ADS7046IRUGR [TI]

12 位 3MSPS 单端输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125;
ADS7046IRUGR
型号: ADS7046IRUGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位 3MSPS 单端输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125

转换器
文件: 总45页 (文件大小:1929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS7046  
ZHCSH50 DECEMBER 2016  
ADS7046 12 位,3 MSPS,单端输入,小型低功耗 SAR ADC  
1 特性  
3 说明  
1
3 MSPS 吞吐量  
封装尺寸小:  
X2QFN-8 封装 (1.5mm × 1.5mm)  
ADS7046 器件属于引脚对引脚兼容的高速低功耗、单  
通道逐次逼近型寄存器 (SAR) 类型的模数转换器  
(ADC) 系列。该器件系列包含多个分辨率、吞吐量和  
模拟输入型号(有关器件列表,请参阅 表格1)。  
单极输入范围:0V AVDD  
宽工作电压范围:  
ADS7046 是一款 12 3 MSPS SAR ADC,支持0V  
AVDD 范围内的单端输入,AVDD 的范围为2.35V  
3.6V。  
AVDD2.35V 3.6V  
DVDD1.65V 3.6V(与 AVDD 无关)  
温度范围:-40°C +125°C  
内部失调电压校准功能在整个 AVDD 和工作温度范围  
内可保持优异的失调电压规格。  
性能优异:  
12 NMC DNL±0.3-LSB INL  
71.2dB SINAD2kHz 时)  
69.5dB SINAD1MHz 时)  
该器件支持由 CS SCLK 信号控制的兼容 SPI 的串  
行接口。输入信号通过 CS 下降沿进行采样,而 SCLK  
用于转换和串行数据输出。该器件支持宽数字电源范围  
1.65V 3.6V),可直接连接到各种主机控制器。  
ADS7046 的标称 DVDD 范围(1.65V 1.95V)符合  
JESD8-7A 标准。  
低功耗:  
3.8mW3 MSPS3.3V AVDD 时)  
115µW100kSPS3.3V AVDD 时)  
67µW100kSPS2.5V AVDD 时)  
集成失调电压校准  
ADS7046 采用 8 引脚小型 X2QFN 封装,可以在广泛  
的工业温度范围(–40°C +125°C)内正常工作。该  
器件体积小巧,功耗极低,非常适合需要高速高分辨率  
数据采集的空间受限型 电池供电 应用。  
SPI 兼容的串行接口:60MHz  
符合 JESD8-7A 标准的数字 I/O  
2 应用  
器件信息(1)  
光学编码器  
部件名称  
ADS7046  
封装  
封装尺寸(标称值)  
声纳接收器  
探鱼器  
X2QFN (8)  
1.50mm x 1.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
I/Q 解调器  
光线路卡和模块  
热成像摄像机  
超声波流量计  
手持无线电  
典型应用  
Simultaneous Sampling Circuit  
Single ADC Circuit  
Optical  
SDO  
+
SCLK  
CS  
ADC 1  
ADC  
HOST  
SONAR  
CS  
SCLK  
SDO  
ADC 2  
ADC Package Size  
1.5 (L) x 1.5 (W) x 0.35 (H) mm  
Votlage/  
Current  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS785  
 
 
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Applications ................................................ 24  
1
2
3
4
5
6
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 7  
6.7 Switching Characteristics.......................................... 7  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 14  
7.1 Digital Voltage Levels ............................................. 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
10 Power Supply Recommendations ..................... 31  
10.1 AVDD and DVDD Supply Recommendations....... 31  
10.2 Optimizing Power Consumed by the Device ........ 31  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 33  
12 器件和文档支持 ..................................................... 34  
12.1 器件支持................................................................ 34  
12.2 文档支持................................................................ 34  
12.3 接收文档更新通知 ................................................. 34  
12.4 社区资源................................................................ 34  
12.5 ....................................................................... 34  
12.6 静电放电警告......................................................... 34  
12.7 Glossary................................................................ 35  
13 机械、封装和可订购信息....................................... 36  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
2017 12 月  
*
初始发行版  
2
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
5 Pin Configuration and Functions  
RUG Package  
8-Pin X2QFN  
Top View  
CS  
SDO  
1
2
3
7
6
5
AINP  
AVDD  
GND  
SCLK  
Not to scale  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
1
CS  
Digital input  
Digital output  
Digital input  
Supply  
Chip-select signal, active low  
Serial data out  
2
3
4
5
6
7
8
SDO  
SCLK  
DVDD  
GND  
Serial clock  
Digital I/O supply voltage  
Supply  
Ground for power supply, all analog and digital signals are referred to this pin  
Analog power-supply input, also provides the reference voltage to the ADC  
Analog signal input, positive  
AVDD  
AINP  
AINM  
Supply  
Analog input  
Analog input  
Analog signal input, negative  
Copyright © 2016, Texas Instruments Incorporated  
3
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
MAX  
3.9  
UNIT  
V
AVDD to GND  
DVDD to GND  
3.9  
V
AINP to GND  
AVDD + 0.3  
0.3  
V
AINM to GND  
V
Input current to any pin except supply pins  
Digital input voltage to GND  
Storage temperature, Tstg  
10  
mA  
V
–0.3  
–60  
DVDD + 0.3  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.35  
1.65  
–40  
NOM  
3.3  
MAX  
UNIT  
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Operating free-air temperature  
3.6  
3.6  
V
V
1.8  
25  
125  
°C  
6.4 Thermal Information  
ADS7046  
THERMAL METRIC(1)  
RUG (X2QFN)  
UNIT  
8 PINS  
177.5  
51.5  
76.7  
1
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
76.7  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
6.5 Electrical Characteristics  
at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, fsample = 3 MSPS, and VAINM = 0 V (unless otherwise noted); minimum and  
maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage  
span(1)  
0
AVDD  
V
AINP to GND  
–0.1  
–0.1  
AVDD + 0.1  
0.1  
Absolute input voltage  
range  
V
AINM to GND  
CS  
Sampling capacitance  
16  
12  
pF  
SYSTEM PERFORMANCE  
Resolution  
Bits  
Bits  
LSB(3)  
NMC  
INL(2)  
DNL  
No missing codes  
12  
–1  
Integral nonlinearity  
Differential nonlinearity  
Offset error  
±0.3  
±0.15  
±1  
1
0.5  
3
–0.5  
–3  
LSB  
(2)  
EO  
After calibration(4)  
LSB  
Offset error drift with  
temperature  
dVOS/dT  
1.75  
±0.01  
0.5  
ppm/°C  
%FS  
(2)  
EG  
Gain error  
–0.1  
0.1  
Gain error drift with  
temperature  
ppm/°C  
SAMPLING DYNAMICS  
tCONV Conversion time  
tACQ  
15 × tSCLK  
ns  
ns  
Acquisition time  
80  
Maximum throughput  
rate  
fSAMPLE  
60-MHz SCLK, AVDD = 2.35 V to 3.6 V  
3
MHz  
Aperture delay  
3
ns  
ps  
Aperture jitter, RMS  
12  
DYNAMIC CHARACTERISTICS  
AVDD = 3.3 V, fIN = 2 kHz  
AVDD = 2.5 V, fIN = 2 kHz  
fIN = 2 kHz  
69  
69  
71.2  
70.4  
–86  
–85  
–84.5  
71.1  
70.9  
70.8  
90  
SNR  
Signal-to-noise ratio(5)  
dB  
dB  
Total harmonic  
distortion(5)(6)  
THD  
fIN = 500 kHz  
fIN = 1000 kHz  
fIN = 2 kHz  
Signal-to-noise and  
distortion(5)  
SINAD  
fIN = 500 kHz  
dB  
fIN = 1000 kHz  
fIN = 2 kHz  
Spurious-free dynamic  
range(5)  
SFDR  
BW(fp)  
fIN = 500 kHz  
90  
dB  
fIN = 1000 kHz  
At –3 dB  
88  
Full-power bandwidth  
200  
MHz  
(1) Ideal input span; does not include gain or offset error.  
(2) See Figure 31, Figure 29, and Figure 30 for statistical distribution data for INL, offset error, and gain error.  
(3) LSB means least significant bit.  
(4) See the OFFCAL State section for details.  
(5) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale,  
unless otherwise noted.  
(6) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2016, Texas Instruments Incorporated  
5
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, fsample = 3 MSPS, and VAINM = 0 V (unless otherwise noted); minimum and  
maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
High-level input  
VIH  
0.65 DVDD  
–0.3  
DVDD + 0.3  
0.35 DVDD  
V
V
voltage(7)  
Low-level input  
VIL  
voltage(7)  
At Isource = 500 µA  
At Isource = 2 mA  
0.8 DVDD  
DVDD  
DVDD  
High-level output  
voltage(7)  
VOH  
V
V
DVDD – 0.45  
At Isink = 500 µA  
At Isink = 2 mA  
0
0
0.2 DVDD  
0.45  
Low-level output  
voltage(7)  
VOL  
POWER-SUPPLY REQUIREMENTS  
AVDD  
DVDD  
Analog supply voltage  
2.35  
1.65  
3
3
3.6  
3.6  
V
V
Digital I/O supply  
voltage  
AVDD = 3.3 V, fSAMPLE = 3 MSPS  
AVDD = 3.3 V, fSAMPLE = 100 kSPS  
AVDD = 3.3 V, fSAMPLE = 10 kSPS  
AVDD = 2.5 V, fSAMPLE = 3 MSPS  
Static current with CS and SCLK high  
1150  
36  
1300  
45  
IAVDD  
Analog supply current  
Digital supply current  
5
µA  
800  
0.02  
DVDD = 1.8 V, CSDO = 20 pF,  
output code = AAAh(8)  
650  
IDVDD  
µA  
DVDD = 1.8 V, static current with CS and  
SCLK high  
0.01  
(7) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V; see the Parameter Measurement Information  
section for details.  
(8) See the Estimating Digital Power Consumption section for details.  
6
Copyright © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
6.6 Timing Requirements  
all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted);  
minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
MIN  
16.66  
7
TYP  
MAX  
UNIT  
ns  
tCLK  
Time period of SCLK  
tsu_CSCK  
tht_CKCS  
tph_CK  
tpl_CK  
Setup time: CS falling edge to SCLK falling edge  
Hold time: SCLK rising edge to CS rising edge  
SCLK high time  
ns  
8
ns  
0.45  
0.45  
15  
0.55  
0.55  
tSCLK  
tSCLK  
ns  
SCLK low time  
tph_CS  
CS high time  
6.7 Switching Characteristics  
all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted);  
minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
Cycle time  
Conversion time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
(1)  
tCYCLE  
tCONV  
333  
15 × tSCLK  
ns  
tden_CSDO Delay time: CS falling edge to data enable  
6.5  
10  
ns  
Delay time: SCLK rising edge to (next) data  
valid on SDO  
td_CKDO  
ns  
ns  
ns  
tht_CKDO  
tdz_CSDO  
SCLK rising edge to current data invalid  
2.5  
5.5  
Delay time: CS rising edge to SDO going to  
tri-state  
(1) tCYCLE = 1 / fSAMPLE  
.
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Sample  
A+1  
Sample  
A
tACQ  
tCYCLE  
tph_CS  
tCONV  
CS  
SCLK  
SDO  
1
2
3
13  
14  
15  
0
D10  
D0  
0
0
D11  
Data Output for Sample A-1  
Figure 1. Serial Transfer Frame  
tCLK  
tph_CK  
tpl_CK  
CS  
50%  
SCLK  
50%  
td_CKDO  
tsu_CSCK  
tht_CKCS  
SCLK  
50%  
SDO  
50%  
tht_CKDO  
tden_CSDO  
tdz_CSDO  
SDO  
Figure 2. Timing Specifications  
8
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fsample = 3 MSPS (unless otherwise noted)  
0
-50  
0
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D001  
D003  
SNR = 71.5 dB, THD = –87.5 dB, ENOB = 11.6 bits  
SNR = 70.1 dB, THD = –85.7 dB, fIN = 500 kHz  
Figure 3. Typical FFT  
Figure 4. Typical FFT  
0
73  
72  
71  
70  
69  
68  
SNR  
SINAD  
-50  
-100  
-150  
-200  
0
300  
600  
900  
1200  
1500  
-40  
-7  
26  
59  
92  
125  
fIN, Input Frequency (kHz)  
Free-Air Temperature (èC)  
D004  
D005  
SNR = 70.1dB, THD = –88.2 dB, fIN = 1000 kHz  
Figure 5. Typical FFT  
Figure 6. SNR and SINAD vs Temperature  
73  
72  
71  
70  
69  
68  
75  
73  
71  
69  
67  
65  
SNR  
SINAD  
SNR  
SINAD  
0
200  
400  
600  
800  
1000  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
fIN, Input Frequency (kHz)  
AVDD Voltage (V)  
D006  
D007  
Figure 7. SNR and SINAD vs Input Frequency  
Figure 8. SNR and SINAD vs Reference Voltage (AVDD)  
Copyright © 2016, Texas Instruments Incorporated  
9
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fsample = 3 MSPS (unless otherwise noted)  
-93  
-91  
-89  
-87  
-85  
-83  
-84  
-86  
-88  
-90  
-92  
-94  
-40  
-7  
26  
59  
92  
125  
0
200  
400  
600  
800  
1000  
Free-Air Temperature (èC)  
fIN, Input Frequency (kHz)  
D008  
D010  
Figure 9. THD vs Temperature  
Figure 10. THD vs Input Frequency  
-84  
-86  
-88  
-90  
-92  
-94  
100  
98  
96  
94  
92  
90  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
AVDD Voltage (V)  
Free-Air Temperature (èC)  
D012  
D009  
Figure 11. THD vs Reference Voltage (AVDD)  
Figure 12. SFDR vs Temperature  
94  
92  
90  
88  
86  
84  
100  
97  
94  
91  
88  
85  
0
200  
400  
600  
800  
1000  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
fIN, Input Frequency (kHz)  
AVDD Voltage (V)  
D011  
D013  
Figure 13. SFDR vs Input Frequency  
Figure 14. SFDR vs Reference Voltage (AVDD)  
10  
Copyright © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fsample = 3 MSPS (unless otherwise noted)  
0.5  
0.5  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
819  
1638  
2457  
3276  
4095  
0
819  
1638  
2457  
3276  
4095  
Code  
Code  
D019  
D020  
Figure 15. Typical DNL  
Figure 16. Typical INL  
0.5  
0.3  
0.5  
0.3  
Minimum  
Maximum  
Minimum  
Maximum  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40  
-7  
26  
59  
92  
125  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Free-Air Temperature (èC)  
AVDD Voltage (V)  
D023  
D024  
Figure 17. DNL vs Temperature  
Figure 18. DNL vs Reference Voltage  
0.5  
0.5  
Minimum  
Maximum  
Minimum  
Maximum  
0.3  
0.1  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40  
-7  
26  
59  
92  
125  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Free-Air Temperature (èC)  
AVDD Voltage (V)  
D025  
D026  
Figure 19. INL vs Temperature  
Figure 20. INL vs Reference Voltage  
Copyright © 2016, Texas Instruments Incorporated  
11  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fsample = 3 MSPS (unless otherwise noted)  
40000  
32000  
24000  
16000  
8000  
0
4
Calibrated  
Uncalibrated  
2
0
-2  
-4  
2046  
2047  
2048  
2049  
-40  
-7  
26  
59  
92  
125  
Code  
Free-Air Temperature (èC)  
D014  
D015  
VIN = AVDD / 2  
Figure 21. DC Input Histogram  
Figure 22. Offset vs Temperature  
4
2
0.1  
0.06  
0.02  
-0.02  
-0.06  
-0.1  
Calibrated  
Uncalibrated  
Calibrated  
Uncalibrated  
0
-2  
-4  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
AVDD Voltage (V)  
Free-Air Temperature (èC)  
D016  
D017  
Figure 23. Offset vs Reference Voltage (AVDD)  
Figure 24. Gain Error vs Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1
2
1.6  
1.2  
0.8  
0.4  
0
-40  
-7  
26  
59  
92  
125  
0
500  
1000  
1500  
2000  
2500  
Free-Air Temperature (èC)  
Throughput (kSPS)  
D027  
D028  
Figure 25. AVDD Current vs Temperature  
Figure 26. AVDD Current vs Throughput  
12  
Copyright © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fsample = 3 MSPS (unless otherwise noted)  
1000  
800  
600  
400  
200  
0
2
1.6  
1.2  
0.8  
0.4  
0
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
AVDD Voltage (V)  
Free-Air Temperature (èC)  
D029  
D030  
CS = DVDD  
Figure 27. AVDD Current vs AVDD Voltage  
Figure 28. Static AVDD Current vs Temperature  
6000  
4800  
3600  
2400  
1200  
0
7500  
6000  
4500  
3000  
1500  
0
3
5
-2.  
2
5
-1.  
1
-
5
-0.  
0
1
2
3
1
0
1
2
3
4
5
6
7
8
9
-
-
09 08 07 06 05 04 03 02 01  
-0.  
-0. -0. -0. -0. -0. -0. -0. -0. -0.  
0.5  
1.5  
2.5  
0.1  
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
D031  
D032  
14000 Devices  
14000 Devices  
Figure 29. Typical Offset Error Distribution  
Figure 30. Typical Gain Error Distribution  
15000  
12000  
9000  
6000  
3000  
0
1
-
0
2
4
6
8
0.  
0.  
0.  
0.  
-0.8  
-0.6  
-0.4  
-0.2  
D033  
14000 Devices  
Figure 31. Typical INL Distribution  
Copyright © 2016, Texas Instruments Incorporated  
13  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Digital Voltage Levels  
The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 32 shows voltage  
levels for the digital input and output pins.  
Digital Output  
DVDD  
VOH  
DVDD-0.45V  
SDO  
0.45V  
VOL  
0V  
ISource= 2 mA, ISink = 2 mA,  
DVDD = 1.65 V to 1.95 V  
Digital Inputs  
DVDD + 0.3V  
VIH  
0.65DVDD  
CS  
SCLK  
0.35DVDD  
VIL  
DVDD = 1.65 V to 1.95 V  
-0.3V  
Figure 32. Digital Voltage Levels as per the JESD8-7A Standard  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
8 Detailed Description  
8.1 Overview  
The ADS7046 device belongs to a family of pin-to-pin compatible, high-speed, low-power, single-channel  
successive-approximation register (SAR) type analog-to-digital converters (ADCs). The device family includes  
multiple resolutions, throughputs, and analog input variants (see Table 1 for a list of devices).  
The ADS7046 is a 12-bit, 3-MSPS SAR ADC that supports a single-ended input in the range of 0 V to AVDD, for  
AVDD in the range of 2.35 V to 3.6 V (see the Analog Input section for details on the analog input pins).  
The internal offset calibration feature (see the OFFCAL State section) maintains excellent offset specifications  
over the entire AVDD and temperature operating range.  
The device supports an SPI-compatible serial interface that is controlled by the CS and SCLK signals. The input  
signal is sampled with the CS falling edge and SCLK is used for both, conversion and serial data output (see the  
Device Functional Modes section, Timing Requirements table, and Switching Characteristics table).  
The device supports a wide digital supply range (1.65 V to 3.6 V), enabling direct interfacing to a variety of host  
controllers. The ADS7046 complies with the JESD8-7A standard (see the Digital Voltage Levels section) for a  
normal DVDD range (1.65 V to 1.95 V).  
The ADS7046 is available in an 8-pin, small, X2QFN package (see the 机械、封装和可订购信息 section for more  
details) and is specified over the extended industrial temperature range (–40°C to +125°C).  
The small form-factor and extremely-low power consumption make this device suitable for space-constrained and  
battery-powered applications that require high-speed, high-resolution data acquisition (see the Application  
Information section).  
8.2 Functional Block Diagram  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
Copyright © 2016, Texas Instruments Incorporated  
15  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Product Family  
The devices listed in Table 1 are all part of the same pin-to-pin compatible, high-speed, low-power, single-  
channel SAR ADC family. This device family includes multiple different ADC resolutions, throughputs, and analog  
input types to allow for greater flexibility in the end system. Devices in the same package are pin-compatible to  
offer a scalable family of devices for varying levels of end-system performance. The ADCs with device numbers  
ending in -Q1 are also AEC-Q100 qualified for automotive applications.  
Table 1. Device Family Comparison  
THROUGHPUT  
DEVICE NUMBER  
ADS7040  
RESOLUTION (Bits)  
INPUT TYPE  
Single-ended  
PACKAGES(1)  
(MSPS)  
X2QFN (8): 1.5 mm × 1.5 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
8
1
X2QFN (8): 1.5 mm × 1.5 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
ADS7041  
10  
12  
12  
12  
1
1
1
1
Single-ended  
X2QFN (8): 1.5 mm × 1.5 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
ADS7042  
Single-ended  
X2QFN (8): 1.5 mm × 1.5 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
ADS7043  
Pseudo-differential  
Fully-differential  
X2QFN (8): 1.5 mm × 1.5 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
ADS7044  
ADS7029-Q1  
ADS7039-Q1  
ADS7049-Q1  
ADS7046  
8
2
2
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Fully-differential  
Single-ended  
Fully-differential  
Single-ended  
Fully-differential  
VSSOP (8): 2.0 mm × 3.1 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
VSSOP (8): 2.0 mm × 3.1 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
X2QFN (8): 1.5 mm × 1.5 mm  
10  
12  
12  
12  
14  
14  
14  
14  
2
3
ADS7047  
3
ADS7052  
1
ADS7054  
1
ADS7056  
2.5  
2.5  
ADS7057  
(1) Devices listed in the same package are pin-compatible.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
8.3.2 Analog Input  
The device supports a unipolar, single-ended analog input signal. Figure 33 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. The sampling switch is represented by a resistance (RS1 and RS2, typically  
50 Ω) in series with an ideal switch (SW1 and SW2). The sampling capacitors, CS1 and CS2, are typically 16 pF.  
AVDD  
SW1  
Rs1  
AINP  
Cs1  
GND  
V_BIAS  
AVDD  
Cs2  
SW2  
Rs2  
AINM  
GND  
Figure 33. Equivalent Input Circuit for the Sampling Stage  
During the acquisition process, both positive and negative inputs are individually sampled on CS1 and CS2,  
respectively. During the conversion process, the device converts for the voltage difference between the two  
sampled values: VAINP – VAINM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog  
inputs within the specified range to avoid turning the diodes on.  
The full-scale analog input range (FSR) is 0 V to AVDD.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
8.3.3 Reference  
The device uses the analog supply voltage (AVDD) as the reference voltage for the analog to digital conversion.  
During the conversion process, the internal capacitors are switched to the AVDD pin as per the successive  
approximation algorithm. A voltage reference must be selected with low temperature drift, high output current  
drive and low output impedance. TI recommends a 3.3-µF (CAVDD), low equivalent series resistance (ESR)  
ceramic capacitor between the AVDD and GND pins. This decoupling capacitor provides the instantaneous  
charge required by the internal circuit during the conversion process and maintains a stable dc voltage on the  
AVDD pin.  
See the Power Supply Recommendations and Layout Example sections for component recommendations and  
layout guidelines.  
AVDD  
CAVDD  
GND  
CDVDD  
DVDD  
Figure 34. Reference for the Device  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
8.3.4 ADC Transfer Function  
The device supports a unipolar, single-ended analog input signal. The output is in straight binary format.  
Figure 35 and Table 2 show the ideal transfer characteristics for the device.  
The least significant bit for the device is given by:  
1 LSB = VREF / 2N  
where:  
VREF = Voltage applied between the AVDD and GND pins  
N = 12  
(1)  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
V
REF  
V
REF  
VREF œ 1 LSB  
+ 1LSB  
1 LSB  
2
2
Single-Ended Analog Input  
(AINP œ AINM)  
Figure 35. Ideal Transfer Characteristics  
Table 2. Transfer Characteristics  
IDEAL OUTPUT CODE  
(Hex)  
INPUT VOLTAGE (AINP – AINM)  
CODE  
DESCRIPTION  
1 LSB  
1 LSB to 2 LSB  
NFSC  
NFSC + 1  
MC  
Negative full-scale code  
000  
001  
7FF  
800  
FFF  
Mid code  
VREF / 2 to VREF / 2 + 1 LSB  
VREF / 2 + 1 LSB to VREF / 2 + 2 LSB  
VREF – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
The device supports a simple, SPI-compatible interface to the external host. On power-up, the device is in the  
ACQ state. The CS signal defines one conversion and serial data transfer frame. A frame starts with a CS falling  
edge and ends with a CS rising edge. The SDO pin is tri-stated when CS is high. With CS low, the clock  
provided on the SCLK pin is used for conversion and data transfer. Output data are available on the SDO pin.  
As shown in Figure 36, the device supports three functional states: acquisition (ACQ), conversion (CNV), and  
offset calibration (OFFCAL). The device status depends on the CS and SCLK signals provided by the host  
controller.  
ACQ  
OFFCAL  
CONV  
Figure 36. Functional State Diagram  
8.4.1 ACQ State  
In the ACQ state, switches SW1 and SW2 connected to the analog input pins close and the device acquires the  
analog input signal on CS1 and CS2. The device enters ACQ state at power-up, at the end of every conversion,  
and after completing the offset calibration. A CS falling edge takes the device from the ACQ state to the CNV  
state.  
The device consumes extremely low power from the AVDD and DVDD power supplies when in ACQ state.  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Device Functional Modes (continued)  
8.4.2 CNV State  
In the CNV state, the device uses the external clock to convert the sampled analog input signal to an equivalent  
digital code as per the transfer function illustrated in Figure 35. The conversion process requires a minimum of  
15 SCLK falling edges to be provided within the frame. After the end of conversion process, the device  
automatically moves from the CNV state to the ACQ state. For acquisition of the next sample, a minimum time of  
tACQ must be provided.  
Figure 37 shows a detailed timing diagram for the serial interface. In the first serial transfer frame after power-up,  
the device provides the first data as all zeros. In any frame, the clocks provided on the SCLK pin are also used to  
transfer the output data for the previous conversion. A leading 0 is output on the SDO pin on the CS falling edge.  
The most significant bit (MSB) of the output data is launched on the SDO pin on the rising edge after the first  
SCLK falling edge. Subsequent output bits are launched on the subsequent rising edges provided on SCLK.  
When all 12 output bits are shifted out, the device outputs 0's on the subsequent SCLK rising edges. The device  
enters the ACQ state after 15 clocks and a minimum time of tACQ must be provided for acquiring the next sample.  
If the device is provided with less than 15 SCLK falling edges in the present serial transfer frame, the device  
provides an invalid conversion result in the next serial transfer frame.  
Sample  
Sample  
A+1  
A
tACQ  
tCYCLE  
tph_CS  
tCONV  
CS  
SCLK  
SDO  
1
2
3
13  
14  
15  
0
D10  
D0  
0
0
D11  
Data Output for Sample A-1  
Figure 37. Serial Interface Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.3 OFFCAL State  
In the offset calibration (OFFCAL) state, the sampling capacitors are disconnected from the analog input pins  
(AINP and AINM) and the device calibrates and corrects for any internal offset errors. The offset calibration is  
effective for all subsequent conversions until the device is powered off. An offset calibration cycle is  
recommended at power-up and whenever there is a significant change in the operating conditions for the device  
(such as in the AVDD voltage and operating temperature).  
The host controller must provide a serial transfer frame as described in Figure 38 or in Figure 39 to enter the  
OFFCAL state.  
8.4.3.1 Offset Calibration on Power-Up  
On power-up, the host must provide 24 SCLKs in the first serial transfer to enter the OFFCAL state. The device  
provides 0's on SDO during offset calibration. For acquisition of the next sample, a minimum time of tACQ must be  
provided.  
If the host controller starts the offset calibration process but then pulls the CS pin high before providing 24  
SCLKs, then the offset calibration process is aborted and the device enters the ACQ state. Figure 38 and  
Table 3 provide the timing for offset calibration on power-up.  
First  
Next  
Sample  
Sample  
tCYCLE  
tACQ  
CS  
SCLK  
SDO  
1
2
3
4
24  
0
0
0
0
0
0
Data Output for First Sample  
Figure 38. Timing for Offset Calibration on Power-Up  
Table 3. Timing Specifications for Offset Calibration on Power-Up(1)  
MIN  
24 × tCLK + tACQ  
80  
TYP  
MAX  
UNIT  
tcycle  
tACQ  
fSCLK  
Cycle time for offset calibration on power-up  
ns  
ns  
Acquisition time  
Frequency of SCLK  
60  
MHz  
(1) In addition to the timing specifications of Figure 38 and Table 3, the timing specifications described in Figure 2 and the Timing  
Requirements table are also applicable for offset calibration on power-up.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
8.4.3.2 Offset Calibration During Normal Operation  
During normal operation, the host must provide 64 SCLKs in the serial transfer frame to enter the OFFCAL state.  
The device provides the conversion result for the previous sample during the first 15 SCLKs and 0's on SDO for  
the rest of the SCLKs in the serial transfer frame. For acquisition of the next sample, a minimum time of tACQ  
must be provided.  
If the host controller provides more than 15 SCLKs but pulls the CS high before providing 64 SCLKs, then the  
offset calibration process is aborted and the device enters the ACQ state. Figure 39 and Table 4 provide the  
timing for offset calibration during normal operation.  
Sample  
A
Sample  
A+1  
tCYCLE  
tACQ  
CS  
SCLK  
SDO  
4
14  
15  
64  
1
2
3
D10  
D0  
0
0
0
D11  
Data Output for Sample A-1  
Figure 39. Timing for Offset Calibration During Normal Operation  
Table 4. Timing Specifications for Offset Calibration During Normal Operation(1)  
MIN  
64 × tCLK + tACQ  
80  
TYP  
MAX  
UNIT  
ns  
tcycle  
tACQ  
fSCLK  
Cycle time for offset calibration on power-up  
Acquisition time  
ns  
Frequency of SCLK  
60  
MHz  
(1) In addition to the timing specifications of Figure 39 and Table 4, the timing specifications described in Figure 2 and the Timing  
Requirements table are also applicable for offset calibration during normal operation.  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary supporting circuits required to maximize the performance of a high-precision, successive  
approximation register (SAR) analog-to-digital converter (ADC) are the input driver and the reference driver  
circuits. This section details some general principles for designing the input driver circuit, reference driver circuit,  
and provides typical application circuits designed for the device.  
9.2 Typical Applications  
9.2.1 Single-Supply Data Acquisition With the ADS7046  
Reference Driver  
REF1933  
(AVDD + 0.2V) to 5.5 V  
VIN  
VOUT  
GND  
1uF  
3.3uF  
AVDD  
3.3V  
OPA_VDD  
33  
œ
VDD  
VIN  
+
SPI  
Host  
Controller  
OPA836  
Device  
+
œ
VSOURCE  
680pF  
GND  
GND  
ADC  
Input Driver  
Figure 40. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of the circuit shown in Figure 40 is to design a single-supply data acquisition (DAQ) circuit based on the  
ADS7046 with SNR greater than 70 dB and THD less than –85 dB for input frequencies of 2 kHz to 200 kHz at a  
throughput of 3 MSPS for applications such as sonar receivers and ultrasonic flow meters.  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Typical Applications (continued)  
9.2.1.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and charge  
kickback filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
9.2.1.2.1 Low Distortion Charge Kickback Filter Design  
Figure 41 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and  
connects the sampling capacitor (CSH) to the input driver circuit. This action introduces a transient on the input  
pins of the SAR ADC. An ideal amplifier with 0 Ω of output impedance and infinite current drive can settle this  
transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched  
capacitor load can create stability issues.  
Charge Kickback Filter  
RFLT  
SAR ADC  
-
+
SW  
CSH  
VIN  
CFLT  
f-3dB  
=
1
2 Œ x RFLT x CFLT  
Figure 41. Input Sample-and-Hold Circuit for a Typical SAR ADC  
For ac signals, the filter bandwidth must be kept low to band-limit the noise fed into the ADC input, thereby  
increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive  
circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage  
of the ADC. A filter capacitor, CFLT, is connected across the ADC inputs. This capacitor helps reduce the  
sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold  
capacitors during the acquisition process. As a rule of thumb, the value of this capacitor is at least 20 times the  
specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is equal to  
16 pF. Thus, the value of CFLT is greater than 320 pF. Select a COG- or NPO-type capacitor because these  
capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying  
voltages, frequency, and time.  
Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design.  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.2.2 Input Amplifier Selection  
The input amplifier bandwidth is typically much higher than the cutoff frequency of the charge kickback filter.  
Thus, TI strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40°  
phase margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some  
amplifiers can require more bandwidth than others to drive similar filters. To learn more about the SAR ADC  
input driver design, see the TI Precision Labs training video series.  
For the application circuit of Figure 40, the OPA836 is selected for its high bandwidth (205 MHz), low noise  
(4.6 nV/Hz), high output drive capacity (45 mA), and fast settling response (22 ns for 0.1% settling).  
9.2.1.2.3 Reference Circuit  
The ADS70xx uses the analog supply voltage (AVDD) as the reference voltage for the analog to digital  
conversion. During the conversion process, the internal capacitors are switched to the level of the AVDD pin as  
per the successive approximation algorithm. A voltage reference must be selected with low temperature drift,  
high output current drive and low output impedance. For this application, the REF1933 was selected as the  
voltage reference and analog power supply for the ADC. The REF1933 has excellent temperature drift  
performance (25 ppm/°C), good initial accuracy (0.1%), high output drive capability (25 mA), and low quiescent  
current (360 µA). The REF1933 also provides a bias voltage output of half the reference voltage (VREF/2) which  
can be used as the common mode input for the amplifier.  
TI recommends a 3.3-µF (CAVDD), low equivalent series resistance (ESR) ceramic capacitor between the AVDD  
and GND pins. This decoupling capacitor provides the instantaneous charge required by the internal circuit  
during the conversion process and maintains a stable dc voltage on the AVDD pin.  
9.2.1.3 Application Curves  
Figure 42 and Figure 43 provide the measurement results for the circuit described in Figure 40.  
0
-50  
0
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D001  
D002  
SNR = 70.7 dB, THD = –89.1 dB, SINAD = 70.5 dB  
SNR = 70.3 dB, THD = –88.7 dB, SINAD = 70 dB  
Figure 42. Test Results for the ADS7046 and OPA836 for a  
2-kHz Input  
Figure 43. Test Results for the ADS7046 and OPA836 for a  
200-kHz Input  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Typical Applications (continued)  
9.2.2 High Bandwidth (1 MHz) Data Acquisition With the ADS7046  
Reference Driver  
REF1933  
(AVDD + 0.2V) to 5.5 V  
VIN  
VOUT  
GND  
1uF  
3.3uF  
499  
AVDD  
3.3V  
+6V  
499 ꢀ  
10 ꢀ  
œ
AVDD  
VIN  
+
VIN  
+
SPI  
œ
THS4031  
Host  
Device  
Controller  
VCM = 0.825V  
-6V  
470pF  
GND  
Input Driver  
ADC  
Figure 44. High Bandwidth DAQ Circuit  
9.2.2.1 Design Requirements  
Applications such as sonar, ultrasonic flow meters, global positioning systems (GPS), handheld radios, and  
motor controls need analog-to-digital converters that are interfaced to high-frequency sensors (100 kHz to  
1 MHz). The goal of the circuit described in Figure 44 is to design a circuit based on the ADS7046 with SNR  
greater than 70 dB and THD less than –80 dB for input frequencies of 200 kHz to 1 MHz at a throughput of  
3 MSPS.  
9.2.2.2 Detailed Design Procedure  
To achieve a SINAD greater than 69 dB, the operational amplifier must have high bandwidth in order to settle the  
input signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the  
total system noise below 20% of the input-referred noise of the ADC. For the application circuit shown in  
Figure 44, the THS4031 is selected for its high bandwidth (275 MHz), low total harmonic distortion of –90 dB at  
1 MHz, and ultra-low noise of 1.6 nV/Hz. The THS4031 is powered up from dual power supply (VDD = 6 V and  
VSS = –6 V).  
For this application, the REF1933 was selected as the voltage reference and analog power supply for the ADC.  
The REF1933 has excellent temperature drift performance (25 ppm/°C), good initial accuracy (0.1%), high output  
drive capability (25 mA), and low quiescent current (360 µA). The REF1933 also provides a bias voltage output  
of half the reference voltage (VREF / 2) that can be used as the common-mode input for the amplifier.  
The SNR performance at higher input frequency is highly dependant on jitter on the sampling signal (CS). TI  
recommends selecting a clock source that has very low jitter (< 20-ps RMS).  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Typical Applications (continued)  
9.2.2.3 Application Curves  
Figure 45 shows the FFT plot for the ADS7046 with a 500-kHz input frequency used for the circuit in Figure 44.  
Figure 46 shows the FFT plot for the ADS7046 with a 1000-kHz input frequency used for the circuit in Figure 44.  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D003  
D004  
SNR = 70.2 dB, THD = –90.4 dB, SINAD = 70 dB  
SNR = 69.9 dB, THD = –87.8 dB, SINAD = 69.5 dB  
Figure 45. Test Results for the ADS7046 and THS4031 for  
a 500-kHz Input  
Figure 46. Test Results for the ADS7046 and THS4031 for  
a 1000-kHz Input  
28  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
Typical Applications (continued)  
9.2.3 12-Bit, 10-kSPS DAQ Circuit Optimized for DC Sensor Measurements  
AVDD  
Sensor  
RSOURCE  
AVDD  
AINP  
+
TI Device  
œ
CFLT  
AINM  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 47. Interfacing the Device Directly With Sensors  
In applications where the input is very slow moving and the overall system ENOB is not a critical parameter, a  
DAQ circuit can be designed without the input driver for the ADC. This type of a use case is of particular interest  
for applications in which the primary goal is to achieve the absolute lowest power possible. Typical applications  
that fall into this category are low-power sensor applications (such as temperature, pressure, humidity, gas, and  
chemical).  
9.2.3.1 Design Requirements  
For this design example, use the parameters listed in Table 5 as the input parameters.  
Table 5. Design Parameters  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
70 dB  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
–75 dB  
69 dB  
11 bits  
Power  
20 µW  
9.2.3.2 Detailed Design Procedure  
The ADS7046 can be directly interfaced with sensors at lower throughput without the need of an amplifier buffer,  
however, the output impedance of the sensor must be taken into account. The sensor must be capable of driving  
the switched capacitor load of a SAR ADC and settling the analog input signal within the acquisition time of the  
SAR ADC. Figure 47 shows the simplified circuit for a sensor as a voltage source with output impedance  
(Rsource). As the output impedance of the sensor increases, the device requires more acquisition time to settle the  
input signal to the desired accuracy.  
The acquisition time of a SAR ADC (such as the ADS7046 ) can be increased by reducing throughput in the  
following ways:  
1. Reducing the SCLK frequency to reduce the throughput or  
2. Keeping the SCLK fixed at the highest permissible value (that is, 60 MHz for the device) and increasing the  
CS high time  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
Table 6 lists the acquisition time for the above two cases for a throughput of 10 kSPS. Clearly, case 2 provides  
more acquisition time for the input signal to settle.  
Table 6. Acquisition Time With Different SCLK Frequencies  
CONVERSION TIME  
ACQUISITION TIME  
CASE  
SCLK  
tcycle  
(= 18 × tSCLK  
)
(= tcycle – tconv  
)
1
2
0.24 MHz  
60 MHz  
100 µs  
100 µs  
75 µs  
25 µs  
0.3 µs  
99.7 µs  
9.2.3.3 Application Curve  
Figure 48 provides the results for ENOB achieved from the ADS7046 for case 2 at different throughputs with  
different values of sensor output impedance.  
12  
25 and 1.5 nF  
250 and 1.5 nF  
11  
10  
9
0
200  
400  
600  
800  
1000  
Sampling Rate (kSPS)  
C029  
Figure 48. Effective Number of Bits (ENOB) Achieved From the ADS7046 at Different Throughputs  
Table 7 shows the results and performance summary for this 12-bit, 10-kSPS DAQ circuit application with a  
sensor output impedance of 22 kΩ.  
Table 7. Results and Performance Summary for a 12-Bit, 10-kSPS DAQ Circuit for DC Sensor  
Measurements  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
70 dB  
ACHIEVED RESULT  
10 kSPS  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
70.6 dB  
–75 dB  
–83.5 dB  
69 dB  
70.4 dB  
11 bits  
11.4 bits  
Power  
20 µW  
17 µW  
30  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
10 Power Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD.  
AVDD powers the analog blocks and is also used as the reference voltage for the analog-to-digital conversion.  
Use a low-noise, low-dropout regulator (LDO) or a discrete reference to supply AVDD (see the Reference and  
Application Information sections). Always set the AVDD supply to be greater than or equal to the maximum input  
signal to avoid code saturation. Decouple the AVDD pin to the GND pin with a 3.3-µF ceramic decoupling  
capacitor.  
DVDD is used for the interface circuits. Decouple the DVDD pin to the GND pin with a 1-µF ceramic decoupling  
capacitor. 49 shows the decoupling recommendations.  
AVDD  
CAVDD  
GND  
CDVDD  
DVDD  
49. Power-Supply Decoupling  
10.2 Optimizing Power Consumed by the Device  
In order to best optimize the power consumed by the device, use the following design considerations:  
Keep the analog supply voltage (AVDD) in the specified operating range and equal to the maximum analog  
input voltage.  
Keep the digital supply voltage (DVDD) in the specified operating range and at the lowest value supported by  
the host controller.  
Reduce the load capacitance on the SDO output.  
Run the device at the optimum throughput. Power consumption reduces proportionally with the throughput.  
10.2.1 Estimating Digital Power Consumption  
The current consumption from the DVDD supply depends on the DVDD voltage, the load capacitance on the  
SDO pin (CLOAD-SDO), and the output code, and can be calculated as:  
IDVDD = CLOAD-SDO × V × f  
where:  
CLOAD-SDO = Load capacitance on the SDO pin  
V = DVDD supply voltage  
f = Frequency of transitions on the SDO output  
(2)  
The number of transitions on the SDO output depends on the output code, and thus changes with the analog  
input. The maximum value of f occurs when data output on the SDO change on every SCLK (that is, for output  
codes of AAAh or 555h). With an output code of AAAh or 555h, f = 18 MHz and when CLOAD-SDO = 20 pF and  
DVDD = 1.8 V, IDVDD = 650 µA.  
版权 © 2016, Texas Instruments Incorporated  
31  
 
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
50 shows a typical connection diagram for the ADS7046.  
AVDD  
VDD  
DVDD  
CDVDD  
CAVDD  
RFLT  
œ
R
VIN  
R
+
Device  
+
R
œ
VSOURCE  
CFLT  
GND  
GND  
Input Driver  
50. Typical Connection Diagram  
51 depicts a board layout example for the device for the typical connection diagram in 50. The key  
considerations for layout are:  
Use a solid ground plane underneath the device and partition the PCB into analog and digital sections  
Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference  
input signals away from noise sources.  
The power sources to the device must be clean and well-bypassed. Use CAVDD decoupling capacitors in close  
proximity to the analog (AVDD) power-supply pin.  
Use a CDVDD decoupling capacitor close to the digital (DVDD) power-supply pin.  
Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.  
Connect the ground pin to the ground plane using a short, low-impedance path.  
Place the charge kickback filter components close to the device.  
Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors are recommended because these  
components provide the most stable electrical properties over voltage, frequency, and temperature changes.  
32  
版权 © 2016, Texas Instruments Incorporated  
 
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
11.2 Layout Example  
AVDD  
Plane  
RFLT  
CDVDD  
SCLK  
AVDD  
AINP  
SDO  
CS  
CFLT  
GND  
PLANE  
51. Example Layout  
版权 © 2016, Texas Instruments Incorporated  
33  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
TI 高精度实验室培训视频系列  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
输入驱动器放大器(单端输入):  
OPAx836 极低功耗、轨至轨输出、负轨输入、电压反馈运算放大器》  
THS403x 100MHz 低噪声高速放大器  
OPAx365 50MHz、零交叉、低失真、高 CMRRRRI/O、单电源运算放大器》  
输入驱动器放大器(全差分输入):  
THS4551 低噪声 150MHz 全差分精密放大器  
OPAx836 极低功耗、轨至轨输出、负轨输入、电压反馈运算放大器》  
基准驱动器:  
REF19xx 低漂移、低功率、双路输出、VREF VREF/2 电压基准》  
《具有集成 ADC 驱动器缓冲器的 REF61xx 高精度电压基准》  
类似器件:  
ADS7042 超低功耗、超小尺寸、12 位、1MSPSSAR ADC》  
ADS7049-Q1 小型低功耗 12 位、2MSPS SAR ADC》  
参考设计:  
TI 设计:采用 73dB SNR7.5MSPS 时间交织 SAR ADC 且适用于成像应用的模拟前端参考设计  
针对双极信号采用运算放大器和 FDA 的单端到差分  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
34  
版权 © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016, Texas Instruments Incorporated  
35  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
36  
版权 © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
PACKAGE OUTLINE  
RUG0008A  
X2QFN - 0.4 mm max height  
SCALE 7.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.55  
1.45  
B
A
PIN 1 INDEX AREA  
1.55  
1.45  
C
0.4 MAX  
SEATING PLANE  
0.05  
0.00  
0.08 C  
SYMM  
0.35  
0.25  
2X  
(0.15)  
TYP  
0.45  
0.35  
2X  
4
3
5
SYMM  
2X  
1
4X 0.5  
0.25  
0.15  
2X  
7
1
0.3  
4X  
8
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.1)  
C A  
C
B
0.4  
0.3  
6X  
4222060/A 05/14/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2016, Texas Instruments Incorporated  
37  
ADS7046  
ZHCSH50 DECEMBER 2016  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
(R0.05) TYP  
4
SYMM  
(1.35)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222060/A 05/14/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
38  
版权 © 2016, Texas Instruments Incorporated  
ADS7046  
www.ti.com.cn  
ZHCSH50 DECEMBER 2016  
EXAMPLE STENCIL DESIGN  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
4
SYMM  
(1.35)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICKNESS  
SCALE:25X  
4222060/A 05/14/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2016, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7046IRUGR  
ACTIVE  
X2QFN  
RUG  
8
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
-40 to 125  
9R  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jan-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7046IRUGR  
X2QFN  
RUG  
8
3000  
180.0  
8.4  
1.6  
1.6  
0.66  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jan-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
X2QFN RUG  
SPQ  
Length (mm) Width (mm) Height (mm)  
183.0 183.0 20.0  
ADS7046IRUGR  
8
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS7047

12 位 3MSPS 差分输入小型低功耗 SAR ADC
TI

ADS7047IRUGR

12 位 3MSPS 差分输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7049-Q1

超低功耗、超小型 12 位 2MSPS SAR ADC
TI

ADS7049QDCURQ1

超低功耗、超小型 12 位 2MSPS SAR ADC | DCU | 8 | -40 to 125
TI

ADS704H

1-CH 18-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP40
TI

ADS704HB

ADC, Flash Method, 18-Bit, 1 Func, 1 Channel, Parallel, Word Access, Hybrid, CDIP40,
BB

ADS7052

14 位 1MSPS 单端输入小型低功耗 SAR ADC
TI

ADS7052IRUGR

14 位 1MSPS 单端输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7054

14 位 1MSPS 差分输入小型低功耗 SAR ADC
TI

ADS7054IRUGR

14 位 1MSPS 差分输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7056

具有 SPI 的 14 位 2.5MSPS 超低功耗、超小型 SAR ADC
TI

ADS7056IRUGR

具有 SPI 的 14 位 2.5MSPS 超低功耗、超小型 SAR ADC | RUG | 8 | -40 to 125
TI