ADS7142QDQCRQ1 [TI]

具有可编程阈值和主机唤醒功能的汽车类 2 通道 12 位、140kSPS、I2C 兼容型 ADC | DQC | 10 | -40 to 125;
ADS7142QDQCRQ1
型号: ADS7142QDQCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可编程阈值和主机唤醒功能的汽车类 2 通道 12 位、140kSPS、I2C 兼容型 ADC | DQC | 10 | -40 to 125

文件: 总83页 (文件大小:4390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
具有可编程阈值和主机唤醒功能ADS7142-Q1 汽车类双通12 位、  
140kSPSI2C 兼容ADC  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
通用的电压、电流和温度监测用于:  
– 温度等140°C +125°CTA  
提供功能安全型  
数字驾驶舱处理单元  
驾驶员监控  
汽车音响主机  
有助于进行功能安全系统设计的文档  
• 小封装尺寸3mm × 2mm  
12 位无噪声分辨率  
不具有处理功能的汽车摄像头模块  
3 说明  
• 采样率高140kSPS  
ADS7142-Q1 12 140kSPS 逐次逼近型寄存器  
(SAR) 模数转换器 (ADC)可以自主监测信号同时  
更大限度地提高系统功率、可靠性和性能。该器件使用  
具有可编程高低警报阈值、迟滞和事件计数器的数字窗  
口比较器实施每通道事件触发的中断。器件包含一个  
SAR ADC 前端的双通道模拟多路复用器然后是一  
个用于转换和捕捉传感器数据的内部数据缓冲器。  
• 高效的主机休眠和唤醒:  
– 自主监控功耗900nW  
– 用于事件触发主机唤醒的窗口比较器  
• 独立的配置和校准:  
– 双通道、伪差分或接地感应输入配置  
– 用于校准的可编程阈值  
– 内部校准改善了失调电压和漂移  
• 错误触发防护:  
– 每个通道的可编程阈值  
– 用于实现抗噪性能的可编程迟滞  
– 用于瞬态抑制的事件计数器  
I2C 接口:  
ADS7142-Q1 提供 10 引脚 WSON 封装可以实现功  
耗低至 900nW。该器件体积小巧功耗低非常适合  
空间受限型应用。  
封装信息(1)  
封装尺寸标称值)  
器件名称  
封装  
– 兼1.65V 3.6V 的电压范围  
8 个可配置地址  
ADS7142-Q1  
WSON (10)  
3.00mm x 2.00mm  
– 高3.4MHz高速)  
• 模拟电源1.65V 3.6V  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
AVDD  
DVDD  
Threshold ±  
Hysteresis  
ALERT  
AINP/AIN0  
MUX  
ADC  
FIFO  
ADDR  
AINM/AIN1  
SCL  
I2C Interface  
SDA  
Offset  
Calibration  
BUSY / RDY  
Accumulator  
GND  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS891  
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................21  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................30  
7.5 Programming............................................................ 41  
7.6 Register Map.............................................................44  
8 Application and Implementation..................................63  
8.1 Application Information............................................. 63  
8.2 Typical Applications.................................................. 63  
8.3 Power Supply Recommendations.............................68  
8.4 Layout....................................................................... 69  
9 Device and Documentation Support............................71  
9.1 Electrostatic Discharge Caution................................71  
9.2 术语表....................................................................... 71  
9.3 Trademarks...............................................................71  
9.4 接收文档更新通知..................................................... 71  
9.5 支持资源....................................................................71  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics: All Modes...........................5  
6.6 Electrical Characteristics: Manual Mode.....................7  
6.7 Electrical Characteristics: Autonomous Modes...........9  
6.8 Electrical Characteristics: High Precision Mode....... 10  
6.9 Timing Requirements................................................10  
6.10 Switching Characteristics........................................12  
6.11 Timing Diagrams..................................................... 13  
6.12 Typical Characteristics: All Modes.......................... 14  
6.13 Typical Characteristics: Manual Mode.................... 15  
6.14 Typical Characteristics: Autonomous Modes..........19  
6.15 Typical Characteristics: High-Precision Mode.........20  
Information.................................................................... 71  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2019) to Revision B (September 2022)  
Page  
更新了整个文档中的表格、图和交叉参考的编号格........................................................................................1  
• 将提SPI 的旧术语的所有实例更改为控制...................................................................................... 1  
• 向部分添加了提供功能安要点................................................................................................................ 1  
• 添加了指向部分的链接................................................................................................................................1  
• 更改了部分中的方框图像....................................................................................................................... 1  
Changed low-power oscillator to high-speed oscillator in test condition for analog supply current in Electrical  
Characteristics : Autonomous Modes section.....................................................................................................9  
Changed high-power oscillator to high-speed oscillator in test condition for digital supply current in Electrical  
Characteristics : Autonomous Modes section.....................................................................................................9  
digital................................................................................................................................................................ 10  
Changed Functional Block Diagram figure....................................................................................................... 21  
Added remote ground sense to single-ended configuration discussion of Single-Channel, Single-Ended  
Configuration With Remote Ground Sense section..........................................................................................23  
Clarified normal device operation in Offset Calibration section........................................................................ 23  
Changes from Revision * (November 2018) to Revision A (October 2019)  
Page  
• 将文档状态从预告信息更改为量产数据...............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
AVDD  
1
2
3
4
5
10  
9
DVDD  
SCL  
Thermal  
Pad  
AINP/AIN0  
AINM/AIN1  
ADDR  
8
SDA  
7
ALERT  
BUSY/RDY  
6
Not to scale  
5-1. DQC Package, 10-Pin WSON (Top View)  
5-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
GND  
Supply  
Supply  
Ground for power supply, all analog and digital signals are referred to this pin.  
2
AVDD  
Analog supply input, also used as the reference voltage for analog-to-digital conversion.  
Single-channel operation: positive analog signal input.  
Two-channel operation: analog signal input, channel 0.  
3
4
5
6
7
AINP/AIN0  
AINM/AIN1  
ADDR  
Analog input  
Analog input  
Analog Input  
Digital output  
Digital output  
Single-channel operation: negative analog signal input.  
Two-channel operation: analog signal input, channel 1.  
Input for selecting the I2C address of the device.  
See the I2C Address Selector section for details.  
The device pulls this pin high when scanning through channels in a sequence and brings this pin  
low when the sequence is completed or aborted.  
BUSY/ RDY  
ALERT  
Active low, open-drain output. The status of this pin is controlled by the digital window comparator  
block. Connect a pullup resistor from DVDD to this pin.  
8
SDA  
SCL  
Digital input/output Serial data input/output for the I2C interface. Connect a pullup resistor from DVDD to this pin.  
9
Digital input  
Supply  
Serial clock for the I2C interface. Connect a pullup resistor from DVDD to this pin.  
10  
DVDD  
Digital I/O supply voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
0.3  
40  
60  
MAX  
UNIT  
V
ADDR to GND  
AVDD + 0.3  
3.9  
AVDD to GND  
V
DVDD to GND  
3.9  
V
AINP/AIN0 to GND  
AVDD + 0.3  
AVDD + 0.3  
10  
V
AINM/AIN1 to GND  
V
Input current on any pin except supply pins  
Digital input to GND  
Junction temperature, TJ  
Storage temperature, Tstg  
mA  
V
DVDD + 0.3  
150  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (1, 5, 6, and  
10)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged-device model (CDM), per AEC  
Q100-011  
All other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
1.65  
40  
NOM  
MAX  
3.6  
UNIT  
V
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Ambient temperature  
3.6  
V
125  
°C  
6.4 Thermal Information  
ADS7142-Q1  
THERMAL METRIC(1)  
DQC (WSON)  
10 PINS  
61.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66.3  
29.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ΨJT  
29.7  
ΨJB  
RθJC(bot)  
6.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: All Modes  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT (Two-Channel Single-Ended Configuration)  
Full-scale input voltage  
AINP/AIN0 to GND or AINM/AIN1 to GND  
AINP/AIN0 to GND or AINM/AIN1 to GND  
0
AVDD  
V
V
span(1)  
Absolute input voltage  
range  
AVDD + 0.1  
0.1  
ANALOG INPUT (Single-Channel Single-Ended Configuration with Remote Ground Sense)  
Full-scale input voltage  
AINP/AIN0 to AINM/AIN1  
span(1)  
0
AVDD  
V
V
AINP/AIN0 to GND  
AINM/AIN1 to GND  
AVDD + 0.1  
0.1  
0.1  
0.1  
Absolute input voltage  
range  
ANALOG INPUT (Single-Channel Pseudo-Differential Configuration with Remote Ground Sense)  
Full-scale input voltage  
AINP/AIN0 to AINM/AIN1  
AINP/AIN0 to GND  
AVDD/2  
AVDD + 0.1  
V
V
AVDD/2  
0.1  
span(1)  
Absolute input voltage  
range  
AVDD/2 –  
AINM/AIN1 to GND  
AVDD/2 + 0.1  
0.1  
INTERNAL OSCILLATOR  
Time period for high-speed  
oscillator  
tHSO  
50  
110  
300  
ns  
µs  
Time period for low-power  
oscillator  
tLPO  
95.2  
DIGITAL INPUT/OUTPUT (SCL, SDA)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7 × DVDD  
DVDD  
0.3 × DVDD  
0.4  
V
V
0
0
With 3 mA sink current and DVDD > 2 V  
VOL  
Low-level output voltage  
V
With 3 mA sink current and 1.65 V < DVDD <  
2 V  
0
3
0.2 × DVDD  
VOL = 0.4 V for standard and fast mode (100,  
400 kHz)  
Low-level output current  
(sink)  
IOL  
mA  
mA  
VOL = 0.6 V for fast mode (400 kHz)  
VOL = 0.4 V fast mode Plus (1 MHz)  
6
20  
Low-level output current  
(sink)  
IOL  
VOL= 0.4 V high speed (1.7 MHz, 3.4 MHz)  
25  
II  
Input current on pin  
10  
10  
µA  
pF  
CI  
Input capacitance on pin  
DIGITAL OUTPUT (BUSY/RDY)  
Isource = 200 µA  
Isource = 2 mA  
Isink = 200 µA  
Isink = 2 mA  
0.8 × DVDD  
DVDD  
DVDD  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.7 × DVDD  
0
0
0.2 × DVDD  
0.3 × DVDD  
VOL  
DIGITAL OUTPUT (ALERT)  
IOL  
Low-level output current  
Low-level output voltage  
VOL < 0.25 V  
Isink = 5 mA  
5
mA  
V
VOL  
0
0.25  
3.6  
POWER-SUPPLY REQUIREMENTS  
AVDD Analog supply voltage  
1.65  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DVDD Digital I/O supply voltage  
1.65  
3.6  
V
(1) Ideal Input span, does not include gain or offset error.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics: Manual Mode  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SAMPLING DYNAMICS  
tconv  
tacq  
Conversion time  
Acquisition time  
Cycle time  
AVDD = 1.65 V to 3.6 V  
1.8  
7.1  
µs  
TSCL  
µs  
AVDD = 1.65 V to 3.6 V  
18  
tcycle  
AVDD = 1.65 V to 3.6 V, SCL = 3.4 MHz  
DC SPECIFICATIONS  
Resolution  
12  
Bits  
Bits  
NMC  
DNL  
INL  
No missing codes  
AVDD = 1.65 V to 3.6 V  
AVDD = 1.65 V to 3.6 V  
12  
0.99  
2.75  
4  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
±0.3  
±0.5  
±0.5  
5
1
LSB(1)  
2.75 LSB  
EO  
Post offset calibration  
Post offset calibration  
4
LSB  
dVOS/dT  
EG  
Offset drift with temperature  
Gain error  
ppm/°C  
±0.03  
5
0.1 %FSR  
ppm/°C  
0.1  
Gain error drift with temperature  
AC SPECIFICATIONS  
fIN = 2 kHz, AVDD = 3 V,  
fSAMPLE = 140 kSPS  
68.75  
70  
68  
SNR(2)  
Signal-to-noise ratio  
dB  
dB  
dB  
fIN = 2 kHz, AVDD = 1.8 V,  
fSAMPLE = 140 kSPS  
fIN = 2 kHz, AVDD = 3 V,  
fSAMPLE = 140 kSPS  
85  
80  
69.5  
67.5  
THD(2) (3)  
Total harmonic distortion  
fIN = 2 kHz, AVDD = 1.8 V,  
fSAMPLE = 140 kSPS  
fIN = 2 kHz, AVDD = 3 V,  
fSAMPLE = 140 kSPS  
68.5  
SINAD(2)  
Signal-to-noise and distortion  
fIN = 2 kHz, AVDD = 1.8 V,  
fSAMPLE = 140 kSPS  
fIN = 2 kHz, AVDD = 3 V,  
fSAMPLE = 140 kSPS  
SFDR(2)  
BW  
Spurious-free dynamic range  
90  
25  
dB  
MHz  
3-dB small-signal bandwidth  
POWER CONSUMPTION  
fSAMPLE = 140 kSPS, SCL = 3.4 MHz  
fSAMPLE= 5.5 kSPS, SCL = 100 kHz  
265  
8
300  
fSAMPLE = 140 kSPS, SCL = 3.4 MHz, AVDD =  
1.8 V  
IAVDD  
Analog supply current  
µA  
160  
5
fSAMPLE = 5.5 kSPS, SCL = 100 kHz, AVDD =  
1.8 V  
fSAMPLE = 140 kSPS, SCL = 3.4 MHz, SDA =  
AAA0h  
25  
2
fSAMPLE = 5.5 kSPS, SCL = 100 kHz, SDA =  
AAA0h  
IDVDD  
Digital supply current  
µA  
fSAMPLE = 140 kSPS, SCL = 3.4 MHz, AVDD =  
1.8 V, SDA = AAA0h  
15  
IAVDD  
IDVDD  
Static analog supply current  
Static digital supply current  
No activity on SCL and SDA  
No activity on SCL and SDA  
6
2
nA  
nA  
(1) LSB means least significant byte. See the ADC Transfer Function for details.  
(2) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-  
scale, unless otherwise specified.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
(3) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics: Autonomous Modes  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SAMPLING DYNAMICS  
High-speed oscillator  
14  
14  
tHSO  
tLPO  
tHSO  
tLPO  
tHSO  
tLPO  
tconv  
Conversion time  
Low-power oscillator  
High-speed oscillator  
Low-power oscillator  
High-speed oscillator  
Low-power oscillator  
7
4
tacq  
Acquisition time  
Cycle time  
nCLK  
nCLK  
tcycle  
DC SPECIFICATIONS  
Resolution  
12  
±0.5  
Bits  
LSB  
EO  
EG  
Offset error  
Gain error  
Post offset calibration  
±0.03  
%FSR  
POWER CONSUMPTION  
With low-power oscillator, nCLK = 18  
0.75  
0.45  
With low-power oscillator, AVDD = 1.8 V,  
nCLK = 18  
IAVDD  
Analog supply current  
µA  
µA  
With low-power oscillator, nCLK = 250  
With high-speed oscillator, nCLK = 21  
0.5  
940  
With low-power oscillator, nCLK = 18, DVDD  
= 3.3 V  
0.15  
0.25  
0.15  
0.15  
With low-power oscillator, DVDD = 1.8 V,  
nCLK = 18  
IDVDD  
Digital supply current  
With low-power oscillator, nCLK = 250,  
DVDD = 3.3 V  
With high-speed oscillator, nCLK = 21,  
DVDD = 3.3 V  
IAVDD  
IDVDD  
Static analog supply current  
Static digital supply current  
No activity on SCL and SDA  
No activity on SCL and SDA  
5
nA  
nA  
0.6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics: High Precision Mode  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DC SPECIFICATIONS  
Resolution(2)  
16  
15.4  
Bits  
ENOB Effective number of bits  
With DC input of AVDD / 2(3)  
Post offset calibration  
EO  
EG  
Offset error  
Gain error  
±10  
LSB  
±0.03  
%FSR  
POWER CONSUMPTION  
With low-power oscillator, nCLK = 18  
0.6  
0.3  
With low-power oscillator, AVDD = 1.8 V,  
nCLK = 18  
IAVDD  
Analog supply current  
µA  
µA  
With low-power oscillator, nCLK = 250  
With high-speed oscillator, nCLK = 21  
0.5  
980  
With low-power oscillator, nCLK = 21, DVDD  
= 3.3 V  
0.2  
0.25  
0.2  
With low-power oscillator, DVDD = 1.8 V,  
nCLK = 21  
IDVDD  
Digital supply current  
With low-power oscillator, nCLK = 250,  
DVDD = 3.3 V  
With high-speed oscillator, nCLK = 21,  
DVDD = 3.3 V  
0.2  
IAVDD  
IDVDD  
Static analog supply current  
Static supply current  
No activity on SCL and SDA  
No activity on SCL and SDA  
5
nA  
nA  
0.7  
(1) Sampling dynamics for high precision mode are same as for autonomous modes.  
(2) See 方程5  
(3) For DC input, ENOB = Ln[FSR/Standard deviation of Codes]/Ln[2].  
6.9 Timing Requirements  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
MIN  
MAX  
UNIT  
STANDARD MODE (100 kHz)  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
pF  
tHD-STA  
tLOW  
Hold time (repeated) START condition  
Low period of SCL  
4.7  
4
tHIGH  
High period of SCL  
tSU-STA  
tHD-DAT  
tSU-DAT  
tSU-STO  
tBUF  
Setup time for a repeated start condition  
Data hold time  
4.7  
0
(2) (3)  
Data setup time  
250  
4
Data setup time  
Bus free time between a STOP and START condition  
Capacitive load on each line  
4.7  
Cb  
400  
400  
FAST MODE (400 kHz)  
fSCL  
SCL clock frequency  
0
0.6  
1.3  
0.6  
0.6  
0
kHz  
µs  
tHD-STA  
tLOW  
Hold time (repeated) START condition  
Low period of SCL  
µs  
tHIGH  
High period of SCL  
µs  
tSU-STA  
tHD-DAT  
Setup time for a repeated start condition  
Data hold time  
µs  
µs  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.9 Timing Requirements (continued)  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
MIN  
100  
0.6  
MAX  
UNIT  
ns  
tSU-DAT  
tSU-STO  
tBUF  
Data setup time  
Data setup time  
µs  
Bus free time between a STOP and START condition  
Capacitive load on each line  
1.3  
µs  
Cb  
400  
pF  
FAST MODE PLUS (1000 kHz)  
fSCL  
SCL clock frequency  
0
0.26  
0.5  
1000  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
pF  
tHD-STA  
tLOW  
Hold time (repeated) START condition  
Low period of SCL  
tHIGH  
High period of SCL  
0.26  
0.26  
0
tSU-STA  
tHD-DAT  
tSU-DAT  
tSU-STO  
tBUF  
Setup time for a repeated start condition  
Data hold time  
Data setup time  
50  
Data setup time  
0.26  
0.5  
Bus free time between a STOP and START condition  
Capacitive load on each line  
Cb  
550  
1.7  
HIGH SPEED MODE (1.7 MHz, Cb = 400 pF max)  
fSCLH  
SCLH clock frequency  
Hold time (repeated) START condition  
Low period of SCL  
0
160  
320  
120  
160  
0
MHz  
ns  
tHD-STA  
tLOW  
ns  
tHIGH  
High period of SCL  
ns  
tSU-STA  
tHD-DAT  
tSU-DAT  
tSU-STO  
Cb  
Setup time for a repeated start condition  
Data hold time  
ns  
150  
ns  
Data setup time  
10  
ns  
Data setup time  
160  
ns  
Capacitive load on each line  
100  
3.4  
pF  
HIGH SPEED MODE (3.4 MHz, Cb = 100 pF max)  
fSCLH  
SCLH clock frequency  
Hold time (repeated) START condition  
Low period of SCL  
0
160  
160  
60  
MHz  
ns  
tHD-STA  
tLOW  
ns  
tHIGH  
High period of SCL  
ns  
tSU-STA  
tHD-DAT  
tSU-DAT  
tSU-STO  
Cb  
Setup time for a repeated start condition  
Data hold time  
160  
0
ns  
70  
ns  
Data setup time  
10  
ns  
Data setup time  
160  
ns  
Capacitive load on each line  
100  
pF  
(1) All values referred to VIH(min) (0.7 DVDD) and VIL(max) (0.3 DVDD).  
(2) tHD-DAT is the data hold time that is measured from the falling edge of SCL and applies to data in transmission and the acknowledge.  
(3) The maximum tHD-DAT can be 3.45 µs and 0.9 µs for standard-mode and fast-mode, but must be less than the maximum of tVD-DAT or  
tVD-ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock is streched, the data must be valid by the setup time before being released.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.10 Switching Characteristics  
at TA = -40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, All Channel Configurations (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
STANDARD MODE (100 kHz)  
trCL  
Rise time of SCL  
1000  
1000  
300  
ns  
ns  
ns  
ns  
µs  
µs  
trDA  
Rise time of SDA  
Fall time of SCL  
Fall time of SDA  
Data valid time  
Data hold time  
tfCL  
tfDA  
300  
(2)  
(2)  
tVD-DAT  
tVD-ACK  
3.45  
3.45  
FAST MODE (400 kHz)  
trCL  
Rise time of SCL  
20  
20  
300  
300  
300  
300  
0.9  
ns  
ns  
ns  
ns  
µs  
µs  
trDA  
Rise time of SDA  
Fall time of SCL  
Fall time of SDA  
Data valid time  
Data hold time  
tfCL  
20 × DVDD/3.6  
20 × DVDD/3.6  
tfDA  
tVD-DAT  
tVD-ACK  
0.9  
Pulse duration of spikes suppressed by the  
input filter  
(3)  
tSP  
0
50  
ns  
FAST MODE PLUS (1000 kHz)  
trCL  
Rise time of SCL  
Rise time of SDA  
Fall time of SCL  
Fall time of SDA  
Data valid time  
Data hold time  
120  
120  
120  
120  
0.45  
0.45  
ns  
ns  
ns  
ns  
µs  
µs  
trDA  
tfCL  
20 × DVDD/3.6  
20 × DVDD/3.6  
tfDA  
tVD-DAT  
tVD-ACK  
Pulse duration of spikes suppressed by the  
input filter  
tSP  
0
50  
ns  
HIGH SPEED MODE (1.7 MHz, Cb = 400 pF max)  
trCL  
Rise time of SCLH  
20  
20  
80  
ns  
ns  
Rise time of SCLH after a repeated start  
condition and after an acknowledge bit  
trCL1  
160  
trDA  
tfCL  
tfDA  
Rise time of SDAH  
Fall time of SCLH  
Fall time of SDAH  
20  
20  
20  
160  
80  
ns  
ns  
ns  
160  
Pulse duration of spikes suppressed by the  
input filter  
tSP  
0
10  
ns  
HIGH SPEED MODE (3.4 MHz, Cb = 100 pF max)  
trCL  
Rise time of SCLH  
10  
10  
40  
80  
ns  
ns  
Rise time of SCLH after a repeated start  
condition and after an acknowledge bit  
trCL1  
trDA  
tfCL  
tfDA  
Rise time of SDAH  
Fall time of SCLH  
Fall time of SDAH  
10  
10  
10  
80  
40  
80  
ns  
ns  
ns  
Pulse duration of spikes suppressed by the  
input filter  
tSP  
0
10  
ns  
(1) All values referred to VIH(min) ( 0.7 DVDD ) and VIL(max) ( 0.3 DVDD ).  
(2) tVD-DAT = time for data signal from SCL LOW to SDA output.  
(3) Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.11 Timing Diagrams  
tf  
tr  
tSU-DAT  
70%  
SDA  
70%  
30%  
cont.  
30%  
tHD-DAT  
tVD-DAT  
tf  
tr  
tHIGH  
70%  
30%  
70%  
30%  
70%  
30%  
SCL  
70%  
tHD-STA  
30%  
cont.  
9th clock  
tLOW  
S
1/fSCL  
1st clock cycle  
tBUF  
. . . SDA  
tVD-ACK  
tSU-STA  
tHD-STA  
tSP  
tSU-STO  
70%  
30%  
. . . SCL  
Sr  
P
S
9th clock  
VIL = 0.3VDD  
VIH = 0.7VDD  
6-1. Timing Diagram for Standard Mode, Fast Mode, and Fast Mode Plus  
trDA  
Sr  
Sr  
P
tfDA  
0.7 x VDD  
0.3 x VDD  
SDAH or SDA  
tHD-DAT  
tSU-STO  
tSU-STA  
tHD-STA  
tSU-DAT  
0.7 x VDD  
0.3 x VDD  
SCLH or SCL  
tFCL  
(A)  
trCL1  
trCL1  
(A)  
trCL  
tLOW  
tHIGH  
tLOW  
tHIGH  
= MCS current source pull-up  
= Rp resistor pull-up  
A. First rising edge of the SCLH signal after Sr and after each acknowledge bit.  
6-2. Timing Diagram for High-Speed Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics: All Modes  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
60  
56  
52  
48  
44  
40  
160  
140  
120  
100  
80  
60  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ADS7  
ADS7  
6-3. High-Speed Oscillator Time Period vs Temperature  
6-4. Low-Power Oscillator Time Period vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics: Manual Mode  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
0
10000  
20000 30000  
fIN, Input Frequency (Hz)  
40000  
50000  
0
10000  
20000 30000  
fIN, Input Frequency (Hz)  
40000  
50000  
ADS7  
ADS7  
SNR = 69.6 dB, THD = 84 dB, ENOB = 11.2,  
SNR = 71.3 dB, THD = 87 dB, ENOB = 11.5,  
fsample = 140 kSPS, SFDR = 87 dB, AVDD = 1.8 V  
fsample = 140 kSPS, SFDR = 89.3 dB, AVDD = 3 V  
6-5. Typical FFT in Manual Mode  
6-6. Typical FFT in Manual Mode  
73  
72  
71  
70  
69  
68  
72  
71  
70  
69  
68  
67  
SNR  
SINAD  
SNR  
SINAD  
-40  
-7  
26  
59  
92  
125  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ADS7  
ADS7  
fsample = 140 kSPS  
fsample = 140 kSPS  
6-7. SNR and SINAD in Manual Mode vs Temperature  
6-8. SNR and SINAD in Manual Mode vs AVDD  
-82  
91  
-83.6  
-85.2  
-86.8  
-88.4  
-90  
90.4  
89.8  
89.2  
88.6  
88  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ADS7  
ADS7  
fsample = 140 kSPS  
fsample = 140 kSPS  
6-9. THD in Manual Mode vs Temperature  
6-10. SFDR in Manual Mode vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics: Manual Mode (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
-78  
-81  
-84  
-87  
-90  
-93  
60000  
40000  
20000  
0
3790  
2047  
3046  
2049  
2048  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
ADS7  
Output Code  
AVDD (V)  
ADS7  
Mean code = 2047.9, standard deviation = 0.32  
6-12. Typical DC Code Spread in Manual Mode  
fsample = 140 kSPS  
6-11. THD in Manual Mode vs AVDD  
3
2.6  
2.2  
1.8  
1.4  
1
2.5  
2.1  
1.7  
1.3  
0.9  
0.5  
-40  
-7  
26  
59  
92  
125  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
Free-Air Temperature (èC)  
AVDD (V)  
ADS7  
ADS7  
6-13. Offset Error in Manual Mode vs Temperature  
6-14. Offset Error in Manual Mode vs AVDD  
0.05  
0.07  
0.052  
0.034  
0.016  
-0.002  
-0.02  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
-40  
-7  
26  
59  
92  
125  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
Free-Air Temperature (èC)  
AVDD (V)  
ADS7  
ADS7  
6-15. Gain Error in Manual Mode vs Free-Air Temperature  
6-16. Gain Error in Manual Mode vs AVDD  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics: Manual Mode (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
819  
1638  
2457  
3276  
4095  
0
819  
1638  
2457  
3276  
4095  
Output Code  
Output Code  
ADS7  
ADS7  
AVDD = 3 V  
6-17. Typical DNL in Manual Mode  
AVDD = 1.8 V  
6-18. Typical DNL in Manual Mode  
1.2  
0.6  
0
1
0.6  
0.2  
-0.2  
-0.6  
-1  
-0.6  
-1.2  
0
819  
1638  
2457  
3276  
4095  
0
819  
1638  
2457  
3276  
4095  
Output Code  
Output Code  
ADS7  
ADS7  
AVDD = 3 V  
6-19. Typical INL in Manual Mode  
AVDD = 1.8 V  
6-20. Typical INL in Manual Mode  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
Maximum  
Minimum  
Maximum  
Minimum  
-40  
-7  
26  
59  
92  
125  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
Free-Air Temperature (èC)  
AVDD (V)  
ADS7  
ADS7  
6-21. DNL in Manual Mode vs Temperature  
6-22. DNL in Manual Mode vs AVDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics: Manual Mode (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
1
0.5  
0
1
0.4  
-0.2  
-0.8  
-1.4  
-2  
Maximum  
Minimum  
Maximum  
Minimum  
-0.5  
-1  
-1.5  
-40  
-7  
26  
59  
92  
125  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
Free-Air Temperature (èC)  
AVDD (V)  
ADS7  
ADS7  
6-23. INL in Manual Mode vs Temperature  
6-24. INL in Manual Mode vs AVDD  
350  
300  
250  
200  
150  
100  
260  
254  
248  
242  
236  
230  
1.8  
2.16  
2.52  
2.88  
3.24  
3.6  
-40  
-7  
26  
59  
92  
125  
AVDD (V)  
Free-Air Temperature (èC)  
ADS7  
ADS7  
fSample = 140 kSPS, SCL = 3.4 MHz  
6-25. IAVDD in Manual Mode vs AVDD  
6-26. IAVDD in Manual Mode vs Temperature  
20  
17.5  
15  
0.8  
0.6  
0.4  
0.2  
0
AVDD = 1.8 V  
AVDD = 3 V  
12.5  
10  
7.5  
5
2.5  
0
-0.2  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
-40  
-7  
26  
59  
92  
125  
SCL (kHz)  
Free-Air Temperature (èC)  
ADS7  
ADS7  
DVDD = 1.8 V  
6-27. IDVDD in Manual Mode vs SCL  
No activity on SCL and SDA  
6-28. Static IAVDD in Manual Mode vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics: Autonomous Modes  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
12  
8
6.4  
4.8  
3.2  
1.6  
0
9
6
3
0
0
45  
90  
135  
nCLK  
180  
225  
270  
0
45  
90  
135  
nCLK  
180  
225  
270  
ADS7  
AINC  
Input voltage = 1.5 V, CH0, high-speed oscillator,  
stop burst mode  
Input voltage = 1.5 V, CH0, low-power oscillator,  
stop burst mode  
6-29. Analog Input Current in Autonomous Modes vs nCLK  
6-30. Analog Input Current in Autonomous Modes vs nCLK  
1500  
1500  
AVDD = 1.8 V  
AVDD = 3 V  
AVDD = 1.8 V  
AVDD = 3 V  
1200  
900  
600  
300  
0
1200  
900  
600  
300  
0
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ADS7  
Auto  
Stop burst mode, low-power oscillator, nCLK = 25  
Stop burst mode, high-speed oscillator, nCLK = 25  
6-31. IAVDD in Autonomous Modes vs Temperature  
6-32. IAVDD in Autonomous Modes vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.15 Typical Characteristics: High-Precision Mode  
at TA = 25°C, AVDD = 3 V, DVDD = 3.3 V, and two-channel single-ended configuration (unless otherwise noted)  
10  
0.03  
0.018  
0.006  
-0.006  
-0.018  
-0.03  
7
4
1
-2  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature(èC)  
Offs  
Gain  
6-33. Offset Error in High-Precision Mode vs Temperature  
6-34. Gain Error in High-Precision Mode vs Temperature  
1200  
1200  
AVDD = 1.8 V  
AVDD = 3 V  
AVDD = 1.8 V  
AVDD = 3 V  
900  
600  
300  
0
900  
600  
300  
0
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ADS7  
IAVD  
Low-power oscillator, nCLK = 25  
High-speed oscillator, nCLK = 25  
6-36. IAVDD in High-Precision Mode vs Temperature  
6-35. IAVDD in High-Precision Mode vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS7142-Q1 is a small size, dual-channel, 12-bit programmable sensor monitor with an integrated analog-  
to-digital converter (ADC), input multiplexer, digital comparator, data buffer, accumulator, and internal oscillator.  
The input multiplexer can be either configured as two single-ended channels, one single-ended channel with  
remote ground sensing, or one pseudo-differential channel where the input can swing to approximately AVDD /  
2. The device includes a digital window comparator with a dedicated ALERT pin, which can be used to alert the  
host when a programmed high or low threshold is crossed. The device address is configured by the I2C address  
selector block. The device uses internal oscillators (low power or high speed) for conversion. The start of  
conversion is controlled by the host in manual mode or by the device in the autonomous modes.  
The device also features a data buffer and an accumulator. The data buffer can store up to 16 conversion results  
of the ADC in the autonomous modes and the accumulator can accumulate up to 16 conversion results of the  
ADC in high-precision mode.  
The device includes an offset calibration to calibrate the offset.  
7.2 Functional Block Diagram  
AVDD  
DVDD  
Threshold ±  
Hysteresis  
ALERT  
AINP/AIN0  
AINM/AIN1  
MUX  
ADC  
FIFO  
I2C Interface  
ADDR  
SCL  
SDA  
Offset  
Calibration  
BUSY / RDY  
Accumulator  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input and Multiplexer  
7-1 shows a small-signal equivalent circuit for the analog input pins. The device includes a two-channel  
analog multiplexer with each input pin having ESD protection diodes to AVDD and GND. The sampling switches  
are represented by ideal switches SW1 and SW2 in series with resistors Rs 1 and Rs2 (typically 150 Ω). The  
sampling capacitors, Cs1 and Cs2, are typically 15 pF. The multiplexer configuration is set by the  
CH_INPUT_CFG register.  
During acquisition, switches SW1 and SW2 are closed to allow the input signal to charge the internal sampling  
capacitors.  
During conversion, switches SW1 and SW2 are opened to disconnect the input signal from the sampling  
capacitors.  
The analog inputs of the device are optimized to be driven by a high-impedance source (up to 100 kΩ) in  
autonomous modes or in high precision mode with a low-power oscillator. When using the high-speed oscillator,  
drive the analog inputs of the ADC with an external amplifier in autonomous modes or in high precision mode. 图  
6-29 and 6-30 provide the analog input current for CH0 and CH1 of the device.  
7-2, 7-3, and 7-4 provide a simplified circuit for analog input for input configurations described in the  
Two-Channel, Single-Ended Configuration, Single-Channel, Single-Ended Configuration With Remote Ground  
Sense, and Single-Channel, Pseudo-Differential Configuration sections, respectively. The analog multiplexer  
supports following input configurations (set by writing into the CH_INPUT_CFG register).  
AVDD  
AVDD  
CH0  
SW1  
Rs1  
AINP/AIN0  
CH0  
CH1  
Cs1  
SW1  
Rs1  
AINP/AIN0  
GND  
Cs1  
V_BIAS  
Cs2  
AVDD  
AVDD  
MUX  
MUX  
V_BIAS  
Cs2  
CH1  
SW2  
Rs2  
AINM/AIN1  
SW2  
Rs2  
AINM/AIN1  
GND  
GND  
GND  
CHANNEL_INPUT_CFG_REG  
7-2. Two-Channel, Single-Ended Configuration  
CHANNEL_INPUT_CFG_REG  
7-1. Equivalent Circuit for Analog Input  
AVDD  
AVDD  
SW1  
Rs1  
AVDD/2  
AINP/AIN0  
SW1  
Rs1  
AINP/AIN0  
Cs1  
Cs1  
GND  
GND  
MUX  
MUX  
V_BIAS  
Cs2  
V_BIAS  
Cs2  
AVDD/2 + 100mV  
AVDD/2-100mV  
GND + 100mV  
GND -100mV  
AVDD/2  
SW2  
Rs2  
AINM/AIN1  
SW2  
Rs2  
GND  
AINM/AIN1  
GND  
GND  
CHANNEL_INPUT_CFG_REG  
CHANNEL_INPUT_CFG_REG  
7-4. Single-Channel, Pseudo-Differential  
7-3. Single-Channel, Single-Ended  
Configuration With Remote Ground Sensing  
Configuration  
7.3.1.1 Two-Channel, Single-Ended Configuration  
7-2 shows a simplified block diagram showing a two-channel, single-ended configuration. Set the  
CH0_CH1_IP_CFG bits = 00b or 11b to select this configuration. This configuration is also the default for the  
device after power up. In this configuration, CS2 always samples the GND pin and CS1 samples the input signal  
provided on channel 0 (AINP/AIN0) or channel 1 (AINM/AIN1) based on the channel selection. Each analog  
input channel can accept input signals in the range 0 V to AVDD V.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
On power-up, the device wakes up in manual mode with two-channel, single-ended configuration and samples  
CH0 only. This configuration can also be set by setting OPMODE_SEL to 000b or 001b,  
The device can be configured to sample either CH0 or CH1 or both channels by setting bits in the  
AUTO_SEQ_CHEN register to select the channels.  
To select a channel in AUTO sequence, set the AUTO_SEQ_CHx bit in the AUTO_SEQ_CHEN register to 1.  
Set the bits in the OPMODE_SEL register to 100b or 101b for manual mode with AUTO sequence.  
Set the bits in the OPMODE_SEL register to 110b for autonomous modes with AUTO sequence.  
Set the bits in the OPMODE_SEL register to 111b for high-precision mode with AUTO sequence.  
7.3.1.2 Single-Channel, Single-Ended Configuration With Remote Ground Sense  
See 7-3 for a simplified block diagram showing a single-channel, single-ended configuration with remote  
ground sense. Set the CH0_CH1_IP_CFG bits = 01b to select this configuration. In this configuration, CS1  
samples the input signal provided on the AINP/AIN0 pin, whereas CS2 samples the input signal provided on the  
AINM/AIN1 pin. The AINP/AIN0 pin can accept input signals in the range 0 V to AVDD V and the AINM/AIN1 pin  
can accept input signals in the range 100 mV to +100 mV. This input configuration is useful in systems where  
the sensor or the signal conditioning block is placed far from the device and there can be a small difference  
between the ground potentials. In this channel configuration, remove channel 1 from the AUTO sequence by  
setting the AUTO_SEQ_CH1 bit to 0. Selecting channel 1 in the AUTO sequence leads to an error condition and  
the device sets an error flag in the SEQUENCE_STATUS register.  
7.3.1.3 Single-Channel, Pseudo-Differential Configuration  
See 7-4 for a simplified block diagram showing a single-channel, pseudo-differential configuration. Set the  
CH0_CH1_IP_CFG bits = 10b to select this configuration. In this configuration, CS1 samples the input signal  
provided on the AINP/AIN0 pin, whereas CS2 samples the input signal provided on the AINM/AIN1 pin. The  
AINP/AIN0 pin can accept input signals in the range of 0 V to AVDD V and the AINM/AIN1 pin can accept input  
signals in the range of (AVDD / 2) 100 mV to (AVDD / 2) + 100 mV. This input configuration is useful to  
interface with sensors that provide a pseudo-differential signal with a negative output of AVDD / 2 (such as an  
electrochemical gas sensor). In this channel configuration, remove channel 1 from the AUTO sequence by  
setting the AUTO_SEQ_CH1 bit to 0. Selecting channel 1 in the AUTO sequence leads to an error condition and  
the device sets an error flag in the SEQUENCE_STATUS register.  
7.3.2 Offset Calibration  
The device automatically calibrates the offset on power up. The offset can also be calibrated during normal  
device operation by setting the TRIG_OFFCAL bit in the OFFSET_CAL register. During offset calibration, the  
sampling switches are open (7-1) and the device keep the BUSY/RDY pin high. The device calculates the  
offset error and corrects for this error for subsequent conversions. To nullify the change in offset resulting from  
change in temperature or in AVDD voltage, periodically perform this calibration.  
7.3.3 Reference  
The device uses the analog supply voltage (AVDD) as a reference for the analog-to-digital conversion process.  
Place a 220-nF, low-ESR ceramic decoupling capacitor between the AVDD pin and the GND pin, close to the  
AVDD pin; see the Power Supply Recommendations section.  
7.3.4 ADC Transfer Function  
The ADC provides data in straight binary format. The ADC resolution can be computed by 方程1:  
1 LSB = VREF / 2N  
(1)  
where:  
VREF = AVDD  
N = 12 for autonomous monitoring modes and manual mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS7142-Q1  
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7-5 and 7-6 show the ideal transfer characteristics for single-ended input and pseudo-differential input,  
respectively. 7-1 lists the digital output codes for the transfer functions.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
1 LSB  
VREF/2  
(VREF/2 + 1 LSB)  
(VREF œ 1 LSB)  
7-5. Ideal Transfer Characteristics for Single-Ended Configurations  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
(-VREF/2 + 1 LSB)  
0
1 LSB  
(VREF/2 œ 1 LSB)  
7-6. Ideal Transfer Characteristics for Pseudo-Differential Configuration  
7-1. Transfer Characteristics  
IDEAL  
OUTPUT  
CODE  
INPUT VOLTAGE FOR PSEUDO  
INPUT VOLTAGE FOR SINGLE-ENDED INPUT  
CODE  
DESCRIPTION  
DIFFERENTIAL INPUT  
NFSC  
NFSC + 1  
MC  
Negative full-scale code  
000  
001  
800  
801  
FFF  
1 LSB  
1 LSB to 2 LSBs  
(VREF / 2 + 1) LSB  
(VREF / 2 + 1) to (VREF / 2 + 2) LSB  
0 LSB to 1 LSB  
(VREF / 2) to (VREF / 2) + 1 LSB  
(VREF / 2) + 1 LSB to (VREF / 2) + 2 LSBs  
VREF 1 LSB  
Mid code  
1 LSB to 2 LSB  
MC + 1  
PFSC  
Positive full-scale code  
VREF / 2 1 LSB  
7.3.5 Oscillator and Timing Control  
The device uses one of the two internal oscillators (low-power oscillator or high-speed oscillator) for converting  
the analog input voltage into a digital output code.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The steps for selecting the oscillator and setting the sampling speed are:  
1. Select the low-power oscillator (OSC_SEL = 1b) to monitor slow-moving signals (< 300 Hz) at extremely low-  
power consumption and sampling speeds (< 600 SPS). Select the high-speed oscillator (OSC_SEL = 0b) to  
scan the sensor signals with faster sampling speed (> 50 kHz).  
2. Set the sampling speed by programming the NCLK_SEL register:  
Oscillator frequency  
fS =  
nCLK  
(2)  
fs = Sampling speed.  
Oscillator frequency = 1 / tHSO or 1 / tLPO depending on the OSC_SEL bit; see the Specifications section for  
1 / tHSO or 1 / tLPO  
.
nCLK is the number of clocks in one conversion cycle (see the NCLK_SEL register).  
7.3.6 I2C Address Selector  
The I2C address for the device is determined by connecting external resistors on the ADDR pin. The device  
address is selected on power-up based on the resistor values. The device retains this address until the next  
power up, until the next device reset, or until the device receives a command to program the address (General  
Call With Write Software Programmable Part of the Target Address). 7-7 provides the connection diagram for  
the ADDR pin and 7-2 provides the resistor values for selecting a different addresses of the device.  
AVDD  
R1  
ADDR  
R2  
7-7. External Resistor Connection Diagram for the ADDR Pin  
7-2. I2C Address Selection  
RESISTORS  
ADDRESS  
R1 (2)  
0 Ω  
R2(2)  
DNP(1)  
0011111b (1Fh)  
0011110b (1Eh)  
0011101b (1Dh)  
0011100b (1Ch)  
0011000b (18h)  
0011001b (19h)  
0011010b (1Ah)  
0011011b (1Bh)  
DNP(1)  
11 kΩ  
33 kΩ  
100 kΩ  
DNP(1)  
DNP(1)  
DNP(1)  
DNP(1)  
DNP(1)  
DNP(1)  
0Ωor DNP(1)  
11 kΩ  
33 kΩ  
100 kΩ  
(1) DNP = Do not populate.  
(2) Tolerance for R1, R2 < ±5%.  
7.3.7 Data Buffer  
When operating in autonomous monitoring mode, the device can use the internal data buffer for data storage.  
The internal data buffer is 16-bit wide and 16-words deep and follows the first-in, first-out (FIFO) approach.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.3.7.1 Filling of the Data Buffer  
The write operation to the data buffer starts and stops as per the settings in the DATA_BUFFER_OPMODE  
register. The DATA_BUFFER_STATUS register provides the number of entries filled in the data buffer and this  
register can be read during an active sequence to get the current status of the data buffer.  
The time between two consecutive conversions is set by the NCLK_SEL register and 方程式 3 provides the  
relationship for time between two consecutive conversions of the same channel and nCLK parameter.  
tcc = k × nCLK × OscillatorTimePeriod  
(3)  
where:  
tcc = Time between two consecutive conversions of the same channel, tcc = k × tcycle  
k = Number of channels enabled in the device sequence  
nCLK = Number of clocks used by the device for one conversion cycle  
Oscillator timer period = tLPO or tHSO depending on the OSC_SEL value; see the Specifications section for  
tLPO or tHSO  
The format of the 16-bit contents of each entry in the data buffer are set by programming the  
DOUT_FORMAT_CFG register. The DATA_OUT_CFG register enables the channel ID and DATA_VALID flag in  
the data buffer. The channel ID represents the channel number for the data entry in the data buffer. DATA_VALID  
is set to zero in either of the following conditions:  
If the entry in the data buffer is not filled after the last start of the sequence  
If the I2C controller tries to read more than 16 entries from the data buffer, the device provides zeros with  
DATA_VALID set to zero  
At the end of the write operation, the data buffer always has results of 16 (or less) consecutive conversions. The  
data buffer is filled in the order that the data are converted by the ADC. The channels converted by the ADC are  
controlled by the AUTO_SEQ_CHEN register. The entries that are not filled during an active sequence are filled  
with zeros.  
7.3.7.2 Reading Data From the Data Buffer  
The ADC drives a logic 0 on the BUSY/RDY pin after completion of the sequence when auto-sequencing is  
disabled or after the SEQ_ABORT bit is set. As illustrated in 7-8, the device provides the contents of the data  
buffer (in FIFO fashion) on receiving the I2C read frame, which consists of the device address and the read bit  
set to 1.  
S
Device Address (7 Bits)  
R
A
MSB for Data Buffer Entry 0  
A
LSB for Data Buffer Entry 0  
A
MSB for Data Buffer Entry 1  
A
LSB for Data Buffer Entry 15  
N
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-8. Reading Data Buffer (16 Bit Words × 16 Words)  
The device returns zeroes with the DATA VALID flag set to zero for all I2C read frames received after all the valid  
data words from the data buffer are read or when an I2C read frame is issued during an active sequence  
(indicated by a high on the BUSY/RDY pin). The I2C controller must provide a NACK followed by a STOP or  
RESTART condition in an I2C frame to finish the reading process. The data buffer is reset by setting the  
SEQ_START bit or after resetting the device.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.3.8 Accumulator  
When operating in high-precision mode, the device offers a 16-bit internal accumulator per channel. The  
accumulator for a channel is enabled only if that channel is selected in the channel scanning sequence. The  
accumulator adds sixteen 12-bit conversion results. The result of adding sixteen 12-bit words is one 16-bit word.  
The time between two consecutive conversions for accumulation is controlled by the NCLK_SEL register and 方  
程式 3 provides the relationship for time between two consecutive conversions of same channel and nCLK  
parameter.  
The accumulated data can be read from the ACC_CHx_MSB and ACC_CHx_LSB registers in the device. The  
ACCUMULATOR_STATUS register provides the number of accumulations done in the accumulator since last  
conversion. This register can be read during an active sequence to get the current status of the accumulator.  
The accumulator is reset when setting the SEQ_START bit or on resetting the device.  
方程4 provides the relationship between high precision data and ADC conversion results.  
16  
High Precision Data for CHx =  
Conversion Result[k] for CHx  
ƒ
k=1  
(4)  
(5)  
方程5 provides the value of LSB in high precision mode for the accumulated result.  
AVDD  
216  
1 LSB =  
7.3.9 Digital Window Comparator  
The internal digital window comparator is available in all modes. In autonomous modes with thresholds  
monitoring and diagnostics, the digital window comparator controls the filling of the data into the FIFO and the  
output of the ALERT pin. In the remaining modes, the digital window comparator only controls the output of the  
ALERT pin. 7-9 provides the block diagram for digital window comparator.  
DWC_BLOCK_EN  
ALERT_EN_CH1  
Channel 1  
ALERT_EN_CH0  
Channel 0  
High Side Comparator  
(High Side Threshold, Hysteresis)  
for CH0  
High Side  
Counter  
S
R
High Latched Flag for CH0  
Q
Write Bit to  
Reset  
End of  
Conversion  
Conversion Result for CH0  
ADC  
OR  
ALERT  
OR  
R
S
Low Side  
Counter  
Low Latched Flag for CH0  
Q
(Low Side Threshold, Hysteresis)  
for CH0  
Low Side Comaparator  
7-9. Digital Comparator Block Diagram  
The low-side threshold, high-side threshold, and hysteresis parameters are independently programmable for  
each input channel. 7-10 illustrates the comparison thresholds and hysteresis for the two comparators. A pre-  
ALERT event counter after each comparator counts the output of the comparator and sets the latched flags. The  
pre-ALERT event counter settings are common to the two channels.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
NOTE: PRE_ALT_MAX_EVENT_COUNT = 70h  
(waits for 8 counts to set alert)  
3
2
8
2
7
High Threshold  
4
1
3
6
1
4
5
5
High Threshold - Hysteresis  
6
Counter Reset because the high-side-comparator reset  
before 8.  
Counter Reset because the high-side-comparator reset  
before 8.  
Low Threshold + Hysteresis  
Low Threshold  
7
5
4
6
3
1
2
High Side Comparator  
(Internal Only Signal)  
Low Side Comparator  
(Internal Only Signal)  
ALERT  
7-10. Thresholds, Hysteresis, and Event Counter for the Digital Window Comparator  
The DWC_BLOCK_EN bit in the ALERT_DWC_EN register enables and disables the complete digital window  
comparator block (disabled at power-up) and the ALERT_EN_CHx bits in the ALERT_CHEN register enables  
the digital window comparator for individual channels. Possible responses when using the digital comparator  
when a new ADC conversion is completed include:  
1. The output of the high-side comparator transitions to a logic high when the conversion result is greater than  
the high threshold. This comparator resets when the conversion result is less than the high threshold –  
hysteresis.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
2. The output of the low-side comparator transitions to a logic high when the conversion result is less than the  
low threshold. This comparator resets when the conversion result is greater than the low threshold +  
hysteresis.  
3. When the output of either the high-side or low-side comparator transitions high, the pre-ALERT event  
counter begins to increment for each subsequent conversion. This counter continues to increment until the  
value stored in the PRE_ALT_MAX_EVENT_COUNT register is reached. When the counter reaches  
PRE_ALT_MAX_EVENT_COUNT, the alert becomes active and sets the latched flags. If the comparator  
output becomes zero before the counter reaches PRE_ALT_MAX_EVENT_COUNT, then the event counter  
is reset to zero, ALERT is not set, and the latched flag is not set.  
Therefore, the latched flags (high and low) for the channel are updated only if the respective comparator output  
remains 1 for the specified number of consecutive conversions (set by PRE_ALT_MAX_EVENT_COUNT).  
The latched flags can be read from the ALERT_LOW_FLAGS and ALERT_HIGH_FLAGS registers. To clear a  
latched flag, write 1 to the applicable bit location. The ALERT pin status is re-evaluated when an applicable  
latched flag is set or is cleared.  
The response time for the ALERT pin can be estimated by 方程6  
tresponse = [1 + k × (PRE_ALT_MAX_EVENT_COUNT + 1) ] × nCLK × Oscillator TimePeriod  
(6)  
where:  
k = Number of channels enabled in device sequence  
nCLK = Number of clocks used by device for one conversion cycle  
Oscillator timer period = tLPO or tHSO depending on the OSC_SEL value; see the Specifications section for  
tLPO or tHSO  
7.3.10 I2C Protocol Features  
7.3.10.1 General Call  
On receiving a general call (00h), the device provides an ACK.  
7.3.10.2 General Call With Software Reset  
On receiving a general call (00h) followed by a software reset (06h), the device resets.  
7.3.10.3 General Call With Write Software Programmable Part of the Target Address  
On receiving a general call (00h) followed by 04h, the ADC configures the I2C address configured by the ADDR  
pin. During this operation, the ADC keeps the BUSY/RDY pin high and does not respond to other I2C commands  
except a general call.  
7.3.10.4 Configuring the ADC Into High-Speed I2C Mode  
The ADC can be configured in high-speed I2C mode by providing an I2C frame with one of the HS-mode codes  
(08h to 0Fh).  
After receiving one of the HS-mode codes, the ADC sets the HS_MODE bit in the  
OPMODE_I2CMODE_STATUS register and remains in high-speed I2C mode until a STOP condition is received  
in an I2C frame.  
7.3.10.5 Bus Clear  
If the SDA line is stuck low because of an incomplete I2C frame, providing nine clocks on SCL is recommended.  
The device releases the SDA line within these nine clocks, and then the next I2C frame can be started.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
The ADC has the following functional modes:  
Manual mode:  
Manual mode with CH0 only  
Manual mode with auto-sequence  
Autonomous modes:  
Autonomous mode with threshold monitoring and diagnostics  
Autonomous mode with burst data  
High-precision mode  
The ADC powers up in manual mode with CH0 only and can be configured into one of the other modes by  
writing the configuration registers for the desired mode. Steps for configuring ADC into different modes are  
shown in 7-11.  
A. Offset can also be calibrated anytime during normal operation by setting the bit in the OFFSET_CAL register.  
B. Configure the CH_INPUT_CFG register.  
C. Configure the OPMODE_SEL register for the desired operation mode.  
D. See the Configuring the ADC Into High-Speed I2C Mode section.  
E. The operating mode is selected by configuring the OPMODE_SEL register in step 3.  
F. For reading and writing registers, see the Programming section.  
7-11. Configuring the ADC Into Different Modes  
7.4.1 Device Power Up and Reset  
On power up, the device calibrates the offset and calculates the address from the resistors connected on the  
ADDR pin. During this time, the device keeps BUSY/RDY high.  
The device can be reset by cycling power on the AVDD pin, by a general call (00h) followed by software reset  
(06h), or by writing the WKEY register followed by setting the bit in the DEVICE_RESET register.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
When cycling power on the AVDD pin and on general call (00h) followed by software reset (06h), all the device  
configurations are reset, and the device initiates an offset calibration and re-evaluates the I2C address.  
When setting the bit in the DEVICE_RESET register, all the device configurations except latched flags for the  
digital window comparator and the WKEY register are reset, The device does not initiate offset calibration and  
does not re-evaluate the I2C address.  
7.4.2 Manual Mode  
On power-up, the ADC is in manual mode using the single-ended and dual-channel configuration and samples  
the analog input applied on channel 0. In this mode, the ADC uses the high-frequency oscillator for conversions.  
Manual mode allows the external host processor to directly request and control when the data are sampled. The  
data capture is initiated by an I2C command from the host processor and the data are then returned over the I2C  
bus at a throughput rate of up to 140 kSPS.  
After setting the operation mode to manual mode as illustrated in 7-11, steps for operating the ADC to be in  
manual mode and reading data are illustrated in 7-12. The host can either configure the ADC to scan through  
one channel or both channels by configuring the CH_INPUT_CFG and AUTO_SEQ_CHEN registers.  
7.4.2.1 Manual Mode With CH0 Only  
Set the OPMODE_SEL register to 000b or 001b for manual mode with channel 0 only. The host must provide the  
ADC address and read bit to start the conversions. To continue with conversions and reading data, the host must  
provide continuous SCL (7-13). In this mode, a NACK followed by a STOP condition in the I2C frame is  
required to abort the operation. Then the ADC operation mode can be changed to another operation mode.  
7.4.2.2 Manual Mode With AUTO Sequence  
Set the OPMODE_SEL register to 100b or 101b for manual mode with AUTO sequence. The host must set the  
SEQ_START bit in the START_SEQUENCE register and provide the device address and read bit to start the  
conversions. To continue with conversions and reading data, the host must provide continuous SCL (7-13). In  
this mode, the SEQ_ABORT bit in the ABORT_SEQUENCE register must be set to abort the operation. Then  
the device operation mode can be changed to another operation mode. In this mode, a register read aborts the  
AUTO sequence.  
In manual mode, the device always uses the high-speed oscillator and the nCLK parameter has no effect. The  
maximum scan rate is given by 方程7:  
1000  
fS =  
[
18ìTSCL + k  
]
(7)  
fs = Maximum sampling speed in kSPS  
TSCL= Time period of SCL clock (in µs)  
if TSCL-LOW (low period of SCL) < 1.8.µs, k = (1.8 TSCL-LOW) and the device stretches clock in manual  
mode; not applicable for standard I2C mode (100 kHz)  
if TSCL-LOW (low period of SCL) 1.8.µs, k = 0, and the device does not stretch clock in manual mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Manual Mode(A)  
AUTO  
Sequence  
Select Manual Mode with  
AUTO Sequence and  
Select Channels in AUTO  
Sequence(B)  
No  
Scan CH0  
Only  
Yes  
Set SEQ_START Bit(C)  
CH0 Only (Default)  
Provide Device Address  
and Read Bit to Start  
Conversions(D)  
Provide Device Address  
and Read Bit to Start  
Conversions(D)  
Provide Continuous SCL to  
the device(D)  
Provide Continuous SCL to  
the device(D)  
Yes  
Yes  
Continue with  
conversions and  
reading data  
Continue with  
conversions and  
reading data  
No  
Provide STOP Condition on  
I2C Bus(D)  
No  
Set SEQ_ABORT Bit(E)  
Yes  
Continue in same  
Operation Mode  
Yes  
Continue in same  
Operation Mode  
No  
No  
Exit to another Operation Mode(F)  
A. For setting the operation mode to manual mode, see 7-11.  
B. Select manual mode with AUTO sequence in the OPMODE_SEL register. Select channels in the AUTO_SEQ_CHEN register.  
C. Set the SEQ_START bit in the START_SEQUENCE register.  
D. See 7-13.  
E. Set the SEQ_ABORT bit in the ABORT_SEQUENCE register.  
F. Select another operation mode in the OPMODE_SEL register.  
G. For reading and writing registers, see the Programming section.  
7-12. Device Operation in Manual Mode  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Data can be read from the device by providing a device address and read bit followed by continuous SCL, as  
shown in 7-13.  
Sample A  
Sample A+1  
Sample A+2  
Device I2C Address from Host  
ADC Data for Sample A  
ADC Data for Sample A  
ADC Data for Sample A+1  
NA  
CK  
ACK  
ACK  
ACK  
18  
S
SDA  
SCL  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R
8
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
10  
D2  
11  
D1  
12  
D0  
13  
0
0
0
0
D11  
D10  
0
1
2
3
4
5
6
7
9
1
2
3
4
5
6
7
8
9
14  
15  
16  
17  
1
2
17  
18  
Optional  
Clock  
Stretch  
Optional  
Clock  
Stretch  
Device in Acquisition  
Device in Acquisition  
Device in Acquisition  
Data from Host to Device  
Data from Device to Host  
A. See 方程7 for sampling speed in manual mode.  
B. If the device scans both channels in AUTO sequence, the first data (for sample A) is from channel 0 and the second data (for sample A  
+1) is from channel 1.  
7-13. Starting Conversion and Reading Data in Manual Mode  
7.4.3 Autonomous Modes  
In autonomous mode, the ADC can be programmed to monitor the voltage applied on the analog input pins. The  
ADC generates a signal on the ALERT pin when the programmable high or low threshold values are crossed.  
The host processor can read the ADC conversion results from the internal data buffer.  
In autonomous mode, the first start of conversion must be provided by the host and the ADC generates the  
subsequent start of conversions. The ADC initiates the following start of conversions using the internal oscillator.  
After configuring the operation mode to autonomous mode (set the OPMODE_SEL register to 110b), as  
illustrated in 7-11, steps for operating the ADC to be in different autonomous modes are illustrated in 7-14.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Autonomous Modes(A)  
Select the Channels in AUTO Sequence(B)  
Select the Oscillator  
& Set the nCLK value(C)  
Select the Data Buffer Configuration(D)  
Autonomous Mode with Threshold Monitoring and Diagnostics  
Autonomous Mode with Burst Data  
Stop Burst  
Pre Alert  
Post Alert  
Start Burst  
Set the Thresholds,  
Hysteresis and  
Enable Alert(E)  
Set the Thresholds,  
Hysteresis and  
Enable Alert(E)  
Set the SEQ_START  
Bit(F)  
Set the SEQ_Start  
Bit(F)  
Set the SEQ_START  
Bit(F)  
Set the SEQ_START  
Bit(F)  
Device Starts  
conversions and  
starts Filling Data  
Buffer  
Device Starts  
conversions and  
starts Filling Data  
Buffer  
Device Starts  
conversions and  
starts Filling Data  
Buffer  
Device Starts  
Conversions  
No  
No  
Is Alert Set?  
No  
No  
Is Data Buffer  
Filled or SEQ_ABORT  
bit Set?  
Is Alert Set or  
SEQ_ABORT bit set ?  
Is SEQ_ABORT  
Bit Set ?  
Yes  
Device Starts Filling  
Data Buffer  
Yes  
Yes  
Yes  
Is Data Buffer  
Filled or SEQ_ABORT  
bit Set?  
No  
Yes  
Device Stops  
Conversions & Stops  
Filling Data Buffers  
Device Stops  
Conversions & Stops  
Filling Data Buffers  
Device Stops  
Conversions & Stops  
Filling Data Buffer  
Device Stops  
Conversions & Stops  
Filling Data Buffer  
Read the latched  
flags of Digital  
Window  
Comparator(G)  
Read the latched  
flags of Digital  
Window  
Comparator(G)  
Reset the latched  
flags by writing 1(H)  
Reset the latched  
flags by writing 1(H)  
Read the Data Buffer(I)  
Exit to another Operation  
Mode(J)  
Continue in same  
operation mode  
No  
Yes  
Set the SEQ_START  
Bit(F)  
A. For setting the operation mode to Autonomous modes, see 7-11.  
B. Select channels in the AUTO_SEQ_CHEN register.  
C. Select the oscillator by configuring the OSC_SEL register and configure the NCLK_SEL register.  
D. Select the data buffer mode in the DATA_BUFFER_OPMODE register.  
E. Configure the thresholds in the DWC_xTH_CHx_xxx registers and hysteresis in the DWC_HYS_CHx registers. Enable the alert for  
channels in the ALERT_CHEN register and set the DWC_BLOCK_EN bit in the ALERT_DWC_EN register.  
F. Set the bit SEQ_START bit in the START_SEQUENCE register.  
G. Read the ALERT_LOW_FLAGS and ALERT_HIGH_FLAGS registers.  
H. Reset the ALERT_LOW_FLAGS and ALERT_HIGH_FLAGS registers by writing 03h.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
I.  
See the Reading Data From the Data Buffer section.  
J. Select another operation mode in the OPMODE_SEL register.  
K. For reading and writing registers, see the Programming section.  
7-14. Configuring ADC in Autonomous Modes  
Abort the present sequence by setting the SEQ_ABORT bit in the ABORT_SEQUENCE register before  
changing the ADC operation mode or ADC configuration.  
7.4.3.1 Autonomous Mode With Threshold Monitoring and Diagnostics  
In this mode, the ADC automatically scans the input voltage on the analog input channels and asserts the  
ALERT pin when the programmable high or low thresholds are crossed. The conversion results of the ADC  
corresponding to the pre-ALERT or post-ALERT can be stored in the internal data buffer, as described in  
Autonomous Mode With Pre-ALERT Data and Autonomous Mode With Post-ALERT Data respectively. This  
mode is useful for applications where the output of the sensor must be continuously monitored and where action  
is only taken when the sensor output deviates outside of an acceptable range.  
7.4.3.1.1 Autonomous Mode With Pre-ALERT Data  
In this mode, the ADC stores the 16 conversions prior to the assertion of the ALERT pin. Upon assertion of  
ALERT, conversions stop. For this mode, set DATA_BUFFER_OPMODE to 100b. In this mode, the ADC starts  
converting and stores the data when setting the SEQ_START bit in the START_SEQUENCE register and  
continues to store data into the data buffer until one of the digital comparator flags is set for crossing a high  
threshold or a low threshold for the channels selected in the sequence. If the SEQ_ABORT bit is set before the  
data buffer is filled, the ADC aborts the sequence and stops storing conversion results. If more than 16  
conversions occur between start of sequence and alert output, the first entries written into the data buffer are  
overwritten.  
7-15 and 7-16 show the filling of the data buffer in autonomous mode with pre-ALERT data.  
Device stops conversions and Sets the Latched  
flag and alert pin after count(=4) is reached  
Conversion [N+ 15] for CHx  
Device stops conversions and  
stops storing data in the buffer  
Conversion [N+ 15] for CHy  
after the count is reached  
High Threshold  
Sets the Output of the Comparator  
Hysteresis  
High Threshold - Hysteresis  
Sets the Output of the  
Comparator  
High Threshold  
Data Buffer  
Conversion [N] for CHx  
Conversion [N + 1] for CHy  
tCC  
Conversion [N] for CHx  
tCC  
Conversion [N + 14] for CHx  
Conversion [N + 15] for CHy  
Data Buffer  
Conversion [N] for CHx  
CHy is the channel which first triggered the ALERT  
Conversion [N+1] for CHy  
Conversion [N] for CHx  
Conversion [N + 14] for CHx  
Conversion [N + 15] for CHx  
SEQ_START bit is set  
by user  
Conversion [0] for CHx  
Conversion [1] for CHy  
SEQ_START bit is set  
by user  
Conversion [0] for CHx  
BUSY/RDY  
BUSY/RDY  
Time  
Time  
7-16. Pre-ALERT Data for Dual-Channel  
7-15. Pre-ALERT Data for Single-Channel  
Configuration  
Configurations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.4.3.1.2 Autonomous Mode With Post-ALERT Data  
In this mode, the ADC captures the next sixteen conversion results after the ALERT pin is asserted. Once these  
sixteen conversions are stored in the data buffer, all conversion stops. For this mode, Set  
DATA_BUFFER_OPMODE to 110b. In this mode, the ADC starts converting the data on setting the  
SEQ_START bit and stores the data in the data buffer when one of the digital comparator flags is set after the  
crossing a high threshold or a low threshold for the channels selected in the sequence. if the SEQ_ABORT bit is  
set before the data buffer is filled, the ADC aborts the sequence and stops storing the conversion results.  
7-17 and 7-18 show the filling of the data buffer in autonomous mode with post-ALERT data.  
Conversion [N+ 14] for CHx  
Device stops conversions and  
stops storing data in the buffer  
after the data buffer is filled  
Conversion [N+ 15] for CHy  
Device stops conversions and  
stops storing data in buffer after  
the data buffer is filled  
Conversion [N+ 15] for CHx  
Data Buffer  
tCC  
Conversion [N] for CHx  
Conversion [N + 1] for CHy  
Device Starts storing data in  
buffer and sets the Latched flag  
and alert pin after the count is  
reached  
tCC  
Conversion [N] for CHx  
Conversion [N+1] for CHy  
High Threshold  
Conversion [N + 14] for CHx  
Conversion [N + 15] for CHy  
Device Starts storing data in  
buffer and sets the Latched flag  
and alert pin after count(=4) is  
reached  
Data Buffer  
CHx is the channel which first triggered the ALERT  
Sets the Output of the  
Comparator  
Conversion [N] for CHx  
Conversion [N] for CHx  
SEQ_START bit is set  
by user  
Conversion [0] for CHx  
Conversion [1] for CHy  
High Threshold  
Sets the Output of the  
Comparator  
Conversion [N + 14] for CHx  
Conversion [N + 15] for CHx  
Hysteresis  
High Threshold - Hysteresis  
SEQ_START bit is set  
by user  
Conversion [0] for CHx  
BUSY/RDY  
Time  
BUSY/RDY  
7-18. Post-ALERT Data for Dual Channel  
Configuration  
Time  
7-17. Post-ALERT Data for Single Channel  
Configurations  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.4.3.2 Autonomous Mode With Burst Data  
In this mode, the ADC can be configured to store up to 16 conversion results in the data buffer based on user  
command. In this mode, the user can either start or stop the burst of data as described in the following two  
sections.  
7.4.3.2.1 Autonomous Mode With Start Burst  
For this mode, set DATA_BUFFER_OPMODE to 001b. With start burst, the user can configure the device to  
start the filling of the data buffer with conversion results by setting the SEQ_START bit and the device stops  
converting data and filling the data buffer after the data buffer is filled.  
Conversion [14] for CH0  
Device stops conversions and  
stops storing data after the data  
buffer is filled  
Conversion [15] for CH1  
Device stops conversions and stops filling  
the data buffer after the buffer is filled  
Conversion [15] for CHx  
Data Buffer  
Conversion [0] for CH0  
Conversion [1] for CH1  
Conversion [14] for CH0  
Conversion [15] for CH1  
Data Buffer  
tCC  
tCC  
Conversion [0] for CHx  
SEQ_START bit is set  
by user  
Device starts  
conversions and starts  
storing data in the buffer  
on setting the  
Conversion [0] for CHx  
Conversion [14] for CHx  
Conversion [15] for CHx  
Conversion [0] for CH0  
Conversion [1] for CH1  
SEQ_START bit  
BUSY/RDY  
Time  
BUSY/RDY  
7-20. Start Burst With a Dual-Channel  
Time  
Configuration  
7-19. Start Burst With a Single-Channel  
Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.4.3.2.2 Autonomous Mode With Stop Burst  
For this mode, set DATA_BUFFER_OPMODE to 000b. With stop burst, the user can configure the device to stop  
filling the data buffer with conversion results by setting the SEQ_ABORT bit. If more than 16 conversions occur  
between start of sequence and abort of sequence, the entries first written into the data buffer are overwritten. 图  
7-21 and 7-22 illustrate the filling of the data buffer in autonomous mode with stop burst.  
Conversion [N+ 14] for CH0  
Device stops conversions and  
stops storing data on setting the  
SEQ_ABORT bit  
Conversion [N+ 15] for CH1  
Device stops conversions and stops filling the  
data buffer on setting the SEQ_ABORT bit  
Conversion [N+ 15] for CHx  
tCC  
Data Buffer  
Conversion [N] for CH0  
Conversion [N + 1] for CH1  
Conversion [N] for CH0  
tCC  
Data Buffer  
Conversion [N + 14] for CH0  
Conversion [N + 15] for CH1  
Conversion [N] for CHx  
Conversion [N+1] for CH1  
Conversion [N] for CHx  
Conversion [N + 14] for CHx  
Conversion [N + 15] for CHx  
SEQ_START bit is set  
by user  
SEQ_START bit is set  
by user  
Conversion [0] for CH0  
Conversion [1] for CH1  
Conversion [0] for CHx  
BUSY/RDY  
BUSY/RDY  
Time  
Time  
7-22. Stop Burst With a Dual-Channel  
7-21. Stop Burst With a Single-Channel  
Configuration  
Configuration  
7.4.4 High-Precision Mode  
High-precision mode increases the accuracy of the data measurement by accumulating ADC conversion results.  
This accumulation is useful for applications where the level of precision required to accurately measure the  
sensor output must be higher than 12 bits.  
For this mode, set the OPMODE_SEL register to 111b. In this mode, the ADC starts converting and starts  
accumulating the conversion results in an accumulator when the SEQ_START bit is set. The ADC stops  
accumulating after 16 conversion results. The accumulator contains one 16-bit conversion result. The ADC has  
an accumulator for each analog input channel. If the operation of the ADC is aborted in high-precision mode  
before the BUSY/RDY pin goes low because the SEQ_ABORT bit is set by the user, the ADC provides invalid  
data and the internal data buffer (7-8), provides zeroes as output. In this mode, the BUSY/RDY can wake up  
the MCU or host from sleep or hibernation when accumulation completes. The steps for configuring the ADC into  
high-precision mode are illustrated in 7-23.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
High Precision Mode(A)  
Select the Channels in AUTO  
Sequence(B)  
Select the Oscillator  
& Set the nCLK value(C)  
Enable the accumulator(D)  
Set the SEQ_START Bit(E)  
Device Starts Conversions  
& Starts Accumulating Data  
Check Busy/RDY  
pin to see if 16  
accumulations are  
completed  
No  
Yes  
Read the Accumulated Results(F)  
Yes  
Continue in High  
Presicion Mode  
No  
Exit to another Operation Mode(G)  
A. For setting the operation mode to high-precision mode, see 7-11.  
B. Select the channels in the AUTO_SEQ_CHEN register.  
C. Select the oscillator by configuring the OSC_SEL register and configure the NCLK_SEL register.  
D. Enable the accumulator by setting the bits in the ACC_EN register.  
E. Set the SEQ_START bit in the START_SEQUENCE register.  
F. Read the ACC_CHx_xxx registers.  
G. Select another operation mode in the OPMODE_SEL register.  
H. For reading and writing registers, see the Programming section.  
7-23. Configuring ADC in High-Precision Mode  
Abort the current sequence by setting the SEQ_ABORT bit before changing the ADC operation mode or ADC  
configuration.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7-24 and 7-25 show the accumulation of conversion results in high-precision mode.  
Device stops after  
accumulating 16  
conversion results  
Device starts  
accumulating on setting  
the SEQ_START bit  
tCC  
Conversion [15] for CHx  
Conversion [0] for CHx  
BUSY/RDY  
Time  
7-24. High-Precision Mode With Single-Channel Configurations  
Accumulated in  
Accumulator for CH0  
Device stops after  
accumulating 16  
conversion results  
Device starts  
accumulating on setting  
the SEQ_START bit  
tCC  
Conversion [15] for CH0  
Conversion [0]  
for CH0  
Conversion [15] for CH1  
Accumulated in  
Accumulator for CH1  
Conversion [0] for CH1  
BUSY/RDY  
Time  
7-25. High-Precision Mode With Dual-Channel Configurations  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.5 Programming  
7-3 provides the acronyms for different conditions in an I2C frame.  
7-3. I2C Frame Acronyms  
SYMBOL  
DESCRIPTION  
S
Sr  
P
START condition for I2C frame  
RESTART condition for I2C frame  
STOP condition for I2C frame  
ACK (low)  
A
N
R
W
NACK (high)  
Read bit (high)  
Write bit (low)  
7-4. Opcodes for Commands  
OPCODE  
00010000b  
00001000b  
00011000b  
00100000b  
00110000b  
00101000b  
COMMAND DESCRIPTION  
Single register read  
Single register write  
Set bit  
Clear bit  
Reading a continuous block of registers  
Writing a continuous block of registers  
7.5.1 Reading Registers  
The I2C controller can either read a single register or a continuous block registers from the ADC, as described in  
the Single Register Read and Reading a Continuous Block of Registers sections.  
7.5.1.1 Single Register Read  
To read a single register from the ADC, the I2C controller must first provide an I2C command with three frames  
(of eight bits each) to set the address as shown in 7-26. The register address is the address of the register  
that must be read. The opcode for register read command is listed in 7-4.  
Register Read or Block Read  
Opcode (8 Bits)  
S
Device Address (7 Bits)  
W
A
A
Register Address (8 Bits)  
A
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-26. Setting Register Address for Reading Registers  
Next, the I2C controller must provide another I2C frame containing the ADC address and read bit as illustrated in  
7-27. After this frame, the ADC provides register data. If the host provides more clocks, the ADC provides the  
same register data. To end the register read command, the controller must provide a STOP or a RESTART  
condition in the I2C frame.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
S
Device Address (7 Bits)  
R
A
Register Data (8 Bits)  
A
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-27. Reading Register Data  
7.5.1.2 Reading a Continuous Block of Registers  
To read a continuous block of registers, the I2C controller must first provide an I2C command to set the address,  
as illustrated in 7-26. The register address is the address of the first register in the block that must be read.  
The opcode for reading a continuous block of register is listed in 7-4.  
Next, the I2C controller must provide another I2C frame containing the ADC address and read bit, as shown in 图  
7-28. After this frame, the ADC provides register data. On providing more clocks, the ADC provides data for the  
next register. On reading data from addresses that do not exist in the Register Map of the ADC, the ADC returns  
zeros. If the ADC does not have any further registers to provide the data, the ADC provides zeros. To end the  
register read command, the controller must provide a STOP or a RESTART condition in the I2C frame.  
S
Device Address (7 Bits)  
R
A
Register Data (8 Bits) for Register N  
A
Register Data (8 Bits) for Register N+1  
A
Register Data (8 Bits) for Register N+2  
A
Register Data (8 Bits) for Register N+k  
A
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-28. Reading a Continuous Block of Registers  
7.5.2 Writing Registers  
The I2C controller can either write a single register or a continuous block registers to the ADC. The I2C controller  
can also set or clear a few bits in a register.  
7.5.2.1 Single Register Write  
To write to a single register in the ADC, the I2C controller has to provide an I2C command with four frames as  
shown in 7-29. The register address is the address of the register which must be written and register data is  
the value that must be written. The opcode for single register write is listed in 7-4. To end the register write  
command, the controller has to provide a STOP or a RESTART condition in the I2C frame.  
Write Register or Set Bit or Clear Bit  
Opcode (8 Bits)  
S
Device Address (7 Bits)  
W
A
A
Register Address (8 Bits)  
A
Register Data (8 Bits)  
A
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-29. Writing a Single Register  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.5.2.2 Writing a Continuous Block of Registers  
To write to a continuous block of registers, the I2C controller must provide an I2C command as shown in 7-30.  
The register address is the address of the first register in the block that must be written. The I2C controller must  
provide data for registers in subsequent I2C frames in an ascending order of register addresses. Writing data to  
addresses that do not exist in the Register Map of the ADC has no effect. The opcode for writing a continuous  
block of registers is listed in 7-4. If the data provided by the I2C controller exceeds the address space of the  
ADC, the ADC neglects the data beyond the address space. To end the register write command, the controller  
must provide a STOP or a RESTART condition in the I2C frame.  
S
Device Address (7 Bits)  
W
A
Block Write Opcode (8 Bits)  
A
Register Address (8 Bits)  
A
Register Data (8 Bits) for Register N  
A
Register Data (8 Bits) for Register N+1  
A
Register Data (8 Bits) for Register N+k  
A
P/Sr  
Data from Host to Device  
Data from Device to Host  
7-30. Writing a Continuous Block of Registers  
7.5.2.3 Set Bit  
To set bits in a register without changing the other bits, the I2C controller must provide an I2C command with four  
frames, as illustrated in 7-29. The register address is the address of the register in which the bits must be set  
and the register data are the values representing the bits that must be set. Bits with a value of 1 in register data  
are set and bits with a value of 0 in register data are not changed. The opcode for set bit is listed in 7-4. To  
end this command, the controller must provide a STOP or RESTART condition in the I2C frame.  
7.5.2.4 Clear Bit  
To clear bits in a register without changing the other bits, the I2C controller must provide an I2C command with  
four frames, as illustrated in 7-29. The register address is the address of the register where the bits must be  
cleared and where the register data are the values representing the bits that must be cleared. Bits with a value  
of 1 in register data are cleared and bits with a value of 0 in register data are not changed. The opcode for  
clearing a bit is listed in 7-4. To end this command, the controller must provide a STOP or a RESTART  
condition in the I2C frame.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6 Register Map  
7.6.1 Page1 Registers  
7-5 lists the memory-mapped registers for the Page1 registers. All register offset addresses not listed in 表  
7-5 should be considered as reserved locations and the register contents should not be modified.  
7-5. PAGE1 Registers  
Address Acronym  
Register Name  
Section  
7.6.1.1  
7.6.1.2  
7.6.1.3  
7.6.1.4  
7.6.1.5  
7.6.1.6  
7.6.1.7  
7.6.1.8  
7.6.1.9  
7.6.1.10  
7.6.1.11  
7.6.1.12  
7.6.1.13  
7.6.1.14  
0x0  
0x1  
OPMODE_I2CMODE_STATUS  
Device operation mode register  
Data buffer status register  
Status of ADC accumulator  
Alert trigeer channel ID  
DATA_BUFFER_STATUS  
ACCUMULATOR_STATUS  
ALERT_TRIG_CHID  
SEQUENCE_STATUS  
ACC_CH0_LSB  
0x2  
0x3  
0x4  
Sequence status register  
0x8  
CH0 accumulator data register (LSB)  
CH0 accumulated data register (MSB)  
CH1 accumulated data register (LSB)  
CH1 accumulated data register (MSB)  
Alert low flags register  
0x9  
ACC_CH0_MSB  
0xA  
0xB  
0xC  
0xE  
0x14  
0x15  
0x17  
ACC_CH1_LSB  
ACC_CH1_MSB  
ALERT_LOW_FLAGS  
ALERT_HIGH_FLAGS  
DEVICE_RESET  
OFFSET_CAL  
Alert high flags register  
Device reset register  
Offset calibration register  
WKEY  
Write key for writing into  
DEVICE_RESET register  
0x18  
0x19  
0x1C  
0x1E  
OSC_SEL  
Oscillator selection register  
nCLK selection register  
7.6.1.15  
7.6.1.16  
7.6.1.17  
7.6.1.18  
NCLK_SEL  
OPMODE_SEL  
START_SEQUENCE  
Device operation mode selection  
Start channel scanning sequence  
register  
0x1F  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
ABORT_SEQUENCE  
AUTO_SEQ_CHEN  
CH_INPUT_CFG  
Abort channel sequence register  
Auto sequencing channel select register  
Channel input configuration register  
Data buffer word configuration register  
Data buffer operation mode register  
Accumulator control register  
7.6.1.19  
7.6.1.20  
7.6.1.21  
7.6.1.22  
7.6.1.23  
7.6.1.24  
7.6.1.25  
7.6.1.26  
7.6.1.27  
7.6.1.28  
7.6.1.29  
7.6.1.30  
7.6.1.31  
7.6.1.32  
7.6.1.33  
7.6.1.34  
7.6.1.35  
7.6.1.36  
DOUT_FORMAT_CFG  
DATA_BUFFER_OPMODE  
ACC_EN  
ALERT_CHEN  
Alert channel enable register  
PRE_ALT_MAX_EVENT_COUNT  
ALERT_DWC_EN  
Pre-alert count register  
Alert digital window comparator register  
CH0 high threshold LSB register  
CH0 high threshold MSB register  
CH0 low threshold LSB register  
CH0 low threshold MSB register  
CH1 high threshold LSB register  
CH1 high threshold MSB register  
CH1 low threshold LSB register  
CH1 low threshold MSB register  
CH0 comparator hysterisis register  
DWC_HTH_CH0_LSB  
DWC_HTH_CH0_MSB  
DWC_LTH_CH0_LSB  
DWC_LTH_CH0_MSB  
DWC_HTH_CH1_LSB  
DWC_HTH_CH1_MSB  
DWC_LTH_CH1_LSB  
DWC_LTH_CH1_MSB  
DWC_HYS_CH0  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7-5. PAGE1 Registers (continued)  
Address Acronym  
Register Name  
Section  
0x41  
DWC_HYS_CH1  
CH1 comparator hysterisis register  
7.6.1.37  
Complex bit access types are encoded to fit into small table cells. 7-6 shows the codes that are used for  
access types in this section.  
7-6. Page1 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups  
form a hierarchical structure and  
the array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address this variable refers to the  
value of a register array.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.1 OPMODE_I2CMODE_STATUS Register (Address = 0x0) [Reset = 0x0]  
OPMODE_I2CMODE_STATUS is shown in 7-31 and described in 7-7.  
Return to the 7-5.  
Device operation mode register  
7-31. OPMODE_I2CMODE_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
HS_MODE  
R-0b  
DEV_OPMODE[1:0]  
R-00b  
7-7. OPMODE_I2CMODE_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00000b  
0b  
Description  
7-3  
2
RESERVED  
HS_MODE  
R
Reserved bits. Read returns 00000b.  
R
This bit indicates when device is in high speed mode for I2C  
Interface.  
0b = Device is not in high speed mode for I2C Interface.  
1b = Device is in high speed mode for I2C Interface.  
1-0  
DEV_OPMODE[1:0]  
R
00b  
These bits indicate funtional mode of the device.  
00b = Device is operating in manual mode.  
01b = Not used.  
10b = Device is operating in autonomous monitoring mode.  
11b = Device is operating in high precision mode.  
7.6.1.2 DATA_BUFFER_STATUS Register (Address = 0x1) [Reset = 0x0]  
DATA_BUFFER_STATUS is shown in 7-32 and described in 7-8.  
Return to the 7-5.  
Data buffer status register  
7-32. DATA_BUFFER_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000b  
DATA_WORDCOUNT[4:0]  
R-00000b  
7-8. DATA_BUFFER_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
000b  
Reserved bits. Read returns 000b.  
DATA_WORDCOUNT[4:0] R  
00000b  
DATA_WORDCOUNT [00000] to [10000] = Number of entries filled in  
data buffer (0 to 16)  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.3 ACCUMULATOR_STATUS Register (Address = 0x2) [Reset = 0x0]  
ACCUMULATOR_STATUS is shown in 7-33 and described in 7-9.  
Return to the 7-5.  
Status of ADC accumulator  
7-33. ACCUMULATOR_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
ACC_COUNT[3:0]  
R-0000b  
7-9. ACCUMULATOR_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
R
Reserved bits. Read returns 0000b.  
ACC_COUNT[3:0]  
R
ACC_COUNT = Number of accumulation completed till last finished  
conversion.  
7.6.1.4 ALERT_TRIG_CHID Register (Address = 0x3) [Reset = 0x0]  
ALERT_TRIG_CHID is shown in 7-34 and described in 7-10.  
Return to the 7-5.  
Alert trigeer channel ID  
7-34. ALERT_TRIG_CHID Register  
7
6
5
4
3
2
1
0
ALERT_TRIG_CHID[3:0]  
R-0000b  
RESERVED  
R-0000b  
7-10. ALERT_TRIG_CHID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
ALERT_TRIG_CHID[3:0]  
R
0000b  
These bits provide the channel ID of channel which was first to set  
the alert output.  
0000b = Channel 0.  
0001b = Channel 1.  
3-0  
RESERVED  
R
0000b  
Reserved bits. Reads returns 0000b.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.5 SEQUENCE_STATUS Register (Address = 0x4) [Reset = 0x0]  
SEQUENCE_STATUS is shown in 7-35 and described in 7-11.  
Return to the 7-5.  
Sequence status register  
7-35. SEQUENCE_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
SEQ_ERR_ST[1:0]  
R-00b  
RESERVED  
R-0b  
7-11. SEQUENCE_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00000b  
00b  
Description  
7-3  
2-1  
RESERVED  
R
Reserved bits. Read returns 00000b.  
SEQ_ERR_ST[1:0]  
R
These bits give status of device sequence.  
00b = Auto sequencing disabled, no error.  
01b = Auto sequencing enabled, no error.  
10b = Not used.  
11b = Auto sequencing enabled, device in error.  
0
RESERVED  
R
0b  
Reserved bit. Read returns 0b.  
7.6.1.6 ACC_CH0_LSB Register (Address = 0x8) [Reset = 0x0]  
ACC_CH0_LSB is shown in 7-36 and described in 7-12.  
Return to the 7-5.  
CH0 accumulator data register (LSB)  
7-36. ACC_CH0_LSB Register  
7
6
5
4
3
2
1
0
CH0_LSB[7:0]  
R-00000000b  
7-12. ACC_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
CH0_LSB[7:0]  
Type  
Reset  
Description  
R
00000000b LSB of accumulated data for CH0.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.7 ACC_CH0_MSB Register (Address = 0x9) [Reset = 0x0]  
ACC_CH0_MSB is shown in 7-37 and described in 7-13.  
Return to the 7-5.  
CH0 accumulated data register (MSB)  
7-37. ACC_CH0_MSB Register  
7
6
5
4
3
2
1
0
CH0_MSB[7:0]  
R-00000000b  
7-13. ACC_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
CH0_MSB[7:0]  
Type  
Reset  
Description  
R
00000000b MSB of accumulated data for CH0.  
7.6.1.8 ACC_CH1_LSB Register (Address = 0xA) [Reset = 0x0]  
ACC_CH1_LSB is shown in 7-38 and described in 7-14.  
Return to the 7-5.  
CH1 accumulated data register (LSB)  
7-38. ACC_CH1_LSB Register  
7
6
5
4
3
2
1
0
CH1_LSB[7:0]  
R-00000000b  
7-14. ACC_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
CH1_LSB[7:0]  
Type  
Reset  
Description  
R
00000000b LSB of accumulated data for CH1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.9 ACC_CH1_MSB Register (Address = 0xB) [Reset = 0x0]  
ACC_CH1_MSB is shown in 7-39 and described in 7-15.  
Return to the 7-5.  
CH1 accumulated data register (MSB)  
7-39. ACC_CH1_MSB Register  
7
6
5
4
3
2
1
0
CH1_MSB[7:0]  
R-00000000b  
7-15. ACC_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
CH1_MSB[7:0]  
Type  
Reset  
Description  
R
00000000b MSB of accumulated data for CH1.  
7.6.1.10 ALERT_LOW_FLAGS Register (Address = 0xC) [Reset = 0x0]  
ALERT_LOW_FLAGS is shown in 7-40 and described in 7-16.  
Return to the 7-5.  
Alert low flags register  
7-40. ALERT_LOW_FLAGS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
ALERT_LOW_ ALERT_LOW_  
CH1  
CH0  
R/W-0b  
R/W-0b  
7-16. ALERT_LOW_FLAGS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
0b  
Description  
7-2  
1
RESERVED  
R
Reserved bits. Read returns 000000b.  
ALERT_LOW_CH1  
R/W  
This bit indicates alert on low side comparator for CH1.  
0b = Alert is not set for low side comparator for CH1.  
1b = Alert is set for low side comparator for CH1.  
0
ALERT_LOW_CH0  
R/W  
0b  
This bit indicates alert on low side comparator for CH0.  
0b = Alert is not set for low side comparator for CH0.  
1b = Alert is set for low side comparator for CH0.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.11 ALERT_HIGH_FLAGS Register (Address = 0xE) [Reset = 0x0]  
ALERT_HIGH_FLAGS is shown in 7-41 and described in 7-17.  
Return to the 7-5.  
Alert high flags register  
7-41. ALERT_HIGH_FLAGS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
ALERT_HIGH_ ALERT_HIGH_  
CH1  
CH0  
R/W-0b  
R/W-0b  
7-17. ALERT_HIGH_FLAGS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
0b  
Description  
7-2  
1
RESERVED  
R
Reserved bits. Read returns 000000b.  
ALERT_HIGH_CH1  
R/W  
This bit indicates alert on high side comparator of CH1.  
0b = Alert is not set for high side comparator for CH1.  
1b = Alert is set for high side comparator for CH1.  
0
ALERT_HIGH_CH0  
R/W  
0b  
This bit indicates alert on high side comparator for CH0.  
0b = Alert is not set for high side comparator for CH0.  
1b = Alert is set for high side comparator for CH0.  
7.6.1.12 DEVICE_RESET Register (Address = 0x14) [Reset = 0x0]  
DEVICE_RESET is shown in 7-42 and described in 7-18.  
Return to the 7-5.  
Device reset register  
7-42. DEVICE_RESET Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
DEV_RST  
W-0b  
7-18. DEVICE_RESET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
DEV_RST  
R
Reserved bits. Read returns 0000000b.  
Writing 1 to this bit resets the device.  
W
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.13 OFFSET_CAL Register (Address = 0x15) [Reset = 0x0]  
OFFSET_CAL is shown in 7-43 and described in 7-19.  
Return to the 7-5.  
Offset calibration register  
7-43. OFFSET_CAL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
TRIG_OFFCAL  
W-0b  
7-19. OFFSET_CAL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
R
Reserved bits. Read returns 0000000b.  
TRIG_OFFCAL  
W
Writing 1 into this bit triggers internal offset calibration.  
7.6.1.14 WKEY Register (Address = 0x17) [Reset = 0x0]  
WKEY is shown in 7-44 and described in 7-20.  
Return to the 7-5.  
Write key for writing into DEVICE_RESET register  
7-44. WKEY Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
WKEY[3:0]  
R/W-0000b  
7-20. WKEY Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
WKEY[3:0]  
R
Reserved bits. Do not write. Read returns 0000b.  
Write 1010b into these bits to get write access for the  
R/W  
DEVICE_RESET register. WKEY register is not reset to default value  
on device reset (see Reset section). After coming out of device reset,  
write 00h to the WKEY register to prevent erroneous reset.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.15 OSC_SEL Register (Address = 0x18) [Reset = 0x0]  
OSC_SEL is shown in 7-45 and described in 7-21.  
Return to the 7-5.  
Oscillator selection register  
7-45. OSC_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
HSZ_LP  
R/W-0b  
7-21. OSC_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
HSZ_LP  
R
Reserved bits. Read returns 0000000b.  
R/W  
This bit selects oscillator used for the conversion process and cycle  
time for a single conversion.  
0b = Device uses high speed oscillator.  
1b = Device uses low power oscillator.  
7.6.1.16 NCLK_SEL Register (Address = 0x19) [Reset = 0x0]  
NCLK_SEL is shown in 7-46 and described in 7-22.  
Return to the 7-5.  
nCLK selection register  
7-46. NCLK_SEL Register  
7
6
5
4
3
2
1
0
NCLK[7:0]  
R/W-00000000b  
7-22. NCLK_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
NCLK[7:0]  
R/W  
00000000b Sets number of clocks of the oscillator that the device uses for one  
conversion cycle. When using the High Speed Oscillator: For Value x  
written into the nCLK register if x 21, nCLK is set to 21  
(00010101b) if x > 21, nCLK is set to x When using the Low Power  
Oscillator, For Value x written into the nCLK register: if x 18,  
nCLK is set to 18 (00010010b) if x > 18, nCLK is set to x  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.17 OPMODE_SEL Register (Address = 0x1C) [Reset = 0x0]  
OPMODE_SEL is shown in 7-47 and described in 7-23.  
Return to the 7-5.  
Device operation mode selection  
7-47. OPMODE_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
SEL_OPMODE[2:0]  
R/W-000b  
7-23. OPMODE_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00000b  
000b  
Description  
7-3  
2-0  
RESERVED  
R
Reserved bits. Read returns 00000b  
SEL_OPMODE[2:0]  
R/W  
These bits set the functional mode for the device.  
000b = Manual mode with CH0 only (Default mode).  
001b = Manual mode with CH0 only (Default mode).  
010b = Reserved. Do not use.  
011b = Reserved. Do not use.  
100b = Manual mode with AUTO Sequencing enabled.  
101b = Manual Mode with AUTO Sequencing enabled.  
110b = Autonomous monitoring mode with AUTO sequencing  
enabled.  
111b = High precision mode with AUTO sequencing enabled.  
7.6.1.18 START_SEQUENCE Register (Address = 0x1E) [Reset = 0x0]  
START_SEQUENCE is shown in 7-48 and described in 7-24.  
Return to the 7-5.  
Start channel scanning sequence register  
7-48. START_SEQUENCE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
SEQ_START  
W-0b  
7-24. START_SEQUENCE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
SEQ_START  
R
Reserved bits. Read returns 0000000b.  
W
Setting this bit to 1 brings the BUSY/RDY pin high and starts the first  
conversion in the sequence.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.19 ABORT_SEQUENCE Register (Address = 0x1F) [Reset = 0x0]  
ABORT_SEQUENCE is shown in 7-49 and described in 7-25.  
Return to the 7-5.  
Abort channel sequence register  
7-49. ABORT_SEQUENCE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
SEQ_ABORT  
W-0b  
7-25. ABORT_SEQUENCE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
R
Reserved bits. Read returns 0000000b.  
SEQ_ABORT  
W
Setting this bit to 1 aborts the ongoing conversion and brings the  
BUSY/RDY pin low.  
7.6.1.20 AUTO_SEQ_CHEN Register (Address = 0x20) [Reset = 0x3]  
AUTO_SEQ_CHEN is shown in 7-50 and described in 7-26.  
Return to the 7-5.  
Auto sequencing channel select register  
7-50. AUTO_SEQ_CHEN Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
AUTOSEQ_EN AUTOSEQ_EN  
_CH1  
_CH0  
R/W-1b  
R/W-1b  
7-26. AUTO_SEQ_CHEN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
1b  
Description  
7-2  
1
RESERVED  
R
Reserved bits. Read returns 000000b.  
AUTOSEQ_EN_CH1  
R/W  
This bit selects CH1 for auto sequencing.  
0b = Channel 1 is not selected for auto sequencing.  
1b = Channel 1 is selected for auto sequencing.  
0
AUTOSEQ_EN_CH0  
R/W  
1b  
This bit selects CH0 for auto sequencing.  
0b = Channel 0 is not selected for auto sequencing.  
1b = Channel 0 is selected for auto sequencing.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.21 CH_INPUT_CFG Register (Address = 0x24) [Reset = 0x0]  
CH_INPUT_CFG is shown in 7-51 and described in 7-27.  
Return to the 7-5.  
Channel input configuration register  
7-51. CH_INPUT_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CH0_CH1_IP_CFG[1:0]  
R/W-00b  
7-27. CH_INPUT_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
00b  
Description  
7-2  
1-0  
RESERVED  
R
Reserved bits. Read returns 000000b.  
CH0_CH1_IP_CFG[1:0]  
R/W  
This bit selects configuration for the input pins.  
00b = Two-channel, single-ended configuration.  
01b = Single-channel, single-ended configuration with remote ground  
sensing.  
10b = Single-channel, pseudo-differential configuration.  
11b = Two-channel, single-ended configuration.  
7.6.1.22 DOUT_FORMAT_CFG Register (Address = 0x28) [Reset = 0x0]  
DOUT_FORMAT_CFG is shown in 7-52 and described in 7-28.  
Return to the 7-5.  
Data buffer word configuration register  
7-52. DOUT_FORMAT_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
DOUT_FORMAT[1:0]  
R/W-00b  
7-28. DOUT_FORMAT_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
00b  
Description  
7-2  
1-0  
RESERVED  
R
Reserved bits. Read returns 000000b.  
DOUT_FORMAT[1:0]  
R/W  
These bits select 16-bit content of the data word in the data buffer.  
00b = 12-bit conversion result followed by 0000b.  
01b = 12-bit conversion result followed by 3-bit channel ID (000b for  
CH0, 001b for CH1).  
10b = 12-bit conversion result followed by 3-bit channel ID (000b for  
CH0, 001b for CH1) followed by DATA_VALID bit.  
11b = 12-bit conversion result followed by 0000b.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.23 DATA_BUFFER_OPMODE Register (Address = 0x2C) [Reset = 0x1]  
DATA_BUFFER_OPMODE is shown in 7-53 and described in 7-29.  
Return to the 7-5.  
Data buffer operation mode register  
7-53. DATA_BUFFER_OPMODE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
STARTSTOP_CNTRL[2:0]  
R/W-001b  
7-29. DATA_BUFFER_OPMODE Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
00000b  
001b  
Description  
7-3  
2-0  
R
Reserved bits. Read returns 00000b.  
STARTSTOP_CNTRL[2:0] R/W  
These bits select data buffer mode of operation.  
000b = Stop burst mode.  
001b = Start burst mode, default.  
010b = Reserved, do not use.  
011b = Reserved, do not use.  
100b = Pre alert data mode.  
101b = Reserved, do not use.  
110b = Post alert data mode.  
111b = Reserved, do not use.  
7.6.1.24 ACC_EN Register (Address = 0x30) [Reset = 0x0]  
ACC_EN is shown in 7-54 and described in 7-30.  
Return to the 7-5.  
Accumulator control register  
7-54. ACC_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
EN_ACC[3:0]  
R/W-0000b  
7-30. ACC_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
EN_ACC[3:0]  
R
Reserved bits. Read returns 0000b.  
R/W  
These bits enable accumulator function of device. 0001b to 1110b  
settings are reserved. Do not use.  
0000b = Accumulator is disabled.  
1111b = Accumulator is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.25 ALERT_CHEN Register (Address = 0x34) [Reset = 0x0]  
ALERT_CHEN is shown in 7-55 and described in 7-31.  
Return to the 7-5.  
Alert channel enable register  
7-55. ALERT_CHEN Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
ALERT_EN_CH ALERT_EN_CH  
1
0
R/W-0b  
R/W-0b  
7-31. ALERT_CHEN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000b  
0b  
Description  
7-2  
1
RESERVED  
R
Reserved bits. Read returns 000000b.  
ALERT_EN_CH1  
R/W  
This bit enables alert functionality of CH1.  
0b = Alert is disabled for CH1, default.  
1b = Alert is enabled for CH1.  
0
ALERT_EN_CH0  
R/W  
0b  
This bit enables alert functionality for CH0.  
0b = Alert is disabled for CH0, default.  
1b = Alert is enabled for CH0.  
7.6.1.26 PRE_ALT_MAX_EVENT_COUNT Register (Address = 0x36) [Reset = 0x0]  
PRE_ALT_MAX_EVENT_COUNT is shown in 7-56 and described in 7-32.  
Return to the 7-5.  
Pre-alert count register  
7-56. PRE_ALT_MAX_EVENT_COUNT Register  
7
6
5
4
3
2
1
0
PREALERT_COUNT[3:0]  
R/W-0000b  
RESERVED  
R-0000b  
7-32. PRE_ALT_MAX_EVENT_COUNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PREALERT_COUNT[3:0] R/W  
0000b  
These bits set the Pre-Alert Event Count = PREALERT_COUNT  
[7:4] + 1  
3-0  
RESERVED  
R
0000b  
Reserved bits. Read returns 0000b.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.27 ALERT_DWC_EN Register (Address = 0x37) [Reset = 0x0]  
ALERT_DWC_EN is shown in 7-57 and described in 7-33.  
Return to the 7-5.  
Alert digital window comparator register  
7-57. ALERT_DWC_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
DWC_BLOCK_  
EN  
R-0000000b  
R/W-0b  
7-33. ALERT_DWC_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
R
Reserved bits. Read returns 0000000b.  
DWC_BLOCK_EN  
R/W  
This bit enables digital window comparator block.  
0b = Disables digital window comparator.  
1b = Enables digital window comparator.  
7.6.1.28 DWC_HTH_CH0_LSB Register (Address = 0x38) [Reset = 0x0]  
DWC_HTH_CH0_LSB is shown in 7-58 and described in 7-34.  
Return to the 7-5.  
CH0 high threshold LSB register  
7-58. DWC_HTH_CH0_LSB Register  
7
6
5
4
3
2
1
0
HTH_CH0_LSB[7:0]  
R/W-00000000b  
7-34. DWC_HTH_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HTH_CH0_LSB[7:0]  
R/W  
00000000b These are 8 least significant bits of high threshold for CH0.  
7.6.1.29 DWC_HTH_CH0_MSB Register (Address = 0x39) [Reset = 0x0]  
DWC_HTH_CH0_MSB is shown in 7-59 and described in 7-35.  
Return to the 7-5.  
CH0 high threshold MSB register  
7-59. DWC_HTH_CH0_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
HTH_CH0_MSB[3:0]  
R/W-0000b  
7-35. DWC_HTH_CH0_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
R
Reserved bits. Read returns 0000b.  
These are 4 most significant bits of high threshold for CH0.  
HTH_CH0_MSB[3:0]  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.30 DWC_LTH_CH0_LSB Register (Address = 0x3A) [Reset = 0x0]  
DWC_LTH_CH0_LSB is shown in 7-60 and described in 7-36.  
Return to the 7-5.  
CH0 low threshold LSB register  
7-60. DWC_LTH_CH0_LSB Register  
7
6
5
4
3
2
1
0
LTH_CH0_LSB[7:0]  
R/W-00000000b  
7-36. DWC_LTH_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LTH_CH0_LSB[7:0]  
R/W  
00000000b These are 8 least significant bits of low threshold for CH0.  
7.6.1.31 DWC_LTH_CH0_MSB Register (Address = 0x3B) [Reset = 0x0]  
DWC_LTH_CH0_MSB is shown in 7-61 and described in 7-37.  
Return to the 7-5.  
CH0 low threshold MSB register  
7-61. DWC_LTH_CH0_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
LTH_CH0_MSB[3:0]  
R/W-0000b  
7-37. DWC_LTH_CH0_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
R
Reserved bits. Read returns 0000b.  
These are 4 most significant bits of low threshold for CH0.  
LTH_CH0_MSB[3:0]  
R/W  
7.6.1.32 DWC_HTH_CH1_LSB Register (Address = 0x3C) [Reset = 0x0]  
DWC_HTH_CH1_LSB is shown in 7-62 and described in 7-38.  
Return to the 7-5.  
CH1 high threshold LSB register  
7-62. DWC_HTH_CH1_LSB Register  
7
6
5
4
3
2
1
0
HTH_CH1_LSB[7:0]  
R/W-00000000b  
7-38. DWC_HTH_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HTH_CH1_LSB[7:0]  
R/W  
00000000b These are 8 least significant bits of high threshold for CH1.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.33 DWC_HTH_CH1_MSB Register (Address = 0x3D) [Reset = 0x0]  
DWC_HTH_CH1_MSB is shown in 7-63 and described in 7-39.  
Return to the 7-5.  
CH1 high threshold MSB register  
7-63. DWC_HTH_CH1_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
HTH_CH1_MSB[3:0]  
R/W-0000b  
7-39. DWC_HTH_CH1_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
R
Reserved bits. Read returns 0000b.  
These are 4 most significant bits of high threshold for CH1.  
HTH_CH1_MSB[3:0]  
R/W  
7.6.1.34 DWC_LTH_CH1_LSB Register (Address = 0x3E) [Reset = 0x0]  
DWC_LTH_CH1_LSB is shown in 7-64 and described in 7-40.  
Return to the 7-5.  
CH1 low threshold LSB register  
7-64. DWC_LTH_CH1_LSB Register  
7
6
5
4
3
2
1
0
LTH_CH1_LSB[7:0]  
R/W-00000000b  
7-40. DWC_LTH_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LTH_CH1_LSB[7:0]  
R/W  
00000000b These are 8 least significant bits of low threshold for CH1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6.1.35 DWC_LTH_CH1_MSB Register (Address = 0x3F) [Reset = 0x0]  
DWC_LTH_CH1_MSB is shown in 7-65 and described in 7-41.  
Return to the 7-5.  
CH1 low threshold MSB register  
7-65. DWC_LTH_CH1_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
LTH_CH1_MSB[3:0]  
R/W-0000b  
7-41. DWC_LTH_CH1_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
R
Reserved bits. Read returns 0000b.  
LTH_CH1_MSB[3:0]  
R/W  
These are 4 most significant bits of low threshold for CH1.  
7.6.1.36 DWC_HYS_CH0 Register (Address = 0x40) [Reset = 0x0]  
DWC_HYS_CH0 is shown in 7-66 and described in 7-42.  
Return to the 7-5.  
CH0 comparator hysterisis register  
7-66. DWC_HYS_CH0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
HYS_CH0[5:0]  
R/W-000000b  
7-42. DWC_HYS_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
R
00b  
Reserved bits. Read returns 00b.  
HYS_CH0[5:0]  
R/W  
000000b  
These bits set hysteresis for both comparators for CH0.  
7.6.1.37 DWC_HYS_CH1 Register (Address = 0x41) [Reset = 0x0]  
DWC_HYS_CH1 is shown in 7-67 and described in 7-43.  
Return to the 7-5.  
CH1 comparator hysterisis register  
7-67. DWC_HYS_CH1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
HYS_CH1[5:0]  
R/W-000000b  
7-43. DWC_HYS_CH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
R
00b  
Reserved bits. Read returns 00b.  
HYS_CH1[5:0]  
R/W  
000000b  
These bits set hysteresis for both comparators for CH1.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
In an increasing number of industrial applications, data acquisition sub-systems are collecting more data about  
the environment in which the system is operating and applying deep learning algorithms in order to improve  
system reliability, implement preventative maintenance, and enhance the quality of data collected by the system.  
The ADS7142-Q1 can be used to connect to a variety of sensors and can provide deeper data analytics at lower  
power levels than existing solutions. The depth of analysis that can be performed on the data collected by the  
ADS7142-Q1 is enhanced by the internal data buffer, programmable alarm thresholds and hysteresis, event  
counter, and internal calibration circuitry. The applications circuits described in this section highlight specific use  
cases of the ADS7142-Q1 for data collection that can further increase the depth and quality of the data being  
measured by the system.  
8.2 Typical Applications  
8.2.1 ADS7142-Q1 as a Programmable Comparator With False Trigger Prevention and Diagnostics  
+VDD  
R
RL  
No 1  
VREF(UPPER)  
+
A1  
VOUT  
VIN  
R
+
A2  
VREF(LOWER)  
R
8-1. Analog Window Comparator  
8.2.1.1 Design Requirements  
In many automotive sensor monitors, a decision must be made at the system-level when the input signal crosses  
a predefined threshold. Analog window comparators are used extensively in such applications.  
An analog window comparator has a set of comparators. The external input signal is connected to the inverting  
terminal of one comparator and the noninverting terminal of the other comparator. The remaining input of each  
comparator is connected to the internal reference. The outputs are tied together and are often connected to a  
reset or general-purpose input of a processor (such as a digital signal processor, field-programmable gate array,  
or application-specific integrated circuit) or the enable input of a voltage regulator (such as a DC/DC or low-  
dropout regulator). 8-1 shows the circuit diagram for an analog window comparator.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS7142-Q1  
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Though analog comparators are easy to design, there are certain disadvantages associated with analog  
comparators.  
Higher power consumption: If the voltage being monitored is greater than the window comparator supply  
voltage, then a resistive divider ladder must scale down that voltage. This resistive ladder draws a constant  
current and adds to the power consumption of the system. In battery-powered applications, this current draw  
becomes a challenge and can adversely affect the battery life.  
Fixed threshold voltages: The window comparator thresholds cannot be changed on-the-fly because these  
thresholds are set by hardware (typically with a resistive ladder). These fixed voltages may add a limitation if  
the comparator thresholds must be changed during operation without switching in a new resistor ladder.  
Automotive systems often require a device that monitors either critical voltage rails, temperature of the critical  
blocks or sensors, and gives an alert or interrupt to the host MCU only when the input being monitored crosses a  
predefined, programmable threshold. The ADS7142-Q1 is an excellent fit for such system level monitoring  
because this device can autonomously monitor sensor outputs and can wake up the host controller whenever  
the sensor output crosses predefined thresholds. Additionally, the ADS7142-Q1 has an internal data buffer that  
can store 16 sample data that can read in case further analysis is required. 8-2 shows a typical block diagram  
of the ADS7142-Q1 as a sensor monitor. As is shown in this figure, the sensor can be connected directly to the  
input of the ADC (depending on the sensor output signal characteristics).  
3V3  
RFLT  
SCL  
C
AIN0  
ADS7142-Q1  
AIN1  
Sensor 1  
SDA  
ALERT  
Host MCU  
GND  
GND  
RFLT  
BUSY/RDY  
C
Sensor 2  
GND  
GND  
GND  
GND  
8-2. Sensor Monitor Circuit With the ADS7142-Q1  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Programmable Thresholds and Hysteresis  
The ADS7142-Q1 can be programmed to monitor sensor output voltages and generate an ALERT signal to the  
host controller if the sensor output voltage crosses a threshold.  
The device can be configured to monitor for signals rising above a programmed threshold. 8-3 illustrates the  
operation of the device when monitoring for signal crossings on the low threshold by setting the high threshold to  
0xFFF. In this case, the output of the low-side comparator is set whenever the ADC conversion result is less than  
or equal to the low threshold, and the output of the high-side comparator is only set when the ADC conversion  
result is equal to 0xFFF.  
The device can also be configured to monitor for signals falling below a programmed threshold. 8-4 illustrates  
the operation of the device when monitoring for signal crossings on the high threshold by setting the low  
threshold to 0x000. In this case, the output of high-side comparator is set whenever the ADC conversion result is  
greater than or equal to the high threshold and the output of the low-side comparator is only set when the ADC  
conversion result is equal to 0x000.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
High Threshold = 0xFFF  
œ
Hysteresis  
High Threshold - Hysteresis  
+
High Side Comparator  
Conversion [N] for CHx  
Low Side Comparator  
œ
Low Threshold + Hysteresis  
Low Threshold  
+
Conversion [N+5] for CHx  
Conversion [N+10] for CHx  
PRE_ALT_MAX_EVENT_COUNT = 50h  
High Side Comparator Output  
(Internal Signal Only)  
Low Side Comparator Output  
(Internal Signal Only)  
ALERT  
8-3. Low Alert With the ADS7142-Q1  
PRE_ALT_MAX_EVENT_COUNT = 50h  
Conversion [N+9] for CHx  
Conversion [N+4] for CHx  
Hysteresis  
High Threshold  
High Threshold - Hysteresis  
œ
+
High Side Comparator  
Low Side Comparator  
œ
Low Threshold + Hysteresis  
+
Conversion [N] for CHx  
Low Threshold = 0x000  
Low Side Comparator Output  
(Internal Signal Only)  
High Side Comparator Output  
(Internal Signal Only)  
ALERT  
8-4. High Alert With the ADS7142-Q1  
The device can also be configured to monitor for signals falling outside of a programmed window. 8-5 shows  
the device operation for an out-of-range alert where the signal leaves the predefined window and crosses either  
the high or low threshold. In this case, the output of the low-side comparator is set whenever the ADC  
conversion result is less than or equal to the low threshold, and the output of the high-side comparator is set  
when the ADC conversion result is greater than or equal to the high threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
PRE_ALT_MAX_EVENT_COUNT = 50h  
Conversion [N+12] for CHx  
Conversion [N+7] for CHx  
Hysteresis  
High Threshold  
œ
High Threshold - Hysteresis  
+
High Side Comparator  
Low Side Comparator  
œ
Low Threshold + Hysteresis  
Low Threshold  
+
Conversion [N] for CHx  
Low Side Comparator Output  
(Internal Signal Only)  
High Side Comparator Output  
(Internal Signal Only)  
ALERT  
8-5. Out of Range Alert With the ADS7142-Q1  
8.2.1.2.2 False Trigger Prevention With an Event Counter  
The pre-alert event counter in the digital window comparator helps prevent false triggers. The alert output is not  
set until the output of the comparator remains set for a predefined number (count) of consecutive conversions.  
8.2.1.2.3 Fault Diagnostics With the Data Buffer  
The modes that are specifically designed for autonomous sensor monitor applications are pre-alert mode and  
post-alert mode. In pre-alert mode, the ADS7142-Q1 can be configured to monitor sensor outputs and  
continuously fill the internal data buffer until a threshold crossing occurs. The ADS7142-Q1 generates an ALERT  
signal when the sensor output falls outside of the predefined window of operation. In this particular mode, the  
ADS7142-Q1 stops filling the data buffer when the threshold is crossed and provides the last 16 samples (15  
sample data preceding the sample at which the ALERT is generated and 1 sample data for which the ALERT is  
generated). 8-6 depicts the ADS7142-Q1 operation in pre-alert mode showing 16 data samples before the  
sensor output crosses the low threshold. This operation is useful for applications where the state of the signal  
before the threshold is crossed is important to capture. Using the data captured before the alert, deep data  
analysis can be performed to determine the state of the system before the alert. This type of data is not available  
with analog comparators.  
In post-alert mode, ADS7142-Q1 can be configured to monitor sensor outputs and start filling the internal data  
buffer after a threshold crossing occurs. The ADS7142-Q1 generates an ALERT signal when the sensor output  
falls outside of the predefined window of operation. In this particular mode, the ADS7142-Q1 continues to fill the  
data buffer after the threshold is crossed for a total of 16 samples (1 sample data for which ALERT is generated  
and 15 sample data after the sample at which ALERT is generated). 8-7 illustrates the ADS7142-Q1  
operation in post-alert mode showing 16 data samples after the sensor output crosses the high threshold. This  
operation is useful for applications where the state of the signal after the threshold is crossed is important to  
capture. Using the data captured after the alert, deep data analysis can be performed for to determine the state  
of the system after the alert to detect system-level events such as saturation. This data is not available with  
analog comparators.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.1.3 Application Curves  
8-6. Pre-Alert Data Capture  
8-7. Post-Alert Data Capture  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.2 Voltage and Temperature Monitoring in Remote Camera Modules Using the ADS7142-Q1  
CO-AXIAL CABLE  
HOST  
CONTROLLER  
(Image  
FPD  
LINK  
FPD  
LINK  
IMAGER  
NTC  
I2C  
I2C  
Processing)  
De-Serializer  
Serializer  
DC-DC  
OR  
LDO  
DC/DC  
OR  
LDO  
VBAT  
ADS7142-Q1  
8-8. Voltage and Temperature Sensing in Remote Camera Modules Using the ADS7142-Q1  
8.2.2.1 Design Requirements  
Camera modules are an integral part of advanced driver assistance systems (ADAS), which are designed to  
make cars safer. Automotive cameras and camera modules are often assist in blind spot detection, nap  
prevention, lane and border detection, surround view and parking. Based on application, there are multiple types  
of camera modules available such as front camera, rear camera, night vision camera. 8-8 shows the typical  
block diagram of camera module used in an automotive environment with key electronics building blocks in the  
system.  
The camera module is usually situated externally at front, back or either side of the vehicle. Many times the main  
controller that does the data processing can not be used on camera module side due to size constraints. The  
camera module unit communicates with central processor over co-axial cable. The camera module data is  
transmitted over a coaxial cable using a serializer. On the data processing unit, a deserializer is used to  
communicate this data with the host processor. The power to the camera module is also transmitted over a  
coaxial cable. Because the camera module is remotely placed and power is transferred over a coaxial cable that  
can be few meters long, voltage received by camera module and critical voltage rails powering image sensors  
are often monitored against permissible variations. Also, the difference between camera lens and external  
ambient temperature can introduce dampness and degrade video quality. To ensure optimal video quality,  
camera lens temperature is often monitored for any possible correction. The device monitoring these system-  
level parameters must be a small size because of the limited board space available on the camera module side.  
Also, the I2C interface is preferred because this interface enables the user to connect multiple monitoring and  
sensing devices on the same I2C bus. The ADS7142-Q1 small footprint (2-mm × 3-mm, WSON package) and  
the I2C interface capable of working over wide digital I/O voltages enable this device in camera module  
monitoring applications without demanding extra board space.  
8.3 Power Supply Recommendations  
8.3.1 AVDD and DVDD Supply Recommendations  
The ADS7142-Q1 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible  
ranges. The AVDD supply also defines the full-scale input range of the device. Always set the AVDD supply to  
be greater than or equal to the maximum input signal to avoid saturation of codes. Decouple the AVDD and  
DVDD pins respectively with CAVDD = 220 nF and CDVDD = 100 nF ceramic decoupling capacitors, as illustrated  
in 8-9.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
AVDD  
GND  
CAVDD  
CDVDD  
DVDD  
8-9. Power-Supply Decoupling  
8.4 Layout  
8.4.1 Layout Guidelines  
Use a solid ground plane underneath the device and partition the PCB into analog and digital sections.  
Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference  
input signals away from noise sources.  
The power sources to the device must be clean and well-bypassed. Use CAVDD decoupling capacitors in  
close proximity to the analog (AVDD) power-supply pin.  
Use a CDVDD decoupling capacitor close to the digital (DVDD) power-supply pin.  
Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.  
Connect the ground pin to the ground plane using a short, low-impedance path. Also connect the thermal pad  
to the ground plane.  
Place the charge kickback filter components close to the device.  
Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors are recommended because these  
components provide the most stable electrical properties over voltage, frequency, and temperature changes.  
8-10 shows the typical connection diagram of the ADS7142-Q1.  
DVDD  
CDVDD  
ADS7142-Q1  
GND  
DVDD  
SCL  
1
2
10  
9
RSDA  
RALERT  
RSCL  
CAVDD  
AVDD  
To I2C Controller  
RFLT0  
SDA  
To I2C Controller  
From Sensor  
Output  
8
3
AINP/AIN0  
CFLT0  
RFLT1  
CFLT1  
To I2C Controller  
To I2C Controller  
From Sensor  
Output  
7
6
ALERT  
4
5
AINM/AIN1  
ADDR  
RADDR1  
BUSY/RDY  
AVDD  
RADDR2  
PAD  
8-10. Example Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADS7142-Q1  
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
8-11. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.2 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADS7142-Q1  
 
 
 
 
 
 
 
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADS7142-Q1  
ADS7142-Q1  
ZHCSJ06B NOVEMBER 2017 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADS7142-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7142QDQCRQ1  
ACTIVE  
WSON  
DQC  
10  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
1AU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ADS7142-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Catalog : ADS7142  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7142QDQCRQ1  
WSON  
DQC  
10  
3000  
180.0  
8.4  
2.3  
3.2  
1.0  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DQC 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
ADS7142QDQCRQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DQC0010A  
WSON - 0.8mm max height  
S
C
A
L
E
4
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.3  
0.2  
0.35  
0.25  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.84 0.1  
SYMM  
(0.2) TYP  
0.05  
0.00  
5
6
8X 0.5  
2X  
2
SYMM  
11  
2.4 0.1  
SEE OPTIONAL  
TERMINAL  
DETAIL  
1
10  
0.3  
10X  
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.2)  
C A B  
C
0.4  
10X  
0.2  
4218281/C 11/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.84)  
(
0.2) TYP  
10X (0.5)  
VIA  
1
10  
10X (0.25)  
(0.95)  
11  
SYMM  
(2.4)  
8X (0.5)  
6
5
(R0.05) TYP  
SYMM  
(1.9)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218281/C 11/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
10X (0.5)  
10  
10X (0.25)  
1
(1.08)  
11  
SYMM  
8X (0.5)  
(0.64)  
METAL  
TYP  
6
5
(R0.05) TYP  
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 30X  
4218281/C 11/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS7223

Dual, 1MSPS, 16-/14-/12-Bit, 4x2 or 2x2 Channel, Simultaneous Sampling Analog-to-Digital Converter
TI

ADS7223SRHBR

Dual, 1MSPS, 16-/14-/12-Bit, 4 2 or 2 2 Channel, Simultaneous Sampling Analog-to-Digital Converter
TI

ADS7223SRHBT

Dual, 1MSPS, 16-/14-/12-Bit, 4 2 or 2 2 Channel, Simultaneous Sampling Analog-to-Digital Converter
TI

ADS7229

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229I

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IPW

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IPWG4

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IPWR

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IPWRG4

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IRSAR

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IRSARG4

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS7229IRSAT

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI