ADS61JB46 [TI]

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface; 14位,输入缓冲, 160 - MSPS ,模拟 - 数字转换器JESD204A输出接口
ADS61JB46
型号: ADS61JB46
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
14位,输入缓冲, 160 - MSPS ,模拟 - 数字转换器JESD204A输出接口

转换器
文件: 总48页 (文件大小:1903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter  
with JESD204A Output Interface  
Check for Samples: ADS61JB46  
1
FEATURES  
APPLICATIONS  
2
Output Interface:  
Wireless Base-Station Infrastructures  
Test and Measurement Instrumentation  
Single-Lane and Dual-Lane Interfaces  
Maximum Data Rate: 3.125 Gbps  
DESCRIPTION  
Meets JEDEC JESD204A Specification  
The ADS61JB46 is a high-performance, low-power,  
single-channel, analog-to-digital converter with an  
integrated JESD204A output interface. Available in a  
6-mm × 6-mm QFN package, with both single-lane  
and dual-lane output modes, the device offers an  
unprecedented level of compactness. The output  
interface is compatible to the JESD204A standard,  
with an additional mode (as per the IEEE standard  
802.3-2002 part 3, clause 36.2.4.12) to interface  
seamlessly to the TI TLK family of SERDES  
transceivers. Equally impressive is the inclusion of an  
on-chip analog input buffer, providing isolation  
between the sample-and-hold switches and higher  
and more consistent input impedance.  
CML Outputs with Current Programmable  
from 2 mA to 32 mA  
Power Dissipation:  
583 mW at 160 MSPS in Dual-Lane Mode  
Power Scales Down with Clock Rate  
Input Interface: Buffered Analog Inputs  
SNR at 185-MHz IF: –72.7 dBFS  
Analog Input Dynamic Range: 2 VPP  
Reference Support:  
External and Internal (Trimmed)  
Supply:  
Analog and Digital: 1.8 V  
Input Buffer: 3.3 V  
The device is specified over the industrial  
temperature range (–40°C to +85°C).  
Programmable Digital Gain: 0 dB to 6 dB  
Output: Straight Offset Binary or  
Twos Complement  
Package: 6-mm × 6-mm QFN-40  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.3 to +2.2  
UNIT  
V
AVDD  
DRVDD  
IOVDD  
–0.3 to +2.2  
V
Supply voltage range  
–0.3 to +2.2  
V
AVDD_3V  
–0.3 to +3.9  
V
Voltage between AGND and DRGND  
Voltage applied to:  
–0.3 to +0.3  
V
External VCM pin  
Analog input pins  
Digital input pins  
Clock input pins(2)  
–0.3 to +2.2  
V
–0.3 to min (3, AVDD_3V + 0.3)  
–0.3 to AVDD + 0.3  
–0.3 to AVDD + 0.3  
–40 to +85  
V
V
V
Operating free-air temperature range, TA  
Junction temperature  
°C  
°C  
+105  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKM is less than |0.3 V|).  
This setting prevents the electrostatic discharge (ESD) protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS61JB46  
THERMAL METRIC(1)  
UNITS  
RHA (QFN)  
θJA  
Junction-to-ambient thermal resistance  
30.7  
17  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.7  
0.2  
5.7  
1
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLIES, ANALOG INPUTS, AND REFERENCE VOLTAGES  
AVDD  
Analog supply voltage  
1.7  
1.7  
1.7  
3.0  
1.8  
1.9  
1.9  
1.9  
3.6  
V
V
DRVDD  
IOVDD  
Digital supply voltage  
1.8  
CML buffer supply voltage  
1.8  
V
AVDD_3V  
Analog buffer supply voltage  
Differential input voltage range  
Input common-mode voltage  
VCM (output), internal reference mode(1)  
VCM (input), external reference mode  
3.3  
V
2
VCM ± 0.05  
1.95  
VPP  
V
V
1.4  
V
CLOCK INPUT  
In JESD204A single-lane mode  
15.625  
31.25  
0.2  
156.3  
160  
MSPS  
MSPS  
VPP  
Input clock rate  
In JESD204A dual-lane mode  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
3.0  
1.6  
0.7  
VPP  
Input clock amplitude  
differential (VCLKP – VCLKM  
VPP  
)
CMOS, single-ended, ac-  
coupled  
1.5  
V
Input clock duty cycle  
Output data rate  
35%  
50%  
65%  
DIGITAL OUTPUTS  
20x (sample  
rate)  
In single-lane mode  
In dual-lane mode  
312.5  
312.5  
3125  
1600  
Mbps  
Mbps  
10x (sample  
rate)  
CLOAD  
RLOAD  
TA  
Maximum external load capacitance from each pin to DRGND  
External termination from each output pin to IOVDD  
Operating free-air temperature  
5
pF  
Ω
50  
–40  
+85  
°C  
(1) Typical VCM reduces to 1.85 V after HIGH_SFDR_MODE (register address 02h) is written.  
Table 1. HIGH_SFDR_MODE Summary  
MODE  
DESCRIPTION  
Write register 02h, value 71h, to obtain best HD3 for input frequencies between 150 MHz to 250 MHz.  
HIGH_SFDR_MODE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Typical values are at +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX  
+85°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, clock frequency = 160 MSPS, 10x mode, 50%  
=
clock duty cycle, –1-dBFS differential analog input, internal reference mode, and CML buffer current setting = 16 mA, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE VOLTAGES (Internal)  
VCM analog input common-mode voltage (output)  
1.95  
2.5  
V
VCM output current  
(resulting in a VCM change of ±50 mV)  
mA  
REFERENCE VOLTAGES (External)  
VCM reference voltage (input)  
ANALOG INPUT  
1.4 ± 0.1  
V
Differential input voltage range  
Differential input capacitance  
Analog input bandwidth  
2.0  
VPP  
pF  
3
480  
MHz  
V
Analog input common-mode range  
VCM ± 0.05  
Analog input common-mode current  
(per input pin)  
1.6  
µA  
DC ACCURACY  
EO  
Offset error  
–20  
20  
mV  
%FS  
%FS  
mV/°C  
dB  
EGREF  
EGCHAN  
Gain error due to internal reference inaccuracy alone  
Gain error of channel alone  
–2.5  
2.5  
5
0.006  
> 30  
Gain error temperature coefficient  
AC power-supply rejection ratio  
PSRR  
50-mVPP signal on AVDD supply  
POWER-DOWN MODES  
Complete power-down mode  
10  
230  
115  
±0.6  
±2  
mW  
mW  
mW  
LSB  
LSB  
Fast recovery power-down mode  
Power with no clock  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
–0.95  
±4.5  
POWER-SUPPLY CURRENTS  
IAVDD  
AVDD current  
132  
42  
160  
55  
mA  
mA  
mA  
mA  
mW  
IAVDD_3V  
IDRVDD  
IIOVDD  
AVDD_3V current  
DRVDD current  
79  
100  
40  
IOVDD current (in 10x mode)  
31  
Total power  
583  
700  
DYNAMIC PERFORMANCE(1)(2)  
fIN = 10 MHz  
fIN = 185 MHz  
fIN = 10 MHz  
fIN = 185 MHz  
fIN = 10 MHz  
fIN = 185 MHz  
fIN = 10 MHz  
fIN = 185 MHz  
fIN = 10 MHz  
fIN = 185 MHz  
fIN = 10 MHz  
fIN = 185 MHz  
75  
77  
dBc  
dBc  
SFDR  
SNR  
Spurious-free dynamic range  
71.5  
69.2  
75  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
Signal-to-noise ratio  
72.7  
72.1  
71.5  
75  
SINAD  
HD3  
Signal-to-noise and distortion ratio  
Third-order harmonic distortion  
Second-order harmonic distortion  
Worst spur (excluding HD2, HD3)  
71.5  
71.5  
81  
77  
dBc  
90  
dBc  
HD2  
81  
dBc  
95  
dBc  
90  
dBc  
(1) HIGH_SFDR_MODE is enabled.  
(2) fS = 156.25 MSPS, 20x mode.  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
DIGITAL CHARACTERISTICS  
The dc specifications refer to the condition where the digital outputs do not switch, but are permanently at a valid logic level  
'0' or '1'.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
V
0.6  
V
SEN  
0
10  
10  
0
μA  
μA  
μA  
μA  
IIH  
High-level input current  
Low-level input current  
SCLK, SDATA, RESET, PDN, PDN_ANA  
SEN  
IIL  
SCLK, SDATA, RESET, PDN, PDN_ANA  
DIGITAL OUTPUTS (SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DRVDD – 0.1  
DRVDD  
0
V
V
0.1  
1.9  
CML OUTPUTS (50-Ω single-ended external termination to IOVDD)  
IOVDD supply range  
1.7  
1.8  
IOVDD  
V
V
V
V
V
High-level output voltage  
Low-level output voltage  
IOVDD – 0.4  
0.4  
|VOD|  
VOCM  
Output differential voltage  
Output common-mode voltage  
IOVDD – 0.2  
Transmitter terminals shorted to any voltage  
between –0.25 V and 1.45 V  
Transmitter short-circuit current  
–90  
625  
50  
mA  
Single-ended output impedance  
Unit interval  
50  
Ω
UI  
UI  
TJ  
3200  
Total jitter  
0.35  
175  
p-pUI  
tRISE  
tFALL  
,
Rise time,  
Fall time  
5-pF, single-ended load capacitance to ground  
ps  
WAKE-UP TIMING CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
50  
10  
5
MAX  
UNIT  
μs  
Time to valid data after coming out of complete power-down mode  
Time to valid data after coming out of fast-recovery power-down mode  
Time to valid data after coming out of software power-down mode  
Time to valid data after stopping and restarting the input clock  
μs  
tWAKE  
Wake-up time  
μs  
μs  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
PARAMETRIC MEASUREMENT INFORMATION  
JESD204A OUTPUT INTERFACE  
The 14-bit analog-to-digital converter (ADC) output is padded with four zeros on the LSB side to form a 16-bit  
output. Two 8B10B codes are formed; one from the eight MSBs and the other from the six LSBs and the two  
padded zeros, as shown in Figure 1.  
ADCOUT[13:6]  
ADCOUT[5:0], 0, 0  
8B10B Code 1  
MSB Octet  
8B10B Code 2  
LSB Octet  
Figure 1. ADC Output Mapping to Two 8B10B Codes  
The two octets can be either transmitted on the same lane (single-lane interface, Figure 2) or on two lanes (dual-  
lane interface, Figure 3). By default, the device operates in single-lane interface.  
Conversion Clock  
(CLKP - CLKM)  
CML Output Lane 1  
(ADC_OUTP0 - ADC_OUTM0)  
Dx.y  
(ADC Data N, MSB Octet)  
Dx.y  
(ADC Data N, LSB Octet)  
Dx.y  
(ADC Data N+1, MSB Octet)  
Dx.y  
(ADC Data N+1, LSB Octet)  
Figure 2. Single-Lane Interface Timing Diagram  
Conversion Clock  
(CLKP - CLKM)  
CML Output Lane 1  
(ADC_OUTP0 - ADC_OUTM0)  
Dx.y  
(ADC Data N, MSB Octet)  
Dx.y  
(ADC Data N+1, MSB Octet)  
Dx.y  
(ADC Data N+2, MSB Octet)  
Dx.y  
(ADC Data N+3, MSB Octet)  
CML Output Lane 2  
(ADC_OUTP1 - ADC_OUTM1)  
Dx.y  
(ADC Data N, LSB Octet)  
Dx.y  
(ADC Data N+1, LSB Octet)  
Dx.y  
(ADC Data N+2, LSB Octet)  
Dx.y  
(ADC Data N+3, LSB Octet)  
Figure 3. Dual-Lane Interface Timing Diagram  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
PARAMETRIC MEASUREMENT INFORMATION (continued)  
A detailed dual-lane mode timing diagram is shown in Figure 4.  
N+4  
N+22  
N+21  
N+3  
N+2  
N+1  
N+20  
Sample  
N
Input  
Signal  
tA  
CLKP  
Input  
Clock  
CLKM  
20 Clock Cycles(1)  
tPDI  
CML Output  
Data Lane 1  
N-21  
N-21  
N-20  
N-20  
N-19  
N-19  
N-18  
N-18  
N-17  
N-17  
N-1  
N-1  
N
N
N+1  
N+1  
N+2  
N+2  
CML Output  
Data Lane 2  
(1) These clock cycles comprise the ADC latency. At higher sampling frequencies, tPDI > 1 clock cycle and overall latency = ADC latency + 1.  
Figure 4. Dual-Lane Mode Timing Diagram  
PARAMETER  
30 MSPS  
560  
40 MSPS  
560  
60 MSPS  
560  
160 MSPS  
560  
UNIT  
ps  
TA  
TJ  
Aperture delay  
Aperture jitter (RMS)  
Latency  
125  
125  
125  
125  
fS  
20  
20  
20  
20  
Clocks  
ns  
tPDI  
Data propagation delay  
33.3  
26.2  
18.9  
15.3  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
The receiver issues a synchronization request through the SYNC~P, SYNC~M pins whenever the frame  
boundary of the output data stream must be synchronized to. Figure 5 shows how the transmission switches  
from normal data (D) to code group synchronization symbols K28.5 symbols during and after a synchronization  
request.  
N+9  
N+8  
N+7  
N+6  
N+5  
N+4  
N+3  
N+2  
N+1  
Sample  
N
Input  
Signal  
CLKP  
CLKM  
Input  
Clock  
tCLK-INT  
Internal Clock  
for Latching SYNC~  
(CLK_INT)  
tSYNC-SU  
tSYNC-H  
SYNC~ Input  
(SYNC~P) - (SYNC~M)  
tSYNC-PDI  
SYNC~ Active Latency = 9 Clock Cycles  
CML Output  
Data Lane 1  
N-21  
N-21  
N-20  
N-13  
N-13  
N-19  
N-18  
K28.5  
K28.5  
N-12  
N-12  
N-17  
N-17  
N-16  
N-16  
N-14  
N-14  
N-15  
N-15  
CML Output  
Data Lane 2  
N-20  
N-19  
N-18  
Figure 5. SYNC~ Active Timing Diagram  
Table 2. SYNC~ Falling Edge Timing at 160 MSPS  
PARAMETER  
DESCRIPTION  
TYP  
UNIT  
Delay from the input clock rising edge to the internal clock (CLK_INT)  
rising edge used to latch the SYNC~ falling edge  
tCLK-INT  
10.5  
2
ns  
ns  
tSYNC-SU  
SYNC~ active edge setup time  
SYNC~ active edge hold time  
SYNC~ active latency  
Minimum delay required from SYNC~ falling edge to CLK_INT rising  
edge  
tSYNC-H  
Minimum delay required from CLK_INT rising edge to SYNC~ falling  
edge  
2
9
ns  
clocks  
ns  
Number of clocks for K28.5 to appear at the output after a SYNC~  
request  
tSYNC-PDI  
SYNC~ data propagation delay  
Similar to data propagation delay  
15.3  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
N+9  
N+8  
N+7  
N+6  
N+5  
N+4  
N+3  
N+2  
N+1  
Sample  
N
Input  
Signal  
CLKP  
CLKM  
Input  
Clock  
tCLK-INT  
Internal Clock  
for Latching SYNC  
(CLK_INT)  
tSYNCZ-SU  
tSYNCZ-H  
SYNC~ Input  
(SYNC~P) - (SYNC~M)  
SYNC~ De-Active Latency = 8 Clock Cycles  
tSYNCZ-PDI  
CML Output  
Data Lane 1  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
N-11  
N-11  
K28.5  
K28.5  
K28.5  
K28.5  
N-12  
N-12  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
CML Output  
Data Lane 2  
Figure 6. SYNC~ De-Active Timing Diagram  
Table 3. SYNC~ Rising Edge Timing at 160 MSPS  
PARAMETER  
DESCRIPTION  
TYP  
UNIT  
Delay from input clock rising edge to the internal clock (CLK_INT)  
rising edge used to latch the SYNC~ rising edge  
10.5  
ns  
tCLK-INT  
tSYNCZ-SU  
SYNC~ active edge setup time  
SYNC~ active edge hold time  
SYNC~ de-active latency  
Minimum delay required from SYNC~ rising edge to CLK_INT rising  
edge  
2
2
ns  
tSYNCZ-H  
Minimum delay required from CLK_INT rising edge to SYNC~ rising  
edge  
ns  
Number of clocks for normal data to appear at the output after a  
SYNC~ de-activate request  
8
Clocks  
ns  
tSYNCZ-PDI  
SYNC~ de-active data  
propagation delay  
Similar to data propagation delay  
15.3  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
4-LEVEL CONTROL  
The DFS_EXTREF and MODE pins function as 4-level control pins in the device, as described in Table 4 and  
Table 5. A simple scheme to generate a 4-level voltage is shown in Figure 7.  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
2R  
AVDD  
GND  
(3/8) AVDD  
3R  
To Parallel Pin  
(3/8) AVDD  
GND  
Figure 7. Simple Scheme to Configure 4-Level Control Pins  
Table 4. DFS_EXTREF Pin (Pin 3)  
DFS_EXTREF  
DESCRIPTION  
0
EXTREF = 0, DFS = 0  
EXTREF = 1, DFS = 0  
EXTREF = 1, DFS = 1  
EXTREF = 0, DFS = 1  
+150 mV / 0 mV  
(3/8) AVDD  
±150 mV  
(5/8) AVDD  
±150 mV  
AVDD  
0 mV / –150 mV  
Key:  
0 = Internal reference mode,  
1 = External reference mode  
EXTREF:  
DFS:  
0 = Twos complement output,  
1 = Offset binary output  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
PIN CONFIGURATION  
RHA PACKAGE  
QFN-40  
(Top View)  
40 39 38 37 36 35 34 33 32 31  
SYNC~M  
SYNC~P  
DFS_EXTREF  
PDN_ANA  
AVDD  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DRVDD  
DRGND  
3
SDOUT_TEST1  
DRVDD  
4
5
RESET  
Thermal Pad  
AGND  
6
SCLK_SERF0_SCR  
SDATA_TEST0  
SEN_FALIGN_IDLE  
AVDD  
CLKP  
7
CLKM  
8
AGND  
9
VCM  
10  
PDN  
11 12 13 14 15 16 17 18 19 20  
NOTE: The thermal pad is connected to DRGND.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
PIN FUNCTIONS  
PIN  
DESCRIPTION  
NAME  
ADC_OUTM0  
ADC_OUTM1  
ADC_OUTP0  
ADC_OUTP1  
AGND  
NO.  
34  
CML output lane 1, negative output  
31  
CML output lane 2, negative output  
CML output lane 1, positive output  
CML output lane 2, positive output  
35  
32  
5, 6, 9, 11, 14, 16, Analog ground  
AVDD  
15, 18, 22  
Analog supply, 1.8 V  
AVDD_3V  
CLKM  
17  
8
Analog supply for input buffer, 3.3 V  
Conversion clock, negative input  
Conversion clock, positive input  
CLKP  
7
DETECT3  
DETECT2  
DETECT1  
DETECT0  
DFS_EXTREF  
DRGND  
DRVDD  
36  
37  
38  
39  
3
Signal level-detect output pins in 1.8-V CMOS logic level.  
These pins can be used to either output a 4-bit ADC code with low latency or to output a 16-level RMS power  
estimate.  
4-level analog control for data format selection and internal and external reference mode  
Digital ground  
29  
27, 30  
20  
13  
12  
33  
19  
40  
21  
Digital supply, 1.8 V  
FAVDD  
Fuse supply, connect externally to AVDD, 1.8 V  
Analog input, Negative  
INM  
INP  
Analog input, Positive  
IOVDD  
CML buffer supply, 1.7 V to 1.9 V  
MODE  
4-level control for selecting the serial and parallel interface modes  
Over-range output in 1.8-V CMOS logic levels.  
Full chip power-down (also referred to as complete power-down mode)  
OVR  
PDN  
Analog section power-down; JESD interface is still active. This mode is referred to as fast-recovery power-down  
mode.  
PDN_ANA  
RESET  
4
Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized  
through a hardware RESET by applying a high pulse on this pin or by using the S_RESET register bit; refer to the  
Serial Interface section.  
In parallel interface mode, the RESET pin must be permanently tied high. In this mode, the SEN_FALIGN_IDLE,  
SCLK_SERF0_SCR, and SDATA_TEST0 pins function as parallel pins with their functionality described in  
Table 6, Table 7, and Table 8, respectively.  
26  
Serial clock input in serial interface mode. In parallel interface mode, this pin provides a 4-level control for all  
JESD modes (single-lane, dual-lane, and scrambling modes).  
SCLK_SERF0_SCR  
25  
SDATA_TEST0  
SDOUT_TEST1  
24  
28  
Serial data input in serial interface mode. In parallel interface mode, this pin provides a JESD test mode.  
Serial data out in serial interface mode. In parallel interface mode, this pin provides a JESD test mode.  
Serial enable input in serial interface mode. In parallel interface mode, this pin provides a 4-level control for JESD  
modes.  
SEN_FALIGN_IDLE  
23  
SYNC~M  
SYNC~P  
VCM  
1
2
JESD synchronization request, negative input  
JESD synchronization request, positive input  
10  
Common-mode output for setting the input common-mode. 1.95 V, reference input in external reference mode.  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
FUNCTIONAL BLOCK DIAGRAM  
CLOCKGEN  
PLL  
10X, 20X  
CML  
Outputs  
ADC_OUTP[0]  
ADC_OUTM[0]  
INP  
INM  
JESD204A  
Digital  
Buffer  
14-Bit ADC  
ADC_OUTP[1]  
ADC_OUTM[1]  
Signal Level  
Detect  
OVR  
DETECT[3:0]  
Control  
Interface  
VCM  
Reference  
CMOS  
Outputs  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
0
0
SFDR = 74.8 dBc  
SNR = 75.0 dBFS  
SINAD = 72.3 dBFS  
THD = 74.7 dBc  
SFDR Non HD2, HD3  
= 94.6 dBc  
SFDR = 74.0 dBc  
SNR = 74.8 dBFS  
SINAD = 71.8 dBFS  
THD = 73.7 dBc  
SFDR Non HD2, HD3  
= 97.0 dBc  
−20  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70 76.8  
0
10  
20  
30  
40  
50  
60  
70 76.8  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 8. AMPLITUDE vs FREQUENCY  
(20-MHz IF)  
Figure 9. AMPLITUDE vs FREQUENCY  
(70-MHz IF)  
0
−20  
0
−20  
SFDR = 81.1 dBc  
SNR = 72.9 dBFS  
SINAD = 72.2 dBFS  
THD = 79.9 dBc  
SFDR Non HD2, HD3  
= 89.87 dBc  
SFDR = 67.8 dBc  
SNR = 71.0 dBFS  
SINAD = 65.5 dBFS  
THD = 65.9 dBc  
SFDR Non HD2, HD3  
= 83.44 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70 76.8  
0
10  
20  
30  
40  
50  
60  
70 76.8  
Frequency (MHz)  
Frequency (MHz)  
G003  
G004  
Figure 10. AMPLITUDE vs FREQUENCY  
(190-MHz IF)  
Figure 11. AMPLITUDE vs FREQUENCY  
(300-MHz IF)  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
0
0
Each Tone at  
Each Tone at  
−10  
−10  
−7 dBFS Amplitude  
fIN1 = 190 MHz  
fIN2 = 185 MHz  
−36 dBFS Amplitude  
fIN1 = 190 MHz  
fIN2 = 185 MHz  
−20  
−20  
IMD3 = 79.9 dBFS  
IMD3 = 106.9 dBFS  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
10  
20  
30  
40  
50  
60  
70 76.8  
0
10  
20  
30  
40  
50  
60  
70 76.8  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 12. AMPLITUDE vs FREQUENCY  
(Two-Tone Input Signal)  
Figure 13. AMPLITUDE vs FREQUENCY  
(Two-Tone Input Signal)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
Digital gain = 0 dB  
Digital gain = 2 dB  
Digital gain = 6 dB  
Digital gain = 0 dB  
Digital gain = 2 dB  
Digital gain = 6 dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
G007  
G008  
Figure 14. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT FREQUENCY  
Figure 15. SPURIOUS-FREE DYNAMIC RANGE  
(NON HD2, HD3) vs INPUT FREQUENCY  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
78.5  
130  
120  
110  
100  
90  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Input Frequency = 40MHz  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
Digital gain = 0 dB  
Digital gain = 2 dB  
Digital gain = 6 dB  
78  
77.5  
77  
76.5  
76  
80  
75.5  
75  
70  
60  
74.5  
74  
50  
40  
73.5  
73  
30  
20  
72.5  
10  
−80  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
G010  
G009  
Figure 16. SIGNAL-TO-NOISE RATIO vs INPUT FREQUENCY  
Figure 17. PERFORMANCE ACROSS INPUT AMPLITUDE  
105  
77  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
G011  
G012  
Figure 18. SPURIOUS-FREE DYNAMIC RANGE  
vs DIGITAL GAIN  
Figure 19. SIGNAL-TO-NOISE RATIO vs DIGITAL GAIN  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−40  
35  
60  
85  
Digital Gain (dB)  
G013  
G014  
Figure 20. SIGNAL-TO-NOISE AND DISTORTION RATIO  
vs DIGITAL GAIN  
Figure 21. SPURIOUS-FREE DYNAMIC RANGE  
vs AVDD SUPPLY AND TEMPERATURE  
73.9  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD_3V = 3 V  
AVDD_3V = 3.1 V  
AVDD_3V = 3.2 V  
AVDD_3V = 3.3 V  
AVDD_3V = 3.4 V  
AVDD_3V = 3.5 V  
AVDD_3V = 3.6 V  
73.7  
73.5  
73.3  
73.1  
72.9  
72.7  
72.5  
72.3  
72.1  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
−40  
35  
60  
85  
−40  
35  
60  
85  
G015  
G016  
Figure 22. SIGNAL-TO-NOISE RATIO vs  
AVDD SUPPLY AND TEMPERATURE  
Figure 23. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD_3V SUPPLY AND TEMPERATURE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
73.8  
73.6  
73.4  
73.2  
73  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
AVDD_3V = 3 V  
AVDD_3V = 3.1 V  
AVDD_3V = 3.2 V  
AVDD_3V = 3.3 V  
AVDD_3V = 3.4 V  
AVDD_3V = 3.5 V  
AVDD_3V = 3.6 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
72.8  
72.6  
72.4  
72.2  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
−40  
35  
60  
85  
−40  
35  
60  
85  
G017  
G018  
Figure 24. SIGNAL-TO-NOISE RATIO vs  
AVDD_3V SUPPLY AND TEMPERATURE  
Figure 25. SPURIOUS-FREE DYNAMIC RANGE vs  
DRVDD SUPPLY AND TEMPERATURE  
78  
77.5  
77  
82  
73.8  
73.6  
73.4  
73.2  
73  
Input Frequency = 40MHz  
SNR  
SFDR  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
79  
76  
73  
70  
67  
64  
61  
58  
55  
76.5  
76  
75.5  
75  
72.8  
72.6  
72.4  
72.2  
74.5  
74  
73.5  
Input Frequency = 190 MHz  
−15 10  
Temperature (°C)  
1.85  
1.88  
1.91  
1.94  
1.97  
2
Input Common−Mode Voltage (V)  
−40  
35  
60  
85  
G020  
G001  
Figure 26. SIGNAL-TO-NOISE RATIO vs  
DRVDD SUPPLY AND TEMPERATURE  
Figure 27. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
78.5  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Input Frequency = 190MHz  
SNR  
SFDR  
Input Frequency = 40 MHz  
SNR  
SFDR  
78  
77.5  
77  
76.5  
76  
75.5  
75  
74.5  
74  
73.5  
1.85  
1.88  
1.91  
1.94  
1.97  
2
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7  
Input Common−Mode Voltage (V)  
External Reference Voltage (V)  
G021  
G022  
Figure 28. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE  
Figure 29. PERFORMANCE vs  
EXTERNAL REFERENCE VOLTAGE  
76  
75.5  
75  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Input Frequency = 190 MHz  
SNR  
SFDR  
Input Frequency = 190MHz  
SNR  
SFDR  
74.5  
74  
73.5  
73  
72.5  
72  
71.5  
71  
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7  
0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4  
External Reference Voltage (V)  
Differential Clock Amplitude (Vpp)  
G023  
G024  
Figure 30. PERFORMANCE vs  
EXTERNAL REFERENCE VOLTAGE  
Figure 31. PERFORMANCE vs  
DIFFERENTIAL CLOCK AMPLITUDE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
77.5  
78  
45  
40  
35  
30  
25  
20  
15  
10  
5
Input Frequency = 20MHz  
SNR  
THD  
77  
77.5  
77  
76.5  
76  
76.5  
76  
75.5  
75  
75.5  
75  
74.5  
74  
74.5  
74  
73.5  
73  
73.5  
73  
72.5  
20  
30  
40  
50  
60  
70  
80  
0
Input Clock Duty Cycle (%)  
G025  
Output Codes (LSB)  
G026  
Figure 32. PERFORMANCE vs  
INPUT CLOCK DUTY CYCLE  
Figure 33. OUTPUT CODES HISTOGRAM WITH IDLE  
CHANNEL INPUT  
0
0
fIN = 20 MHz  
fIN = 20 MHz  
SFDR = 75 dBc  
fPSRR = 10 MHz  
50 mVPP  
Amplitude(fIN) = −1 dBFS  
Amplitude(fPSRR) = −104 dBFS  
Amplitude(fIN + fPSRR) = −96 dBFS  
Amplitude(fIN fPSRR) = −98 dBFS  
SFDR = 74 dBc  
fCM = 10 MHz  
50 mVPP  
Amplitude(fIN) = −1 dBFS  
Amplitude(fCM) = −94.6 dBFS  
Amplitude(fIN + fCM) = −88 dBFS  
Amplitude(fIN fCM) = −89 dBFS  
−20  
−40  
−20  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
15  
30  
45  
60  
75  
0
15  
30  
45  
60  
75  
Frequency (MHz)  
Frequency (MHz)  
G054  
G055  
Figure 34. POWER-SUPPLY REJECTION RATIO SPECTRUM  
FOR AVDD SUPPLY  
Figure 35. COMMON-MODE REJECTION RATIO SPECTRUM  
FOR AVDD SUPPLY  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
0.66  
0.33  
Total Power  
AVDD Power  
AVDD_3V Power  
DRVDD Power  
IOVDD Power  
0.3  
0.6  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
0.54  
0.48  
0.42  
0.36  
0.3  
0.24  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
G056  
G057  
Figure 36. TOTAL POWER vs SAMPLING SPEED  
Figure 37. POWER BREAK-UP vs SAMPLING SPEED  
0.1  
IOVDD Power  
Dual−Lane(10x Mode)  
Single−Lane(20x Mode)  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
G058  
Figure 38. IOVDD POWER vs SAMPLING SPEED  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
79  
140  
64  
58  
73  
61  
76  
67  
70  
76  
120  
100  
80  
79  
79  
82  
82  
64  
58  
73  
61  
76  
67  
70  
76  
76  
79  
60  
79  
82  
79  
70  
61  
400  
58  
73  
64  
350  
67  
76  
200  
40  
50  
100  
150  
250  
300  
450  
500  
fIN - Input Frequency - MHz  
70  
60  
65  
75  
80  
SFDR - dBc  
M0049-33  
Figure 39. SFDR ACROSS INPUT AND SAMPLING FREQUENCIES  
140  
120  
100  
80  
77  
81  
85  
73  
89  
77  
81  
85  
73  
89  
81  
89  
60  
77  
89  
85  
81  
77  
250  
69  
40  
50  
100  
150  
200  
300  
350  
400  
450  
500  
fIN - Input Frequency - MHz  
80  
70  
75  
85  
SFDR - dBc  
M0049-34  
Figure 40. SFDR ACROSS INPUT AND SAMPLING FREQUENCIES (6-dB Gain)  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, IOVDD = 1.8 V, fS = 153.6 MSPS, sine-wave input clock,  
1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 16-mA CML current, and 32k-  
point FFT, unless otherwise noted. Note that after reset, the device is in 0-dB gain mode.  
140  
75  
73  
74  
72  
71  
70  
69  
120  
100  
80  
68  
75  
73  
72  
74  
71  
70  
69  
68  
67  
66  
60  
75  
69  
74  
100  
71  
200  
70  
72  
68  
73  
150  
67  
350  
65  
450  
64  
66  
400  
40  
50  
250  
300  
500  
fIN - Input Frequency - MHz  
64  
66  
68  
70  
72  
74  
SNR - dBFS  
M0048-33  
Figure 41. SNR ACROSS INPUT AND SAMPLING FREQUENCIES  
66  
140  
120  
100  
80  
69  
68  
67  
66  
69  
68  
67  
70  
66  
65  
60  
68  
67  
69  
70  
65  
400  
64  
450  
40  
50  
100  
150  
200  
250  
300  
350  
500  
70  
fIN - Input Frequency - MHz  
64  
65  
66  
67  
68  
69  
SNR - dBFS  
M0048-34  
Figure 42. SNR ACROSS INPUT AND SAMPLING FREQUENCIES (6-dB Gain)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
DEVICE CONFIGURATION  
PARALLEL INTERFACE MODE  
The device operates in parallel interface mode when a suitable voltage is applied on the MODE pin, as described  
in Table 5. In parallel interface mode, the SEN, SDATA, SCLK, and SDOUT pins functionality differs from the  
serial interface mode. In this mode, the SEN_FALIGN_IDLE and SCLK_SERF0_SCR pins turn into four level-  
control pins for the JESD interface (as described in Table 6 and Table 7), whereas the SDATA_TEST0 and  
SDOUT_TEST1 pins turn into 2-level control pins, as described in Table 8.  
Table 5. MODE Pin (Pin 19)  
MODE  
DESCRIPTION  
0
Serial interface mode.  
+150 mV/–0 mV  
Pins 23, 24, and 25 are configured as SEN, SDATA, SCLK. Pins 36, 37, 38, and 39 are configured to output either  
an early-signal estimate or a signal power estimate (selection is based on register settings).  
(3/8)AVDD  
±150 mV  
Do not use  
(5/8)AVDD  
±150 mV  
Parallel interface mode.  
Pins 23, 24 and 25 are configured as parallel input pins for controlling the JESD204A modes. Pins 36, 37, 38, and  
39 always output an early-signal estimate.  
AVDD  
+0 mV/–150 mV  
Do not use  
Table 6. SEN_FALIGN_IDLE Pin, in Parallel Interface Mode (Pin 23)  
SEN_FALIGN_IDLE  
DESCRIPTION  
0
FALIGN = 0, IDLE = 0  
FALIGN = 1, IDLE = 0  
FALIGN = 1, IDLE = 1  
FALIGN = 0, IDLE = 1  
+150 mV / 0 mV  
(3/8) AVDD  
±150 mV  
(5/8) AVDD  
±150 mV  
AVDD  
0 mV / –150 mV  
Key:  
When the last octet of the current frame is the same as the last octet of the previous frame, then FALIGN determines  
whether the last octet of the current frame is transmitted as is, or if the last octet is replaced by a K28.7 control symbol.  
0 = Last octet transmitted as is  
FALIGN:  
IDLE:  
1 = Last octet is replaced with a K28.7 control symbol  
IDLE determines the synchronization characters transmitted during and immediately after a SYNC event.  
0 = The device transmits K28.5 as per the JESD204A specification  
1 = The device alternately transmits K28.5 and D5.6/D16.2 characters as per the IEEE standard 802.3-2002 (part 3, clause  
36.2.4.12). This setting is the case for both single- and dual-lane modes.  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
Table 7. SCLK_SERF0_SCR Pin, in Parallel Interface Mode (Pin 25)  
SCLK_SERF0_SCR  
DESCRIPTION  
0
SERF0 = 0, SCR = 0  
SERF0 = 1, SCR = 0  
SERF0 = 1, SCR = 1  
SERF0 = 0, SCR = 1  
+150 mV / 0 mV  
(3/8) AVDD  
±150 mV  
(5/8) AVDD  
±150 mV  
AVDD  
0 mV / –150 mV  
Key:  
SERF0: Output serialization factor.  
0 = The device transmits two octets per frame (an entire ADC channel in a single lane) with an output serialization factor of 20  
1 = The device transmits one octet per frame (one ADC channel over two lanes) with an output serialization factor of 10  
0 = Scrambling disabled  
1 = Scrambling enabled (as per JESD204A)  
SCR:  
Table 8. SDATA_TEST0 and SDOUT_TEST1 Pins, in Parallel Interface Mode (Pins 24 and 28)  
TEST1  
TEST0  
MODE  
Normal mode. JESD204A encoder input is ADC data.  
0
0
1
1
0
1
0
1
JESD204A encoder input is B5B5. Output is a stream of D21.5 (alternating 1s and 0s).  
JESD204A encoder input is FF00.  
JESD204A encoder input is a pseudo random pattern 1 + X14 + X15 (regardless of whether the scrambler  
is enabled or not).  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
SERIAL INTERFACE  
The analog-to-digital converter (ADC) has a set of internal registers that can be accessed by the serial interface  
formed by the serial interface enable (SEN), serial interface clock (SCLK), and serial interface data (SDATA)  
pins. Serially shifting bits into the device is enabled when SEN is low. SDATA serial data are latched at every  
SCLK falling edge when SEN is active (low). The serial data are loaded into the register at every 16th SCLK  
falling edge when SEN is low. If the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data  
can be loaded in multiples of 16-bit words within a single active SEN pulse.  
The first eight bits form the register address and the remaining eight bits are the register data. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of few Hertz) and also with a non-50%  
SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one of two ways:  
1. Either through a hardware reset by applying a high-going pulse on RESET pin (of widths greater than 10 ns),  
as shown in Figure 43,  
or  
2. By applying a software reset. Using the serial interface, set the S_RESET bit (bit D1 in register 00h) high.  
This setting initializes the internal registers to the default values and then self-resets the S_RESET bit low. In  
this case, the RESET pin is kept low.  
Register Address  
Register Data  
SDATA  
SCLK  
SEN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tDH  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
RESET  
Figure 43. Serial Interface Timing Diagram  
Table 9. Timing Characteristics for Figure 43(1)  
PARAMETER  
MIN TYP  
MAX UNIT  
fSCLK  
tSLOADS  
tSLOADH  
tDS  
SCLK frequency (= 1/ tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
)
> DC  
25  
20  
MHz  
ns  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
(1) Typical values are at TA = +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX  
+85°C, AVDD = 1.8 V, AVDD_3V = 3.3 V, DRVDD = 1.8 V, and IOVDD = 1.8 V, unless otherwise noted.  
=
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
Serial Register Readout  
The device includes an option where the contents of the internal registers can be read back. This readback may  
be useful as a diagnostic check to verify the serial interface communication between the external controller and  
the ADC.  
1. First, set the SERIAL_READOUT register bit = 1. This setting also disables any further register writes  
(except for writes to the SERIAL_READOUT register bit).  
2. Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.  
3. The device outputs the contents (D[7:0]) of the selected register on the SDOUT_TEST1 pin.  
4. The external controller latches the contents at the SCLK falling edge.  
5. To enable register writes, reset the SERIAL_READOUT register bit = 0.  
Reset Timing  
Figure 44 shows a reset timing diagram.  
Power Supply  
(AVDD, DRVDD)  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high-going pulse on the RESET pin is required for initialization through a hardware reset.  
Figure 44. Reset Timing Diagram  
Table 10. Timing Characteristics for Figure 44(1)  
PARAMETER  
CONDITIONS  
MIN TYP  
MAX UNIT  
t1  
t2  
t3  
Power-on delay  
Delay from power-up of AVDD and DRVDD to RESET pulse active  
1
ms  
Reset pulse duration Pulse duration of the active RESET signal that resets the serial registers  
Serial interface delay Delay from RESET disable to SEN active  
10  
100  
ns  
(1) Typical values are at TA = +25°C and minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX  
+85°C, unless otherwise noted.  
=
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
SERIAL INTERFACE REGISTER MAP  
BIT LOCATION  
www.ti.com  
REGISTER BIT NAME  
ADDRESS  
DESCRIPTION  
BIT  
(Hex)  
S_RESET  
00  
1
0
Software reset. This mode has the same function as a hardware reset.  
0 = Serial interface write (default)  
1 = Serial readout  
SERIAL_READOUT  
00  
02  
Set these bits to obtain the best HD3 when the input frequency is between 150 MHz to  
250 MHz.  
HIGH_SFDR_MODE  
6:4, 0  
This bit provides the override control mode for the DFS_EXTREF pin when controlling  
the DFS select mode. This bit controls the DFS_EXTREF pin with the DFS_REG  
register bit.  
DFS_OVERRIDE  
3C  
3C  
7
0 = DFS functionality determined by DFS_EXTREF pin  
1 = DFS functionality determined by DFS_REG pin  
This bit is the register bit for DFS control.  
0 = Output format is twos complement.  
1 = Output format is offset binary. This setting takes effect when DFS_OVERRIDE is set  
to ‘1’.  
DFS_REG  
6
CUSTOM_PAT[13:6]  
CUSTOM_PAT[5:0]  
3E  
3F  
7:0  
7:2  
Eight MSBs of the 14-bit custom pattern can be programmed.  
Six LSBs of the 14-bit custom pattern can be programmed.  
This bit is the override control for DFS_EXTREF pin when controlling the  
internal/external reference select mode. This bit controls the DFS_EXTREF pin with the  
INT_REF_REG register bit.  
INT_REF_OVERRIDE  
INT_REF_REG  
44  
44  
3
2
0 = Internal/external reference mode is determined by the DFS_EXTREF pin  
1 = Internal/external reference mode is determined by the INT_REF_REG  
This bit is the register bit for internal/external reference mode control.  
0 = Internal reference mode.  
1 = External reference mode. This setting takes effect when INT_REF_OVERRIDE is  
set to ‘1’.  
S_PDN  
44  
45  
6
Software power-down.  
0-dB to 6-dB digital gain in 0.5-dB steps (default gain is 0 dB). Refer to the Fine-Gain  
Control section for further details.  
FINE_GAIN[3:0]  
7:4  
Digital gain bypass. Digital gain is enabled by default. When this bit set to '1', digital gain  
(fine gain) is bypassed.  
BYPASS_FINE_GAIN  
45  
These bits control the output test patterns.  
000 = ADC output data bus is input to JESD204A encoder block  
001 = ADC bus is replaced by the minimum code (00000000000000 in offset binary).  
010 = ADC bus replaced by the maximum code (11111111111111 in offset binary).  
100 = ADC bus replaced by a ramping code pattern that increments by 1 LSB every four  
clocks (and folds back to the minimum code when the maximum code is reached).  
ADC_TEST_PAT[2:0]  
45  
2:0  
101 = ADC bus is replaced by custom patterns. The patterns are programmed by  
registers 3E and 3F.  
011, 110, 111 = Do not use  
0 = Initial lane alignment sequence is not transmitted (default)  
1 = Initial lane alignment sequence (as per JESD204A) is sent after the code group sync  
in both single- and dual-lane interfaces  
TXMIT_LINKDATA_EN  
A0  
A0  
0
Software Frame Align control.  
This bit enables frame alignment monitoring.  
When scrambling is enabled and this bit is ‘1’, this bit is encoded as K28.7 when the last  
scrambled octet in a frame equals FC.  
S_FALIGN bit control is similar to the FALIGN pin control.  
S_FALIGN  
1
When this bit is 0 = There is no replacement.  
1 = When scrambling is off, if the last octet in the previous frame is the same as the last  
octet in the current frame, then the last octet in the current frame is replaced with a  
frame alignment symbol K28.7  
Multiframe align control.  
MFALIGN  
A0  
2
This bit functions similarly to S_FALIGN, but refers to multiframe instead.  
The multiframe alignment symbol is K28.3.  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
BIT LOCATION  
REGISTER BIT NAME  
DESCRIPTION  
ADDRESS  
(Hex)  
BIT  
By default, the last octet in the frame is derived from the data octet on the LSB side. The  
occurrence of consecutive last octets may be rare because the LSB octets usually  
switch more (frame-to-frame) than the MSB octets. This condition can lead to an  
infrequent occurrence of frame alignment symbols. To increase the rate of consecutive  
last octets (and thereby the rate of frame and multiframe alignment symbols), this bit can  
be set to '1'.  
FLIP_ADC_BUS  
A0  
3
Setting this bit to '1' flips the bit order of the ADC inputs (N bits) to the JESD204A logic.  
Note that the two zeros padded at the end to cause the JESD204A logic input to remain  
unchanged.  
This bit enables the transmission of the test sequence mentioned in the JESD204A  
document.  
TESTMODE_EN  
S_IDLE  
A0  
A0  
4
5
Software idle generation control.  
Normally the output during code group synchronization is K28.5. When S_IDLE is set to  
'1', the device output is a K28.5 comma followed by either a D5.6 or a D16.2 alignment  
symbol. This configuration is as per IEEE standard 802.3-2002 (part 3, clause 36.2.4.12)  
and enables compatibility with TI’s TLK family of devices.  
This bit control is similar to the IDLE pin control (see Table 6).  
S_TEST0  
S_TEST1  
CTRL_F  
CTRL_K  
S_SCR  
A0  
A0  
A1  
A1  
A5  
6
7
0
1
7
These two bit controls are similar to the TEST1 and TEST0 pin controls.  
This bit enables writes into register A6h, bits 7:0.  
This bit enables writes into register A7h, bits 4:0.  
Software scrambling enable. This bit control is similar to the SCR pin control.  
These bits control the number of octets per frame.  
Default is set to 00000001 (2 – 1), which is two octets per frame (single-lane mode). For  
a two-lane output (one octet per frame), set these bits to 00000000.  
Note that in order to override default, CTRL_F must be set to '1'.  
F[7:0]  
A6  
7:0  
These bits control the number of frames per each multiframe (minus 1). Default depends  
on value of bits F[7:0].  
When F = 0 (10x mode), K = 16 (17 frames per multiframe)  
When F = 1 (20x mode), K = 8 (nine frames per multiframe)  
K[4:0]  
A7  
4:0  
Note that to override the default value of bits K[4:0], CTRL_K must be set to '1'. When  
CTRL_K is set to '1', the value programmed in bits A7[4:0] denotes the number of  
frames per multiframe (minus 1). For example, to set the number of frames per  
multiframe to 23, set CTRL_K = 1 and A7[4:0] = 10110.  
CML buffer current select. Default (0000) is 16 mA.  
CML_I[3:0]  
B0  
B4  
3:0  
3
Current is calculated as: 16 mA +16 mA × bit 3 – 8 mA × bit 2 – 4 mA × bit 1 – 2 mA ×  
bit 0  
This bit replaces the output of the 8b/10b coder (corresponding to the MSB octet) with a  
10-bit word specified in the OUT_WORD_LANE1[9:0] bits.  
FORCE_OUT_LANE1  
OUT_WORD_LANE1[9:0]  
FORCE_OUT_LANE2  
B6  
B7  
7:0  
7:6  
These bits are a 10-bit word replacing the output of the 8b/10b coder when  
FORCE_OUT_LANE1 is set to ‘1’.  
This bit replaces the output of the 8b/10b coder (corresponding to the LSB octet) with a  
10-bit word specified in the OUT_WORD_LANE2[9:0] bits.  
B4  
6
B8  
B9  
D6  
7:4  
7:2  
0
These bits are a 10-bit word replacing the output of the 8b/10b coder when  
FORCE_OUT_LANE2 is set to ‘1’.  
OUT_WORD_LANE2[9:0]  
EN_SIG_EST  
This bit outputs a 4-bit ADC code with low latency on the DETECT[3:0] bits.  
This bit outputs a 4-bit average power estimate of the input signal on the DETECT[3:0]  
bits.  
Power estimate is in dB scale in steps of approximately 1 dB. Refer to the Signal Power  
Estimation section.  
EN_PWR_EST  
D6  
D6  
5
These bits determine the number of samples to average for power estimation.  
These bits are programmable from 1K to 16K.  
SAMPLES_PWR_EST[2:0]  
4:2  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
REGISTER MODES  
A brief summary of different register modes and respective locations in the digital processing flow of the  
ADS61JB46 is shown in Figure 45 and Figure 46.  
ADC Digital Block  
(Data Format,  
Digital Gain)  
ADC  
ADC Test  
Pattern  
Generator  
To  
Frame to  
JESD Test  
Pattern  
Generator  
FINE_GAIN[3:0]  
DFS  
Octet Conversion  
JESD  
Test Mode  
Generator  
ADC_TEST_PAT[2:0]  
TEST0, TEST1  
TESTMODE_EN  
Figure 45. Register Modes Before Frame to Octet Conversion Block  
MSB octet  
TXMIT_LINKDATA_EN  
SYNC~  
To SERDES  
SYNC~  
Decoder  
TX  
Controller  
ILAS  
Generator  
OUT_WORD_LANE1[9:0]  
8B, 10B  
Coder  
FORCE_OUT_LANE1  
Frame to  
Octet  
Stream  
Alignment  
Character  
Generator  
Scrambler  
LSB octet  
Conversion  
To SERDES  
OUT_WORD_LANE2[9:0]  
FLIP_ADC_BUS  
SCR  
SCR, FALIGN, MALIGN  
FORCE_OUT_LANE2  
Figure 46. Register Modes After Frame to Octet Conversion Block  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
INITIAL LANE ALIGNMENT SEQUENCE  
By default, the initial lane alignment sequence is not transmitted. To enable transmission of the initial lane  
alignment sequence, for the two settings of F, the mapping of the link configuration fields to octets of the  
JESD204A specification is shown in Table 11.  
Table 11. Link Configuration Fields Mapping to Octets  
CONFIGURATION  
MSB  
6
5
4
3
2
1
LSB  
OCTET NO.  
F = 1 (20x Mode)  
0
1
2
DID[7:0] = 00000000  
X
X
X
X
X
X
X
BID[3:0] = 0000  
LID[4:0] = 00000  
L[4:0] = 00000  
SCR[0], set  
by S_SCR  
3
X
X
4
5
F[7:0] = 00000001  
X
X
X
K[4:0] = 01000 (or programmed value of A7[4:0] if CTRL_K = 1)  
6
M[7:0] = 00000000  
N[4:0] = 01101  
7
CS[1:0] = 00  
X
X
X
X
8
X
X
X
X
X
N'[4:0] = 01111  
9
S[4:0] = 00000  
10  
11  
12  
13  
HD[0] = 0  
CF[4:0] = 00000  
RES1[7:0], set to all 0s  
RES2[7:0], set to all 0s  
FCHK[7:0]  
F = 0 (10x Mode)  
0
1
2
DID[7:0] = 00000000  
X
X
X
X
X
X
X
BID[3:0] = 0000  
LID[4:0] = 00000 for lane 1 and 00001 for lane 2  
SCR[0], set  
by S_SCR  
3
X
X
L[4:0] = 00001  
4
5
F[7:0] = 00000000  
K[4:0] = 10000 (or programmed value of A7[4:0] if CTRL_K = 1)  
M[7:0] = 00000000  
X
X
X
6
7
CS[1:0] = 00  
X
X
X
X
N[4:0] = 01101  
8
X
X
X
X
X
N'[4:0] = 01111  
9
S[4:0] = 00000  
10  
11  
12  
13  
HD[0] = 0  
CF[4:0] = 00000  
RES1[7:0], set to all 0s  
RES2[7:0], set to all 0s  
FCHK[7:0]  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS61JB46 is a buffered analog input, ultralow power ADC with maximum sampling rates up to 160 MSPS.  
The conversion process is initiated by a rising edge of the external input clock and the analog input signal is also  
sampled. The sampled signal is sequentially converted by a series of small-resolution stages, with the outputs  
combined in a digital correction logic block. At every clock edge the sample propagates through the pipeline,  
resulting in a data latency of 20 clock cycles. The output is available as 14-bit data, coded in either straight offset  
binary or binary twos complement format, with a JESD207A interface in CML logic levels.  
ANALOG INPUTS  
The analog input pins have analog buffers (running off of the AVDD3V supply) that internally drive the differential  
sampling circuit. As a result of the analog buffer, the input pins present high input impedance to the external  
driving source (10-kΩ dc resistance and 3-pF input capacitance). The buffer helps isolate the external driving  
source from the switching currents of the sampling circuit. This buffering makes driving buffered inputs easier  
when compared to an ADC without the buffer.  
The input common-mode is set internally using a 5-kΩ resistor from each input pin to 1.95 V, so the input signal  
can be ac-coupled to the pins. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.5 V) and  
(VCM – 0.5 V), resulting in a 2-VPP differential input swing.  
The input sampling circuit has a high 3-dB bandwidth that extends up to 450 MHz (measured from the input pins  
to the sampled voltage). Figure 47 shows an equivalent circuit for the analog input.  
LPIN1  
1 nH (±0.± nHꢀ  
ROUTE1  
15 W (±ꢂ Wꢀ  
INP_ADC  
INP_PIN  
5 pF (±0.5 pFꢀ  
CBUF1  
0.5 pF  
CESD1  
5000 W (±ꢁ00 Wꢀ  
RVCM1  
5 W (±± Wꢀ  
RBUF1  
0.5 pF  
CPBUF1  
5000 W (±ꢁ00 Wꢀ  
RVCM±  
LPIN±  
1 nH (±0.± nHꢀ  
ROUTE±  
15 W (±ꢂ Wꢀ  
INM_ADC  
INM_PIN  
5 pF (±0.5 pFꢀ  
CBUF±  
0.5 pF  
CESD±  
5 W (±± Wꢀ  
RBUF±  
0.5 pF  
CPBUF±  
Figure 47. Analog Input Equivalent Circuit  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
DRIVE CIRCUIT REQUIREMENTS  
For optimum performance, the analog inputs must be driven differentially. This technique improves the common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω) in series with each input pin is  
recommended to damp out ringing caused by package parasitics.  
Figure 48 and Figure 49 show the differential impedance (ZIN = RIN || CIN) at the ADC input pins. The presence of  
the analog input buffer results in an almost constant input capacitance up to 1 GHz.  
INP  
CIN  
RIN  
INM  
Note that at frequency (f), the real part of input impedance (input resistance) = RIN, the imaginary part of input impedance = 1 / (2 × πF ×  
CIN), and input capacitance = CIN  
.
Figure 48. Analog Input Equivalent Impedance Model  
Frequency - MHz  
Frequency - MHz  
Frequency - MHz  
Figure 49. RIN and CIN versus Frequency  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
EXAMPLE DRIVING CIRCUITS  
Two example driving circuit configurations are shown in Figure 50 and Figure 51, one optimized for low input  
frequencies and the other for high input frequencies. The presence of internal analog buffers makes the  
ADS61JB46 simple to drive by absorbing any ADC kick-back noise. The mismatch in the transformer parasitic  
capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two  
identical RF transformers back-to-back helps minimize this mismatch and good performance is obtained in the  
input frequency range of interest.  
The drive circuit for low input frequencies (< 200 MHz) in Figure 50 uses two back-to-back connected ADT1-1  
transformers terminated by 50 Ω near the ADC side. An additional termination resistor pair may be required  
between the two transformers to improve even-order harmonic performance, as shown in drive circuit for high  
input frequencies (> 200 MHz) in Figure 51. The center point of this termination is connected to ground to  
improve the balance between the P (positive) and M (negative) sides. The example circuit in Figure 51 uses two  
back-to-back connected ADTL2-18 transformers with a 200-Ω termination between them and a secondary 100 Ω  
at the second transformer to obtain an effective 50 Ω (for a 50-Ω source impedance). The ac-coupling capacitors  
allow the analog inputs to self-bias around the required common-mode voltage.  
0.1 mF  
5 W  
INP  
25 W  
25 W  
0.1 mF  
INM  
5 W  
1:1  
1:1  
Figure 50. Drive Circuit with Low Bandwidth (for Low Input Frequencies)  
0.1 mF  
5 W  
INP  
100 W  
50 W  
50 W  
0.1 mF  
100 W  
INM  
5 W  
1:2  
2:1  
Figure 51. Drive Circuit with High Bandwidth (for High Input Frequencies)  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
CLOCK INPUT  
The ADS61JB46 clock inputs can be driven differentially by a sine, LVPECL, or LVDS source with little or no  
difference in performance between them. The common-mode voltage of the clock inputs is set to 0.95 V using  
internal 5-kΩ resistors, as shown in Figure 52. This setting allows the use of transformer-coupled drive circuits for  
a sine-wave clock or ac-coupling for LVPECL and LVDS clock sources (see Figure 53, Figure 54, and  
Figure 55). For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to  
common-mode noise. TI recommends keeping the differential voltage between clock inputs less than 1.8 VPP to  
obtain best performance. For high input frequency sampling, TI recommends using a clock source with very low  
jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no change in  
performance with a non-50% duty cycle clock input.  
Clock Buffer  
LPKG  
~ 2 nH  
20 Ω  
CLKP  
CBOND  
~ 1 pF  
CEQ  
CEQ  
5 kΩ  
R
ESR  
~ 100 Ω  
0.95V  
5 kΩ  
L
PKG  
~ 2 nH  
20 Ω  
CLKM  
CBOND  
~ 1 pF  
R
ESR  
~ 100 Ω  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 52. Internal Clock Buffer  
0.1 μF  
Zo  
0.1 μF  
CLKP  
CLKP  
Typical LVDS  
Clock Input  
Differential  
Sine-Wave  
Clock Input  
100 Ω  
RT  
Zo  
0.1 μF  
CLKM  
0.1 μF  
CLKM  
Figure 54. LVDS Clock Driving Circuit  
Figure 53. Differential Sine-Wave Clock Driving  
Circuit  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS61JB46  
 
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
Zo  
0.1 μF  
CLKP  
150 Ω  
Typical LVPECL  
Clock Input  
100 Ω  
Zo  
0.1 μF  
CLKM  
150 Ω  
Figure 55. LVPECL Clock Driving Circuit  
FINE-GAIN CONTROL  
The ADS61JB46 includes gain settings that can be used to obtain improved SFDR performance (compared to no  
gain). The gain is programmable from 0 dB to 6 dB (in 0.5-dB steps). For each gain setting, the analog input full-  
scale range scales proportionally, as shown in Table 12.  
SFDR improvement is achieved at the expense of SNR; for each gain setting, SNR degrades approximately 0.5  
dB. SNR degradation is reduced at high input frequencies. As a result, fine gain is very useful at high input  
frequencies because SFDR improvement is significant with marginal degradation in SNR. Therefore, fine gain  
can be used to trade-off between SFDR and SNR. Note that the default gain after reset is 0 dB.  
Table 12. Full-Scale Range Across Gains  
FINE_GAIN[3:0]  
0000  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
0.5  
1
2.00  
1.89  
1.78  
1.68  
1.59  
1.5  
0001  
0010  
0011  
1.5  
2
0100  
0101  
2.5  
3
Fine gain, programmable  
(default after reset)  
0110  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
0111  
3.5  
4
1000  
1001  
4.5  
5
1010  
1011  
5.5  
6
1100  
1101  
1110  
Do not use  
1111  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
 
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
SIGNAL POWER ESTIMATION  
The device includes a power estimation circuit that can be used to obtain a coarse power estimate (accurate to  
within a dB) of the input signal averaged over a programmable number of samples. Enable the EN_PWR_EST  
bit in order to make the power estimate available on the DETECT[3:0] pins. The states of the DETECT[3:0] bits  
map to the input signal power as shown in Table 13.  
Table 13. State of DETECT[3:0] Versus Input Signal Power  
INPUT SIGNAL POWER  
RANGE (dBFS)  
INPUT SIGNAL POWER RANGE  
(dBFS)  
DETECT[3:0]  
DETECT[3:0]  
–Inf to –12.5  
–12.5 to –11.5  
–11.5 to –10.5  
–10.5 to –9.5  
–9.5 to –8.5  
–8.5 to –7.5  
–7.5 to –6.5  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
–6.5 to –5.5  
–5.5 to –4.5  
–4.5 to –3.5  
–3.5 to –2.5  
–2.5 to –1.5  
–1.5 to 0  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
0 to +1  
The number of samples used for computing the average power is set by SAMPLES_PWR_EST[2:0], as shown in  
Table 14.  
Table 14. Number of Samples Used for Power  
Estimation  
SAMPLES_PWR_EST[2:0]  
NUMBER OF SAMPLES  
000  
001  
010  
011  
100  
1K  
2K  
4K  
8K  
16K  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADS61JB46  
 
 
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay: The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter): The sample-to-sample variation in aperture delay.  
Clock Pulse Duration and Duty Cycle: The duty cycle of a clock signal is the ratio of the time the clock signal  
remains at a logic high (clock pulse duration) to the period of the clock signal. Duty cycle is typically expressed  
as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate: The maximum sampling rate at which certified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate: The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly 1  
LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL): INL is the deviation of the ADC transfer function from a best-fit line determined by a  
least-squares-curve fit of that transfer function, measured in units of LSBs.  
Gain Error: Gain error is the deviation of the ADC actual input full-scale range from its ideal value. Gain error is  
given as a percentage of the ideal input full-scale range. Gain error has two components: error resulting from  
reference inaccuracy and error resulting from the channel. Both errors are specified independently as EGREF and  
EGCHAN, respectively.  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
.
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 – 0.5 / 100) × FSideal to (1 + 0.5 / 100) × FSideal  
.
Offset Error: Offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift: The temperature drift coefficient (with respect to gain and offset error) specifies the change  
per degree Celsius of the parameter from TMIN to TMAX. The coefficient is calculated by dividing the maximum  
deviation of the parameter across the TMIN to TMAX range by the difference of TMAX – TMIN  
.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental (PS) to the noise floor power  
(PN), excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(1)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (PS) to the power  
of all other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(2)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-  
scale range.  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
ADS61JB46  
www.ti.com  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
Effective Number of Bits (ENOB): ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(3)  
Total Harmonic Distortion (THD): THD is the ratio of the power of the fundamental (PS) to the power of the first  
nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(4)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR): SFDR is the ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion (IMD3): IMD3 is the ratio of the power of the fundamental (at frequencies  
f1 and f2) to the power of the worst spectral component at either frequency (2f1 – f2) or (2f2 – f1). IMD3 is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR): DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. DC PSRR is typically given in units of millivolts per volt.  
AC Power-Supply Rejection Ratio (AC PSRR): AC PSRR is the measure of rejection of variations in the supply  
voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the ADC  
output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(5)  
Voltage Overload Recovery: The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This overload recovery is tested by separately applying a sine-wave signal with a  
6-dB positive and negative overload. The deviation of the first few samples after the overload (from the expected  
values) is noted.  
Common Mode Rejection Ratio (CMRR): CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resultant change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(6)  
Crosstalk (only for multichannel ADCs): Crosstalk is a measure of the internal coupling of a signal from  
adjacent channel into the channel of interest. Crosstalk is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from a channel across the package (far-channel). Crosstalk  
is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of  
the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. Crosstalk is typically expressed in dBc (dB to carrier).  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: ADS61JB46  
ADS61JB46  
SBAS611B SEPTEMBER 2013REVISED OCTOBER 2013  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (October 2013) to Revision B  
Page  
Changed document status from Product Preview to Production Data ................................................................................. 1  
Changed Power-Down Modes, Fast recovery power-down mode, DNL, and INL parameter specifications in  
Electrical Characteristics table .............................................................................................................................................. 4  
Changed Power-Supply Currents, IIOVDD parameter name in Electrical Characteristics table .............................................. 4  
Changed fS value in footnote 2 of Electrical Characteristics table ........................................................................................ 4  
Changed CML Outputs, IOVDD supply range parameter minimum specification in Digital Characteristics table ............... 5  
Changed description of DETECT[3:0], OVR, and RESET pins in Pin Functions table ...................................................... 12  
Changed DAC to ADC in functional block diagram ............................................................................................................ 13  
Deleted Differential Nonlinearity (DNL) and Integrated Nonlinearity (INL) curves from Typical Characteristics ................ 19  
Changed legend in Figure 38 ............................................................................................................................................. 21  
Changed footnote 1 in Table 9 ........................................................................................................................................... 26  
Changed Serial Register Readout section into two sections: Serial Register Readout and Reset Timing ........................ 27  
Changed number of clock cycles for data latency in Theory of Operation section ............................................................ 32  
Changed 2-pF input capacitance to 3-pF input capacitance in Analog Inputs section ....................................................... 32  
Changes from Original (September 2013) to Revision A  
Page  
Changed data rate value in 1st Features bullet .................................................................................................................... 1  
Changed dual-lane mode value in 2nd Features bullet ........................................................................................................ 1  
Changed 4th and 5th Features bullets ................................................................................................................................. 1  
Added Recommended Operating Conditions table and Table 1 .......................................................................................... 3  
Added Electrical Characteristics tables ................................................................................................................................ 4  
Added Parametric Measurement Information section ........................................................................................................... 6  
Added Pin Configuration section ........................................................................................................................................ 11  
Added Functional Block Diagram section ........................................................................................................................... 13  
Added Typical Characteristics sections .............................................................................................................................. 14  
Added Device Configuration section ................................................................................................................................... 24  
Added Application Information section ............................................................................................................................... 32  
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: ADS61JB46  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
ADS61JB46IRHAR  
ADS61JB46IRHAT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI  
Level-3-260C-168 HR  
61JB46  
61JB46  
ACTIVE  
RHA  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI  
Level-3-260C-168 HR  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS61JB46IRHAR  
ADS61JB46IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
330.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS61JB46IRHAR  
ADS61JB46IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
336.6  
336.6  
336.6  
336.6  
28.6  
28.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS61JB46IRHAR

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
TI

ADS61JB46IRHAT

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
TI

ADS62

Wideband Transmit-Receive Digital Signal Processors
TI

ADS6222

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZ25

2-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI

ADS6222IRGZR

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZRG4

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZT

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZTG4

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6223

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6223IRGZ25

2-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI

ADS6223IRGZR

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI