ADS62P44IRGCRG4 [TI]

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS; 双通道, 14位, 125/105/80/65 MSPS的DDR LVDS / CMOS输出的ADC
ADS62P44IRGCRG4
型号: ADS62P44IRGCRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
双通道, 14位, 125/105/80/65 MSPS的DDR LVDS / CMOS输出的ADC

转换器 模数转换器 输出元件 双倍数据速率
文件: 总70页 (文件大小:1787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS  
1
FEATURES  
DESCRIPTION  
Maximum Sample Rate: 125 MSPS  
14-Bit Resolution with No Missing Codes  
95 dB Crosstalk  
ADS62P4X is a dual channel 14-bit A/D converter  
family with maximum sample rates up to 125 MSPS.  
It combines high performance and low power  
consumption in a compact 64 QFN package. Using  
an internal sample and hold and low jitter clock  
buffer, the ADC supports high SNR and high SFDR at  
high input frequencies. It has coarse and fine gain  
options that can be used to improve SFDR  
performance at lower full-scale input ranges.  
Parallel CMOS and DDR LVDS Output Options  
3.5 dB Coarse Gain and Programmable Fine  
Gain up to 6 dB for SNR/SFDR Trade-Off  
Digital Processing Block with:  
Offset Correction  
Fine Gain Correction, in Steps of 0.05 dB  
Decimation by 2/4/8  
ADS62P4X includes a digital processing block that  
consists of several useful and commonly used digital  
functions such as ADC offset correction, fine gain  
correction (in steps of 0.05 dB), decimation by 2,4,8  
and in-built and custom programmable filters. By  
default, the digital processing block is bypassed, and  
its functions are disabled.  
Built-in and Custom Programmable 24-Tap  
Low-/High-/Band-Pass Filters  
Supports Sine, LVPECL, LVDS and LVCMOS  
Clocks and Amplitude Down to 400 mVPP  
Clock Duty Cycle Stabilizer  
Two output interface options exist – parallel CMOS  
and DDR LVDS (Double Data Rate). ADS62P4X  
includes internal references while traditional  
reference pins and associated decoupling capacitors  
have been eliminated. Nevertheless, the device can  
also be driven with an external reference. The device  
is specified over the industrial temperature range  
(–40°C to 85°C).  
Internal Reference; Supports External  
Reference also  
64-QFN Package (9mm × 9mm)  
Pin Compatible 12-Bit Family (ADS62P2X)  
APPLICATIONS  
Wireless Communications Infrastructure  
Software Defined Radio  
Power Amplifier Linearization  
802.16d/e  
Medical Imaging  
Radar Systems  
Test and Measurement Instrumentation  
ADS62P4X Performance Summary  
ADS62P45  
88  
ADS62P44  
ADS62P43  
93  
ADS62P42  
94  
Fin = 10 MHz (0 dB gain)  
Fin = 190 MHz (3.5 dB gain)  
Fin = 10 MHz (0 dB gain)  
Fin = 190 MHz (3.5 dB gain)  
92  
86  
SFDR, dBc  
84  
87  
85  
73.7  
70.8  
799  
74.2  
71  
74.6  
71.3  
594  
74.7  
70.9  
515  
SINAD, dBFS  
Analog Power, mW  
710  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2008, Texas Instruments Incorporated  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Digital Processing  
DA0  
Block  
DA1  
DA2  
Channel A  
DA3  
DA4  
Output  
Buffers  
DA5  
DA6  
DA7  
DA8  
DA9  
INA_P  
INA_M  
Digital  
Encoder  
SHA  
14-Bit ADC  
14 Bit  
14 Bit  
Channel A  
DA10  
DA11  
DA12  
DA13  
Output Clock  
Buffer  
CLKP  
CLKM  
CLOCKGEN  
CLKOUT  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
DB12  
DB13  
Output  
Buffers  
14 Bit  
14 Bit  
INB_P  
INB_M  
Digital  
Encoder  
SHA  
14-Bit ADC  
Channel B  
Digital Processing  
Block  
Channel B  
VCM  
Reference  
Control Interface  
CMOS Interface  
B0286-01  
ADS62PXX FAMILY  
125 MSPS  
105 MSPS  
80 MSPS  
65 MSPS  
ADS62P4X  
14 Bits  
ADS62P45  
ADS62P25  
ADS62P44  
ADS62P24  
ADS62P43  
ADS62P42  
ADS62P22  
ADS62P2X  
12 Bits  
ADS62P23  
2
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
ADS62P45IRGCT  
ADS62P45IRGCR  
ADS62P44IRGCT  
ADS62P44IRGCR  
ADS62P43IRGCT  
ADS62P43IRGCR  
ADS62P42IRGCT  
ADS62P42IRGCR  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
QFN-64(2)  
QFN-64(2)  
QFN-64(2)  
QFN-64(2)  
RGC  
RGC  
RGC  
RGC  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
AZ62P45  
AZ62P44  
AZ62P43  
AZ62P42  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) For thermal pad size on the package, see the mechanical drawings at the end of this data sheet. θJA = 23.17 °C/W (0 LFM air flow),  
θJC = 22.1 °C/W when used with 2 oz. copper trace and pad soldered directly to a JEDEC standard four layer 3 in × 3 in (7.62 cm ×  
7.62 cm) PCB.  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.3 to 3.9  
UNIT  
V
Supply voltage range, AVDD  
VI  
Supply voltage range, DRVDD  
–0.3 to 3.9  
V
Voltage between AGND and DRGND  
Voltage between AVDD to DRVDD  
–0.3 to 0.3  
V
–0.3 to 3.3  
V
Voltage applied to VCM pin (in external reference mode)  
Voltage applied to analog input pins, INP and INM  
Voltage applied to analog input pins, CLKP and CLKM  
Operating free-air temperature range  
Operating junction temperature range  
Storage temperature range  
–0.3 to 2  
V
–0.3 to minimum ( 3.6, AVDD + 0.3)  
–0.3 to (AVDD + 0.3)  
–40 to 85  
V
V
TA  
°C  
°C  
°C  
TJ  
125  
Tstg  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
3
3.3  
3.6  
V
CMOS interface  
LVDS interface  
1.65 1.8 to 3.3  
3.6  
3.6  
V
V
(1)  
DRVDD Output buffer supply voltage  
3
3.3  
ANALOG INPUTS  
Differential input voltage range  
Input common-mode voltage  
2
1.5 ± 0.1  
1.5  
Vpp  
V
VIC  
Voltage applied on VCM in external reference mode  
CLOCK INPUT  
1.45  
1.55  
V
ADS62P45  
1
1
125  
105  
80  
ADS62P44  
Input clock sample rate, FS  
MSPS  
ADS62P43  
1
ADS62P42  
1
65  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
LVCMOS, ac-coupled  
0.4  
1.5  
± 0.8  
± 0.35  
3.3  
Input clock amplitude differential  
(VCLKP – VCLKM  
Vpp  
)
Input clock duty cycle  
DIGITAL OUTPUTS  
35%  
50%  
65%  
DEFAULT  
strength  
for CLOAD 5 pF and DRVDD 2.2 V  
for CLOAD > 5 pF and DRVDD 2.2 V  
for DRVDD < 2.2 V  
MAXIMUM  
strength  
(2)  
Output buffer drive strength  
MAXIMUM  
strength  
CMOS interface, maximum buffer  
strength  
10  
Maximum external load capacitance from each LVDS interface, without internal  
5
CLOAD  
pF  
output pin to DRGND  
termination  
LVDS interface, with internal  
termination  
10  
RLOAD  
TA  
Differential load resistance (external) between the LVDS output pairs  
Operating free-air temperature  
100  
-40  
85  
°C  
(1) For easy migration to the next generation, higher sampling speed devices (> 125 MSPS), use 1.8V DRVDD supply.  
(2) See Output Buffer Strength Programmability in application section.  
4
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, AVDD = 3.3 V, DRVDD = 1.8 v to 3.3 V, maximum rated sampling frequency, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise  
noted.  
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, DRVDD = 3.3 V,  
unless otherwise noted.  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX MIN TYP MAX MIN  
TYP MAX  
RESOLUTION  
14  
14  
14  
14  
Bits  
ANALOG INPUT  
Differential input voltage range  
2
2
2
2
VPP  
Differential input resistance (dc)  
see Figure 82  
> 1  
> 1  
> 1  
> 1  
M  
Differential input capacitance  
see Figure 83  
7
450  
1.3  
7
450  
1.3  
7
450  
1.3  
7
450  
1.3  
pF  
Analog input bandwidth  
MHz  
Analog input common mode current (per  
input pin of each ADC)  
µA/MSP  
S
REFERENCE VOLTAGES  
VREFB Internal reference bottom voltage  
VREFT Internal reference top voltage  
1
2
1
2
1
2
1
2
V
V
VCM  
Common mode output voltage  
VCM output current capability  
1.5  
4
1.5  
4
1.5  
4
1.5  
4
V
mA  
DC ACCURACY  
No missing codes  
Specified  
± 2  
Specified  
± 2  
Specified  
Specified  
EO  
Offset error  
-10  
10  
-10  
10 -10 ± 2  
10 -10  
± 2  
10  
mV  
Offset error temperature coefficient  
0.05  
0.05  
0.05  
0.05  
mV/°C  
There are two sources of gain error – internal reference inaccuracy and channel gain error  
Gain error due to internal reference  
EGREF  
-2  
0.25  
2
-2  
0.25  
2
1
-2 0.25  
-1 ±0.3  
2
1
-2  
-1  
0.25  
±0.3  
2
1
% FS  
% FS  
Δ%/°C  
inaccuracy alone  
EGCHAN Gain error of channel alone(1)  
across devices & across channels within a  
device.  
-1  
±0.3  
1
-1  
±0.3  
0.00  
5
Channel gain error temperature coefficient  
0.005  
0.005  
0.005  
-
±
0.5  
-
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
-0.95 ± 0.6  
-5 ± 2.5  
-0.95 ± 0.6  
-5 ± 2.5  
± 0.5  
± 2  
LSB  
LSB  
0.95  
0.95  
5
5
-5 ± 2  
5
-5  
5
POWER SUPPLY  
IAVDD  
Analog supply current  
240  
17  
275  
215  
14  
240  
180  
12  
200  
156  
10  
175  
mA  
mA  
No external load  
capacitance  
Digital supply current,  
CMOS interface  
IDRVDD  
DRVDD = 1.8 V  
10-pF external  
load capacitance  
(2)  
30  
26  
22  
19  
mA  
Fin = 2 MHz  
Digital supply current, LVDS interface  
with 100-external termination  
IDRVDD  
PAVDD  
73  
799  
31  
73  
710  
25  
73  
594  
22  
73  
515  
18  
mA  
mW  
mW  
Analog power dissipation  
908  
75  
792  
75  
660  
75  
578  
75  
No external load  
capacitance  
Digital power dissipation,  
PDRVDD CMOS interface  
(3)  
10-pF external  
load capacitance  
DRVDD = 1.8 V  
54  
50  
47  
50  
40  
50  
34  
50  
mW  
mW  
Global powerdown  
(1) This is specified by design and characterization; it is not tested in production.  
(2) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency and the  
supply voltage (see Figure 79 and CMOS power dissipation in application section).  
(3) The maximum DRVDD current depends on the actual load capacitance on the digital output lines. Note that the maximum  
recommended load capacitance on each digital output line is 10 pF.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, AVDD = 3.3V, DRVDD = 1.8 V to 3.3 V, maximum rated sampling frequency, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise  
noted.  
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, DRVDD = 3.3 V,  
unless otherwise noted.  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
DYNAMIC AC CHARACTERISTICS  
Fin = 10 MHz  
74.2  
73.9  
73.6  
72.3  
74.5  
74.2  
74  
74.8  
74.4  
73.9  
72.5  
74.8  
74.5  
74.1  
72.2  
Fin = 50 MHz  
70  
71  
SNR  
Fin = 70 MHz  
Signal to noise  
70  
71  
dBFS  
LSB  
ratio  
0 dB gain  
72.3  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
71  
71.2  
1.0  
71.6  
1.0  
70.8  
1.0  
RMS Output  
Noise  
Inputs tied to common-mode  
1.0  
Fin = 10 MHz  
Fin = 50 MHz  
73.7  
73.3  
73.2  
71.4  
74.2  
73.5  
73.5  
71.8  
74.6  
74.2  
73.8  
72  
74.7  
74.3  
73.9  
71.5  
69  
70  
SINAD  
Signal to noise Fin = 70 MHz  
and distortion  
69  
70  
dBFS  
0 dB gain  
ratio  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
70.8  
11.9  
71  
71.3  
12  
70.9  
ENOB  
Effective  
Number of Bits  
Fin = 50 MHz  
Fin = 70 MHz  
11.2  
76  
11.3  
78  
Bits  
dBc  
11.2 11.95  
11.3  
79  
12  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
88  
80  
86  
81  
92  
83  
93  
87  
89  
83  
94  
87  
89  
81  
SFDR  
Spurious Free  
Dynamic Range  
78  
75  
78  
78  
85  
83  
0 dB gain  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
84  
86  
87  
85  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
88  
79  
90  
82  
84  
80  
92  
86  
88  
80  
93  
86  
88  
79  
73  
76  
76  
76  
78  
78  
THD  
Total Harmonic  
Distortion  
84.5  
79  
76  
79  
79  
dBc  
dBc  
0 dB gain  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
81  
82  
82  
82  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
94  
92  
92  
86  
93  
93  
93  
86  
95  
94  
94  
85  
98  
97  
96  
86  
HD2  
Second  
Harmonic  
Distortion  
0 dB gain  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
88  
88  
88  
89  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
88  
80  
86  
81  
92  
83  
85  
83  
93  
87  
89  
83  
94  
87  
89  
81  
HD3  
Third Harmonic  
Distortion  
dBc  
dBc  
0 dB gain  
Fin = 190  
MHz  
3.5 dB coarse  
gain  
84  
86  
87  
85  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 190 MHz  
95  
94  
94  
90  
96  
95  
95  
93  
97  
96  
96  
95  
99  
98  
97  
92  
Worst Spur  
(Other than  
HD2, HD3)  
6
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, AVDD = 3.3V, DRVDD = 1.8 V to 3.3 V, maximum rated sampling frequency, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, applies to CMOS and LVDS interfaces, unless otherwise  
noted.  
Min and max values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, DRVDD = 3.3 V,  
unless otherwise noted.  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
IMD  
2-Tone  
F1 = 185 MHz, F2 = 190 MHz  
88  
87  
92  
92  
dBFS  
dB  
Intermodulation each tone at -7 dBFS  
Distortion  
Crosstalk  
Up to 100 MHz  
95  
1
95  
1
95  
1
95  
1
Recovery to within 1% (of final  
value) for 6-dB overload with sine  
wave input  
Input Overload  
Recovery  
clock  
cycles  
PSRR  
AC Power  
Supply  
for 100 mVpp signal on AVDD  
supply  
35  
35  
35  
35  
dBc  
Rejection Ratio  
DIGITAL CHARACTERISTICS(1)  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1, AVDD = 3.0 V to 3.6 V.  
ADS62P45/ADS62P44  
ADS62P43/ADS62P42  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUTS  
RESET, CTRL1, CTRL2, CTRL3, SCLK, SDATA & SEN  
(2)  
High-level input voltage  
2.4  
V
Low-level input voltage  
0.8  
V
High-level input current  
33  
–33  
4
µA  
µA  
pF  
Low-level input current  
Input capacitance  
DIGITAL OUTPUTS  
CMOS INTERFACE, DRVDD = 1.65 V to 3.6 V  
High-level output voltage  
Low-level output voltage  
DRVDD  
0
V
V
Output capacitance inside the device, from  
each output to ground  
Output capacitance  
2
pF  
DIGITAL OUTPUTS  
LVDS INTERFACE, DRVDD = 3.0 V to 3.6 V, IO = 3.5 mA, RL = 100  
(3)  
High-level output voltage  
1375  
1025  
350  
mV  
mV  
mV  
mV  
Low-level output voltage  
Output differential voltage, |VOD  
|
225  
VOS Output offset voltage, single-ended  
Common-mode voltage of OUTP, OUTM  
1200  
Output capacitance inside the device, from  
either output to ground  
Output capacitance  
2
pF  
(1) All LVDS and CMOS specifications are characterized, but not tested at production.  
(2) SCLK & SEN function as digital input pins when they are used for serial interface programming. When used as parallel control pins,  
analog voltage needs to be applied as per Table 2 & Table 3  
(3) IO refers to the LVDS buffer current setting, RL is the differential load resistance between the LVDS output pair.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TIMING CHARACTERISTICS – LVDS AND CMOS MODES(1)  
Typical values are specified at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock,  
1.5 VPP clock amplitude, CL = 5 pF(2), IO = 3.5 mA, RL = 100 (3), no internal termination, unless otherwise noted.  
Min and max values are specified across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.0 V to 3.6 V,  
unless otherwise specified.  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
0.7  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
Aperture  
delay  
ta  
1.5  
2.5  
0.7  
1.5  
2.5  
0.7  
1.5  
2.5  
0.7  
1.5  
2.5  
ns  
ps  
Aperture  
delay  
channel-to-channel  
within the same device  
±80  
±80  
±80  
±80  
variation  
Aperture  
jitter  
tj  
150  
15  
150  
15  
150  
15  
150  
15  
fs rms  
from global power  
down  
50  
50  
50  
50  
µs  
Wake-up  
time  
from standby  
15  
50  
15  
50  
15  
50  
15  
50  
µs  
(to valid  
data)  
from output  
buffer  
disable  
CMOS  
LVDS  
100  
200  
100  
200  
100  
200  
100  
200  
ns  
200  
14  
500  
200  
14  
500  
200  
14  
500  
200  
14  
500  
ns  
clock  
cycles  
default, after reset  
with low latency mode  
enabled  
clock  
cycles  
Latency  
10  
15  
10  
15  
10  
15  
10  
15  
with decimation filter  
enabled  
clock  
cycles  
DDR LVDS MODE(4), DRVDD = 3.0 V to 3.6 V  
Data valid (6) to  
zero-cross of  
CLKOUTP  
Data setup  
tsu  
0.6  
1.0  
1.5  
2.3  
1.0  
1.0  
2.3  
2.3  
2.4  
1.0  
3.8  
2.3  
3.8  
1.0  
5.2  
2.3  
ns  
ns  
time(5)  
Zero-cross of  
Data hold  
time(5)  
th  
CLKOUTP to data  
becoming invalid(6)  
Input clock rising edge  
zero-cross to output  
clock rising edge  
zero-cross  
Clock  
propagation  
delay  
tPDI  
3.5  
5.5  
7.5  
3.5  
5.5  
7.5  
3.5  
5.5  
7.5  
3.5  
5.5  
7.5  
ns  
Duty cycle of  
LVDS bit  
clock duty  
cycle  
differential clock,  
(CLKOUTP-  
CLKOUTM)  
46%  
50%  
53%  
46%  
50%  
53%  
46%  
50%  
53%  
46%  
50%  
53%  
10 Fs 125 MSPS  
Rise time measured  
from –50 mV to 50 mV  
Fall time measured  
from 50 mV to –50 mV  
1 Fs 125 MSPS  
Data rise  
time  
Data fall  
time  
tr  
tf  
70  
70  
100  
100  
170  
170  
70  
70  
100  
100  
170  
170  
70  
70  
100  
100  
5.8  
170  
170  
70  
70  
100  
100  
7.2  
170  
170  
ps  
ps  
ns  
Rise time measured  
from –50 mV to 50 mV  
Fall time measured  
from 50 mV to –50 mV  
1 Fs 125 MSPS  
tCLKRI Output clock  
rise time  
tCLKFA Output clock  
SE  
fall time  
LL  
(7)  
PARALLEL CMOS MODE, DRVDD = 2.5 V to 3.6 V, default output buffer drive strength  
Data setup  
time(5)  
Data valid(8) to 50% of  
CLKOUT rising edge  
tsu  
2.0  
3.5  
2.8  
4.3  
4.3  
5.7  
(1) Timing parameters are specified by design and characterization and not tested in production.  
(2) CL is the effective external single-ended load capacitance between each output pin and ground.  
(3) IO refers to the LVDS buffer current setting; RL is the differential load resistance between the LVDS output pair.  
(4) Measurements are done with a transmission line of 100-characteristic impedance between the device and the load.  
(5) Setup and hold time specifications take into account the effect of jitter on the output data and clock.  
(6) Data valid refers to logic high of +100 mV and logic low of –100 mV.  
(7) For DRVDD < 2.2 V, it is recommended to use external clock for data capture and NOT the device output clock signal (CLKOUT). See  
Parallel CMOS interface in application section.  
(8) Data valid refers to logic high of 2 V (1.7 V) and logic low of 0.8 V (0.7 V) for DRVDD = 3.3 V (2.5 V).  
8
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TIMING CHARACTERISTICS – LVDS AND CMOS MODES (continued)  
Typical values are specified at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock,  
1.5 VPP clock amplitude, CL = 5 pF, IO = 3.5 mA, RL = 100 , no internal termination, unless otherwise noted.  
Min and max values are specified across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.0 V to 3.6 V,  
unless otherwise specified.  
ADS62P45  
ADS62P44  
ADS62P43  
ADS62P42  
FS = 125 MSPS  
FS = 105 MSPS  
FS = 80 MSPS  
FS = 65 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
50% of CLKOUT rising  
edge to data becoming  
invalid(8)  
Data hold  
time(5)  
th  
2.0  
3.5  
2.7  
5.8  
4.2  
7.3  
4.2  
5.8  
5.7  
7.3  
5.6  
5.8  
7.1  
7.3  
ns  
ns  
Clock  
Input clock rising edge  
propagation zero-cross to 50% of  
tPDI  
5.8  
7.3  
8.8  
8.8  
8.8  
8.8  
delay  
CLKOUT rising edge  
Duty cycle of output  
clock (CLKOUT)  
10 Fs 125 MSPS  
Output clock  
duty cycle  
45%  
53%  
1.8  
60%  
45%  
53%  
60%  
45%  
53%  
60%  
45%  
53%  
60%  
Rise time measured  
from 20% to 80% of  
DRVDD  
Fall time measured  
from 80% to 20% of  
DRVDD  
Data rise  
time  
Data fall  
time  
tr  
tf  
1.0  
1.0  
2.5  
2.5  
1.0  
1.0  
1.8  
1.8  
2.5  
2.5  
1.0  
1.0  
1.8  
1.8  
2.5  
2.5  
1.0  
1.0  
1.8  
1.8  
2.5  
2.5  
ns  
ns  
1 Fs 125 MSPS  
Rise time measured  
from 20% to 80% of  
DRVDD  
Fall time measured  
from 80% to 20% of  
DRVDD  
tCLKRI Output clock  
rise time  
tCLKFA Output clock  
SE  
1.8  
fall time  
LL  
1 Fs 125 MSPS  
Timing Characteristics at Lower Sampling Frequencies  
Sampling  
frequency,  
MSPS  
tPDI CLOCK PROPAGATION DELAY,  
ns  
tsu DATA SETUP TIME, ns  
th DATA HOLD TIME, ns  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
CMOS INTERFACE, DRVDD = 2.5 V TO 3.6 V  
40  
20  
10.5  
23  
12  
10.3  
23  
11.8  
24.5  
5.8  
7.3  
8.8  
24.5  
LVDS INTERFACE, DRVDD = 3.0 V to 3.6 V  
40  
20  
8.5  
21  
10  
1
1
2.3  
2.3  
3.5  
5.5  
7.5  
22.5  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
N+16  
N+4  
N+3  
N+15  
N+2  
Sample  
N
N+1  
N+14  
Input  
Signal  
ta  
CLKM  
CLKP  
Input  
Clock  
CLKOUTM  
CLKOUTP  
tsu  
th  
tPDI  
14 Clock Cycles(1)  
DDR  
LVDS  
Output Data  
DXP, DXM  
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
O
E
E – Even Bits D0,D2,D4,D6,D8,D10,D12  
O – Odd Bits D1,D3,D5,D7,D9,D11,D13  
N–10  
N–9  
N–1  
N
N+1  
N+2  
tPDI  
CLKOUT  
tsu  
14 Clock Cycles(1)  
N–10  
Parallel  
CMOS  
th  
Output Data  
D0–D13  
N–9  
N–1  
N
N+1  
N+2  
T0105-06  
(1) Latency is 10 clock cycles in low-latency mode.  
Figure 1. Latency  
CLKM  
Input  
Clock  
CLKP  
CLKM  
Input  
Clock  
CLKP  
tPDI  
tPDI  
CLKOUTM  
Output  
Clock  
Output  
Clock  
CLKOUT  
CLKOUTP  
th  
tsu  
th  
tsu  
th  
tsu  
Dn(1)  
Dn+1(2)  
Output  
Data Pair  
Dn_Dn+1_P,  
Dn_Dn+1_M  
Dn(1)  
Output  
Data  
Dn  
(1)Dn – Bits D0, D2, D4, D6, D8, D10, D12  
(2)Dn+1 – Bits D1, D3, D5, D7, D9, D11, D13  
(1)Dn – Bits D0 to D13  
T0107-02  
T0106-04  
Figure 3. CMOS Mode Timing  
Figure 2. LVDS Mode Timing  
10  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DEVICE CONFIGURATION  
ADS62P4X can be configured independently using either parallel interface control or serial interface  
programming.  
USING PARALLEL INTERFACE CONTROL ONLY  
To control the device using the parallel interface, keep RESET tied to high (AVDD). Pins SEN, SCLK, CTRL1,  
CTRL2 and CTRL3 can be used to directly control certain modes of the ADC. After power-up, the device will  
automatically get configured as per the parallel pin voltage settings (Table 2 to Table 4).  
In this mode, SEN and SCLK function as parallel analog control pins, which can be configured using a simple  
resistor divider (Figure 4). Table 1 has a brief description of the modes controlled by the parallel pins.  
Table 1. Parallel Pin Definition  
PIN  
TYPE OF PIN  
CONTROLS MODES  
SCLK  
Analog control pins  
(controlled by analog  
voltage levels, see )  
Coarse Gain and internal/external reference  
SEN  
LVDS/CMOS interface and output data format  
CTRL1  
CTRL2  
CTRL3  
Digital control pins  
(controlled by digital  
logic levels)  
Together control various powerdown modes and MUX mode.  
USING SERIAL INTERFACE PROGRAMMING ONLY  
To program the device using the serial interface, keep RESET low. Pins SEN, SDATA, and SCLK function as  
serial interface digital pins and are used to access the internal registers of ADC. The registers must first be reset  
to their default values either by applying a pulse on RESET pin or by setting bit <RST> = 1. After reset, the  
RESET pin must be kept low.  
The serial interface section describes the register programming and register reset in more detail. Since the  
parallel pins (CTRL1, CTRL2, CTRL3) are not used in this mode, they must be tied to ground.  
USING BOTH SERIAL INTERFACE and PARALLEL CONTROLS  
For increased flexibility, a combination of serial interface registers and parallel pin controls (CTRL1 to CTRL3)  
can also be used to configure the device. To allow this, keep RESET low.  
The parallel interface control pins CTRL1 to CTRL3 are available. After power-up, the device will automatically  
get configured as per the voltage settings on these pins (Table 4).  
SEN, SDATA, and SCLK function as serial interface digital pins and are used to access the internal registers of  
ADC. The registers must first be reset to their default values either by applying a pulse on RESET pin or by  
setting bit <RST> = 1. After reset, the RESET pin must be kept low. The serial interface section describes the  
register programming and register reset in more detail.  
Since the power down modes can be controlled using both the parallel pins and serial registers, the priority  
between the two is determined by <OVRD> bit. When <OVRD> bit = 0, pins CTRL1 to CTRL3 control the power  
down modes. With <OVRD> = 1, register bits <POWER DOWN> control these modes, over-riding the pin  
settings.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DETAILS OF PARALLEL CONFIGURATION ONLY  
The functions controlled by each parallel pin are described below. A simple way of configuring the parallel pins is  
shown in Figure 4.  
Table 2. SCLK (Analog Control Pin)  
SCLK  
0
DESCRIPTION  
0dB gain and Internal reference  
(3/8)AVDD  
(5/8)2AVDD  
AVDD  
0dB gain and External reference  
3.5dB Coarse gain and External reference  
3.5dB Coarse gain and Internal reference  
Table 3. SEN (Analog Control Pin)  
SEN  
0
DESCRIPTION  
2s complement format and DDR LVDS output  
Straight binary and DDR LVDS output  
(3/8)AVDD  
(5/8)AVDD  
AVDD  
Straight binary and parallel CMOS output  
2s complement format and parallel CMOS output  
Table 4. CTRL1, CTRL2 and CTRL3 (Digital Control Pins)  
CTRL1  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
CTRL2  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
CTRL3  
DESCRIPTION  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
Normal operation  
Channel A output buffer disabled  
Channel B output buffer disabled  
Channel A and B output buffer disabled  
Channel A and B powered down  
Channel A standby  
Channel B standby  
MUX mode of operation (only with CMOS interface Channel A and B data is multiplexed and  
output on DB10 to DB0 pins. See Multiplexed output mode for detailed description.  
HIGH  
HIGH  
HIGH  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
(3/8) AVDD  
To Parallel Pin  
GND  
S0321-01  
Figure 4. Simple Scheme to Configure Parallel Pins  
12  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
 
 
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
SERIAL INTERFACE  
The ADC has a set of internal registers, which can be accessed by the serial interface formed by pins SEN  
(Serial interface Enable), SCLK (Serial Interface Clock) and SDATA (Serial Interface Data).  
Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every falling edge  
of SCLK when SEN is active (low). The serial data is loaded into the register at every 16th SCLK falling edge  
when SEN is low. In case the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be  
loaded in multiple of 16-bit words within a single active SEN pulse.  
The first 8 bits form the register address and the remaining 8 bits the register data. The interface can work with  
SCLK frequency from 20 MHz down to low speeds (few Hertz), and also with a non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to their default values. This can be done in one of two  
ways:  
1. Either through hardware reset by applying a high-going pulse on RESET pin (of width greater than 10ns) as  
shown in Figure 5.  
OR  
2. By applying software reset. Using the serial interface, set the <RST> bit to high. This initializes internal  
registers to their default values and then self-resets the <RST> bit to low. In this case the RESET pin is kept  
low.  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V,  
DRVDD = 1.8 V to 3.3 V, unless otherwise noted.  
PARAMETER  
MIN  
> DC  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDS  
SCLK frequency  
20  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
SDATA hold time  
25  
ns  
25  
ns  
tDH  
25  
ns  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Register Address  
Register Data  
SDATA  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
t(DH)  
D1  
D0  
t(SCLK)  
t(DSU)  
SCLK  
t(SLOADH)  
t(SLOADS)  
SEN  
RESET  
T0109-01  
Figure 5. Serial Interface Timing  
RESET TIMING  
Typical values at 25°C, min and max values across the full temperature range TMIN = –40°C to TMAX = 85°C, unless otherwise  
noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from power-up of AVDD and DRVDD to RESET pulse  
active  
t1  
Power-on delay  
5
ms  
t2  
Reset pulse width  
Register write delay  
Power-up time  
Pulse width of active RESET signal  
10  
25  
ns  
ns  
t3  
Delay from RESET disable to SEN active  
tPO  
Delay from power-up of AVDD and DRVDD to output stable  
7
ms  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
T0108-01  
NOTE: A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset.  
For parallel interface operation, RESET has to be tied permanently HIGH.  
Figure 6. Reset Timing Diagram  
14  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
SERIAL REGISTER MAP  
(1)  
Table 5. Summary of Functions Supported by Serial Interface  
REGISTER  
ADDRESS  
REGISTER FUNCTIONS  
A7–A0 IN  
HEX  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
0
<RST>  
Software Reset  
00  
10  
0
0
<CLKOUT  
STRENGTH>  
0
0
0
0
0
0
<LVDS CURRENT>  
LVDS buffer current  
programmability  
<CURRENT DOUBLE>  
LVDS buffer current double  
<DATAOUT  
STRENGTH>  
11  
0
0
<LVDS TERMINATION>  
Internal termination programmability  
12  
13  
0
0
0
0
0
<OFFSET FREEZE>  
0
0
0
0
<OUTPUT  
INTERFACE>  
LVDS or CMOS  
interface  
<POWER DOWN MODES>  
<OVRD>  
Over-ride  
bit  
<REF>  
Internal/External  
reference  
<COARSE GAIN>  
3.5 dB gain  
14  
0
and  
MUX mode  
<DATA FORMAT>  
2s complement or straight  
binary  
Bit/Byte wise  
(LVDS only)  
16  
17  
0
0
0
0
0
0
<TEST PATTERNS>  
<FINE GAIN>  
0
0 to 6 dB gain in 0.5 dB steps  
18  
19  
<CUSTOM LOW> Lower 8 bits  
<CUSTOM HIGH> Upper 6 bits  
0
0
<OFFSET TC>  
Offset correction time constant  
<GAIN CORRECTION>  
0 to 0.5 dB, steps of 0.05 dB  
<LOW  
LATENCY>  
1A  
<OFFSET  
EN>  
Offset  
correction  
enable  
<FILTER COEFF  
SELECT>  
In-built or custom  
coefficients  
<FILTER Enable>  
Enable digital filtering  
<DECIMATION RATE>  
Decimate by 2, 4, 8  
<ODD TAP  
Enable>  
1B  
0
0
<DECIMATION FILTER  
FREQ BANDS>  
1D  
0
0
0
0
0
1E to 2F  
<FILTER COEFFICIENTS> 12 coefficients, each 12 bit signed  
(1) Multiple functions in a register can be programmed in a single write operation.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DESCRIPTION OF SERIAL REGISTERS  
Table 6.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<RST>  
Software Reset  
00  
0
0
0
0
0
0
0
D1  
<RST>  
1
Software reset applied – resets all internal registers and self-clears to 0.  
Table 7.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
10  
<CLKOUT STRENGTH>  
0
0
0
0
0
0
D7–D6  
01  
<CLKOUT STRENGTH> Output clock buffer drive strength control  
WEAKER than default drive  
00  
DEFAULT drive strength  
11  
10  
STRONGER than default drive strength (recommended for load capacitances > 5 pF)  
MAXIMUM drive strength (recommended for load capacitances > 5 pF)  
Table 8.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LVDS CURRENT> LVDS  
buffer current  
<CURRENT DOUBLE>  
LVDS buffer current double  
11  
0
0
DATAOUT STRENGTH>  
programmability  
D1–D0  
<DATAOUT STRENGTH> Output data buffer drive strength control  
WEAKER than default drive  
DEFAULT drive strength  
STRONGER than default drive strength (recommended for load capacitances > 5 pF)  
MAXIMUM drive strength (recommended for load capacitances > 5 pF)  
01  
00  
11  
10  
D3–D2  
00  
01  
10  
11  
<LVDS CURRENT> LVDS Current programmability  
3.5 mA  
2.5 mA  
4.5 mA  
1.75 mA  
D5–D4  
00  
CURRENT DOUBLE> LVDS Current double control  
Default current, set by <LVDS CURR>  
01  
10  
11  
LVDS clock buffer current is doubled, 2x <LVDS CURR>  
LVDS data and clock buffers current are doubled, 2x <LVDS CURR>  
Unused  
16  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 9.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
12  
0
0
<LVDS TERMINATION> Internal termination programmability  
D5–D3  
000  
001  
010  
011  
100  
101  
110  
111  
<LVDS DATA TERM> Internal termination control for data outputs  
No internal termination  
300 Ω  
180 Ω  
110 Ω  
150 Ω  
100 Ω  
81 Ω  
60 Ω  
D2–D0  
000  
001  
010  
011  
100  
101  
110  
111  
<LVDS CLK TERM> Internal termination control for clock output  
No internal termination  
300 Ω  
180 Ω  
110 Ω  
150 Ω  
100 Ω  
81 Ω  
60 Ω  
Table 10.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13  
0
0
0
<OFFSET FREEZE>  
0
0
0
0
D4  
0
1
<OFFSET FREEZE> Offset correction becomes inactive and the last estimated offset value is used to cancel the offset  
Offset correction active  
Offset correction inactive  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 11.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<OUTPUT  
INTERFACE>  
LVDS or CMOS  
interface  
<REF>  
Internal / External  
reference  
<OVRD>  
Over-ride bit  
<COARSE GAIN>  
<POWER DOWN  
MODES>  
14  
0
3.5 dB gain  
D2-D0  
<POWER DOWN MODES>  
Normal operation  
Channel A output buffer disabled  
Channel B output buffer disabled  
Channel A and B output buffers disabled  
Global power down  
Channel A standby  
000  
001  
010  
011  
100  
101  
110  
111  
Channel B standby  
Multiplexed mode, MUX – (only with CMOS interface)  
Channel A and B data is multiplexed and output on DA10 to DA0 pins.  
D3  
0
1
<REF> Reference mode  
Internal reference enabled  
External reference enabled  
D4  
0
<COARSE GAIN> Coarse gain control  
0 dB coarse gain  
1
3.5 dB coarse gain  
D5  
0
<OUTPUT INTERFACE> Output interface selection  
Parallel CMOS data outputs  
1
DDR LVDS data outputs  
D7  
<OVRD> Over-ride bit – the LVDS/CMOS selection, power down and MUX modes can also be controlled using parallel pins.  
By setting <OVRD> = 1, register bits LVDS <CMOS> and <POWER DOWN MODES> will over-ride the settings of the parallel  
pins.  
0
1
Disable over-ride  
Enable over-ride  
Table 12.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA FORMAT>  
2s complement or straight binary  
16  
0
0
0
Bit / Byte wise (LVDS only)  
<TEST PATTERNS>  
D2–D0  
000  
001  
010  
011  
100  
101  
110  
111  
<TEST PATTERNS> Test Patterns to verify capture  
Normal ADC operation  
Outputs all zeros  
Outputs all ones  
Outputs toggle pattern  
Outputs digital ramp  
Outputs custom pattern  
Unused  
Unused  
D3  
Bit-wise/Byte-wise selection (DDR LVDS mode ONLY)  
0
Bit wise – Odd bits (D1, D3, D5, D7, D9) on CLKOUT rising edge and Even bits (D0, D2, D4, D6, D8, D10) on CLKOUT  
falling edge  
1
Byte wise – Lower 7 bits (D0-D6) at CLKOUT rising edge and Upper 4 bits (D7-D10) at CLKOUT falling edge  
D4  
0
<DATA FORMAT> Data format selection  
2s complement  
1
Straight binary  
18  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 13.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
17  
0
0
0
0
<FINE GAIN> 0 to 6 dB gain in 0.5 dB steps  
D2–D0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
Others  
<FINE GAIN> Gain programmability in 0.5 dB steps  
0 dB gain, default after reset  
0.5 dB gain  
1.0 dB gain  
1.5 dB gain  
2.0 dB gain  
2.5 dB gain  
3.0 dB gain  
3.5 dB gain  
4.0 dB gain  
4.5 dB gain  
5.0 dB gain  
5.5 dB gain  
6.0 dB gain  
Unused  
Table 14.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
18  
<CUSTOM LOW> Lower 8 bits  
<CUSTOM HIGH> Upper 6 bits  
19  
0
0
D7-D0  
<CUSTOM LOW>  
8 lower bits of custom pattern available at the output instead of ADC data.  
D5-D0  
<CUSTOM HIGH>  
6 upper bits of custom pattern available at the output instead of ADC data.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 15.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<OFFSET TC>  
Offset correction time constant  
<GAIN CORRECTION>  
0 to 0.5 dB, steps of 0.05 dB  
1A  
<LOW LATENCY>  
D2–D0  
<GAIN CORRECTION> Enables fine gain correction in steps of 0.05 dB (same correction applies to both channels)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
0 dB gain, default after reset  
+0.5 dB gain  
+0.10 dB gain  
+0.15 dB gain  
+0.20 dB gain  
+0.25 dB gain  
+0.30 dB gain  
+0.35 dB gain  
+0.40 dB gain  
+0.45 dB gain  
+0.5 dB gain  
D6-D4  
<OFFSET TC> Time constant of offset correction in number of clock cycles (seconds, for sampling frequency = 125  
MSPS)  
000  
001  
010  
011  
100  
101  
110  
111  
227 (1.1 s)  
226 (0.55 s)  
225 (0.27 s)  
224 (0.13 s)  
228 (2.15 s)  
229 (4.3 s)  
227 (1.1 s)  
227 (1.1 s)  
D7  
0
<LOW LATENCY>  
Default latency, 14 clock cycles  
1
Low latency enabled, 10 clock cycles – Digital Processing Block is bypassed.  
Table 16.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<FILTER COEFF  
SELECT>  
In-built or custom  
coefficients  
<OFFSET Enable>  
Offset correction  
enable  
<FILTER Enable>  
Enable digital filtering  
<DECIMATION RATE>  
Decimate by 2,4,8  
<ODD TAP  
Enable>  
1B  
0
D2-D0  
<DECIMATION RATE> Decimation filters  
000  
001  
011  
100  
Decimate by 2 (pre-defined or user coefficients can be used)  
Decimate by 4 (pre-defined or user coefficients can be used)  
NO decimation (Pre-defined coefficients are disabled, only custom coefficients are available)  
Decimate by 8 (Only custom coefficients are available)  
D3  
0
1
<ODD TAP ENABLE>  
Even taps enabled (24 coefficients)  
0 Odd taps enabled (23 coefficients)  
D4  
0
1
<FILTER ENABLE>  
Digital filter bypassed  
Digital filter enabled  
D5  
0
<FILTER COEFF SELECT>  
Pre-defined coefficients are loaded in the filter  
1
User-defined coefficients are loaded in the filter (coefficients have to be loaded in registers – to - )  
D7  
0
1
<OFFSET Enable>  
Offset correction disabled  
Offset correction enabled  
20  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 17.  
A7–A0  
(hex)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1D  
0
0
0
0
0
0
<DECIMATION FILTER FREQ BANDS>  
D1-D0  
<DECIMATION FILTER FREQ BAND> Decimation filters  
With decimate by 2, <DECIMATION RATE> = 000:  
Low pass filter (–6 dB frequency at Fs/4)  
High pass filter (–6 dB frequency at Fs/4)  
Unused  
00  
01  
10, 11  
With decimate by 4, <DECIMATION RATE> = 001:  
Low pass filter (-3 dB frequency at Fs/8)  
Band pass filter (center frequency at 3Fs/16)  
Band pass filter (center frequency at 5Fs/16)  
High pass filter (-3 dB frequency at 3Fs/8)  
00  
01  
10  
11  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
PIN DESCRIPTION (CMOS INTERFACE)  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DRVDD  
DB4  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DRVDD  
DA7  
2
DB5  
3
DA6  
DB6  
4
DA5  
DB7  
5
DA4  
DB8  
6
DA3  
DB9  
7
DA2  
DB10  
DB11  
DB12  
DB13  
RESET  
SCLK  
SDATA  
SEN  
8
DA1  
PAD  
(Connected to DRGND)  
9
DA0  
10  
11  
12  
13  
14  
15  
16  
DRGND  
DRVDD  
CTRL3  
CTRL2  
CTRL1  
AVDD  
AVDD  
AVDD  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
P0056-09  
22  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Pin Assignments (CMOS INTERFACE)  
NUMBER OF  
PIN NAME  
DESCRIPTION  
PIN NUMBER  
PINS  
AVDD  
Analog power supply  
Analog ground  
16, 33, 34  
3
9
AGND  
17, 18, 21, 22, 24,  
27, 28, 31, 32  
CLKP, CLKM  
INP_A, INM_A  
INP_B, INM_B  
VCM  
Differential input clock  
25, 26  
29, 30  
19, 20  
23  
2
2
2
1
Differential input signal – channel A  
Differential input signal – channel B  
Internal reference mode – Common-mode voltage output.  
External reference mode – Reference input. The voltage forced on this pin sets  
the ADC internal references.  
RESET  
Serial interface RESET input.  
12  
1
In serial interface mode, the user must initialize internal registers through  
hardware RESET by applying a high-going pulse on this pin or by using  
software reset (refer to Serial Interface section).  
In parallel interface mode, the user has to tie RESET pin permanently high.  
(SCLK, SDATA and SEN are used as parallel pin controls in this mode) The pin  
has an internal 100-kpull-down resistor.  
SCLK  
This pin functions as serial interface clock input when RESET is low.  
It functions as analog control pin when RESET is tied high and controls coarse  
gain and internal/external reference selection. See Table 2 for details.  
The pin has an internal pull-down resistor to ground.  
13  
1
SDATA  
SEN  
This pin functions as serial interface data input when RESET is low. The pin has  
an internal pull-down resistor to ground.  
14  
15  
1
1
This pin functions as serial interface enable input when RESET is low.  
It functions as analog control pin when RESET is tied high and controls the  
output interface (LVDS/CMOS) and data format selection. See Table 3 for  
details.  
The pin has an internal pull-up resistor to AVDD.  
CTRL1  
These are digital logic input pins. Together they control various power down and  
multiplexed mode. see Table 4 for details  
35  
36  
1
1
CTRL2  
CTRL3  
37  
1
DA0 to DA13  
DB0 to DB13  
CLKOUT  
DRVDD  
Channel A 14-bit data outputs, CMOS  
Channel B 14-bit data outputs, CMOS  
CMOS Output clock  
40-47, 50-55  
60-63, 2-11  
57  
14  
14  
1
Digital supply  
1, 38, 48, 58  
4
DRGND  
Digital ground  
39, 49, 59, 64 and  
PAD  
4
PAD  
NC  
Digital ground. Solder the bottom pad to the digital ground on the board using  
multiple vias for good electrical and thermal performance.  
1
1
Do not connect  
56  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
PIN DESCRIPTION (LVDS INTERFACE)  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DRVDD  
DB4M  
DB4P  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DRVDD  
DA6P  
2
3
DA6M  
DA4P  
DB6M  
DB6P  
4
5
DA4M  
DA2P  
DB8M  
DB8P  
6
7
DA2M  
DA0P  
DB10M  
DB10P  
DB12M  
DB12P  
RESET  
SCLK  
8
PAD  
(Connected to DRGND)  
9
DA0M  
DRGND  
DRVDD  
CTRL3  
CTRL2  
CTRL1  
AVDD  
AVDD  
10  
11  
12  
13  
14  
15  
16  
SDATA  
SEN  
AVDD  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
P0056-10  
Pin Assignments (LVDS INTERFACE)  
PIN  
NUMBER  
NUMBER OF  
PINS  
PIN NAME  
AVDD  
DESCRIPTION  
Analog power supply  
Analog ground  
16, 33, 34  
3
9
AGND  
17, 18, 21,  
22, 24, 27,  
28, 31,32  
CLKP, CLKM  
INP_A, INM_A  
INP_B, INM_B  
VCM  
Differential input clock  
25, 26  
29, 30  
19, 20  
23  
2
2
2
1
Differential input signal – Channel A  
Differential input signal – Channel B  
Internal reference mode – Common-mode voltage output.  
External reference mode – Reference input. The voltage forced on this pin sets the  
ADC internal references.  
RESET  
Serial interface RESET input.  
12  
1
In serial interface mode, the user must initialize internal registers through hardware  
RESET by applying a high-going pulse on this pin or by using software reset (refer to  
Serial Interface section).  
In parallel interface mode, the user has to tie RESET pin permanently high. (SCLK,  
SDATA and SEN are used as parallel pin controls in this mode) The pin has an internal  
100-kpull-down resistor.  
24  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Pin Assignments (LVDS INTERFACE) (continued)  
PIN  
NUMBER  
NUMBER OF  
PINS  
PIN NAME  
DESCRIPTION  
SCLK  
This pin functions as serial interface clock input when RESET is low.  
It functions as analog control pin when RESET is tied high and controls coarse gain  
and internal/external reference selection. See Table 2 for details.  
The pin has an internal pull-down resistor to ground.  
13  
1
SDATA  
SEN  
This pin functions as serial interface data input when RESET is low. The pin has an  
internal pull-down resistor to ground.  
14  
15  
1
1
This pin functions as serial interface enable input when RESET is low.  
It functions as analog control pin when RESET is tied high and controls the output  
interface (LVDS/CMOS) and data format selection. See Table 3 for details.  
The pin has an internal pull-up resistor to AVDD.  
CTRL1  
CTRL2  
CTRL3  
DA0P  
These are digital logic input pins. Together they control various power down and  
multiplexed mode. See Table 4 for details.  
35  
36  
37  
41  
40  
43  
42  
45  
44  
47  
46  
51  
50  
53  
52  
55  
54  
57  
56  
61  
60  
63  
62  
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
Channel A Differential output data D0 and D1 multiplexed, true  
Channel A Differential output data D0 and D1 multiplexed, complement  
Channel A Differential output data D2 and D3 multiplexed, true  
Channel A Differential output data D2 and D3 multiplexed, complement  
Channel A Differential output data D4 and D5 multiplexed, true  
Channel A Differential output data D4 and D5 multiplexed, complement  
Channel A Differential output data D6 and D7 multiplexed, true  
Channel A Differential output data D6 and D7 multiplexed, complement  
Channel A Differential output data D8 and D9 multiplexed, true  
Channel A Differential output data D8 and D9 multiplexed, complement  
Channel A Differential output data D10 and D11 multiplexed, true  
Channel A Differential output data D10 and D11 multiplexed, complement  
Channel A Differential output data D12 and D13 multiplexed, true  
Channel A Differential output data D12 and D13 multiplexed, complement  
Differential output clock, true  
DA0M  
DA2P  
DA2M  
DA4P  
DA4M  
DA6P  
DA6M  
DA8P  
DA8M  
DA10P  
DA10M  
DA12P  
DA12M  
CLKOUTP  
CLKOUTM  
DB0P  
Differential output clock, complement  
Channel B Differential output data D0 and D1 multiplexed, true  
Channel B Differential output data D0 and D1 multiplexed, complement  
Channel B Differential output data D2 and D3 multiplexed, true  
Channel B Differential output data D2 and D3 multiplexed, complement  
Channel B Differential output data D4 and D5 multiplexed, true  
Channel B Differential output data D4 and D5 multiplexed, complement  
Channel B Differential output data D6 and D7 multiplexed, true  
Channel B Differential output data D6 and D7 multiplexed, complement  
Channel B Differential output data D8 and D9 multiplexed, true  
Channel B Differential output data D8 and D9 multiplexed, complement  
Channel B Differential output data D10 and D11 multiplexed, true  
Channel B Differential output data D10 and D11 multiplexed, complement  
Channel B Differential output data D12 and D13 multiplexed, true  
Channel B Differential output data D12 and D13 multiplexed, complement  
Digital supply  
DB0M  
DB2P  
DB2M  
DB4P  
DB4M  
DB6P  
2
5
DB6M  
DB8P  
4
7
DB8M  
DB10P  
DB10M  
DB12P  
DB12M  
DRVDD  
6
9
8
11  
10  
1, 38, 48,  
58  
DRGND  
PAD  
Digital ground  
39, 49, 59,  
64 and PAD  
4
1
Digital ground. Solder the bottom pad to the digital ground on the board using multiple  
vias for good electrical and thermal performance.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P45 (FS= 125 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88.2 dBc  
SFDR = 86.6 dBc  
SINAD = 73.7 dBFS  
SNR = 73.8 dBFS  
THD = 88.2 dBc  
SINAD = 73.4 dBFS  
SNR = 73.7 dBFS  
THD = 85.4 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G001  
G002  
Figure 7.  
Figure 8.  
FFT for 190 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 78.9 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
2-Tone IMD = –89 dBFS  
SFDR = –96 dBFS  
IN  
SINAD = 71.2 dBFS  
SNR = 72.1 dBFS  
THD = 77.3 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G003  
G004  
Figure 9.  
Figure 10.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G005  
G006  
Figure 11.  
Figure 12.  
26  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P45 (FS= 125 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
Input adjusted to get −1dBFS input  
Gain = 3.5 dB  
3 dB  
5 dB  
2 dB  
4 dB  
Gain = 0 dB  
1 dB  
6 dB  
0 dB  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G007  
G009  
Figure 13.  
Figure 14.  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
PERFORMANCE vs AVDD  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
90  
89  
88  
87  
86  
85  
84  
83  
82  
80  
79  
78  
77  
76  
75  
74  
73  
72  
0 dB  
1 dB  
f
IN  
= 70.1 MHz  
DRV = 3.31 V  
2 dB  
3 dB  
DD  
SFDR  
SNR  
5 dB  
50  
4 dB  
25  
6 dB  
Input adjusted to get −1dBFS input  
0
75  
100  
125  
150  
175  
200  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
f
IN  
− Input Frequency − MHz  
AV − Supply Voltage − V  
DD  
G010  
G011  
Figure 15.  
Figure 16.  
PERFORMANCE vs DRVDD  
PERFORMANCE vs TEMPERATURE  
90  
89  
88  
87  
86  
85  
84  
83  
82  
80  
88  
87  
86  
85  
84  
83  
82  
78  
77  
76  
75  
74  
73  
72  
f
IN  
= 70.1 MHz  
AV = 3.31 V  
DD  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SFDR  
SNR  
SNR  
f
IN  
= 70.1 MHz  
−20  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
−40  
0
20  
40  
60  
80  
DRV − Supply Voltage − V  
DD  
T − Temperature − °C  
G012  
G013  
Figure 17.  
Figure 18.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P45 (FS= 125 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs CLOCK AMPLITUDE  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
94  
92  
90  
88  
86  
84  
82  
80  
78  
80  
79  
78  
77  
76  
75  
74  
73  
72  
f
IN  
= 20.1 MHz  
SFDR (dBFS)  
SFDR  
80  
SNR (dBFS)  
70  
60  
SNR  
50  
SFDR (dBc)  
40  
f
IN  
= 20.1 MHz  
−10  
30  
−60  
−50  
−40  
−30  
−20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Amplitude − dBFS  
Input Clock Amplitude − V  
PP  
G014  
G015  
Figure 19.  
Figure 20.  
OUTPUT NOISE HISTOGRAM  
(INPUTS TIED TO COMMON-MODE)  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
40  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
79  
RMS = 1.033 LSB  
f
IN  
= 20.1 MHz  
78  
77  
76  
75  
74  
73  
72  
71  
70  
35  
30  
25  
20  
15  
10  
5
SFDR  
SNR  
0
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle − %  
Output Code  
G016  
G017  
Figure 21.  
Figure 22.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
93  
91  
89  
87  
85  
83  
80  
f
= 20.1 MHz  
IN  
External Reference Mode  
78  
76  
74  
72  
70  
SFDR  
SNR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G018  
Figure 23.  
28  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P44 (FS= 105 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88.26 dBc  
SFDR = 84.45 dBc  
SINAD = 73.81 dBFS  
SNR = 73.94 dBFS  
THD = 88 dBc  
SINAD = 73.45 dBFS  
SNR = 73.8 dBFS  
THD = 83.4 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G019  
G020  
Figure 24.  
Figure 25.  
FFT for 190 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 82.36 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
IN  
SINAD = 71.57 dBFS  
SNR = 72.09 dBFS  
THD = 80.05 dBc  
IN  
−20  
−40  
2-Tone IMD = –87 dBFS  
SFDR = –90 dBFS  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G021  
G022  
Figure 26.  
Figure 27.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G023  
G024  
Figure 28.  
Figure 29.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P44 (FS= 105 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
Input adjusted to get −1dBFS input  
2 dB  
3 dB  
Gain = 3.5 dB  
5 dB  
Gain = 0 dB  
4 dB  
6 dB  
1 dB  
0 dB  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G025  
G027  
Figure 30.  
Figure 31.  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
PERFORMANCE vs AVDD  
88  
87  
86  
85  
84  
83  
82  
81  
80  
80  
79  
78  
77  
76  
75  
74  
73  
72  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
Input adjusted to get −1dBFS input  
0 dB  
f
IN  
= 70.1 MHz  
DRV = 3.31 V  
DD  
1 dB  
2 dB  
3 dB  
SFDR  
SNR  
4 dB  
5 dB  
6 dB  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
AV − Supply Voltage − V  
DD  
G028  
G029  
Figure 32.  
Figure 33.  
PERFORMANCE vs DRVDD  
PERFORMANCE vs TEMPERATURE  
90  
89  
88  
87  
86  
85  
84  
83  
82  
80  
90  
88  
86  
84  
82  
80  
78  
78  
77  
76  
75  
74  
73  
72  
f
IN  
= 70.1 MHz  
AV = 3.31 V  
DD  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SFDR  
SNR  
SNR  
f
IN  
= 70.1 MHz  
−20  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
−40  
0
20  
40  
60  
80  
DRV − Supply Voltage − V  
DD  
T − Temperature − °C  
G030  
G031  
Figure 34.  
Figure 35.  
30  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P44 (FS= 105 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs CLOCK AMPLITUDE  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
94  
92  
90  
88  
86  
84  
82  
80  
78  
80  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR (dBFS)  
f
IN  
= 20.1 MHz  
SFDR  
80  
SNR (dBFS)  
70  
60  
SNR  
50  
SFDR (dBc)  
40  
f
IN  
= 20.1 MHz  
−10  
30  
−60  
−50  
−40  
−30  
−20  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Amplitude − dBFS  
Input Clock Amplitude − V  
PP  
G032  
G033  
Figure 36.  
Figure 37.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
79  
40  
35  
30  
25  
20  
15  
10  
5
f
= 20.1 MHz  
RMS = 1.006 LSB  
IN  
78  
77  
76  
75  
74  
73  
72  
71  
70  
SFDR  
SNR  
0
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle − %  
G034  
Output Code  
G035  
Figure 38.  
Figure 39.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
96  
92  
88  
84  
80  
76  
80  
78  
SFDR  
76  
SNR  
74  
72  
70  
f
IN  
= 20.1 MHz  
External Reference Mode  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G036  
Figure 40.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P43 (FS= 80 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89 dBc  
SFDR = 89.82 dBc  
SINAD = 74.15 dBFS  
SNR = 74.55 dBFS  
THD = 83.74 dBc  
SINAD = 74.02 dBFS  
SNR = 74.13 dBFS  
THD = 88.99 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G037  
G038  
Figure 41.  
Figure 42.  
FFT for 190 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 84.34 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
2-Tone IMD = −93 dBFS  
SFDR = −98 dBFS  
IN  
SINAD = 72.39 dBFS  
SNR = 72.76 dBFS  
THD = 82.19 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G039  
G040  
Figure 43.  
Figure 44.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
76  
75  
74  
73  
72  
71  
70  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 3.5 dB  
Gain = 0 dB  
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G041  
G042  
Figure 45.  
Figure 46.  
32  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P43 (FS= 80 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
Input adjusted to get −1dBFS input  
4 dB  
5 dB  
3 dB  
Gain = 3.5 dB  
6 dB  
50  
Gain = 0 dB  
1 dB  
0 dB  
100  
2 dB  
125  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
75  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G043  
G045  
Figure 47.  
Figure 48.  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
PERFORMANCE vs AVDD  
91  
90  
89  
88  
87  
86  
85  
84  
83  
80  
79  
78  
77  
76  
75  
74  
73  
72  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
f
IN  
= 70.1 MHz  
0 dB  
1 dB  
DRV = 3.3 V  
DD  
2 dB  
3 dB  
SFDR  
SNR  
4 dB  
5 dB  
6 dB  
Input adjusted to get −1dBFS input  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
25  
50  
75 100 125 150 175  
200  
f
IN  
− Input Frequency − MHz  
AV − Supply Voltage − V  
DD  
G046  
G047  
Figure 49.  
Figure 50.  
PERFORMANCE vs DRVDD  
PERFORMANCE vs TEMPERATURE  
92  
91  
90  
89  
88  
87  
86  
85  
84  
80  
92  
90  
88  
86  
84  
82  
80  
78  
77  
76  
75  
74  
73  
72  
f
IN  
= 70.1 MHz  
AV = 3.31 V  
DD  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SNR  
SFDR  
SNR  
f
IN  
= 70.1 MHz  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
−40  
−20  
0
20  
40  
60  
80  
DRV − Supply Voltage − V  
DD  
T − Temperature − °C  
G048  
G049  
Figure 51.  
Figure 52.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P43 (FS= 80 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs CLOCK AMPLITUDE  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
94  
92  
90  
88  
86  
84  
82  
80  
78  
79  
78  
77  
76  
75  
74  
73  
72  
71  
SFDR (dBFS)  
f
IN  
= 20.1 MHz  
SFDR  
SNR  
80  
SNR (dBFS)  
70  
60  
50  
SFDR (dBc)  
40  
f
IN  
= 20.1 MHz  
−10 0  
30  
−60  
−50  
−40  
−30  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Amplitude − dBFS  
Input Clock Amplitude − V  
PP  
G050  
G051  
Figure 53.  
Figure 54.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
79  
40  
35  
30  
25  
20  
15  
10  
5
f
= 20.1 MHz  
RMS = 1.019 LSB  
IN  
78  
77  
76  
75  
74  
73  
72  
71  
70  
SFDR  
SNR  
0
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle − %  
G052  
Output Code  
G053  
Figure 55.  
Figure 56.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
92  
90  
88  
86  
84  
80  
f
= 20.1 MHz  
IN  
External Reference Mode  
78  
76  
74  
72  
70  
SFDR  
SNR  
82  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
V
VCM  
− VCM Voltage − V  
G054  
Figure 57.  
34  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P42 (FS= 65 MSPS)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
FFT for 20 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88.5 dBc  
SFDR = 88.18 dBc  
SINAD = 74.35 dBFS  
SNR = 74.56 dBFS  
THD = 86.5 dBc  
SINAD = 74.13 dBFS  
SNR = 74.28 dBFS  
THD = 87.89 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
0
10  
f − Frequency − MHz  
Figure 59.  
20  
30  
f − Frequency − MHz  
G055  
G056  
Figure 58.  
FFT for 190 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 89.9 dBc  
f
f
1 = 190.1 MHz, –7 dBFS  
2 = 185.3 MHz, –7 dBFS  
IN  
SINAD = 71.51 dBFS  
SNR = 71.88 dBFS  
THD = 81.32 dBc  
IN  
−20  
−40  
2-Tone IMD = 92 dBFS  
SFDR = 95 dBFS  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
0
10  
20  
30  
f − Frequency − MHz  
f − Frequency − MHz  
G057  
G058  
Figure 60.  
SFDR vs INPUT FREQUENCY  
Gain = 3.5 dB  
Figure 61.  
SNR vs INPUT FREQUENCY  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G059  
G060  
Figure 62.  
Figure 63.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P42 (FS= 65 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
SFDR vs INPUT FREQUENCY (LVDS interface)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
Input adjusted to get −1dBFS input  
Gain = 3.5 dB  
4 dB  
5 dB  
3 dB  
6 dB  
Gain = 0 dB  
0 dB  
2 dB  
1 dB  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G061  
G063  
Figure 64.  
Figure 65.  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
PERFORMANCE vs AVDD  
91  
90  
89  
88  
87  
86  
85  
84  
83  
80  
79  
78  
77  
76  
75  
74  
73  
72  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
f
= 70.1 MHz  
0 dB  
1 dB  
IN  
DRV = 3.3 V  
DD  
2 dB  
3 dB  
SFDR  
SNR  
4 dB  
6 dB  
Input adjusted to get −1dBFS input  
5 dB  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
25  
50  
75 100 125 150 175  
200  
f
IN  
− Input Frequency − MHz  
AV − Supply Voltage − V  
DD  
G064  
G065  
Figure 66.  
Figure 67.  
PERFORMANCE vs DRVDD  
PERFORMANCE vs TEMPERATURE  
93  
92  
91  
90  
89  
88  
87  
86  
85  
80  
92  
90  
88  
86  
84  
82  
80  
78  
77  
76  
75  
74  
73  
72  
f
IN  
= 70.1 MHz  
AV = 3.31 V  
DD  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SFDR  
SNR  
SNR  
f
IN  
= 70.1 MHz  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
−40  
−20  
0
20  
40  
60  
80  
DRV − Supply Voltage − V  
DD  
T − Temperature − °C  
G066  
G067  
Figure 68.  
Figure 69.  
36  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - ADS62P42 (FS= 65 MSPS) (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output  
interface (unless otherwise noted)  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs CLOCK AMPLITUDE  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
94  
92  
90  
88  
86  
84  
82  
80  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
SFDR  
SFDR (dBFS)  
SNR (dBFS)  
80  
SNR  
70  
60  
50  
SFDR (dBc)  
40  
f
IN  
= 20.1 MHz  
2.5 3.0  
f
IN  
= 20.1 MHz  
−10  
30  
−60  
−50  
−40  
−30  
−20  
0
0.0  
0.5  
1.0  
1.5  
2.0  
Input Amplitude − dBFS  
Input Clock Amplitude − V  
PP  
G068  
G069  
Figure 70.  
Figure 71.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
79  
40  
f
= 20.1 MHz  
RMS = 1.025 LSB  
IN  
78  
77  
76  
75  
74  
73  
72  
71  
70  
35  
30  
25  
20  
15  
10  
5
SFDR  
SNR  
0
8175 8176 8177 8178 8179 8180 8181 8182 8183  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle − %  
G070  
Output Code  
G071  
Figure 72.  
Figure 73.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
95  
93  
91  
89  
87  
85  
80  
f
= 20.1 MHz  
IN  
External Reference Mode  
78  
76  
74  
72  
70  
SFDR  
SNR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
V
VCM  
− VCM Voltage − V  
G072  
Figure 74.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
TYPICAL CHARACTERISTICS - LOW SAMPLING FREQUENCIES  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)  
FS = 25 MSPS  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
80  
78  
76  
74  
72  
70  
68  
66  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 0 dB  
Gain = 3.5 dB  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G075  
G076  
Figure 75.  
Figure 76.  
COMMON PLOTS  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)  
POWER DISSIPATION vs  
SAMPLING FREQUENCY (DDR LVDS and CMOS)  
COMMON-MODE REJECTION RATIO vs FREQUENCY  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
f
C
= 2.5 MHz  
= 5 pF  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
L
LVDS  
CMOS  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
175  
200  
f
S
− Sampling Frequency − MSPS  
f − Frequency − MHz  
G078  
G077  
Figure 77.  
Figure 78.  
38  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
COMMON PLOTS (continued)  
All plots are at 25°C, AVDD = DRVDD = 3.3 V, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty  
cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, CMOS output interface (unless otherwise noted)  
DRVDD current (CMOS) vs  
SAMPLING FREQUENCY  
across load capacitance at 2 MHz input frequency  
60  
3.3 V, No Load  
1.8 V, 5 pF  
50  
1.8 V, 10 pF  
40  
3.3 V, 5 pF  
30  
20  
10  
0
3.3 V, 10 pF  
1.8 V, No Load  
100 125  
0
25  
50  
75  
f
S
− Sampling Frequency − MSPS  
G079  
Figure 79.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
APPLICATION INFORMATION  
THEORY OF OPERATION  
ADS62P4X is a low power 14-bit dual channel pipeline ADC family fabricated in a CMOS process using switched  
capacitor techniques.  
The conversion process is initiated by a rising edge of the external input clock. Once the signal is captured by  
the input sample and hold, the input sample is sequentially converted by a series of small resolution stages, with  
the outputs combined in a digital correction logic block. At every clock edge the sample propagates through the  
pipeline resulting in a data latency of 14 clock cycles. The output is available as 14-bit data, in DDR LVDS or  
CMOS and coded in either straight offset binary or binary 2s complement format.  
ANALOG INPUT  
The analog input consists of a switched-capacitor based differential sample and hold architecture.  
This differential topology results in very good AC performance even for high input frequencies at high sampling  
rates. The INP and INM pins have to be externally biased around a common-mode voltage of 1.5 V, available on  
VCM pin. For a full-scale differential input, each input pin INP, INM has to swing symmetrically between VCM +  
0.5 V and VCM – 0.5 V, resulting in a 2 VPP differential input swing. The maximum swing is determined by the  
internal reference voltages REFP (2.5 V nominal) and REFM (0.5 V, nominal).  
Sampling  
Switch  
Lpkg  
» 2 nH  
Sampling  
Capacitor  
RCR Filter  
INP  
Ron  
15 W  
25 W  
Csamp  
4 pF  
Cbond  
» 1 pF  
Cpar2  
1 pF  
50 W  
Resr  
100 W  
Cpar1  
0.8 pF  
Ron  
10 W  
3.2 pF  
50 W  
Lpkg  
» 2 nH  
Csamp  
4 pF  
Ron  
15 W  
25 W  
INM  
Sampling  
Capacitor  
Cbond  
» 1 pF  
Cpar2  
1 pF  
Resr  
100 W  
Sampling  
Switch  
S0322-01  
Figure 80. Analog Input Equivalent Circuit  
The input sampling circuit has a high 3-dB bandwidth that extends up to 450 MHz (measured from the input pins  
to the sampled voltage).  
40  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
1
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
0
100  
200  
300  
400  
500  
600  
f − Input Frequency − MHz  
I
G080  
Figure 81. ADC Analog Bandwidth  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This improves the common-mode  
noise immunity and even order harmonic rejection. A 5-resistor in series with each input pin is recommended  
to damp out ringing caused by the package parasitics.  
It is also necessary to present low impedance (50 ) for the common mode switching currents. This can be  
achieved by using two resistors from each input terminated to the common mode voltage (VCM).  
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency  
range and matched impedance to the source. While doing this, the ADC input impedance must be considered.  
Figure 82 and Figure 83 show the impedance (Zin = Rin || Cin) looking into the ADC input pins.  
100  
10  
1
0.1  
0.01  
0
100  
200  
300  
400  
500  
600  
f − Frequency − MHz  
G081  
Figure 82. ADC Analog Input Resistance (Rin) Across Frequency  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
9
8
7
6
5
4
3
2
1
0
0
100  
200  
300  
400  
500  
600  
f − Frequency − MHz  
G082  
Figure 83. ADC Analog Input Capacitance (Cin) Across Frequency  
Using RF-Transformer Based Drive Circuits  
Figure 84 shows a configuration using a single 1:1 turns ratio transformer (for example, Coilcraft WBC1-1) that  
can be used for low input frequencies (about 100 MHz). The single-ended signal is fed to the primary winding of  
the RF transformer. The transformer is terminated on the secondary side. Putting the termination on the  
secondary side helps to shield the kickbacks caused by the sampling circuit from the RF transformer’s leakage  
inductances. The termination is accomplished by two resistors connected in series, with the center point  
connected to the 1.5-V common mode (VCM). The value of the termination resistors (connected to common  
mode) has to be low ( <100 ) to provide a low-impedance path for the ADC common-mode switching currents.  
ADS62P4x  
0.1 mF  
INP  
25 W  
0.1 mF  
25 W  
INM  
1:1  
VCM  
S0163-03  
Figure 84. Drive Circuit at Low Input Frequencies  
At high input frequencies, the mismatch in the transformer parasitic capacitance (between the windings) results  
in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps  
minimize this mismatch, and good performance is obtained for high frequency input signals. Figure 85 shows an  
example using two transformers (Coilcraft WBC1-1). An additional termination resistor pair (enclosed within the  
shaded box) may be required between the two transformers to improve the balance between the P and M sides.  
The center point of this termination must be connected to ground.  
42  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
ADS62P4x  
0.1 mF  
INP  
50 W  
50 W  
0.1 mF  
50 W  
50 W  
INM  
1:1  
1:1  
VCM  
S0164-05  
Figure 85. Drive Circuit at High Input Frequencies  
Using Differential Amplifier Drive Circuits  
Figure 86 shows a drive circuit using a differential amplifier (TI's THS4509) to convert a single-ended input to  
differential output that can be interface to the ADC analog input pins. In addition to the single-ended to differential  
conversion, the amplifier also provides gain (10 dB). RFIL helps to isolate the amplifier outputs from the switching  
input of the ADC. Together with CFIL it also forms a low-pass filter that band-limits the noise (and signal) at the  
ADC input. As the amplifier output is ac-coupled, the common-mode voltage of the ADC input pins is set using  
two 200-resistors connected to VCM.  
The amplifier output can also be dc-coupled. Using the output common-mode control of the THS4509, the ADC  
input pins can be biased to 1.5 V. In this case, use +4-V and –1-V supplies for the THS4509 so that its output  
common-mode voltage (1.5 V) is at mid-supply.  
RF  
+VS  
ADS62P4x  
0.1 mF  
RFIL  
500 W  
5 W  
0.1 mF 10 mF  
0.1 mF  
INP  
RS  
RG  
CFIL  
200 W  
0.1 mF  
RT  
CM THS4509  
RG  
200 W  
5 W  
CFIL  
RFIL  
INM  
0.1 mF  
500 W  
RS || RT  
VCM  
0.1 mF  
–VS  
0.1 mF 10 mF  
0.1 mF  
RF  
S0259-02  
Figure 86. Drive Circuit Using the THS4509  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Input Common-Mode  
To ensure a low-noise common-mode reference, the VCM pin is filtered with a 0.1-µF low-inductance capacitor  
connected to ground. The VCM pin is designed to directly drive the ADC inputs. The input stage of the ADC  
sinks a common-mode current in the order of 165 µA (at 125 MSPS). Equation 1 describes the dependency of  
the common-mode current and the sampling frequency.  
165 mA   Fs  
125 MSPS  
(1)  
This equation helps to design the output capability and impedance of the VCM driving circuit accordingly.  
REFERENCE  
ADS62P4X has built-in internal references REFP and REFM, requiring no external components. Design schemes  
are used to linearize the converter load seen by the references; this and the on-chip integration of the requisite  
reference capacitors eliminates the need for external decoupling. The full-scale input range of the converter can  
be controlled in the external reference mode as explained below. The internal or external reference modes can  
be selected by programming the serial interface register bit (REF).  
INTREF  
Internal  
VCM  
Reference  
1 kW  
INTREF  
4 kW  
EXTREF  
REFM  
REFP  
ADS62P4x  
S0165-05  
Figure 87. Reference Section  
Internal Reference  
When the device is in internal reference mode, the REFP and REFM voltages are generated internally.  
Common-mode voltage (1.5 V nominal) is output on VCM pin, which can be used to externally bias the analog  
input pins.  
External Reference  
When the device is in external reference mode, the VCM acts as a reference input pin. The voltage forced on the  
VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential  
input voltage corresponding to full-scale is given in Equation 2.  
Full-scale differential input pp = (Voltage forced on VCM) × 1.33  
44  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
In this mode, the 1.5-V common-mode voltage to bias the input pins has to be generated externally.  
COARSE GAIN AND PROGRAMMABLE FINE GAIN  
ADS62P4X includes gain settings that can be used to get improved SFDR performance (over 0dB gain mode).  
For each gain setting, the analog input full-scale range scales proportionally, as shown in Table 18.  
The coarse gain is a fixed setting of 3.5 dB and is designed to improve SFDR with little degradation in SNR. The  
fine gain is programmable in 0.5 dB steps from 0 to 6 dB; however the SFDR improvement is achieved at the  
expense of SNR. So, the programmable fine gain makes it possible to trade-off between SFDR and SNR. The  
coarse gain makes it possible to get best SFDR but without losing SNR significantly.  
The gains can be programmed using the serial interface (bits COARSE GAIN and FINE GAIN). Note that the  
default gain after reset is 0 dB.  
Table 18. Full-Scale Range Across Gains  
GAIN, dB  
0
TYPE  
FULL-SCALE, VPP  
Default after reset  
Coarse (fixed)  
2V  
3.5  
1.34  
1.89  
1.78  
1.68  
1.59  
1.50  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Fine (programmable)  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
CLOCK INPUT  
The clock inputs can be driven differentially (SINE, LVPECL or LVDS) or single-ended (LVCMOS), with little or  
no difference in performance between them. The common-mode voltage of the clock inputs is set to VCM using  
internal 5-kresistors as shown in Figure 88. This allows using transformer-coupled drive circuits for sine wave  
clock or ac-coupling for LVPECL, LVDS clock sources (Figure 90 and Figure 91).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Clock Buffer  
Lpkg  
» 2 nH  
10 W  
CLKP  
Cbond  
» 1 pF  
Ceq  
Ceq  
5 kW  
Resr  
» 100 W  
VCM  
6 pF  
5 kW  
Lpkg  
» 2 nH  
10 W  
CLKM  
Cbond  
» 1 pF  
Resr  
» 100 W  
Ceq » 1 to 3 pF, equivalent input capacitance of clock buffer  
S0275-02  
Figure 88. Internal Clock Buffer  
100k  
10k  
1k  
100  
10  
5
25  
45  
65  
85  
105  
125  
f
S
− Sampling Frequency − MSPS  
G083  
Figure 89. Clock Input Impedance  
46  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
0.1 mF  
CLKP  
Differential Sine-Wave  
or PECL or LVDS Clock Input  
0.1 mF  
CLKM  
ADS62P4x  
S0167-06  
Figure 90. Differential Clock Driving Circuit  
Single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-µF  
capacitor, as shown in Figure 91.  
0.1 mF  
CMOS Clock Input  
CLKP  
0.1 mF  
CLKM  
ADS62P4x  
S0168-10  
Figure 91. Single-Ended Clock Driving Circuit  
For best performance, the clock inputs have to be driven differentially, reducing susceptibility to common-mode  
noise. For high input frequency sampling, it is recommended to use a clock source with very low jitter. Bandpass  
filtering of the clock source can help reduce the effect of jitter. There is no change in performance with a  
non-50% duty cycle clock input.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
POWER DOWN  
ADS62P4X has three powerdown modes – power down global, individual channel standby and individual channel  
output buffer disable. These can be set using either the serial register bits or using the control pins CTRL1 to  
CTRL3.  
Table 19. Powerdown Modes  
CONFIGURE USING  
WAKE-UP  
POWERDOWN MODES  
SERIAL INTERFACE  
PARALLEL CONTROL PINS  
TIME  
<POWER DOWN MODES>  
CTRL1  
low  
CTRL2  
low  
CTRL3  
low  
Normal operation  
000  
001  
010  
011  
100  
101  
110  
Channel A output buffer disabled  
Channel B output buffer disabled  
Channel A and B output buffer disabled  
Channel A and B powered down  
Channel A standby  
low  
low  
high  
low  
Fast (100 ns)  
Fast (100 ns)  
Fast (100 ns)  
Slow (15 µS)  
Fast (100 ns)  
Fast (100 ns)  
low  
high  
high  
low  
low  
high  
low  
high  
high  
high  
low  
high  
low  
Channel B standby  
high  
Multiplexed (MUX) mode – Output data of  
channel A and B is multiplexed and available  
on DA13 to DA0 pins.  
111  
high  
high  
high  
Power Down Global  
In this mode, the entire chip including both the A/D converters, internal reference and the output buffers are  
powered down resulting in reduced total power dissipation of about 50 mW. The output buffers are in high  
impedance state. The wake-up time from the global power down to data becoming valid in normal mode is  
typically 15 µs.  
Channel Standby (Individual or Both Channels)  
This mode allows the individual ADCs to be powered down. The internal references are active and this results in  
fast wake-up time, about 100 ns. The total power dissipation in standby is about 482 mW.  
Output Buffer Disable (Individual or Both Channels)  
Each channel’s output buffer can be disabled and put in high impedance state -- wakeup time from this mode is  
fast, about 100 ns.  
Input Clock Stop  
In addition to the above, the converter enters a low-power mode when the input clock frequency falls below 1  
MSPS. The power dissipation is about 140 mW.  
POWER SUPPLY SEQUENCE  
During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are  
separated in the device. Externally, they can be driven from separate supplies or derived from a single supply.  
48  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DIGITAL OUTPUT INFORMATION  
ADS62P4X provides 14-bit data per channel and a common output clock synchronized with the data. The output  
interface can be either parallel CMOS or DDR LVDS voltage levels and can be selected using serial register bit  
<OUTPUT INTERFACE> or parallel pin SEN.  
Parallel CMOS Interface  
In the CMOS mode, the output buffer supply (DRVDD) can be operated over a wide range from 1.8 V to 3.3 V  
(typical). Each data bit is output on separate pin as CMOS voltage level, every clock cycle (see Figure 92).  
For DRVDD > 2.2 V, it is recommended to use the CMOS output clock (CLKOUT) to latch data in the receiving  
chip. The rising edge of CLKOUT can be used to latch data in the receiver, even at the highest sampling speed.  
It is recommended to minimize the load capacitance seen by data and clock output pins by using short traces to  
the receiver. Also, match the output data and clock traces to minimize the skew between them.  
For DRVDD < 2.2 V, it is recommended to use external clock (for example, input clock delayed to get desired  
setup/hold times).  
CMOS  
Output Buffers  
DA0  
DA1  
DA2  
DA3  
·
14-Bit Channel-A  
Data  
·
·
DA12  
DA13  
CLKOUT  
DB0  
DB1  
DB2  
DB3  
·
14-Bit Channel-B  
Data  
·
·
DB12  
DB13  
B0287-01  
Figure 92. CMOS Output Interface  
Output Buffer Strength Programmability  
Switching noise (caused by CMOS output data transitions) can couple into the analog inputs during the instant of  
sampling and degrade the SNR. The coupling and SNR degradation increases as the output buffer drive is made  
stronger. To minimize this, ADS62P4X CMOS output buffers are designed with controlled drive strength to get  
best SNR. The default drive strength also ensures wide data stable window for load capacitances up to 5 pF and  
DRVDD supply voltage >2.2 V.  
To ensure wide data stable window for load capacitance > 5 pF, there exists option to increase the output data  
and clock drive strengths using the serial interface ( DATAOUT STRENGTH and CLKOUT STRENGTH). Note  
that for DRVDD supply voltage <2.2 V, it is recommended to use maximum drive strength (for any value of load  
capacitance).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
CMOS Mode Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock  
cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined  
by the average number of output bits switching, which is a function of the sampling frequency and the nature of  
the analog input signal.  
Digital current due to CMOS output switching = CL × DRVDD × (N × FAVG),  
where CL = load capacitance, N × FAVG = average number of output bits switching.  
Figure 79 shows the current with various load capacitances across sampling frequencies at 2 MHz analog input  
frequency.  
DDR LVDS Interface  
The LVDS interface works only with 3.3-V DRVDD supply. In this mode, the 11 data bits of each channel and a  
common output clock are available as LVDS (Low Voltage Differential Signal) levels. Two successive data bits  
are multiplexed and output on each LVDS differential pair every clock cycle (DDR – Double Data Rate,  
Figure 94).  
Pins  
LVDS Buffers  
DA0P  
Data Bits D0, D1  
DA0M  
DA2P  
Data Bits D2, D3  
DA2M  
14-Bit Channel-A  
Data  
·
·
·
·
·
·
DA12P  
DA12M  
Data Bits D12, D13  
Output Clock  
CLKOUTP  
CLKOUTM  
DB0P  
DB0M  
Data Bits D0, D1  
Data Bits D2, D3  
DB2P  
DB2M  
14-Bit Channel-B  
Data  
·
·
·
·
·
·
DB12P  
DB12M  
Data Bits D12, D13  
B0288-01  
Figure 93. DDR LVDS Outputs  
Odd data bits D1, D3, D5, D7, D9 are output at the rising edge of CLKOUTP and even data bits D0, D2, D4, D6,  
D8, D10 are output at the falling edge of CLKOUTP. Both the rising and falling edges of CLKOUTP have to be  
used to capture all the data bits.  
50  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
CLKOUTM  
CLKOUTP  
DA0 (DB0)  
DA2 (DB2)  
DA4 (DB4)  
DA6 (DB6)  
DA8 (DB8)  
DA10 (DB10)  
DA12 (DB12)  
D0  
D2  
D1  
D3  
D0  
D2  
D1  
D3  
D4  
D5  
D4  
D5  
D6  
D7  
D6  
D7  
D8  
D9  
D8  
D9  
D10  
D12  
D11  
D13  
D10  
D12  
D11  
D13  
Sample N  
Sample N+1  
T0110-02  
Figure 94. DDR LVDS Interface  
LVDS Buffer Current Programmability  
The default LVDS buffer output current is 3.5 mA. When terminated by 100 , this results in a 350-mV  
single-ended voltage swing (700-mVPP differential swing). The LVDS buffer currents can also be programmed to  
2.5 mA, 4.5 mA, and 1.75 mA (LVDS CURRENT). In addition, there exists a current double mode, where this  
current is doubled for the data and output clock buffers (register bits CURRENT DOUBLE).  
LVDS Buffer Internal Termination  
An internal termination option is available (using the serial interface), by which the LVDS buffers are differentially  
terminated inside the device. The termination resistances available are –300 , 185 , and 150 (nominal with  
±20% variation). Any combination of these three terminations can be programmed; the effective termination is  
the parallel combination of the selected resistances. This results in eight effective terminations from open (no  
termination) to 60 .  
The internal termination helps to absorb any reflections coming from the receiver end, improving the signal  
integrity. With 100 internal and 100-external termination, the voltage swing at the receiver end is halved  
(compared to no internal termination). The voltage swing can be restored by using the LVDS current double  
mode. Figure 95 and Figure 96 compare the LVDS eye diagrams without and with 100-internal termination.  
With internal termination, the eye looks clean even with 10-pF load capacitance (from each output pin to ground).  
The terminations can be programmed using register bits (LVDS TERMINATION).  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Figure 95. LVDS Eye Diagram – No Internal Termination, External Termination = 100  
Figure 96. LVDS Eye Diagram – with 100-Internal Termination, External Termination = 100 and LVDS  
Current Double Mode Enabled  
52  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Output Data Format  
Two output data formats are supported – 2s complement and straight binary. They can be selected using the  
serial interface register bit <DATA FORMAT> or controlling the SEN pin in parallel configuration mode.  
In the event of an input voltage overdrive, the digital outputs go to the appropriate full scale level. For a positive  
overdrive, the output code is 0x7FF in offset binary output format, and 0x3FF in 2s complement output format.  
For a negative input overdrive, the output code is 0x000 in offset binary output format and 0x400 in 2s  
complement output format.  
Multiplexed Output mode  
This mode is available only with CMOS interface. In this mode, the digital outputs of both the channels are  
multiplexed and output on a single bus (DB0-DB10 pins), as per the timing diagram shown in Figure 97. The  
channel A output pins (DA0-DA10) are three-stated. Since the output data rate on the DB bus is effectively  
doubled, this mode is recommended only for low sampling frequencies (< 65 MSPS).  
This mode can be enabled using register bits <POWER DOWN MODES> or using the parallel pins CTRL1 -3.  
CLKOUT  
DB0  
DB1  
DB2  
DA0  
DA1  
DA2  
DB0  
DB1  
DB2  
DA0  
DA1  
DA2  
DB0  
DB1  
DB2  
DB13  
DA13  
DB13  
DA13  
DB13  
Sample N  
Sample N+1  
T0297-01  
Figure 97. Multiplexed Mode – Output Timing  
Low Latency Mode  
The default latency of ADS62P4X is 14 clock cycles. For applications, which cannot tolerate large latency,  
ADS62P4X includes a special mode with 10 clock cycles latency. In the low latency condition, the Digital  
Processing block is bypassed and its features (offset correction, fine gain, decimation filters) are not available.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DETAILS OF DIGITAL PROCESSING BLOCK  
CLIPPER  
From  
ADC  
Output  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
To output buffers  
LVDS or CMOS  
24 TAP FILTER  
Fine Gain  
(0 to 6 dB  
0.05 dB Steps)  
Gain Correction  
(0.05 dB Steps)  
- LOW PASS  
- HIGH PASS  
- BAND PASS  
DECIMATION  
BY 2/4/8  
14 Bits  
0
OFFSET  
ESTIMATION  
BLOCK  
Filter Select  
Disable  
Offset  
Correction  
Bypass  
Filter  
Bypass  
Decimation  
Freeze Offset  
Correction  
OFFSET  
CORRECTION  
GAIN  
CORRECTION  
DIGITAL  
FILTER and DECIMATION  
FINE GAIN  
DIGITAL PROCESSING BLOCK  
B0289-01  
Figure 98. Digital Processing Block Diagram  
Offset Correction  
ADS62P4X has an internal offset correction algorithm that estimates and corrects dc offset up to ±10 mV. The  
correction can be enabled using the serial register bit (OFFSET LOOP EN). Once enabled, the algorithm  
estimates the channel offset and applies the correction every clock cycle. The time constant of the correction  
loop is a function of the sampling clock frequency. The time constant can be controlled using register bits  
(OFFSET LOOP TC) as described in Table 20.  
Table 20. Time Constant of Offset Correction Algorithm  
<OFFSET LOOP TC>  
D6-D5-D4  
TIME CONSTANT (TCCLK),  
number of clock cycles  
TIME CONSTANT, sec  
(= TCCLK × 1/Fs)(1)  
000  
001  
010  
011  
100  
101  
110  
111  
227  
226  
225  
224  
228  
229  
227  
227  
1.1  
0.55  
0.27  
0.13  
2.15  
4.3  
1.1  
1.1  
(1) Sampling frequency, Fs = 125 MSPS  
54  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
It is also possible to freeze the offset correction using the serial interface (<OFFSET LOOP FREEZE>). Once  
frozen, the offset estimation becomes inactive and the last estimated value is used for correction every clock  
cycle. Note that the offset correction is disabled by default after reset.  
Figure 99 shows the time response of the offset correction algorithm, after it is enabled.  
8260  
8240  
Device With  
Offset Cancelled  
8220  
8200  
8180  
Offset Loop  
Enabled Here  
8160  
Device With  
Initial Offset  
8140  
8120  
0
2
4
6
8
10  
12  
14  
t − Time − s  
G084  
Figure 99. Time Response of Offset Correction  
Gain Correction  
ADS62P4X has ability to make fine corrections to the ADC channel gain. The corrections can be done in steps of  
0.05 dB, up to a maximum of 0.5 dB, using the register bits (GAIN CORRECTION). Only positive corrections are  
supported and the same correction applies to both the channels.  
Table 21. Gain Correction Values  
<GAIN CORRECTION>  
D3-D2-D1-D0  
AMOUNT OF CORRECTION,  
dB  
0000  
0001  
0
+0.05  
+0.1  
0010  
0011  
+0.15  
+0.20  
+0.25  
+0.30  
+0.35  
+0.40  
+0.45  
+0.5  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
Other combinations  
Unused  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Decimation Filters  
ADS62P4X includes option to decimate the ADC output data with in-built low pass, high pass or band pass  
filters.  
The decimation rate and type of filter can be selected using register bits (DECIMATION RATE) and  
(DECIMATION FILTER TYPE). Decimation rates of 2, 4, or 8 are available and either low pass, high pass or  
band pass filters can be selected (see Table 22). By default, the decimation filter is disabled – use register bit  
<FILTER ENABLE> to enable it.  
Table 22. Decimation Filter Modes  
COMBINATION OF DECIMATION RATES AND FILTER TYPES  
<DECIMATIO <FILTER  
<DECIMATION  
RATE>  
N FILTER  
FREQ  
BAND>  
COEFF  
SELECT ENABLE>  
>
<FILTER  
DECIMATION  
TYPE OF FILTER  
Decimate by 2  
Decimate by 4  
In-built low-pass filter (pass band = 0 to Fs/4)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
1
1
1
1
1
1
In-built high-pass filter (pass band = Fs/4 to Fs/2)  
In-built low-pass filter (pass band = 0 to Fs/8)  
In-built 2nd band-pass filter (pass band = Fs/8 to Fs/4)  
In-built 3rd band-pass filter (pass band = Fs/4 to 3Fs/8)  
In-built last band-pass filter (pass band = 3Fs/8 to Fs/2)  
Decimate by 2  
Decimate by 4  
Decimate by 8  
No decimation  
Custom filter (user programmable coefficients)  
Custom filter (user programmable coefficients)  
Custom filter (user programmable coefficients)  
Custom filter (user programmable coefficients)  
0
0
1
0
0
0
0
1
0
1
0
1
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
0
Decimation Filter Equation  
The decimation filter is implemented as 24-tap FIR with symmetrical coefficients (each coefficient is 12-bit  
signed). The filter equation is:  
y(n) +  
1
ǒ Ǔ  
  [h0   x(n) ) h1   x(n * 1) ) h2   x(n * 2) ) AAA ) h11   x(n * 11) ) h11   x(n * 12) ) AAA ) h1   x(n * 22) ) h0   x(n * 23)]  
211  
(3)  
By setting the register bit <ODD TAP ENABLE> = 1, a 23-tap FIR is implemented:  
y(n) +  
1
ǒ Ǔx[h0   x(n) ) h1   x(n * 1) ) h2   x(n * 2) ) AAA ) h10   x(n * 10) ) h11   x(n * 11) ) h10   x(n * 12) ) AAA ) h1   x(n * 21) ) h0   x(n * 22)]  
211  
(4)  
In the above equations,  
h0, h1 …h11 are 12-bit signed representation of the coefficients,  
x(n) is the input data sequence to the filter  
y(n) is the filter output sequence  
Pre-defined Coefficients  
The in-built filter types (low pass, high pass, and band pass) use pre-defined coefficients. The frequency  
response of the in-built filters is shown in Figure 100 and Figure 101.  
56  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
 
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
5
0
−5  
Low Pass  
High Pass  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency − f/f  
S
G085  
Figure 100. Decimate by 2 Filter Response  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
Low Pass  
High Pass  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency − f/f  
S
G086  
Figure 101. Decimate by 4 Filter Response  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
st  
−35  
−40  
−45  
1
Bandpass  
0.3  
nd  
2
Bandpass  
0.2  
0.0  
0.1  
0.4  
0.5  
Normalized Frequency − f/f  
S
G087  
Figure 102. Decimate by 4 Band-Pass Response  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Table 23. Predefined Coefficients for Decimation by 2 Filters  
COEFFICIENTS  
DECIMATE BY 2  
LOW-PASS FILTER  
HIGH-PASS FILTER  
h0  
h1  
23  
-37  
-6  
-22  
-65  
-52  
30  
h2  
h3  
68  
h4  
-36  
-61  
35  
66  
h5  
-35  
-107  
38  
h6  
h7  
118  
-100  
-197  
273  
943  
h8  
202  
-41  
-644  
1061  
h9  
h10  
h11  
Table 24. Predefined Coefficients for Decimation by 4 Filters  
COEFFICIENTS  
DECIMATE BY 4  
LOW-PASS FILTER  
1st BAND-PASS FILTER  
2nd BAND-PASS FILTER  
HIGH-PASS FILTER  
h0  
h1  
-17  
-50  
71  
-7  
19  
-34  
-34  
-101  
43  
32  
-15  
-95  
22  
h2  
-47  
127  
73  
h3  
46  
h4  
24  
58  
-8  
h5  
-42  
-100  
-97  
8
0
-28  
-5  
-81  
106  
-62  
-97  
310  
-501  
575  
h6  
86  
h7  
117  
-190  
-464  
-113  
526  
-179  
294  
86  
h8  
h9  
202  
414  
554  
h10  
h11  
-563  
352  
Custom Filter Coefficients with Decimation  
The filter coefficients can also be programmed by the user (custom). For custom coefficients, set the register bit  
(FILTER COEFF SELECT) and load the coefficients (h0 to h11) in registers 1E to 2F using the serial interface  
(Table 25) as:  
Register content = 12-bit signed representation of [real coefficient value × 211]  
58  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
Custom Filter Coefficients without Decimation  
The filter with custom coefficients can also be used with the decimation mode disabled. In this mode, the filter  
implementation is 12-tap FIR:  
y(n) +  
1
ǒ Ǔx[h6   x(n) ) h7   x(n * 1) ) h8   x(n * 2) ) AAA ) h11   x(n * 5) ) h11   x(n * 6) ) AAA ) h7   x(n * 10) ) h6   x(n * 11)]  
211  
(5)  
Table 25. Register Map of Custom Coefficients  
A7–A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(hex)  
1E  
1F  
20  
Coefficient h0 <7:0>  
Coefficient h1 <3:0>  
Coefficient h3 <3:0>  
Coefficient h5 <3:0>  
Coefficient h7 <3:0>  
Coefficient h9 <3:0>  
Coefficient h11 <3:0>  
Coefficient h0 <11:8>  
Coefficient h2 <11:8>  
Coefficient h4 <11:8>  
Coefficient h6 <11:8>  
Coefficient h8 <11:8>  
Coefficient h10 <11:8>  
Coefficient h1 <11:4>  
Coefficient h2 <7:0>  
21  
22  
23  
Coefficient h3 <11:4>  
Coefficient h4 <7:0>  
24  
25  
26  
Coefficient h5 <11:4>  
Coefficient h6 <7:0>  
27  
28  
29  
Coefficient h7 <11:4>  
Coefficient h8 <7:0>  
2A  
2B  
2C  
2D  
2E  
2F  
Coefficient h9 <11:4>  
Coefficient h10 <7:0>  
Coefficient h11 <11:4>  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the EVM User Guide (SLAU237) for details on layout and grounding.  
Supply Decoupling  
As the ADS62P4X already includes internal decoupling, minimal external decoupling can be used without loss in  
performance. Note that decoupling capacitors can help filter external power supply noise, so the optimum  
number of capacitors would depend on the actual application. The decoupling capacitors should be placed very  
close to the converter supply pins.  
It is recommended to use separate supplies for the analog and digital supply pins to isolate digital switching  
noise from sensitive analog circuitry. In case only a single 3.3-V supply is available, it should be routed first to  
AVDD. It can then be tapped and isolated with a ferrite bead (or inductor) with decoupling capacitor, before being  
routed to DRVDD.  
Exposed Thermal Pad  
It is necessary to solder the exposed pad at the bottom of the package to a ground plane for best thermal  
performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON  
PCB Attachment (SLUA271).  
60  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low frequency value.  
Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay will be different across channels. The maximum variation is specified as  
aperture delay variation (channel-channel).  
Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate – The maximum sampling rate at which certified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) – The INL is the deviation of the ADC's transfer function from a best fit line  
determined by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error – Gain error is the deviation of the ADC's actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error due to  
reference inaccuracy and error due to the channel. Both these errors are specified independently as EGREF and  
EGCHAN  
To a first order approximation, the total gain error will be ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1-0.5/100)xFSideal to (1+0.5/100)xFSideal  
.
.
.
Offset Error – The offset error is the difference, given in number of LSBs, between the ADC's actual average  
idle channel output code and the ideal average idle channel output code. This quantity is often mapped into mV.  
Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX–TMIN  
.
Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at DC and the first nine harmonics.  
P
P
s
SNR + 10Log10  
N
(6)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
P
s
SINAD + 10Log10  
P
) P  
N
D
(7)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's  
full-scale range.  
Effective Number of Bits (ENOB) – The ENOB is a measure of a converter’s performance as compared to the  
theoretical limit based on quantization noise.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
ADS62P45, ADS62P44  
ADS62P43, ADS62P42  
www.ti.com  
SLAS561AJULY 2007REVISED FEBRUARY 2008  
SINAD * 1.76  
ENOB +  
6.02  
(8)  
Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
P
P
s
THD + 10Log10  
N
(9)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1–f2 or 2f2–f1. IMD3 is either given in  
units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to  
full scale) when the power of the fundamental is extrapolated to the converter’s full-scale range.  
DC Power Supply Rejection Ratio (DC PSRR) – The DC PSSR is the ratio of the change in offset error to a  
change in analog supply voltage. The DC PSRR is typically given in units of mV/V.  
AC Power Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVsup is the change in supply voltage and ΔVout is the resultant change of the  
ADC output code (referred to the input), then  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(10)  
Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6dB positive and  
negative overload. The deviation of the first few samples after the overload (from their expected values) is noted.  
Common Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVcm_in is the change in the common-mode voltage of the input pins and ΔVout  
is the resultant change of the ADC output code (referred to the input), then  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(11)  
Cross-Talk (only for multi-channel ADC)– This is a measure of the internal coupling of a signal from adjacent  
channel into the channel of interest. It is specified separately for coupling from the immediate neighboring  
channel (near-channel) and for coupling from channel across the package (far-channel). It is usually measured  
by applying a full-scale signal in the adjacent channel. Cross-talk is the ratio of the power of the coupling signal  
(as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel  
input. It is typically expressed in dBc.  
62  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS62P45, ADS62P44 ADS62P43, ADS62P42  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Mar-2008  
PACKAGING INFORMATION  
Orderable Device  
ADS62P42IRGCR  
ADS62P42IRGCRG4  
ADS62P42IRGCT  
ADS62P42IRGCTG4  
ADS62P43IRGCR  
ADS62P43IRGCRG4  
ADS62P43IRGCT  
ADS62P43IRGCTG4  
ADS62P44IRGCR  
ADS62P44IRGCRG4  
ADS62P44IRGCT  
ADS62P44IRGCTG4  
ADS62P45IRGCR  
ADS62P45IRGCRG4  
ADS62P45IRGCT  
ADS62P45IRGCTG4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
VQFN  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Mar-2008  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jul-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
ADS62P42IRGCR  
ADS62P42IRGCT  
ADS62P43IRGCR  
ADS62P43IRGCT  
ADS62P44IRGCR  
ADS62P44IRGCT  
ADS62P45IRGCR  
ADS62P45IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jul-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS62P42IRGCR  
ADS62P42IRGCT  
ADS62P43IRGCR  
ADS62P43IRGCT  
ADS62P44IRGCR  
ADS62P44IRGCT  
ADS62P45IRGCR  
ADS62P45IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
2500  
250  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

ADS62P44IRGCT

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P44IRGCTG4

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS62P44RGC

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P45

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P45IRGCR

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P45IRGCRG4

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS62P45IRGCT

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P45IRGCTG4

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS62P45RGC

Dual Channel 14-Bit, 125/105/80/65 MSPS ADC with Parallel CMOS/DDR LVDS outputs
TI

ADS62P45_08

DUAL CHANNEL, 14-BITS, 125/105/80/65 MSPS ADC WITH DDR LVDS/CMOS OUTPUTS
TI

ADS62P48

Dual Channel 14-/12-Bit, 250-/210-MSPS ADC With DDR LVDS and Parallel CMOS Outputs
TI

ADS62P48IRGC25

Dual Channel 14-/12-Bit, 250-/210-MSPS ADC With DDR LVDS and Parallel CMOS Outputs
TI