCTIONS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<PDN  
OBUF>  
Output  
buffers  
powered  
down  
<PDN  
CLKOUT>  
Output  
clock buffer  
powered  
down  
<LVDS  
CMOS>  
LVDS or  
<REF>  
Internal or  
external  
<COARSE  
GAIN>  
<RST>  
Software  
Reset  
<STBY>  
ADC Power  
down  
00  
0
0
0
0
Coarse gain CMOS output  
interface  
Reference  
<DATAOUT <CLKOUT  
<CLKOUT  
POSN>  
Output Clock  
position  
POSN>  
Output data  
position  
EDGE>  
Output  
Clock edge  
control  
04  
09  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
control  
control  
Bit-wise or  
Byte-wise  
control  
0
0
0
0
<DATA  
FORMAT>  
2s  
complement  
or straight  
binary  
0A  
<TEST PATTERNS>  
0
0
0
0
0
0
0
0
<CUSTOM LOW>  
Custom Pattern lower 7bits  
0B  
0C  
0
<FINE GAIN>  
Fine Gain 0 to 6dB  
<CUSTOM HIGH>  
0
0
0
Custom Pattern upper 5 bits  
<CURRENT  
DOUBLE>  
LVDS current double  
LVDS Termination  
LVDS Internal Termination control for output data and clock  
<LVDS CURRENT>  
LVDS Current control  
0E  
0F  
0
0
<DRIVE STRENGTH>  
CMOS output buffer drive strength control  
0
0
0
0
0
0
(1) The unused bits in each register (shown by blank cells in above table) must be programmed as ‘0’.  
(2) Multiple functions in a register can be programmed in a single write operation.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DESCRIPTION OF SERIAL REGISTERS  
Each register function is explained in detail below.  
Table 5.  
A4–A0  
(hex)  
D10  
D9  
D8  
D7  
0
D6  
0
D5  
D4  
D3  
0
D2  
D1  
0
D0  
00  
<PDN OBUF>  
Output buffers  
powered down Coarse gain  
<COARSE  
GAIN>  
<LVDS CMOS>  
LVDS or CMOS  
output interface  
<REF>  
Internal or  
external  
<RST>  
Software  
Reset  
<PDN CLKOUT>  
Output clock  
buffer powered  
down  
<STBY>  
ADC Power  
down  
reference  
D0  
0
<STBY> Power down modes  
Normal operation  
1
Device enters standby mode where only ADC is powered down.  
D2  
0
<PDN CLKOUT> Power down modes  
Output clock is active (on CLKOUT) pin  
1
Output clock buffer is powered down and becomes tri-stated. Data outputs are unaffected.  
D4  
<RST>  
1
Software reset applied - resets all internal registers and the bit self-clears to 0.  
D5  
0
<REF> Reference selection  
Internal reference enabled  
External reference enabled  
1
D8  
0
<LVDS CMOS> Output Interface selection  
Parallel CMOS interface  
1
DDR LVDS interface  
D9  
0
<COARSE GAIN> Gain programming  
0 dB Coarse gain  
1
3.5 dB Coarse gain  
D10  
0
<PDN OBUF> Power down modes  
Output data and clock buffers enabled  
Output data and clock buffers disabled  
1
16  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 6.  
A4–A0  
(hex)  
D10  
D9  
D8  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
04  
<DATAOUT POSN>  
Output data position Output Clock edge  
control control  
<CLKOUT EDGE>  
<CLKOUT POSN>  
Output Clock  
position control  
D8  
<CLKOUT POSN> Output clock position control  
0
Default output clock position after reset. The setup/hold timings for this clock position are specified  
in the timing specifications table.  
1
Output clock shifted (delayed) by 400 ps  
D9  
0
<CLKOUT EDGE>  
Use rising edge to capture data  
Use falling edge to capture data  
1
D10  
0
<DATAOUT_POSN>  
Default position (after reset)  
1
Data transition delayed by half clock cycle with respect to default position  
Table 7.  
A4–A0  
(hex)  
D10  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
09  
Bit-wise or  
Byte-wise control  
D10  
Bit-wise or byte-wise selection (DDR LVDS mode only)  
0
Bit-wise sequence - Even data bits (D0, D2, D4..D12) are output at rising edge of CLKOUTP and  
odd data bits (D1, D3, D5..D13) at falling edge of CLKOUTP  
1
Byte-wise sequence - Lower 7 data bits (D0-D7) are output at rising edge of CLKOUTP and upper  
7 data bits (D8-D13) at falling edge of CLKOUTP  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 8.  
A4–A0  
D10  
D9  
0
D8  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
(hex)  
0A  
<DF>  
0
<TEST PATTERNS>  
0
2s complement or straight binary  
D7-D5  
000  
001  
010  
011  
100  
101  
110  
111  
Test Patterns  
Normal operation - <D13:D0> = ADC output  
All zeros - <D13:D0> = 0x0000  
All ones - <D13:D0> = 0x3FFF  
Toggle pattern - <D13:D0> toggles between 0x2AAA and 0x1555  
Digital ramp - <D13:D0> increments from 0x0000 to 0x3FFF by one code every cycle  
Custom pattern - <D13:D0> = contents of CUSTOM PATTERN registers  
Unused  
Unused  
D10  
0
<DATA FORMAT>  
2s Complement  
Straight binary  
1
Table 9.  
A4–A0  
(hex)  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
D0  
0
0B  
<CUSTOM LOW>  
0
Lower 7bits of custom pattern  
Table 10.  
A4–A0  
(hex)  
D10  
D9  
D8  
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
0C  
<FINE GAIN>  
<CUSTOM HIGH>  
Fine Gain 0 to 6dB  
Upper 5 bits of custom pattern  
Reg 0B  
D10-D4  
<CUSTOM LOW> - Specifies lower 7 bits of custom pattern  
<CUSTOM HIGH> - Specifies upper 5 bits of custom pattern  
Reg 0C  
D4-D0  
D10-D8  
000  
<FINE GAIN> Gain programming  
0 dB Gain  
001  
1 dB Gain  
010  
2 dB Gain  
011  
3 dB Gain  
100  
4 dB Gain  
101  
5 dB Gain  
110  
6 dB Gain  
111  
Unused  
18  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 11.  
A4–A0  
(hex)  
D10  
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0E  
<LVDS TERMINATION>  
LVDS Internal Termination control for output data and clock  
<LVDS  
<CURRENT  
DOUBLE>  
LVDS current  
double  
CURRENT>  
LVDS Current  
control  
D1-D0  
<CURRENT DOUBLE> LVDS current programming  
LVDS Data buffer current control  
D0  
0
Default current, set by <LVDS_CURR>  
2x LVDS Current set by <LVDS_CURR>  
1
D1  
0
LVDS Clock buffer current control  
Default current, set by <LVDS_CURR>  
2x LVDS Current set by <LVDS_CURR>  
1
D3-D2  
00  
<LVDS CURRENT> LVDS current programming  
3.5 mA  
2.5 mA  
4.5 mA  
1.75 mA  
01  
10  
11  
D9-D4  
D9-D7  
000  
LVDS internal termination  
<DATA TERM> Internal termination for LVDS output data bits  
No internal termination  
001  
300  
185 Ω  
115 Ω  
150 Ω  
100 Ω  
80 Ω  
010  
011  
100  
101  
110  
111  
65 Ω  
D6-D4  
000  
001  
010  
011  
100  
101  
110  
111  
<CLKOUT TERM> Internal termination for LVDS output clock  
No internal termination  
300 Ω  
185 Ω  
115 Ω  
150 Ω  
100 Ω  
80 Ω  
65 Ω  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 12.  
A4–A0  
(hex)  
D10  
0
D9  
0
D8  
0
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
D0  
0
0F  
<DRIVE STRENGTH>  
CMOS output buffer drive strength control  
0
D7-D4  
<DRIVE STRENGTH> Output buffer drive strength controls  
WEAKER than default drive  
0101  
0000  
1111  
1010  
DEFAULT drive strength  
STRONGER than default drive strength (recommended for load capacitances > 5 pF)  
MAXIMUM drive strength (recommended for load capacitances > 5 pF)  
Do not use  
Other  
combinations  
20  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
PIN CONFIGURATION (CMOS MODE)  
RHB PACKAGE  
(TOP VIEW)  
D5  
D4  
D3  
D2  
D1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
DRVDD  
RESET  
SCLK  
Bottom Pad Connected  
To DRGND  
SDATA  
SEN  
AGND  
CLKP  
CLKM  
19 D0  
18  
17  
NC  
NC  
Figure 7. CMOS Mode Pinout  
Table 13. Pin Assignments – CMOS Mode  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
DESCRIPTION  
AVDD  
AGND  
Analog power supply  
Analog ground  
I
I
I
I
13, 15  
6, 9, 12  
7, 8  
2
3
2
2
CLKP, CLKM Differential clock input  
INP, INM  
Differential analog input  
10, 11  
Internal reference mode – common-mode voltage output.  
External reference mode – reference input. The voltage forced on this pin sets the  
internal references.  
VCM  
I/O  
14  
1
Serial interface RESET input.  
When using the serial interface mode, the user MUST initialize internal registers  
through hardware RESET by applying a high-going pulse on this pin, or by using  
the software reset option. See the SERIAL INTERFACE section.  
In parallel interface mode, the user has to tie the RESET pin permanently HIGH.  
(SCLK, SDATA and SEN are used as parallel pin controls in this mode)  
The pin has an internal 100-kpull-down resistor.  
RESET  
I
2
1
This pin functions as serial interface clock input when RESET is low.  
When RESET is tied high, it controls the coarse gain and internal/external reference  
selection. Tie SCLK to low for internal reference and 0 dB gain and high for  
internal reference and 3.5 dB gain. See Table 1.  
SCLK  
I
I
3
4
1
1
The pin has an internal 100-kpull-down resistor.  
This pin functions as serial interface data input when RESET is low. It controls  
various power down modes along with PDN pin when RESET is tied high.  
SDATA  
See Table 3 for detailed information.  
The pin has an internal 100 kpull-down resistor.  
This pin functions as serial interface enable input when RESET is low. When  
RESET is high, it controls output interface type and data formats. See Table 2 for  
detailed information.  
SEN  
PDN  
I
I
5
1
1
The pin has an internal 100-kpull-up resistor to DRVDD.  
Global power down control pin  
16  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 13. Pin Assignments – CMOS Mode (continued)  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
DESCRIPTION  
CLKOUT  
D0  
CMOS Output clock  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
26  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CMOS Output data D0  
CMOS Output data D1  
CMOS Output data D2  
CMOS Output data D3  
CMOS Output data D4  
CMOS Output data D5  
CMOS Output data D6  
CMOS Output data D7  
CMOS Output data D8  
CMOS Output data D9  
CMOS Output data D10  
CMOS Output data D11  
19  
D1  
20  
D2  
21  
D3  
22  
D4  
23  
D5  
24  
D6  
27  
D7  
28  
D8  
29  
D9  
30  
D10  
D11  
31  
32  
Indicates over-voltage on analog inputs (for differential input greater than full-scale),  
CMOS level  
25  
OVR  
DRVDD  
Digital supply  
I
I
1
1
1
Digital ground.  
PAD  
DRGND  
NC  
Connect the pad to the ground plane. See Board Design Considerations in  
application information section.  
Do not connect  
17,18  
2
22  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
PIN CONFIGURATION (LVDS MODE)  
RHB PACKAGE  
(TOP VIEW)  
D4_D5_P  
D4_D5_M  
D2_D3_P  
D2_D3_M  
D0_D1_P  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
DRVDD  
RESET  
SCLK  
Bottom Pad Connected  
To DRGND  
SDATA  
SEN  
AGND  
CLKP  
CLKM  
19 D0_D1_M  
18  
17  
NC  
NC  
Figure 8. LVDS Mode Pinout  
Table 14. Pin Assignments – LVDS Mode  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
DESCRIPTION  
AVDD  
Analog power supply  
Analog ground  
I
I
I
I
13, 15  
6, 9, 12  
7, 8  
2
3
2
2
AGND  
CLKP, CLKM  
INP, INM  
Differential clock input  
Differential analog input  
10, 11  
Internal reference mode – common-mode voltage output.  
External reference mode – reference input. The voltage forced on this pin sets the  
internal references.  
VCM  
I/O  
14  
1
Serial interface RESET input.  
When using the serial interface mode, the user MUST initialize internal registers  
through hardware RESET by applying a high-going pulse on this pin, or by using the  
software reset option. See the SERIAL INTERFACE section.  
In parallel interface mode, the user has to tie the RESET pin permanently HIGH.  
(SCLK, SDATA and SEN are used as parallel pin controls in this mode)  
The pin has an internal 100-kpull-down resistor.  
RESET  
I
2
1
This pin functions as serial interface clock input when RESET is low.  
When RESET is tied high, it controls the coarse gain and internal/external reference  
selection. Tie SCLK to low for internal reference and 0 dB gain and high for internal  
reference and 3.5 dB gain. See Table 1.  
SCLK  
I
I
3
4
1
1
The pin has an internal 100-kpull-down resistor.  
This pin functions as serial interface data input when RESET is low. It controls  
various power down modes along with PDN pin when RESET is tied high.  
SDATA  
See Table 3 for detailed information.  
The pin has an internal 100 kpull-down resistor.  
This pin functions as serial interface enable input when RESET is low. When RESET  
is high, it controls output interface type and data formats. See Table 2 for detailed  
information. The pin has an internal 100-kpull-up resistor to DRVDD.  
SEN  
PDN  
I
I
5
1
1
Global power down control pin  
16  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Table 14. Pin Assignments – LVDS Mode (continued)  
PIN  
TYPE  
PIN  
NUMBER  
NUMBER  
OF PINS  
PIN NAME  
DESCRIPTION  
CLKOUTP  
CLKOUTM  
D0_D1_P  
D0_D1_M  
D2_D3_P  
D2_D3_M  
D4_D5_P  
D4_D5_M  
D6_D7_P  
D6_D7_M  
D8_D9_P  
D8_D9_M  
D10_D11_P  
D10_D11_M  
DRVDD  
Differential output clock, true  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
26  
25  
20  
19  
22  
21  
24  
23  
28  
27  
30  
29  
32  
31  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Differential output clock, complement  
Differential output data D0 and D1 multiplexed, true  
Differential output data D0 and D1 multiplexed, complement.  
Differential output data D2 and D3 multiplexed, true  
Differential output data D2 and D3 multiplexed, complement  
Differential output data D4 and D5 multiplexed, true  
Differential output data D4 and D5 multiplexed, complement  
Differential output data D6 and D7 multiplexed, true  
Differential output data D6 and D7 multiplexed, complement  
Differential output data D8 and D9 multiplexed, true  
Differential output data D8 and D9 multiplexed, complement  
Differential output data D10 and D11 multiplexed, true  
Differential output data D10 and D11 multiplexed, complement  
Digital supply  
Digital ground.  
I
PAD  
DRGND  
NC  
Connect the pad to the ground plane. See Board Design Considerations in application  
information section.  
Do not connect  
17,18  
2
24  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6125 (FS= 125 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 92 dBc  
SFDR = 84.2 dBc  
SINAD = 71.3 dBFS  
SNR = 71.5 dBFS  
THD = 87.9 dBc  
SINAD = 70.6 dBFS  
SNR = 71 dBFS  
THD = 82.7 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G001  
G002  
Figure 9.  
Figure 10.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 74.1 dBc  
SINAD = 66.5 dBFS  
SNR = 68.6 dBFS  
THD = 71.4 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
2-Tone IMD = –83.6 dBFS  
SFDR = –81.3 dBFS  
IN  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G003  
G004  
Figure 11.  
Figure 12.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
92  
88  
84  
80  
76  
72  
68  
64  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G005  
G006  
Figure 13.  
Figure 14.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6125 (FS= 125 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SNR vs INPUT FREQUENCY (LVDS interface)  
92  
88  
84  
80  
76  
72  
68  
64  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G007  
G008  
Figure 15.  
Figure 16.  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
95  
90  
85  
80  
75  
70  
65  
60  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Input adjusted to get −1dBFS input  
Input adjusted to get −1dBFS input  
0 dB  
1 dB  
3 dB  
5 dB  
2 dB  
6 dB  
4 dB  
0 dB  
3 dB  
1 dB  
2 dB  
4 dB  
6 dB  
5 dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G009  
G010  
Figure 17.  
Figure 18.  
PERFORMANCE vs AVDD  
PERFORMANCE vs DRVDD  
96  
94  
92  
90  
88  
86  
73  
88  
86  
84  
82  
80  
78  
76  
74  
72  
78  
f
= 10.1 MHz  
f
= 70.1 MHz  
IN  
IN  
77  
76  
75  
74  
73  
72  
71  
70  
AV = 3.3 V  
DRV = 3.3 V  
DD  
DD  
SFDR  
72  
71  
70  
69  
68  
SNR  
SFDR  
SNR  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DRV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G012  
G011  
Figure 19.  
Figure 20.  
26  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6125 (FS= 125 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
94  
92  
90  
88  
86  
84  
74  
73  
72  
71  
70  
69  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBFS)  
SFDR  
SNR (dBFS)  
80  
70  
SNR  
60  
SFDR (dBc)  
50  
40  
f
IN  
= 10.1 MHz  
f
= 10.1 MHz  
−10  
IN  
30  
−60  
−40  
−20  
0
20  
40  
60  
80  
−50  
−40  
−30  
−20  
0
T − Temperature − °C  
Input Amplitude − dBFS  
G013  
G014  
Figure 21.  
Figure 22.  
PERFORMANCE vs CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
92  
91  
90  
89  
88  
87  
86  
85  
84  
72.0  
f
IN  
= 20.1 MHz  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
SFDR  
SNR  
SNR  
SFDR  
f
IN  
= 10.1 MHz  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G015  
G016  
Figure 23.  
Figure 24.  
OUTPUT NOISE HISTOGRAM  
(INPUTS TIED TO COMMON-MODE)  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
60  
93  
91  
89  
87  
85  
83  
76  
f
IN  
= 20.1 MHz  
RMS (LSB) = 0.497  
External Reference Mode  
50  
40  
30  
20  
10  
0
74  
72  
70  
68  
66  
SNR  
SFDR  
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
Output Code  
G017  
G018  
Figure 25.  
Figure 26.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6124 (FS= 105 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 80 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88.2 dBc  
SFDR = 84.8 dBc  
SINAD = 71.3 dBFS  
SNR = 71.5 dBFS  
THD = 87.1 dBc  
SINAD = 70.8 dBFS  
SNR = 71.1 dBFS  
THD = 82.9 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G019  
G020  
Figure 27.  
Figure 28.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 74.9 dBc  
SINAD = 65.8 dBFS  
SNR = 67.1 dBFS  
THD = 73.3 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
IN  
IN  
−20  
−40  
2-Tone IMD = –82.4 dBFS  
SFDR = –87.8 dBFS  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G021  
G022  
Figure 29.  
Figure 30.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 0 dB  
Gain = 3.5 dB  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G023  
G024  
Figure 31.  
Figure 32.  
28  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6124 (FS= 105 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SNR vs INPUT FREQUENCY (LVDS interface)  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 3.5 dB  
Gain = 0 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G025  
G026  
Figure 33.  
Figure 34.  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
95  
90  
85  
80  
75  
70  
65  
60  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Input adjusted to get −1dBFS input  
Input adjusted to get −1dBFS input  
0 dB  
1 dB  
6 dB  
5 dB  
2 dB  
0 dB  
4 dB  
1 dB  
4 dB  
3 dB  
2 dB  
300  
5 dB  
6 dB  
300  
3 dB  
400  
0
100  
200  
500  
0
100  
200  
400  
500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G027  
G028  
Figure 35.  
Figure 36.  
PERFORMANCE vs AVDD  
PERFORMANCE vs DRVDD  
98  
96  
94  
92  
90  
88  
86  
84  
77  
92  
90  
88  
86  
84  
82  
80  
78  
76  
78  
77  
76  
75  
74  
73  
72  
71  
70  
f
= 10.1 MHz  
f
= 70.1 MHz  
IN  
IN  
76  
75  
74  
73  
72  
71  
70  
AV = 3.3 V  
DD  
DRV = 3.3 V  
DD  
SFDR  
SFDR  
SNR  
SNR  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DRV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G030  
G029  
Figure 37.  
Figure 38.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6124 (FS= 105 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
96  
94  
92  
90  
88  
86  
75  
74  
73  
72  
71  
70  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBFS)  
SFDR  
SNR (dBFS)  
80  
70  
60  
SNR  
SFDR (dBc)  
50  
40  
f
IN  
= 10.1 MHz  
f
= 20.1 MHz  
−10  
IN  
30  
−60  
−50  
−40  
−30  
−20  
0
−40  
−20  
0
20  
40  
60  
80  
Input Amplitude − dBFS  
T − Temperature − °C  
G032  
G031  
Figure 39.  
Figure 40.  
PERFORMANCE vs CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
96  
94  
92  
90  
88  
86  
84  
82  
80  
72.0  
SNR  
f
IN  
= 10.1 MHz  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
SFDR  
SFDR  
SNR  
f
IN  
= 20.1 MHz  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G033  
G034  
Figure 41.  
Figure 42.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
96  
94  
92  
90  
88  
86  
76  
f
= 20.1 MHz  
IN  
External Reference Mode  
74  
72  
70  
68  
66  
SNR  
SFDR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G036  
Figure 43.  
30  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6123 (FS= 80 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.34 dBc  
SFDR = 83.43 dBc  
SINAD = 71.57 dBFS  
SNR = 71.74 dBFS  
THD = 86.63 dBc  
SINAD = 71.03 dBFS  
SNR = 71.49 dBFS  
THD = 82.65 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G037  
G038  
Figure 44.  
Figure 45.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 81.4 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
2-Tone IMD = –84.1 dBFS  
SFDR = –89.5 dBFS  
IN  
SINAD = 69 dBFS  
SNR = 69.7 dBFS  
THD = 78 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G039  
G040  
Figure 46.  
Figure 47.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 0 dB  
Gain = 3.5 dB  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G041  
G042  
Figure 48.  
Figure 49.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6123 (FS= 80 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SNR vs INPUT FREQUENCY (LVDS interface)  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G043  
G044  
Figure 50.  
Figure 51.  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
95  
90  
85  
80  
75  
70  
65  
60  
74  
72  
70  
68  
66  
64  
62  
60  
58  
Input adjusted to get −1dBFS input  
3 dB  
Input adjusted to get −1dBFS input  
0 dB  
1 dB  
2 dB  
3 dB  
2 dB  
6 dB  
5 dB  
0 dB  
4 dB  
1 dB  
4 dB  
5 dB  
6 dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G045  
G046  
Figure 52.  
Figure 53.  
PERFORMANCE vs AVDD  
PERFORMANCE vs DRVDD  
102  
100  
98  
74  
88  
78  
f
= 10.1 MHz  
f
= 70.1 MHz  
IN  
IN  
86  
84  
82  
80  
78  
76  
74  
72  
77  
76  
75  
74  
73  
72  
71  
70  
73  
72  
71  
70  
69  
68  
67  
AV = 3.3 V  
SFDR  
DRV = 3.3 V  
DD  
DD  
SNR  
96  
94  
SFDR  
92  
SNR  
90  
88  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DRV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G048  
G047  
Figure 54.  
Figure 55.  
32  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6123 (FS= 80 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
99  
97  
95  
93  
91  
89  
74  
73  
72  
71  
70  
69  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR  
SFDR (dBFS)  
SNR (dBFS)  
80  
SNR  
70  
60  
50  
SFDR (dBc)  
−50  
40  
f
IN  
= 10.1 MHz  
f
IN  
= 20 MHz  
−10 0  
30  
−60  
−40  
−20  
0
20  
40  
60  
80  
−40  
−30  
−20  
T − Temperature − °C  
Input Amplitude − dBFS  
G049  
G050  
Figure 56.  
Figure 57.  
PERFORMANCE vs CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
94  
92  
90  
88  
86  
84  
82  
80  
78  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
98  
96  
94  
92  
90  
88  
86  
84  
82  
72.0  
f
IN  
= 10.1 MHz  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
SFDR  
SNR  
SNR  
SFDR  
f
IN  
= 20.1 MHz  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Clock Duty Cycle − %  
Input Clock Amplitude − V  
PP  
G052  
G051  
Figure 58.  
Figure 59.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
92  
90  
88  
86  
84  
82  
78  
f
= 20.1 MHz  
IN  
External Reference Mode  
76  
74  
72  
70  
68  
SFDR  
SNR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G054  
Figure 60.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6122 (FS= 65 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 90 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 91.8 dBc  
SFDR = 83 dBc  
SINAD = 71.1 dBFS  
SNR = 71.8 dBFS  
THD = 89.8 dBc  
SINAD = 71.1 dBFS  
SNR = 71.6 dBFS  
THD = 82.3 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
0
10  
20  
30  
f − Frequency − MHz  
f − Frequency − MHz  
G055  
G056  
Figure 61.  
Figure 62.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 82.8 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
2-Tone IMD = –88.5 dBFS  
SFDR = –91.9 dBFS  
IN  
SINAD = 69.5 dBFS  
SNR = 70.1 dBFS  
THD = 79.6 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
0
10  
20  
30  
f − Frequency − MHz  
f − Frequency − MHz  
G057  
G058  
Figure 63.  
Figure 64.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G059  
G060  
Figure 65.  
Figure 66.  
34  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6122 (FS= 65 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SNR vs INPUT FREQUENCY (LVDS interface)  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G061  
G062  
Figure 67.  
Figure 68.  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
95  
90  
85  
80  
75  
70  
65  
60  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Input adjusted to get −1dBFS input  
Input adjusted to get −1dBFS input  
0 dB  
2 dB  
1 dB  
3 dB  
6 dB  
1 dB  
2 dB  
0 dB  
5 dB  
3 dB  
6 dB  
300  
5 dB  
4 dB  
4 dB  
0
100  
200  
300  
400  
500  
0
100  
200  
400  
500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G063  
G064  
Figure 69.  
Figure 70.  
PERFORMANCE vs AVDD  
PERFORMANCE vs DRVDD  
106  
104  
102  
100  
98  
75  
96  
77  
f
= 10.1 MHz  
f
= 70.1 MHz  
IN  
IN  
94  
92  
90  
88  
86  
84  
82  
80  
76  
75  
74  
73  
72  
71  
70  
69  
74  
73  
72  
71  
70  
69  
68  
AV = 3.3 V  
DRV = 3.3 V  
DD  
DD  
SFDR  
SNR  
SNR  
SFDR  
96  
94  
92  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DRV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G066  
G065  
Figure 71.  
Figure 72.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - ADS6122 (FS= 65 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
98  
96  
94  
92  
90  
88  
86  
76  
75  
74  
73  
72  
71  
70  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
f
IN  
= 10.1 MHz  
SFDR (dBFS)  
SFDR  
SNR (dBFS)  
80  
70  
60  
SNR  
SFDR (dBc)  
50  
40  
f
= 20.1 MHz  
−10  
IN  
30  
−60  
−50  
−40  
−30  
−20  
0
−40  
−20  
0
20  
40  
60  
80  
Input Amplitude − dBFS  
T − Temperature − °C  
G068  
G067  
Figure 73.  
Figure 74.  
PERFORMANCE vs CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
96  
94  
92  
90  
88  
86  
84  
82  
80  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
96  
94  
92  
90  
88  
86  
84  
82  
80  
72.0  
SFDR  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
SNR  
SNR  
SFDR  
f
IN  
= 10.1 MHz  
f
IN  
= 20.1 MHz  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G069  
G070  
Figure 75.  
Figure 76.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
95  
93  
91  
89  
87  
85  
78  
f
= 20.1 MHz  
IN  
External Reference Mode  
76  
74  
72  
70  
68  
SFDR  
SNR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G072  
Figure 77.  
36  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
TYPICAL CHARACTERISTICS - LOW SAMPLING FREQUENCIES  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)  
FS = 40 MSPS  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 3.5 dB  
Gain = 0 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G073  
G074  
Figure 78.  
Figure 79.  
FS = 25 MSPS  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
100  
90  
80  
70  
60  
50  
76  
74  
72  
70  
68  
66  
64  
62  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 0 dB  
Gain = 3.5 dB  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G075  
G076  
Figure 80.  
Figure 81.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
COMMON PLOTS  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)  
POWER DISSIPATION vs  
SAMPLING FREQUENCY (DDR LVDS and CMOS)  
COMMON-MODE REJECTION RATIO vs FREQUENCY  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
f
C
= 2.5 MHz  
= 5 pF  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
L
LVDS  
CMOS  
75  
0
25  
50  
100  
125  
0
50  
100  
150  
200  
250  
300  
f
S
− Sampling Frequency − MSPS  
f − Frequency − MHz  
G078  
G077  
Figure 82.  
Figure 83.  
DRVDD current vs  
SAMPLING FREQUENCY across load capacitance (CMOS)  
30  
1.8 V, No Load  
25  
1.8 V, 5 pF  
20  
15  
10  
5
3.3 V, No Load  
3.3 V, 5 pF  
3.3 V, 10 pF  
0
0
25  
50  
75  
100  
125  
f
S
− Sampling Frequency − MSPS  
G079  
Figure 84.  
38  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Contour Plots Across Input and Sampling Frequencies  
125  
120  
90  
75  
84  
72  
66  
84  
78  
87  
84  
69  
81  
110  
100  
90  
84  
63  
66  
75  
81  
87  
84  
72  
78  
90  
90  
87  
80  
60  
69  
87  
81  
70  
63  
78  
60  
75  
84  
50  
90  
93  
69  
72  
66  
40  
78  
60  
75  
81  
84  
63  
30  
25  
10  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
fIN - Input Frequency - MHz  
60  
65  
70  
75  
80  
85  
90  
95  
SFDR - dBc  
M0049-15  
Figure 85. SFDR Contour (No gain, FS = 2 VPP  
)
125  
120  
84  
87  
84  
75  
87  
78  
87  
81  
110  
100  
90  
69  
87  
72  
66  
90  
75  
78  
81  
81  
90  
87  
80  
90  
87  
90  
84  
69  
70  
93  
66  
72  
75  
93  
60  
78  
50  
90  
90  
40  
87  
84  
93  
78  
63  
72  
81  
69  
93  
75  
30  
25  
10  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
fIN - Input Frequency - MHz  
60  
65  
70  
75  
80  
85  
90  
95  
SFDR - dBc  
M0049-16  
Figure 86. SFDR Contour (with 3.5 dB Coarse gain, FS = 1.34 VPP  
)
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Contour Plots Across Input and Sampling Frequencies (continued)  
Figure 87. SNR Contour (No gain, FS = 2 VPP  
)
Figure 88. SNR Contour (with 3.5 dB Coarse gain, FS = 1.34 VPP  
)
40  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
APPLICATION INFORMATION  
THEORY OF OPERATION  
ADS612X is a family of low power 12-bit pipeline ADC in a CMOS process up to 125 MSPS sampling frequency.  
It is based on switched capacitor technology and runs off a single 3.3-V supply. The conversion process is  
initiated by a rising edge of the external input clock. Once the signal is captured by the input sample and hold,  
the input sample is sequentially converted by a series of lower resolution stages, with the outputs combined in a  
digital correction logic block. At every clock edge, the sample propagates through the pipeline resulting in a data  
latency of 9 clock cycles. The output is available as 12-bit data, in DDR LVDS or CMOS and coded in either  
straight offset binary or binary 2s complement format.  
ANALOG INPUT  
The analog input consists of a switched-capacitor based differential sample and hold architecture, shown in  
Figure 89.  
This differential topology results in good ac-performance even for high input frequencies at high sampling rates.  
The INP and INM pins have to be externally biased around a common-mode voltage of 1.5 V available on VCM  
pin. For a full-scale differential input, each input pin INP, INM has to swing symmetrically between VCM + 0.5 V  
and VCM – 0.5 V, resulting in a 2-VPP differential input swing. The maximum swing is determined by the internal  
reference voltages REFP (2.5 V nominal) and REFM (0.5 V, nominal).  
Sampling  
Switch  
Lpkg  
»1 nH  
Sampling  
Capacitor  
RCR Filter  
INP  
Ron  
15 W  
25 W  
Csamp  
4.0 pF  
Cbond  
»1 pF  
Cpar2  
1 pF  
50 W  
3.2 pF  
50 W  
Resr  
200 W  
Ron  
10 W  
Cpar1  
0.8 pF  
Lpkg  
»1 nH  
Csamp  
4.0 pF  
Ron  
15 W  
25 W  
INM  
Sampling  
Capacitor  
Cbond  
»1 pF  
Cpar2  
1 pF  
Resr  
200 W  
Sampling  
Switch  
Figure 89. Input Stage  
The input sampling circuit has a high 3-dB bandwidth that extends up to 450 MHz (measured from the input pins  
to the voltage across the sampling capacitors).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
1
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
0
100  
200  
300  
400  
500  
600  
f
IN  
− Input Frequency − MHz  
G080  
Figure 90. ADC Analog Input Bandwidth  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This improves the common-mode  
noise immunity and even order harmonic rejection.  
A 5-resistor in series with each input pin is recommended to damp out ringing caused by the package  
parasitics. It is also necessary to present low impedance (< 50 ) for the common mode switching currents. For  
example, this is achieved by using two resistors from each input terminated to the common mode voltage (VCM).  
In addition to the above, the drive circuit may have to be designed to provide a low insertion loss over the  
desired frequency range and matched impedance to the source. While doing this, the ADC input impedance  
must be considered. Over a wide frequency range, the input impedance can be approximated by a parallel  
combination of Rin and Cin (Zin = Rin || Cin).  
100  
10  
1
0.1  
0.01  
0
100  
200  
300  
400  
500  
600  
f − Frequency − MHz  
G083  
Figure 91. ADC Input Resistance, Rin  
42  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
9
8
7
6
5
4
3
2
1
0
0
100  
200  
300  
400  
500  
600  
f − Frequency − MHz  
G084  
Figure 92. ADC Input Capacitance, Cin  
Using RF-Transformer Based Drive Circuits  
Figure 93 shows a configuration using a single 1:1 turns ratio transformer (for example, Coilcraft WBC1-1) that  
can be used for low input frequencies (about 100 MHz).  
The single-ended signal is fed to the primary winding of the RF transformer. The transformer is terminated on the  
secondary side. Putting the termination on the secondary side helps to shield the kickbacks caused by the  
sampling circuit from the RF transformer’s leakage inductances. The termination is accomplished by two resistors  
connected in series, with the center point connected to the 1.5 V common mode (VCM pin). The value of the  
termination resistors (connected to common mode) has to be low (< 100 ) to provide a low-impedance path for  
the ADC common-mode switching current.  
TF_ADC  
0.1  
mF  
5 W  
INP  
25 W  
25 W  
0.1  
mF  
5 W  
INM  
1 :1  
VCM  
Figure 93. Single Transformer Drive Circuit  
At high input frequencies, the mismatch in the transformer parasitic capacitance (between the windings) results  
in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps  
minimize this mismatch, and good performance is obtained for high frequency input signals. Figure 94 shows an  
example using two transformers (Coilcraft WBC1-1). An additional termination resistor pair (enclosed within the  
shaded box in Figure 94) may be required between the two transformers to improve the balance between the P  
and M sides. The center point of this termination must be connected to ground.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
5 W  
0 .1  
mF  
INP  
50 W  
50 W  
50 W  
50 W  
0 .1  
mF  
5 W  
INM  
1:1  
1:1  
VCM  
Figure 94. Two Transformer Drive Circuit  
Using Differential Amplifier Drive Circuits  
Figure 95 shows a drive circuit using a differential amplifier (TI's THS4509) to convert a single-ended input to  
differential output that can be interface to the ADC analog input pins. In addition to the single-ended to differential  
conversion, the amplifier also provides gain (10 dB in Figure 95). RFIL helps to isolate the amplifier outputs from  
the switching input of the ADC. Together with CFIL it also forms a low-pass filter that band-limits the noise (and  
signal) at the ADC input. As the amplifier output is ac-coupled, the common-mode voltage of the ADC input pins  
is set using two 200 resistors connected to VCM.  
The amplifier output can also be dc-coupled. Using the output common-mode control of the THS4509, the ADC  
input pins can be biased to 1.5 V. In this case, use +4 V and -1 V supplies for the THS4509 so that its output  
common-mode voltage (1.5 V) is at mid-supply.  
RF  
+VS  
0.1 mF  
RFIL  
500 W  
5 W  
0.1 mF 10 mF  
0.1 mF  
INP  
RS  
RG  
CFIL  
200 W  
0.1 mF  
RT  
CM THS4509  
RG  
200 W  
5 W  
CFIL  
RFIL  
INM  
0.1 mF  
500 W  
RS || RT  
VCM ADS612x  
0.1 mF  
–VS  
0.1 mF 10 mF  
0.1 mF  
RF  
Figure 95. Drive Circuit Using the THS4509  
See the EVM User Guide (SLWU028) for more information.  
44  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Input Common-Mode  
To ensure a low-noise common-mode reference, the VCM pin is filtered with a 0.1-µF low-inductance capacitor  
connected to ground. The VCM pin is designed to directly drive the ADC inputs. The input stage of the ADC  
sinks a common-mode current in the order of 180 µA (at 125 MSPS). Equation 1 describes the dependency of  
the common-mode current and the sampling frequency.  
Fs  
180 mA x  
125 MSPS  
(1)  
Equation 1 helps to design the output capability and impedance of the CM driving circuit.  
REFERENCE  
ADS612X has built-in internal references REFP and REFM, requiring no external components. Design schemes  
are used to linearize the converter load seen by the references; this and the integration of the requisite reference  
capacitors on-chip eliminates the need for external decoupling. The full-scale input range of the converter is  
controlled in the external reference mode as explained below. The internal or external reference modes can be  
selected by programming the serial interface register bit <REF> (seeTable 5).  
INTREF  
VCM  
INTERNAL  
REFERENCE  
1 kW  
4 kW  
INTREF  
EXTREF  
REFM  
REFP  
Figure 96. Reference Section  
Internal Reference  
When the device is in internal reference mode, the REFP and REFM voltages are generated internally.  
Common-mode voltage (1.5 V nominal) is output on VCM pin, which can be used to externally bias the analog  
input pins.  
External Reference  
When the device is in external reference mode, the VCM acts as a reference input pin. The voltage forced on the  
VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential  
input voltage corresponding to full-scale is given by Equation 2.  
Full−scale differential input pp + (Voltage forced on VCM)   1.33  
(2)  
In this mode, the 1.5 V common-mode voltage to bias the input pins has to be generated externally. There is no  
change in performance compared to internal reference mode.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
COARSE GAIN and PROGRAMMABLE FINE GAIN  
ADS612X includes gain settings that can be used to get improved SFDR performance (compared to 0 dB gain  
mode). The gain settings are 3.5 dB coarse gain and programmable fine gain from 0 dB to 6 dB. For each gain  
setting, the analog input full-scale range scales proportionally, as shown in Table 15.  
The coarse gain is a fixed setting of 3.5 dB and is designed to improve SFDR with little degradation in SNR (as  
seen in Figure 13 and Figure 14). The fine gain is programmable in 1 dB steps from 0 to 6 dB. With fine gain  
also, SFDR improvement is achieved, but at the expense of SNR (there is about 1 dB SNR degradation for every  
1 dB of fine gain).  
So, the fine gain can be used to trade-off between SFDR and SNR. The coarse gain makes it possible to get  
best SFDR but without losing SNR significantly. At high input frequencies, the gains are especially useful as the  
SFDR improvement is significant with marginal degradation in SINAD. The gains can be programmed using the  
register bits <COARSE GAIN> (see Table 5) and <FINE GAIN> (see Table 10). Note that the default gain after  
reset is 0 dB.  
Table 15. Full-Scale Range Across Gains  
GAIN, dB  
TYPE  
FULL-SCALE RANGE, VPP  
0
3.5  
1
Default after reset  
Coarse setting (fixed)  
2.00  
1.34  
1.78  
1.59  
1.42  
1.26  
1.12  
1.00  
2
3
Fine gain (programmable)  
4
5
6
46  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
CLOCK INPUT  
The clock inputs of the ADS612X can be driven differentially (SINE, LVPECL or LVDS) or single-ended  
(LVCMOS), with little or no difference in performance between configurations. The common-mode voltage of the  
clock inputs is set to VCM using internal 5-kresistors as shown in Figure 97. This allows the use of  
transformer-coupled drive circuits for sine wave clock, or ac-coupling for LVPECL, LVDS clock sources  
(Figure 99 and Figure 100).  
For best performance, it is recommended to drive the clock inputs differentially, reducing susceptibility to  
common-mode noise. In this case, it is best to connect both clock inputs to the differential input clock signal with  
0.1-µF capacitors, as shown in Figure 99. A single-ended CMOS clock can be ac-coupled to the CLKP input,  
with CLKM connected to ground with a 0.1-µF capacitor, as shown in Figure 100.  
For high input frequency sampling, the use a clock source with very low jitter is recommended. Bandpass filtering  
of the clock source can help reduce the effect of jitter. There is no change in performance with a non-50% duty  
cycle clock input. Figure 24 shows the performance of the ADC versus clock duty cycle.  
Clock Buffer  
Lpkg  
» 1 nH  
10 W  
CLKP  
Cbond  
» 1 pF  
Ceq  
Ceq  
5 kW  
Resr  
» 100 W  
VCM  
6 pF  
5 kW  
Lpkg  
» 1 nH  
10 W  
CLKM  
Cbond  
» 1 pF  
Resr  
» 100 W  
Ceq » 1 to 3 pF, equivalent input capacitance of clock buffer  
Figure 97. Internal Clock Buffer  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
Clock Frequency − MHz  
G082  
Figure 98. Clock Buffer Input Impedance  
0.1 mF  
CLKP  
Differential Sine-Wave  
or PECL or LVDS  
Clock Input  
0.1 mF  
CLKM  
ADS612x  
Figure 99. Differential Clock Driving Circuit  
0.1 mF  
CMOS Clock Input  
CLKP  
0.1 mF  
CLKM  
ADS612x  
Figure 100. Single-Ended Clock Driving Circuit  
48  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
POWER DOWN MODES  
ADS612X has four power-down modes – global power down, standby, output buffer disable and input clock  
stopped. These modes can be set using the serial interface or using the parallel interface (pins SDATA and  
PDN).  
Table 16. Power Down Modes  
POWER DOWN  
MODES  
PARALLEL INTERFACE  
SERIAL INTERFACE  
REGISTER BIT  
(Table 5)  
TOTAL POWER,  
mW  
WAKE-UP TIME  
(to valid data)  
SDATA  
PDN  
Normal operation  
Standby  
Low  
Low  
<PDN OBUF>=0 and  
<STBY>=0  
417  
72  
-
Low  
High  
High  
High  
Low  
High  
<PDN OBUF>=0 and  
<STBY>=1  
Slow (50 µs)  
Fast (200 ns)  
Slow (50 µs)  
Output buffer disable  
Global power down  
<PDN OBUF>=1 and  
<STBY>=0  
408  
30  
<PDN OBUF>=1 and  
<STBY>=1  
Global Powerdown  
In this mode, the A/D converter, internal references and the output buffers are powered down and the total power  
dissipation reduces to about 30 mW. The output buffers are in high impedance state. The wake-up time from the  
global power down to output data becoming valid in the normal mode is maximum 50 µs. Note that after coming  
out of global power down, optimum performance will be achieved after the internal reference voltages have  
stabilized (about 1 ms).  
Standby  
Here, only the A/D converter is powered down and the total power dissipation is about 72 mW. The wake-up time  
from standby to output data becoming valid is maximum 50 µs.  
Output Buffer Disable  
The data output buffers can be disabled, reducing the total power to about 408 mW. With the buffers disabled,  
the outputs are in high impedance state. The wake-up time from this mode to data becoming valid in normal  
mode is maximum 500 ns in LVDS mode and 200 ns in CMOS mode.  
Input Clock Stop  
The converter enters this mode when the input clock frequency falls below 1 MSPS. The power dissipation is  
about 120 mW, and the wake-up time from this mode to data becoming valid in normal mode is maximum 50 µs.  
Power Supply Sequence  
During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are  
separated inside the device. Externally, they can be driven from separate supplies or from a single supply.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DIGITAL OUTPUT INTERFACE  
ADS612X outputs 12 data bits together with an output clock. The output interface are either parallel CMOS or  
DDR LVDS voltage levels and can be selected using serial register bit <LVDS CMOS> or parallel pin SEN.  
Parallel CMOS Interface  
In the CMOS mode, the output buffer supply (DRVDD) can be operated over a wide range from 1.8 V to 3.3 V  
(typical). Each data bit is output on separate pin as CMOS voltage level, every clock cycle.  
For DRVDD 2.2 V, it is recommended to use the CMOS output clock (CLKOUT) to latch data in the receiving  
chip. The rising edge of CLKOUT can be used to latch data in the receiver, even at the highest sampling speed  
(125 MSPS). It is recommended to minimize the load capacitance seen by data and clock output pins by using  
short traces to the receiver. Also, match the output data and clock traces to minimize the skew between them.  
For DRVDD < 2.2 V, it is recommended to use external clock (for example, input clock delayed to get desired  
setup/hold times).  
Output Clock Position Programmability  
There exists an option to shift (delay) the output clock position so that the setup time increases by 400 ps  
(typical, with respect to the default timings specified). This may be useful if the receiver needs more setup time,  
especially at high sampling frequencies. This can be programmed using the serial interface register bit  
<CLKOUT_POSN> (see Table 6).  
Output Buffer Strength Programmability  
Switching noise (caused by CMOS output data transitions) can couple into the analog inputs during the instant of  
sampling and degrade the SNR. The coupling and SNR degradation increases as the output buffer drive is made  
stronger. To minimize this, the ADS612X CMOS output buffers are designed with controlled drive strength to get  
best SNR. The default drive strength also ensures wide data stable window for load capacitances upto 5 pF and  
DRVDD supply voltage 2.2 V.  
To ensure wide data stable window for load capacitance > 5 pF, there is an option to increase the drive strength  
using the serial interface (<DRIVE STRENGTH>, see Table 12). Note that for DRVDD supply voltage < 2.2 V, it  
is recommended to use maximum drive strength (for any value of load capacitance).  
CMOS Mode Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock  
cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined  
by the average number of output bits switching, which is a function of the sampling frequency and the nature of  
the analog input signal.  
Digital current due to CMOS output switching = CL × DRVDD x (N x FAVG  
)
where CL = load capacitance, N × FAVG = average number of output bits switching  
Figure 84 shows the current with various load capacitances across sampling frequencies at 2 MHz analog input  
frequency.  
50  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Pins  
OVR  
CLKOUT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
12 bit ADC data  
D9  
D10  
D11  
ADS612X  
Figure 101. CMOS Output buffers  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DDR LVDS Interface  
The LVDS interface works only with 3.3 V DRVDD supply. In this mode, the 12 data bits and the output clock are  
available as LVDS (Low Voltage Differential Signal) levels. Two successive data bits are multiplexed and output  
on each LVDS differential pair every clock cycle (DDR - Double Data Rate, see Figure 102 ). So, there are 7  
LVDS output pairs for the 12 data bits and 1 LVDS output pair for the output clock.  
LVDS Buffer Current Programmability  
The default LVDS buffer output current is 3.5 mA. When terminated by 100 , this results in a 350-mV  
single-ended voltage swing (700-mVPP differential swing). The LVDS buffer currents can also be programmed to  
2.5 mA, 4.5 mA, and 1.75 mA (register bits <LVDS CURRENT>, see Table 11). In addition, there is a current  
double mode, where this current is doubled for the data and output clock buffers (register bits <CURRENT  
DOUBLE>, see Table 11).  
Pins  
CLKOUTP  
Output Clock  
CLKOUTM  
D0_D1_P  
Data bits D0, D1  
D0_D1_M  
D2_D3_P  
Data bits D2, D3  
D2_D3_M  
D4_D5_P  
Data bits D4, D5  
D4_D5_M  
12-Bit ADC Data  
D6_D7_P  
Data bits D6, D7  
D6_D7_M  
D8_D9_P  
Data bits D8, D9  
D8_D9_M  
D10_D11_P  
Data bits D10, D11  
D10_D11_M  
ADS612x  
Figure 102. DDR LVDS Outputs  
Even data bits D0, D2, D4, D6, D8, D10, and D12 are output at the rising edge of CLKOUTP and the odd data  
bits D1, D3, D5, D7, D9, D11, and D13 are output at the falling edge of CLKOUTP. Both the rising and falling  
edges of CLKOUTP must be used to capture all the 12 data bits (see Figure 103).  
52  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
 
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
CLKOUTM  
CLKOUTP  
D0_D1_P,  
D0_D1_M  
D0  
D2  
D1  
D3  
D5  
D7  
D9  
D11  
D0  
D2  
D1  
D3  
D5  
D7  
D9  
D2_D3_P,  
D2_D3_M  
D4_D5_P,  
D4_D5_M  
D4  
D4  
D6_D7_P,  
D6_D7_M  
D6  
D6  
D8_D9_P,  
D8_D9_M  
D8  
D8  
D10_D11_P,  
D10_D11_M  
D10  
D10  
D11  
Sample N  
Sample N+1  
Figure 103. DDR LVDS Interface  
LVDS Buffer Internal Termination  
An internal termination option is available (using the serial interface), by which the LVDS buffers are differentially  
terminated inside the device. The termination resistances available are – 300 , 185 , and 150 (nominal with  
±20% variation). Any combination of these three terminations can be programmed; the effective termination is  
the parallel combination of the selected resistances. This results in eight effective terminations from open (no  
termination) to 65 .  
The internal termination helps to absorb any reflections coming from the receiver end, improving the signal  
integrity. With 100 internal and 100 external termination, the voltage swing at the receiver end is halved  
(compared to no internal termination). The voltage swing can be restored by using the LVDS current double  
mode. Figure 104 and Figure 105 compare the LVDS eye diagrams without and with internal termination (100 ).  
With internal termination, the eye looks clean even with 10 pF load capacitance (from each outpin to ground).  
The terminations is programmed using register bits <DATA TERM> and <CLKOUT TERM> (see Table 11).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Figure 104. LVDS Eye Diagram - No Internal Termination  
5-pF Load Capacitance  
Figure 105. LVDS Eye Diagram with 100-Internal  
Termination  
Blue Trace - Output Clock (CLKOUT)  
Pink Trace - Output Data  
10-pF Load Capacitance  
Blue Trace - Output Clock (CLKOUT)  
Pink Trace - Output Data  
Output Data Format  
Two output data formats are supported – 2s complement and offset binary. They can be selected using the  
parallel control pin SEN or the serial interface register bit <DATA FORMAT> (see Table 8).  
Output Timings  
The following table lists the timings at lower sampling frequencies.  
(1)(2)  
Table 17. Timing Characteristics at Lower Sampling Frequencies  
tsu DATA SETUP TIME, ns  
MIN TYP MAX  
CMOS INTERFACE, DRVDD = 2.5 V to 3.3 V  
th DATA HOLD TIME, ns  
TYP  
tPDI CLOCK PROPAGATION DELAY, ns  
Fs, MSPS  
MIN  
MAX  
MIN  
TYP  
MAX  
40  
20  
10  
11.3  
23  
12.8  
25  
10  
21  
46  
11.2  
23  
5
6.5  
7.9  
48  
50  
48  
DDR LVDS INTERFACE, DRVDD = 3.3 V  
40  
20  
10  
10.2  
22  
10.8  
23  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
4.3  
4.5  
4.5  
5.8  
6.5  
6.5  
7.3  
8.5  
8.5  
47  
48  
(1) Timing parameters are specified by design and characterization and not tested in production.  
(2) Timings are specified with default output buffer drive strength and CL= 5 pF  
54  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital and clock sections of  
the board are cleanly partitioned. See the EVM User Guide (SLWU028) for details on layout and grounding.  
Supply Decoupling  
As ADS612X already includes internal decoupling, minimal external decoupling can be used without loss in  
performance. Note that decoupling capacitors can help to filter external power supply noise, so the optimum  
number of capacitors would depend on the actual application. The decoupling capacitors should be placed very  
close to the converter supply pins.  
It is recommended to use separate supplies for the analog and digital supply pins to isolate digital switching  
noise from sensitive analog circuitry. In case only a single 3.3-V supply is available, it should be routed first to  
AVDD. It can then be tapped and isolated with a ferrite bead (or inductor) with decoupling capacitor, before being  
routed to DRVDD.  
Exposed Thermal Pad  
It is necessary to solder the exposed pad at the bottom of the package to a ground plane for best thermal  
performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON  
PCB Attachment (SLUA271).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low  
frequency value.  
Aperture Delay  
The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling  
occurs.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle  
The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width)  
to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential  
sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate  
The maximum sampling rate at which certified operation is given. All parametric testing is performed at this  
sampling rate unless otherwise noted.  
Minimum Conversion Rate  
The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. The DNL is the  
deviation of any single step from this ideal value, measured in units of LSBs  
Integral Nonlinearity (INL)  
The INL is the deviation of the ADC’s transfer function from a best fit line determined by a least squares curve fit  
of that transfer function, measured in units of LSBs.  
Gain Error  
The gain error is the deviation of the ADC’s actual input full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale range.  
Offset Error  
The offset error is the difference, given in number of LSBs, between the ADC’s actual average idle channel  
output code and the ideal average idle channel output code. This quantity is often mapped into mV.  
Temperature Drift  
The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree  
Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation of the parameter  
across the TMIN to TMAX range by the difference TMAX–TMIN  
.
56  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
Signal-to-Noise Ratio  
SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN), excluding the power at dc  
and the first nine harmonics.  
P
P
s
SNR + 10Log10  
N
(4)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Signal-to-Noise and Distortion (SINAD)  
SINAD is the ratio of the power of the fundamental (PS) to the power of all the other spectral components  
including noise (PN) and distortion (PD), but excluding dc.  
P
s
SINAD + 10Log10  
P
) P  
N
D
(5)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Effective Number of Bits (ENOB)  
The ENOB is a measure of a converter’s performance as compared to the theoretical limit based on quantization  
noise.  
SINAD * 1.76  
ENOB +  
6.02  
(6)  
(7)  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to the power of the first nine harmonics (PD).  
P
P
s
THD + 10Log10  
N
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic).  
SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion  
IMD3 is the ratio of the power of the fundamental (at frequencies f1 and f2) to the power of the worst spectral  
component at either frequency 2f1–f2 or 2f2–f1. IMD3 is either given in units of dBc (dB to carrier) when the  
absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the  
fundamental is extrapolated to the converter’s full-scale range.  
DC Power Supply Rejection Ratio (DC PSRR)  
The DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. The DC PSRR is  
typically given in units of mV/V.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR is the measure of rejection of variations in the supply voltage of the ADC. If ΔVSUP is the change in the  
supply voltage and ΔVOUT is the resultant change in the ADC output code (referred to the input), then  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(8)  
Common Mode Rejection Ratio (CMRR)  
CMRR is the measure of rejection of variations in the input common-mode voltage of the ADC. If ΔVcm is the  
change in the input common-mode voltage and ΔVOUT is the resultant change in the ADC output code (referred  
to the input), then  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(9)  
Voltage Overload Recovery  
The number of clock cycles taken to recover to less than 1% error for a 6-dB overload on the analog inputs. A  
6-dBFS sine wave at Nyquist frequency is used as the test stimulus.  
58  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
ADS6125, ADS6124  
ADS6123, ADS6122  
www.ti.com  
SLAS560AOCTOBER 2007REVISED MARCH 2008  
REVISION HISTORY  
Changes from Original (October 2007) to Revision A .................................................................................................... Page  
Changed DDR LVDS output data sequence in Figure 1..................................................................................................... 11  
Changed pin configuration (CMOS mode) information........................................................................................................ 21  
Changed pin configuration (LVDS mode) information ......................................................................................................... 23  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS6125, ADS6124 ADS6123, ADS6122  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2007  
PACKAGING INFORMATION  
Orderable Device  
ADS6122IRHBR  
ADS6122IRHBRG4  
ADS6122IRHBT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RHB  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS6122IRHBTG4  
ADS6123IRHBR  
ADS6123IRHBRG4  
ADS6123IRHBT  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS6123IRHBTG4  
ADS6124IRHBR  
ADS6124IRHBRG4  
ADS6124IRHBT  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS6124IRHBTG4  
ADS6125IRHBR  
ADS6125IRHBRG4  
ADS6125IRHBT  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS6125IRHBTG4  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2007  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
ADS6122IRHBR  
ADS6122IRHBT  
ADS6123IRHBR  
ADS6123IRHBT  
ADS6124IRHBR  
ADS6124IRHBT  
ADS6125IRHBR  
ADS6125IRHBT  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
32  
32  
3000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS6122IRHBR  
ADS6122IRHBT  
ADS6123IRHBR  
ADS6123IRHBT  
ADS6124IRHBR  
ADS6124IRHBT  
ADS6125IRHBR  
ADS6125IRHBT  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
32  
32  
3000  
250  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
333.0  
333.0  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

ADS6123

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6123IRHBR

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6123IRHBRG4

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6123IRHBT

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6123IRHBTG4

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124IRHB25

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124IRHBR

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124IRHBRG4

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124IRHBT

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6124IRHBTG4

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS6125

12-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI