ADS7040 [TI]

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端;
ADS7040
型号: ADS7040
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端

文件: 总44页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
ADS7040 超低功耗、超小尺寸、8 位、1MSPSSAR ADC  
1 特性  
3 说明  
1
业界第一款具有毫微瓦功耗的逐次逼近寄存器  
(SAR) 模数转换器 (ADC):  
ADS7040 是一款 8 位、1MSPS、模数转换器  
(ADC)。该器件支持较宽的模拟输入电压范围(1.65V  
3.6V),并包含一个基于电容且内置采样保持电路  
的逐次逼近寄存器 (SAR) ADC。串行外设接口 (SPI)  
兼容串口由 CS SCLK 信号控制。输入信号在 CS  
下降沿进行采样,SCLK 用于转换和串行数据输出。此  
器件支持宽范围的数字电源(1.65V 3.6V),可直  
接连接到各类主机控制器。ADS7040 符合 JESD8-7A  
标准的标称 DVDD 范围(1.65V 至  
1MSPS 1.8V AVDD 时为 171µW  
1MSPS 3V AVDD 时为 555µW  
100kSPS 3V AVDD 时为 56µW  
1kSPS 3V AVDD 时低于 1µW  
业界最小的 SAR ADC:  
采用 X2QFN-8 封装,封装尺寸为 2.25mm2  
1MSPS 吞吐量且零延迟  
1.95V)。  
宽工作范围:  
AVDD1.65V 3.6V  
ADS7040 采用 8 引脚微型引线 X2QFN 封装,额定工  
作温度范围为 –40°C 125°C。此器件尺寸微小且功  
耗极低,非常适合空间受限类电池供电 应用。  
DVDD1.65V 3.6V(与 AVDD 无关)  
温度范围:-40°C 125°C  
出色的性能:  
器件信息(1)  
8 位分辨率且无丟码 (NMC)  
部件名称  
封装  
封装尺寸(标称值)  
最大 ±0.5 最低有效位 (LSB) 的积分非线性  
(INL),最大 ±0.4 最低有效位 (LSB) 的差分非线  
(DNL)  
X2QFN (8)  
1.50mm x 1.50mm  
ADS7040  
超薄小外形尺寸封装  
(VSSOP)(8)  
2.30mm x 2.00mm  
49dB 的信噪比 (SNR)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
-70dB 的总谐波失真 (THD)  
单极输入范围:0V AVDD  
集成偏移校准  
空白  
空白  
空白  
串行外设接口 (SPI)™- 兼容串口:12MHz  
符合 JESD8-7A 标准的数字 I/O  
典型应用  
2 应用  
AVDD  
AVDD used as  
OPA_AVDD  
低功耗数据采集  
Reference for device  
R
AVDD  
+
电池供电类手持设备  
液位传感器  
超声波流量计  
电机控制  
AINP  
+
VIN+  
Device  
œ
C
AINM  
GND  
OPA_AVSS  
可穿戴健身器  
便携式医疗设备  
硬盘  
RUG (8)  
Actual Device Size  
1.5 x 1.5 x 0.35(H) mm  
血糖仪  
注:ADS7040 08052012 公制)SMD  
元件小。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS676  
 
 
 
 
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Applications ................................................ 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Characteristics............................................... 7  
6.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 13  
7.1 Digital Voltage Levels ............................................. 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
9
10 Power-Supply Recommendations ..................... 30  
10.1 AVDD and DVDD Supply Recommendations....... 30  
10.2 Estimating Digital Power Consumption................. 30  
10.3 Optimizing Power Consumed by the Device ........ 30  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 文档支持................................................................ 32  
12.2 社区资源................................................................ 32  
12.3 ....................................................................... 32  
12.4 静电放电警告......................................................... 32  
12.5 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 33  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (February 2015) to Revision C  
Page  
Updated Figure 1 ................................................................................................................................................................... 7  
Changed Serial Interface section: changed last half of first paragraph, changed Figure 35 ............................................... 18  
Changed Figure 38 .............................................................................................................................................................. 21  
添加了社区资源部分 ............................................................................................................................................................. 32  
Changes from Revision A (November 2014) to Revision B  
Page  
已更改 宽工作电压范围 特性 要点:已将 AVDD 的值从 1.8V 改为 1.65V ............................................................................ 1  
已更改 宽模拟输入电压范围下限至 1.65V说明部分第 1 段) ............................................................................................. 1  
Changed ESD Ratings table to latest standards ................................................................................................................... 5  
Changed AVDD parameter minimum specification in Recommended Operating Conditions table to 1.65 V ....................... 5  
Changed AVDD range in conditions of Electrical Characteristics table ................................................................................. 6  
Changed INL and DNL parameter test conditions in Electrical Characteristics table ............................................................ 6  
Changed maximum throughput rate parameter test conditions in Electrical Characteristics table ........................................ 6  
Changed AVDD parameter minimum specification in Electrical Characteristics table........................................................... 6  
Changed conditions for Timing Characteristics table: changed range of AVDD and added CLOAD condition........................ 7  
Changed t D_CKDO parameter in Timing Characteristics table ................................................................................................ 7  
Added fSCLK minimum specification to Timing Characteristics table ...................................................................................... 7  
Changed titles of Figure 26 to Figure 30 ............................................................................................................................. 11  
Changed Reference sub-section in Feature Description section ......................................................................................... 15  
Changed range of second fCLK-CAL parameter description in Table 2 ................................................................................... 20  
Changed range of second fCLK-CAL parameter description in Table 3 .................................................................................. 21  
Changed Reference Circuit section in Application Information ............................................................................................ 24  
Added last two sentences to AVDD and DVDD Supply Recommendations section .......................................................... 30  
2
版权 © 2014–2015, Texas Instruments Incorporated  
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Changes from Original (November 2014) to Revision A  
Page  
已更改产品预览数据表............................................................................................................................................................ 1  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
RUG Package  
8-Pin X2QFN  
Top View  
DCU Package  
8-Pin Leaded VSSOP  
Top View  
AINM  
GND  
1
2
3
4
8
7
6
5
DVDD  
SCLK  
SDO  
CS  
SDO  
1
2
3
7
6
5
AINP  
AVDD  
GND  
AVDD  
AINP  
AINM  
SCLK  
CS  
DVDD  
Pin Functions  
PIN  
NO.  
NAME  
AINM  
RUG  
DCU  
I/O  
DESCRIPTION  
8
7
6
1
4
5
3
2
5
6
7
4
1
8
2
3
Analog input  
Analog input  
Supply  
Analog signal input, negative  
Analog signal input, positive  
AINP  
AVDD  
CS  
Analog power-supply input, also provides the reference voltage to the ADC  
Digital input  
Supply  
Chip-select signal, active low  
DVDD  
GND  
SCLK  
SDO  
Digital I/O supply voltage  
Supply  
Ground for power supply, all analog and digital signals are referred to this pin  
Digital input  
Digital output  
Serial clock  
Serial data out  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–60  
MAX  
3.9  
UNIT  
V
AVDD to GND  
DVDD to GND  
3.9  
V
AINP to GND  
AVDD + 0.3  
0.3  
V
AINM to GND  
V
Digital input voltage to GND  
Storage temperature, Tstg  
DVDD + 0.3  
150  
V
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
1.65  
–40  
MAX  
3.6  
UNIT  
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Operating free-air temperature  
V
V
3.6  
125  
°C  
6.4 Thermal Information  
ADS7040  
THERMAL METRIC(1)  
RUG (X2QFN)  
8 PINS  
177.5  
51.5  
DCU (VSSOP)  
8 PINS  
235.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
79.8  
76.7  
117.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
8.9  
ψJB  
76.7  
116.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TA = –40°C to 125°C, AVDD = 1.65 V to 3.6 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 1 MSPS, and VAINM = 0 V, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage span(1)  
0
–0.1  
–0.1  
AVDD  
AVDD + 0.1  
0.1  
V
V
AINP to GND  
AINM to GND  
Absolute input  
voltage range  
CS  
Sampling capacitance  
15  
8
pF  
SYSTEM PERFORMANCE  
Resolution  
Bits  
Bits  
LSB(2)  
NMC  
INL  
No missing codes  
8
–0.5  
–0.4  
Integral nonlinearity  
Differential nonlinearity  
Offset error  
AVDD = 1.8 V to 3.6 V  
±0.25  
±0.2  
±0.5  
±25  
0.5  
0.4  
DNL  
EO  
AVDD = 1.8 V to 3.6 V  
LSB  
LSB  
dVOS/dT  
EG  
Offset error drift with temperature  
Gain error  
ppm/°C  
%FS  
±0.2  
±25  
Gain error drift with temperature  
ppm/°C  
SAMPLING DYNAMICS  
tACQ Acquisition time  
Maximum throughput rate  
DYNAMIC CHARACTERISTICS  
275  
48.5  
48.5  
ns  
12-MHz SCLK, AVDD = 1.65 V to 3.6 V  
1
MHz  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 1.8 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 1.8 V  
fIN = 2 kHz, AVDD = 3 V  
At –3 dB, AVDD = 3 V  
49  
49  
SNR  
Signal-to-noise ratio(3)  
dB  
dB  
dB  
THD  
Total harmonic distortion(3)(4)  
Signal-to-noise and distortion(3)  
–70  
49  
SINAD  
49  
SFDR  
BW(fp)  
Spurious-free dynamic range(3)  
Full-power bandwidth  
75  
dB  
25  
MHz  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
VIL  
High-level input voltage(5)  
Low-level input voltage(5)  
0.65 DVDD  
DVDD + 0.3  
0.35 DVDD  
DVDD  
V
V
–0.3  
At Isource = 500 µA  
At Isource = 2 mA  
At Isink = 500 µA  
At Isink = 2 mA  
0.8 DVDD  
VOH  
High-level output voltage(5)  
Low-level output voltage(5)  
V
V
DVDD – 0.45  
DVDD  
0
0
0.2 DVDD  
0.45  
VOL  
POWER-SUPPLY REQUIREMENTS  
AVDD  
DVDD  
Analog supply voltage  
1.65  
1.65  
3
3
3.6  
3.6  
185  
23  
V
V
Digital I/O supply voltage  
At 1 MSPS with AVDD = 3 V  
At 100 kSPS with AVDD = 3 V  
At 1 MSPS with AVDD = 1.8 V  
At 1 MSPS with AVDD = 3 V  
At 100 kSPS with AVDD = 3 V  
At 1 MSPS with AVDD = 1.8 V  
IAVDD  
Analog supply current  
Power dissipation  
µA  
95  
555  
56  
PD  
µW  
171  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale,  
unless otherwise specified.  
(4) Calculated on the first nine harmonics of the input frequency.  
(5) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. See the Digital Voltage Levels section for  
more details.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
6.6 Timing Characteristics  
All specifications are at TA = –40°C to 125°C, AVDD = 1.65 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD on SDO = 20 pF,  
unless otherwise specified.  
MIN  
TYP  
MAX  
UNIT  
TIMING SPECIFICATIONS  
fTHROUGHPUT Throughput  
tCYCLE  
1
MSPS  
µs  
Cycle time  
1
tCONV  
Conversion time  
8.5 × tSCLK + tSU_CSCK  
10  
ns  
tDV_CSDO  
Delay time: CS falling to data enable  
ns  
Delay time: SCLK falling to (next) data valid on DOUT,  
AVDD = 1.8 V to 3.6 V  
30  
50  
ns  
tD_CKDO  
Delay time: SCLK falling to (next) data valid on DOUT,  
AVDD = 1.65 V to 1.8 V  
ns  
ns  
tDZ_CSDO  
Delay time: CS rising to DOUT going to 3-state  
5
TIMING REQUIREMENTS  
tACQ  
Acquisition time  
275  
0.016  
83.33  
0.45  
0.45  
60  
ns  
MHz  
ns  
fSCLK  
SCLK frequency  
12  
tSCLK  
SCLK period  
tPH_CK  
tPL_CK  
tPH_CS  
tSU_CSCK  
tD_CKCS  
SCLK high time  
0.55  
0.55  
tSCLK  
tSCLK  
ns  
SCLK low time  
CS high time  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
15  
ns  
10  
ns  
Sample  
N
Sample  
N+1  
tCYCLE  
tCONV  
tACQ  
tPH_CS  
CS  
tSU_CSCK  
tPL_CK  
tD_CKCS  
tSCLK  
tPH_CK  
1
2
3
4
5
6
7
8
9
10  
SCLK  
tD_CKDO  
tDV_CSDO  
tDZ_CSDO  
D3  
D2  
D1  
D5  
D4  
D0  
0
0
D7  
D6  
SDO  
Data for Sample N  
Figure 1. Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
0
œ20  
0
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ100  
œ120  
œ140  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
C002  
Input Frequency (kHz)  
Input Frequency (kHz)  
C001  
SNR = 49.85 dB  
THD = –68.69 dB  
fIN = 2 kHz  
SNR = 49.34 dB  
THD = –63.31 dB  
fIN = 250 kHz  
Number of samples = 16384  
Number of samples = 16384  
Figure 2. Typical FFT  
Figure 3. Typical FFT  
52  
50.5  
49  
52  
50.5  
49  
SNR  
SNR  
SINAD  
SINAD  
47.5  
46  
47.5  
46  
44.5  
43  
44.5  
43  
41.5  
41.5  
40  
40  
26  
59  
92  
125  
2
33  
64  
95  
126  
157  
188  
219  
250  
œ40  
œ7  
Free-Air Temperature (oC)  
Input Frequency (kHz)  
C003  
C004  
fIN = 2 kHz  
Figure 4. SNR and SINAD vs Free-Air Temperature  
Figure 5. SNR and SINAD vs Input Frequency  
52  
œ65  
œ67  
œ69  
œ71  
œ73  
œ75  
SNR  
50.5  
49  
SINAD  
47.5  
46  
44.5  
43  
41.5  
40  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
26  
59  
92  
125  
œ40  
œ7  
Reference Voltage (V)  
Free-Air Temperature (oC)  
C006  
C005  
Figure 6. SNR and SINAD vs Reference Voltage (AVDD)  
Figure 7. THD vs Free-Air Temperature  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
œ65  
œ70  
œ75  
œ80  
œ85  
œ60  
œ63  
œ66  
œ69  
œ72  
œ75  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
0
50  
100  
150  
200  
250  
C008  
Reference Voltage (V)  
Input Frequency (kHz)  
C010  
Figure 8. THD vs Input Frequency  
Figure 9. THD vs Reference Voltage  
80  
78  
76  
74  
72  
70  
80  
77  
74  
71  
68  
65  
26  
59  
92  
125  
0
50  
100  
150  
200  
250  
œ40  
œ7  
Free-Air Temperature (oC)  
Input Frequency (kHz)  
C009  
C007  
Figure 10. SFDR vs Free-Air Temperature  
Figure 11. SFDR vs Input Frequency  
90  
86  
82  
78  
74  
70  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
128  
129  
C012  
Reference Voltage (V)  
Code  
C011  
Figure 12. SFDR vs Reference Voltage  
Figure 13. DC Input Histogram  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
2
1.5  
1
0.5  
Calibrated  
0
0.5  
0
-0.5  
-1  
Calibrated  
-0.5  
-1  
-1.5  
-2  
Un-Calibrated  
-1.5  
-2  
Un-Calibrated  
26  
59  
92  
125  
1.8  
1.8  
0
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C013  
C014  
Figure 14. Offset vs Free-Air Temperature  
Figure 15. Offset vs Reference Voltage  
0.2  
0.1  
0
0.2  
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
26  
59  
92  
125  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C016  
C015  
Figure 16. Gain Error vs Free-Air Temperature  
Figure 17. Gain Error vs Reference Voltage  
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
64  
128  
192  
256  
64  
128  
192  
256  
C018  
Code  
Code  
C017  
AVDD = 3 V  
AVDD = 3 V  
Figure 18. Typical DNL  
Figure 19. Typical INL  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
0.5  
0.5  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
C020  
Code  
Code  
C019  
AVDD = 1.8 V  
AVDD = 1.8 V  
Figure 20. Typical INL  
Figure 21. Typical INL  
0.5  
0.3  
0.5  
0.3  
Maximum  
Minimum  
0.1  
0.1  
Maximum  
Minimum  
-0.1  
-0.3  
-0.1  
-0.3  
-0.5  
-0.5  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C021  
C022  
Figure 22. DNL vs Free-Air Temperature  
Figure 23. DNL vs Reference Voltage (AVDD)  
0.5  
0.3  
0.5  
0.3  
Maximum  
Minimum  
Maximum  
Minimum  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
C023  
Reference Voltage (V)  
C024  
Figure 24. INL vs Free-Air Temperature  
Figure 25. INL vs Reference Voltage (AVDD)  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
185  
180  
175  
170  
165  
180  
150  
120  
90  
60  
30  
0
26  
59  
92  
125  
0
200  
400  
600  
800  
1000  
œ40  
œ7  
Free-Air Temperature (oC)  
Throughput (Ksps)  
C026  
C025  
AVDD = 3 V  
Figure 27. AVDD Supply Current vs Throughput  
Figure 26. AVDD Supply Current vs Free-Air Temperature  
100  
230  
210  
190  
170  
150  
130  
110  
90  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
C028  
Throughput (Ksps)  
Supply Voltage (V)  
C027  
AVDD = 1.8 V  
Figure 28. AVDD Supply Current vs Throughput  
Figure 29. AVDD Supply Current vs AVDD Voltage  
70  
60  
50  
40  
30  
20  
10  
0
0
25  
50  
75  
100  
125  
Free-Air Temperature (oC)  
C029  
Figure 30. AVDD Static Current vs Free-Air Temperature  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
7 Parameter Measurement Information  
7.1 Digital Voltage Levels  
The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 31 shows voltage  
levels for the digital input and output pins.  
Digital Output  
DVDD  
VOH  
DVDD-0.45V  
SDO  
0.45V  
VOL  
0V  
ISource= 2 mA, ISink = 2 mA,  
DVDD = 1.65 V to 1.95 V  
Digital Inputs  
DVDD + 0.3V  
VIH  
0.65DVDD  
CS  
SCLK  
0.35DVDD  
VIL  
DVDD = 1.65 V to 1.95 V  
-0.3V  
Figure 31. Digital Voltage Levels as per the JESD8-7A Standard  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS7040 is an ultralow-power, ultra-small analog-to-digital converter (ADC) that supports a wide analog  
input range. The analog input range for the device is defined by the AVDD supply voltage. The device samples  
the input voltage across the AINP and AINM pins on the CS falling edge and starts the conversion. The clock  
provided on the SCLK pin is used for conversion and data transfer. During conversions, both the AINP and AINM  
pins are disconnected from the sampling circuit. After the conversion completes, the sampling capacitors are  
reconnected across the AINP and AINM pins and the ADS7040 enters acquisition phase.  
The device has an internal offset calibration. The offset calibration can be initiated by the user either on power-up  
or during normal operation; see the Offset Calibration section for more details.  
The device also provides a simple serial interface to the host controller and operates over a wide range of digital  
power supplies. The ADS7040 requires only a 12-MHz SCLK for supporting a throughput of 1 MSPS. The digital  
interface also complies with the JESD8-7A (normal range) standard. The Functional Block Diagram section  
provides a block diagram of the device.  
8.2 Functional Block Diagram  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
8.3 Feature Description  
8.3.1 Reference  
The device uses the analog supply voltage (AVDD) as a reference, as shown in Figure 32. TI recommends  
decoupling the AVDD pin with a 1-µF, low equivalent series resistance (ESR) ceramic capacitor. The minimum  
capacitor value required for AVDD is 200 nF. The AVDD pin functions as a switched capacitor load to the source  
powering AVDD. The decoupling capacitor provides the instantaneous charge required by the internal circuit and  
helps in maintaining a stable dc voltage on the AVDD pin. TI recommends powering the AVDD pin with a low  
output impedance and low-noise regulator (such as the TPS79101).  
1µF  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
Figure 32. Reference for the Device  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Analog Input  
The device supports single-ended analog inputs. The ADC samples the difference between AINP and AINM and  
converts for this voltage. The device is capable of accepting a signal from –100 mV to 100 mV on the AINM input  
and is useful in systems where the sensor or signal-conditioning block is far from the ADC. In such a scenario,  
there can be a difference between the ground potential of the sensor or signal conditioner and the ADC ground.  
In such cases, use separate wires to connect the ground of the sensor or signal conditioner to the AINM pin. The  
AINP input is capable of accepting signals from 0 V to AVDD. Figure 33 represents the equivalent analog input  
circuits for the sampling stage. The device has a low-pass filter followed by the sampling switch and sampling  
capacitor. The sampling switch is represented by an Rs(typically 50 Ω) resistor in series with an ideal switch and  
Cs (typically 15 pF) is the sampling capacitor. The ESD diodes are connected from both analog inputs to AVDD  
and ground.  
AVDD  
50  
Rs  
AINP  
CS  
10 pF  
AVDD  
Rs  
50 ꢀ  
AINM  
CS  
Figure 33. Equivalent Input Circuit for the Sampling Stage  
The analog input full-scale range (FSR) is equal to the reference voltage of the ADC. The reference voltage for  
the device is equal to the analog supply voltage (AVDD). Thus, the device FSR can be determined by  
Equation 1:  
FSR = VREF = AVDD  
(1)  
8.3.3 ADC Transfer Function  
The device output is in straight binary format. The device resolution for a single-ended input can be computed by  
Equation 2:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD and  
N = 8  
(2)  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Feature Description (continued)  
Figure 34 and Table 1 show the ideal transfer characteristics for the device.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
V
REF  
V
REF  
VREF œ 1 LSB  
+ 1LSB  
1 LSB  
2
2
Single-Ended Analog Input  
(AINP œ AINM)  
Figure 34. Ideal Transfer Characteristics  
Table 1. Transfer Characteristics  
INPUT VOLTAGE (AINP – AINM)  
1 LSB  
CODE  
NFSC  
DESCRIPTION  
IDEAL OUTPUT CODE  
Negative full-scale code  
00  
01  
80  
81  
FF  
1 LSB to 2 LSBs  
NFSC + 1  
MC  
Mid code  
(VREF / 2) to (VREF / 2) + 1 LSB  
(VREF / 2) + 1 LSB to (VREF / 2) + 2 LSBs  
VREF – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
 
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
8.3.4 Serial Interface  
The device supports a simple, SPI-compatible interface to the external host. The CS signal defines one  
conversion and serial transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge. The  
SDO pin outputs the ADC conversion results. Figure 35 shows a detailed timing diagram for the serial interface.  
A minimum delay of tSU_CSCK must elapse between the CS falling edge and the first SCLK falling edge. The  
device uses the clock provided on the SCLK pin for conversion and data transfer. The conversion result is  
available on the SDO pin with the first two bits set to 0, followed by 8 bits of the conversion result. The first zero  
is launched on the SDO pin on the CS falling edge. Subsequent bits (starting with another 0 followed by the  
conversion result) are launched on the SDO pin on subsequent SCLK falling edges. The SDO output remains  
low after 10 SCLKs. A CS rising edge ends the frame and brings the serial data bus to 3-state. For acquisition of  
the next sample, a minimum time of tACQ must be provided after the conversion of the current sample is  
completed. For details on timing specifications, see the Timing Characteristics table.  
The device initiates an offset calibration on the first CS falling edge after power-up and the SDO output remains  
low during the first serial transfer frame after power-up. For further details, refer to the Offset Calibration section.  
Sample  
N+1  
Sample  
N
tCYCLE  
tCONV  
tACQ  
tSU_CSCK  
CS  
1
0
2
3
4
5
6
7
8
9
10  
SCLK  
D4  
D3  
0
D6  
D5  
D2  
D1  
D0  
D7  
SDO  
Data for Sample N  
Figure 35. Serial Interface Timing Diagram  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
8.4 Device Functional Modes  
8.4.1 Offset Calibration  
The ADS7040 includes a feature to calibrate the device internal offset. During offset calibration, the analog input  
pins (AINP and AINM) are disconnected from the sampling stage. The device includes an internal offset  
calibration register (OCR) that stores the offset calibration result. The OCR is an internal register and cannot be  
accessed by the user through the serial interface. The OCR is reset to zero on power-up. Therefore, TI  
recommends calibrating the offset on power-up to bring the offset within the specified limits. If the operating  
temperature or analog supply voltage reflect a significant change, the offset can be recalibrated during normal  
operation. Figure 36 shows the offset calibration process.  
Normal Operation  
With Uncalibarted  
Data Capture(1)  
offset  
Device  
Power Up  
Data Capture(1)  
Normal Operation  
With Calibarted  
offset  
Calibration during Normal Operation(2)  
(1) See the Timing Characteristics section for timing specifications.  
(2) See the Offset Calibration During Normal Operation section for details.  
(3) See the Offset Calibration on Power-Up section for details.  
(4) The power recycle on the AVDD supply is required to reset the offset calibration and to bring the device to a power-up  
state.  
Figure 36. Offset Calibration  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.1.1 Offset Calibration on Power-Up  
The device initiates offset calibration on the first CS falling edge after power-up and calibration completes if the  
CS pin remains low for at least 16 SCLK falling edges after the first CS falling edge. The SDO output remains  
low during calibration. The minimum acquisition time must be provided after calibration for acquiring the first  
sample. If the device is not provided with at least 16 SCLKs during the first serial transfer frame after power-up,  
the OCR is not updated. Table 2 provides the timing parameters for offset calibration on power-up.  
For subsequent samples, the device adjusts the conversion results with the value stored in the OCR. The  
conversion result adjusted with the value stored in OCR is provided by the device on the SDO output. Figure 37  
shows the timing diagram for offset calibration on power-up.  
Table 2. Offset Calibration on Power-Up  
MIN  
TYP  
MAX  
12  
UNIT  
MHz  
MHz  
ns  
fCLK-CAL  
fCLK-CAL  
SCLK frequency for calibration for 1.8 V < AVDD < 3.6 V  
SCLK frequency for calibration for 1.65 V < AVDD < 2.25 V  
12  
tPOWERUP-CAL Calibration time at power-up  
15 tSCLK  
275  
tACQ  
Acquisition time  
ns  
tPH_CS  
tSU_CSCK  
tD_CKCS  
CS high time  
tACQ  
15  
ns  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
ns  
10  
ns  
Start  
Power-up  
Calibration  
Sample  
#1  
tPH_CS  
tACQ  
tPOWERUP-CAL  
CS  
tD_CKCS  
tSU_CSCK  
1
2
15  
16  
SCLK(fCLK-CAL  
)
SDO  
Figure 37. Offset Calibration on Power-Up Timing Diagram  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
8.4.1.2 Offset Calibration During Normal Operation  
Offset calibration can be done during normal device operation if at least 32 SCLK falling edges are provided in  
one serial transfer frame. During the first 10 SCLKs, the device converts the sample acquired on the CS falling  
edge and provides data on the SDO output. The device initiates the offset calibration on the 17th SCLK falling  
edge and calibration completes on the 32nd SCLK falling edge. The SDO output remains low after the 10th  
SCLK falling edge and SDO goes to 3-state after CS goes high. If the device is provided with less than 32  
SCLKs during a serial transfer frame, the OCR is not updated. Table 3 provides the timing parameters for offset  
calibration during normal operation.  
For subsequent samples, the device adjusts the conversion results with the value stored in the OCR. The  
conversion result adjusted with the value stored in the OCR is provided by the device on the SDO output.  
Figure 38 shows the timing diagram for offset calibration during normal operation.  
Table 3. Offset Calibration During Normal Operation  
MIN  
TYP  
MAX  
12  
UNIT  
MHz  
MHz  
ns  
fCLK-CAL  
fCLK-CAL  
tCAL  
SCLK frequency for calibration for 1.8 V < AVDD < 3.6 V  
SCLK frequency for calibration for 1.65 V < AVDD < 2.25 V  
Calibration time during normal operation  
Acquisition time  
12  
15 tSCLK  
275  
tACQ  
ns  
tPH_CS  
tSU_CSCK  
tD_CKCS  
CS high time  
tACQ  
15  
ns  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
ns  
10  
ns  
Sample  
N+1  
Sample  
N
tPH_CS  
tACQ  
tCONV  
tCAL  
CS  
tSU_CSCK  
tD_CKCS  
16  
18  
32  
1
0
2
3
4
9
10  
17  
31  
SCLK(fCLK-CAL  
)
0
D7  
D6  
D1  
SDO  
D0  
Data for Sample N  
Figure 38. Offset Calibration During Normal Operation Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
 
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing the input driver circuit, reference driver circuit, and provides  
some application circuits designed for the ADS7040.  
9.2 Typical Applications  
9.2.1 Single-Supply DAQ with the ADS7040  
AVDD  
AVDD  
OPA314  
AVDD  
200  
VIN+  
+
AINP  
AINM  
+
Device  
1.5 nF  
œ
GND  
Input Driver  
Device: 8-Bit, 1-MSPS,  
Single-Ended Input  
Figure 39. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of this application is to design a single-supply digital acquisition (DAQ) circuit based on the ADS7040  
with SNR greater than 49 dB and THD less than –70 dB for input frequencies of 5 kHz at a throughput of  
1 MSPS.  
9.2.1.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and an  
antialiasing filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Typical Applications (continued)  
9.2.1.2.1 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a rate greater than or equal to the  
Nyquist rate. Any higher frequency content in the input signal beyond half the sampling frequency is digitized and  
folded back into the low-frequency spectrum. This process is called aliasing. Therefore, an external, antialiasing  
filter must be used to remove the harmonic content from the input signal before being sampled by the ADC. An  
antialiasing filter is designed as a low-pass RC filter, for which the 3-dB bandwidth is optimized for noise,  
response time, and throughput. For dc signals with fast transients (including multiplexed input signals), a high-  
bandwidth filter is designed to allow accurately settling the signal at the ADC inputs during the small acquisition  
time window. Figure 40 provides the equation for determining the bandwidth of the antialiasing filter.  
AVDD  
AVDD  
RFLT  
AINP  
1
CFLT  
f-3dB  
=
Device  
2p ì R ì C  
FLT  
FLT  
AINM  
GND  
Figure 40. Antialiasing Filter  
For ac signals, the filter bandwidth must be kept low to band limit the noise fed into the ADC input, thereby  
increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive  
circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage  
of the ADC. A filter capacitor, CFLT, is connected across the ADC inputs. This capacitor helps reduce the  
sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold  
capacitors during the acquisition process. As a rule of thumb, the value of this capacitor is at least 20 times the  
specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is equal to  
15 pF. Thus, the value of CFLT is greater than 300 pF. Select a COG- or NPO-type capacitor because these  
capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying  
voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design.  
The input amplifier bandwidth is typically much higher than the cutoff frequency of the antialiasing filter. Thus, TI  
strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase  
margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some amplifiers  
can require more bandwidth than others to drive similar filters.  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.2.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth: Select the small-signal bandwidth of the input amplifiers to be high enough to settle  
the input signal in the acquisition time of the ADC. Higher bandwidth reduces the closed-loop output  
impedance of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter  
at the ADC inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In  
order to maintain the overall stability of the input driver circuit, the select the amplifier bandwidth as described  
in Equation 3.  
1
GBW í 4ì  
2ŒìRFLT ì  
CFLT  
where:  
GBW = unity gain bandwidth  
(3)  
Noise: Noise contribution of the front-end amplifiers must be low enough to prevent any degradation in SNR  
performance of the system. As a rule of thumb, to ensure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, keep the total noise contribution from the front-end circuit below  
20% of the input-referred noise of the ADC. Noise from the input driver circuit is band limited by designing a  
low cutoff frequency RC filter, as explained in Equation 4.  
SNR(dB)  
-
(
)
2
1
5
VREF  
2 2  
V1 f _AMP_PP  
Œ
20  
NG ì  
+e2n_RMS ì ìf  
Ç
ì
ì 10  
(
)
-3dB  
6.6  
2
where:  
V1/f_AMP_PP is the peak-to-peak flicker noise in µVRMS,  
en_RMS is the amplifier broadband noise,  
f–3dB is the –3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit, which is equal to 1 in the buffer configuration.  
(4)  
Settling time: For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, always verify the settling behavior of the input driver with TINA™-SPICE  
simulations before selecting the amplifier.  
The OPA314 is selected for this application for its rail-to-rail input and output swing, low-noise (14 nV/Hz), and  
low-power (150 µA) performance to support a single-supply data acquisition circuit.  
9.2.1.2.3 Reference Circuit  
The analog supply voltage of the device is also used as a voltage reference for conversion. TI recommends  
decoupling the AVDD pin with a 1-µF, low-ESR ceramic capacitor. The minimum capacitor value required for  
AVDD is 200 nF.  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Typical Applications (continued)  
9.2.1.3 Application Curve  
Figure 41 shows the FFT plot for the ADS7040 with a 5-kHz input frequency used for the circuit in Figure 39.  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
0
100  
200  
300  
400  
500  
C031  
Input Frequency (kHz)  
SNR = 49.7 dB  
THD = –70.5 dB  
SINAD = 49.6 dB  
Number of samples = 32768  
Figure 41. Test Results for the ADS7040 and OPA314 for a 5-kHz Input  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Applications (continued)  
9.2.2 DAQ Circuit with the ADS7040 for Maximum SINAD  
AVDD  
OPA_AVDD  
25  
OPA835  
AVDD  
+
AINP  
AINM  
+
VIN+  
œ
Device  
1.5 nF  
GND  
OPA_AVSS  
Device: 8-Bit, 1-MSPS,  
Single-Ended Input  
Input Driver  
Figure 42. ADS7040 DAQ Circuit: Maximum SINAD for Input Frequencies up to 250 kHz  
9.2.2.1 Design Requirements  
The goal of this application is to design a data acquisition circuit based on the ADS7040 with SINAD greater than  
49 dB for input frequencies up to 250 kHz.  
9.2.2.2 Detailed Design Procedure  
To achieve a SINAD of 49 dB, the operational amplifier must have high bandwidth in order to settle the input  
signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the total  
system noise below 20% of the input-referred noise of the ADC. For the application circuit shown in Figure 42,  
the OPA835 is selected for its high bandwidth (56 MHz) and low noise (9.3 nV/Hz).  
For a step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation  
results, and test results, refer to TI Precision Design TIPD168, Three 12-Bit Data Acquisition  
Reference Designs Optimized for Low Power and Ultra-Small Form Factor (TIDU390).  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
9.2.2.3 Application Curves  
Figure 43 shows the FFT plot for the ADS7040 with a 2-kHz input frequency used for the circuit in Figure 42.  
Figure 44 shows the FFT plot for the ADS7040 with a 250-kHz input frequency used for the circuit in Figure 42.  
0
œ20  
0
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ100  
œ120  
œ140  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
Input Frequency (kHz)  
C002  
C001  
SNR = 49.85 dB  
THD = –68.7 dB  
SINAD = 49.8 dB  
SNR = 49.9 dB  
THD = –64.1 dB  
SINAD = 49.7 dB  
Number of samples = 32768  
Number of samples = 32768  
Figure 43. Test Results for the ADS7040 and OPA835 for a  
2-kHz Input  
Figure 44. Test Results for the ADS7040 and OPA835 for a  
250-kHz Input  
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
9.2.3 8-Bit, 10-kSPS DAQ Circuit Optimized for DC Sensor Measurements  
AVDD  
Sensor  
ROUT  
AVDD  
AINP  
Device  
+
AINM  
CFLT  
œ
GND  
Figure 45. Interfacing the Device Directly with Sensors  
In applications where the input is very slow moving and the overall system ENOB is not a critical parameter, a  
DAQ circuit can be designed without the input driver for the ADC . This type of a use case is of particular interest  
for applications in which the primary goal is to achieve the absolute lowest power possible. Typical applications  
that fall into this category are low-power sensor applications (such as temperature, pressure, humidity, gas, and  
chemical).  
9.2.3.1 Design Requirements  
For this design example, use the parameters listed in Table 4 as the input parameters.  
Table 4. Design Parameters  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
48.5 dB  
65dB  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
48 dB  
7.5  
Power  
10 µW  
9.2.3.2 Detailed Design Procedure  
The ADS7040 can be directly interfaced with sensors at lower throughputs without the need of an amplifier  
buffer. The analog input source drive must be capable of driving the switched capacitor load of a SAR ADC and  
settling the analog input signal within the acquisition time of the SAR ADC. However, the output impedance of  
the sensor must be taken into account when interfacing a SAR ADC directly with sensors. Drive the analog input  
of the SAR ADC with a low impedance source. The input signal requires more acquisition time to settle to the  
desired accuracy because of the higher output impedance of the sensor. The simplified circuit for a sensor as a  
voltage source with output impedance (ROUT) is shown in Figure 45.  
The acquisition time of a SAR ADC (such as the ADS7040) can be increased by reducing throughput in the  
following ways:  
1. Reducing the SCLK frequency to reduce the throughput, or  
2. Keeping the SCLK fixed at the highest permissible value (that is, 12 MHz for the device) and increasing the  
CS high time.  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
Table 5 lists the acquisition time for the above two cases for a throughput of 100 kSPS. Clearly, case 2 provides  
more acquisition time for the input signal to settle.  
Table 5. Acquisition Time with Different SCLK Frequencies  
CONVERSION TIME  
(= 8.5 × tSCLK + tSU_CSCK  
ACQUISITION TIME  
CASE  
SCLK  
tcycle  
)
(= tcycle – tconv  
)
1
2
1.2 MHz  
12 MHz  
10 µs  
10 µs  
7.233 µs  
2.767 µs  
0.7233 µs  
9.2767 µs  
For a step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation  
results, and test results, refer to TI Precision Design TIPD168, Three 12-Bit Data Acquisition  
Reference Designs Optimized for Low Power and Ultra-Small Form Factor (TIDU390).  
9.2.3.3 Application Curve  
When the output impedance of the sensor increases, the time required for the input signal to settle increases and  
the performance of the SAR ADC starts degrading if the input signal does not settle within the acquisition time of  
the ADC. The performance of the SAR ADC can be improved by reducing the throughput to provide enough time  
for the input signal to settle. Figure 46 provides the results for ENOB achieved from the ADS7040 for case 2 at  
different throughputs with different input impedances at the device input.  
12  
25 and 1.5 nF  
250 and 1.5 nF  
11  
2.5 kand 1.5 nF  
10 kand 1.5 nF  
10  
25 kand 1.5 nF  
50 kand 1.5 nF  
9
8
7
6
0
200  
400  
600  
800  
1000  
C030  
Sampling Rate (Ksps)  
Figure 46. ENOB (Effective Number of Bits) Achieved from the ADS7040 at Different Throughputs  
Table 6 shows the results and performance summary for this 12-bit, 10-kSPS DAQ circuit application.  
Table 6. Results and Performance Summary for 8-Bit, 10-kSPS DAQ Circuit for DC Sensor  
Measurements  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
48.5 dB  
65dB  
ACHIEVED RESULT  
10 kSPS  
49.55 dB  
70 dB  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
48dB  
49.5 dB  
7.5  
7.93  
Power  
10 µW  
6 µW  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
 
 
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
10 Power-Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The ADS7040 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible  
ranges. The AVDD supply also defines the full-scale input range of the device. Always set the AVDD supply to  
be greater than or equal to the maximum input signal to avoid saturation of codes. Decouple the AVDD and  
DVDD pins individually with 1-µF ceramic decoupling capacitors, as shown in Figure 47. The minimum capacitor  
value required for AVDD and DVDD is 200 nF and 20 nF, respectively. If both supplies are powered from the  
same source, a minimum capacitor value of 220 nF is required for decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
Figure 47. Power-Supply Decoupling  
10.2 Estimating Digital Power Consumption  
The current consumption from the DVDD supply depends on the DVDD voltage, load capacitance on the SDO  
line, and the output code. The load capacitance on the SDO line is charged by the current from the SDO pin on  
every rising edge of the data output and is discharged on every falling edge of the data output. The current  
consumed by the device from the DVDD supply can be calculated by Equation 5:  
IDVDD = C × V × f  
where:  
C = Load capacitance on the SDO line,  
V = DVDD supply voltage, and  
f = Number of transitions on the SDO output.  
(5)  
The number of transitions on the SDO output depends on the output code, and thus changes with the analog  
input. The maximum value of f occurs when data output on the SDO change on every SCLK. SDO changing on  
every SCLK results in an output code of AAh or 55h. For an output code of AAh or 55h at a 1-MSPS throughput,  
the frequency of transitions on the SDO output is 4MHz.  
For the current consumption to remain at the lowest possible value, keep the DVDD supply at the lowest  
permissible value and keep the capacitance on the SDO line as low as possible.  
10.3 Optimizing Power Consumed by the Device  
Keep the analog supply voltage (AVDD) as close as possible to the analog input voltage. Set AVDD to be  
greater than or equal to the analog input voltage of the device.  
Keep the digital supply voltage (DVDD) at the lowest permissible value.  
Reduce the load capacitance on the SDO output.  
Run the device at the optimum throughput. Power consumption reduces with throughput.  
30  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
11 Layout  
11.1 Layout Guidelines  
Figure 48 shows a board layout example for the ADS7040. Use a ground plane underneath the device and  
partition the PCB into analog and digital sections. Avoid crossing digital lines with the analog signal path and  
keep the analog input signals and the reference input signals away from noise sources. In Figure 48, the analog  
input and reference signals are routed on the top and left side of the device and the digital connections are  
routed on the bottom and right side of the device.  
The power sources to the device must be clean and well-bypassed. Use 1-μF ceramic bypass capacitors in close  
proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the AVDD and  
DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low-impedance  
paths. The AVDD supply voltage for the ADS7040 also functions as a reference for the device. Place the  
decoupling capacitor (CREF) for AVDD close to the device AVDD and GND pins and connect CREF to the device  
pins with thick copper tracks, as shown in Figure 48.  
The fly-wheel RC filters are placed close to the device. Among ceramic surface-mount capacitors, COG (NPO)  
ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG (NPO) ceramic  
capacitors provides the most stable electrical properties over voltage, frequency, and temperature changes.  
11.2 Layout Example  
/
Lb  
!ë55  
Figure 48. Example Layout  
版权 © 2014–2015, Texas Instruments Incorporated  
31  
 
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
OPA314 数据表》(文献编号 SBOS563)  
OPA835 数据表》(文献编号 SLOS713)  
TPS79101 数据表》(文献编号 SLVS325)  
TIPD168 参考指南》(文献编号 TIDU390)  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
TINA is a trademark of Texas Instruments, Inc.  
串行外设接口 (SPI) is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
33  
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
PACKAGE OUTLINE  
RUG0008A  
X2QFN - 0.4 mm max height  
SCALE 7.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.55  
1.45  
B
A
PIN 1 INDEX AREA  
1.55  
1.45  
C
0.4 MAX  
SEATING PLANE  
0.05  
0.00  
0.08 C  
SYMM  
0.35  
2X  
(0.15)  
TYP  
0.25  
0.45  
0.35  
2X  
4
3
5
SYMM  
2X  
1
4X 0.5  
0.25  
0.15  
2X  
7
1
0.3  
4X  
8
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.1)  
C A  
C
B
0.4  
0.3  
6X  
4222060/A 05/14/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
34  
版权 © 2014–2015, Texas Instruments Incorporated  
ADS7040  
www.ti.com.cn  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
EXAMPLE BOARD LAYOUT  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
(R0.05) TYP  
4
SYMM  
(1.35)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222060/A 05/14/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
版权 © 2014–2015, Texas Instruments Incorporated  
35  
ADS7040  
ZHCSD01C NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
3
2X (0.2)  
5
4
SYMM  
(1.35)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICKNESS  
SCALE:25X  
4222060/A 05/14/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
36  
版权 © 2014–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7040IDCUR  
ADS7040IDCUT  
ADS7040IRUGR  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
7040  
7040  
FT  
NIPDAU  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7040IDCUR  
ADS7040IDCUT  
ADS7040IRUGR  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.25  
2.25  
1.6  
3.35  
3.35  
1.6  
1.05  
1.05  
0.66  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7040IDCUR  
ADS7040IDCUT  
ADS7040IRUGR  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000  
250  
202.0  
202.0  
202.0  
201.0  
201.0  
201.0  
28.0  
28.0  
28.0  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS7040IDCUR

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7040IDCUT

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7040IRUGR

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | RUG | 8 | -40 to 125
TI

ADS7041

超低功耗和超小尺寸 SAR ADC | 10 位 | 1MSPS | 单端
TI

ADS7041IDCUR

超低功耗和超小尺寸 SAR ADC | 10 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7041IDCUT

超低功耗和超小尺寸 SAR ADC | 10 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7041IRUGR

超低功耗和超小尺寸 SAR ADC | 10 位 | 1MSPS | 单端 | RUG | 8 | -40 to 125
TI

ADS7042

具有 SPI 接口的 12 位 1MSPS 超低功耗、超小型 SAR ADC
TI

ADS7042IDCUR

具有 SPI 接口的 12 位 1MSPS 超低功耗、超小型 SAR ADC | DCU | 8 | -40 to 125
TI

ADS7042IDCUT

具有 SPI 接口的 12 位 1MSPS 超低功耗、超小型 SAR ADC | DCU | 8 | -40 to 125
TI

ADS7042IRUGR

具有 SPI 接口的 12 位 1MSPS 超低功耗、超小型 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7043

超低功耗、超小尺寸 SAR ADC | 12 位 | 1MSPS | 伪差分
TI