ADS8326IDGKT [TI]

16 位、伪差动输入、250kSPS 串行输出、2.7V 至 5.5V 微功耗采样 ADC | DGK | 8 | -40 to 85;
ADS8326IDGKT
型号: ADS8326IDGKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16 位、伪差动输入、250kSPS 串行输出、2.7V 至 5.5V 微功耗采样 ADC | DGK | 8 | -40 to 85

文件: 总39页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling  
ANALOG-TO-DIGITAL CONVERTER  
Check for Samples: ADS8326  
1
FEATURES  
APPLICATIONS  
Battery-Operated Systems  
Remote Data Acquisition  
Isolated Data Acquisition  
Simultaneous Sampling, Multichannel  
Systems  
Industrial Controls  
Robotics  
Vibration Analysis  
23  
16 Bits No Missing Codes (Full-Supply Range,  
High or Low Grade)  
Very Low Noise: 3LSBPP  
Excellent Linearity:  
±1LSB typ, ±1.5LSB max INL  
±0.6LSB typ, ±1LSB max DNL  
±1mV max Offset  
±12LSB typ Gain Error  
microPower:  
DESCRIPTION  
10mW at 5V, 250kHz  
4mW at 2.7V, 200kHz  
2mW at 2.7V, 100kHz  
0.2mW at 2.7V, 10kHz  
The ADS8326 is a 16-bit, sampling, analog-to-digital  
(A/D) converter specified for a supply voltage range  
from 2.7V to 5.5V. It requires very little power, even  
when operating at the full data rate. At lower data  
rates, the high speed of the device enables it to  
spend most of its time in the power-down mode. For  
example, the average power dissipation is less than  
0.2mW at a 10kHz data rate.  
MSOP-8 and SON-8 Packages  
(SON-8 package same as 3x3 QFN)  
16-Bit Upgrade to the 12-Bit ADS7816 and  
ADS7822  
Pin-Compatible with the ADS7816, ADS7822,  
ADS7826, ADS7827, ADS7829, ADS8320, and  
ADS8325  
The ADS8326 offers excellent linearity and very low  
noise and distortion. It also features a synchronous  
serial (SPI/SSI-compatible) interface and a differential  
input. The reference voltage can be set to any level  
Serial ( SPI™/SSI) Interface  
within the range of 0.1V to VDD  
.
Low power and small size make the ADS8326 ideal  
for portable and battery-operated systems. It is also a  
perfect fit for remote data-acquisition modules,  
simultaneous multichannel systems, and isolated  
data acquisition. The ADS8326 is available in either  
an MSOP-8 and an SON-8 package.  
SAR  
REF  
ADS8326  
DOUT  
+IN  
CDAC  
Serial  
Interface  
DCLOCK  
CS/SHDN  
-IN  
S/H Amp  
Comparator  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2009, Texas Instruments Incorporated  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
MAXIMUM  
INTEGRAL  
LINEARITY  
ERROR  
NO  
MISSING  
CODES  
ERROR  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
(2)  
PRODUCT  
(LSB)  
Tape and Reel,  
250  
ADS8326IDGKT  
ADS8326IDGKR  
ADS8326IBDGKT  
ADS8326IBDGKR  
ADS8326IDRBT  
ADS8326IDRBR  
ADS8326IBDRBT  
ADS8326IBDRBR  
ADS8326I  
±3  
±1.5  
±3  
16  
16  
16  
16  
MSOP-8  
MSOP-8  
SON-8  
DGK  
DGK  
DRB  
DRB  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
D26  
D26  
D26  
D26  
Tape and Reel,  
2500  
Tape and Reel,  
250  
ADS8326IB  
ADS8326I  
ADS8326IB  
Tape and Reel,  
2500  
Tape and Reel,  
250  
Tape and Reel,  
2500  
Tape and Reel,  
250  
±1.5  
SON-8  
Tape and Reel,  
2500  
(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or see  
the TI website at www.ti.com.  
(2) Maximum Integral Linearity Error specifies a 5V power supply and reference voltage.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
ADS8326  
–0.3 to +7  
UNIT  
V
Supply voltage, VDD to GND  
Analog input voltage(2)  
Reference input voltage(2)  
Digital input voltage(2)  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–20 to +20  
V
V
V
Input current to any pin except supply  
Power dissipation  
mA  
See Dissipation Ratings Table  
–40 to +150  
Operating virtual junction temperature range, TJ  
Operating free-air temperature range, TA  
Storage temperature range, TSTG  
Lead Temperature 1.6mm (1/16 inch) from case for 10sec  
°C  
°C  
°C  
°C  
–40 to +85  
–65 to +150  
+260  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground terminal.  
2
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
DISSIPATION RATINGS  
DERATING  
FACTOR ABOVE  
TA = +25°C  
T
A +25°C  
TA = +70°C  
POWER RATING  
TA = +85°C  
POWER RATING  
PACKAGE  
DGK  
R θ JC  
+39.1°C/W  
+5°C/W  
R θ JA  
POWER RATING  
+206.3°C/W  
+45.8°C/W  
4.847mW/°C  
3.7mW/°C  
606mW  
388mW  
204mW  
315mW  
148mW  
DRB  
370mW  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.7  
4.5  
0.1  
–0.3  
–0.3  
0
TYP  
5.0  
0
MAX  
UNIT  
V
Supply voltage, GND to VDD  
Supply voltage, GND to VDD  
Reference input voltage  
Low-voltage levels  
5V logic levels  
3.6  
5.5  
V
VDD  
V
–IN to GND  
+IN to GND  
+IN – (–IN)  
0.5  
V
Analog input voltage  
VDD + 0.2  
VREF  
+125  
V
V
Operating junction temperature, TJ  
–40  
°C  
ELECTRICAL CHARACTERISTICS: VDD = +5V  
At –40°C to +85°C, VREF = +5V, –IN = GND, fSAMPLE = 250kHz, and fDCLOCK = 24 × fSAMPLE, unless otherwise noted.  
ADS8326I  
TYP  
ADS8326IB  
TYP  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNIT  
Full-scale range  
FSR +IN – (–IN)  
0
VREF  
0.5  
0
VREF  
0.5  
V
V
Operating common-mode signal  
–0.3  
–0.3  
–IN = GND, off  
5
50  
5
50  
GΩ  
Input resistance  
RON  
–IN = GND, on  
100  
100  
Input capacitance  
–IN = GND, during sampling  
–IN = GND  
48  
48  
pF  
nA  
pF  
Input leakage current  
Differential input capacitance  
±50  
20  
±50  
20  
+IN to –IN, during sampling  
FS sinewave, SINAD =  
–60dB  
Full-power bandwidth  
FSBW  
500  
500  
kHz  
DC ACCURACY  
Resolution  
16  
16  
16  
16  
Bits  
Bits  
No missing codes  
Integral linearity error  
Differential linearity error  
Offset error  
NMC  
INL  
–3  
±2  
±0.5  
+3  
+2  
–1.5  
–1  
±1  
±0.4  
±0.5  
±0.2  
+1.5  
+1  
LSB  
DNL  
–1  
LSB  
VOS  
–1.5  
±0.75  
±0.2  
+1.5  
–1  
+1  
mV  
Offset error drift  
Gain error  
TCVOS  
GERR  
ppm/°C  
LSB  
–24  
+24  
–12  
+12  
Gain error drift  
TCGERR  
±0.3  
30  
±0.3  
30  
ppm/°C  
μVRMS  
LSB  
Noise  
Power-supply rejection  
SAMPLING DYNAMICS  
4.75V VDD 5.25V  
0.5  
0.5  
Conversion time  
(16 DCLOCKs)  
tCONV 24kHz fDCLOCK 6MHz  
2.667  
0.75  
666.7  
2.667  
0.75  
666.7  
μs  
μs  
Acquisition time  
(4.5 DCLOCKs)  
tAQ fDCLOCK = 6MHz  
Throughput rate  
(22 DCLOCKs)  
250  
6
250  
6
kSPS  
MHz  
Clock frequency  
fDCLOCK  
0.024  
0.024  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS8326  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS: VDD = +5V (continued)  
At –40°C to +85°C, VREF = +5V, –IN = GND, fSAMPLE = 250kHz, and fDCLOCK = 24 × fSAMPLE, unless otherwise noted.  
ADS8326I  
TYP  
ADS8326IB  
TYP  
PARAMETER  
AC ACCURACY  
TEST CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNIT  
5VPP sinewave at 2kHz  
5VPP sinewave at 10kHz  
5VPP sinewave at 2kHz  
5VPP sinewave at 10kHz  
5VPP sinewave at 2kHz  
5VPP sinewave at 10kHz  
5VPP sinewave at 2kHz  
5VPP sinewave at 10kHz  
5VPP sinewave at 2kHz  
5VPP sinewave at 10kHz  
–98  
–90  
102  
94  
–99  
–91  
103  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Bits  
Bits  
Total harmonic distortion  
THD  
SFDR  
SNR  
Spurious-free dynamic  
range  
91  
91.5  
91.5  
91  
Signal-to-noise ratio  
91  
90  
Signal-to-noise + distortion  
Effective number of bits  
SINAD  
ENOB  
87.5  
14.69  
14.28  
88  
14.86  
14.35  
VOLTAGE REFERENCE INPUT  
Reference voltage  
0.1  
VDD  
0.1  
VDD  
V
CS = GND, fSAMPLE = 0Hz  
CS = VDD  
5
5
5
5
GΩ  
GΩ  
pF  
μA  
μA  
μA  
μA  
μA  
Reference input resistance  
Reference input capacitance  
24  
24  
fS = 250kHz  
fS = 200kHz  
fS = 100kHz  
fS = 10kHz  
CS = VDD  
170  
140  
70  
220  
180  
90  
170  
140  
70  
220  
180  
90  
Reference input current  
11  
14  
11  
14  
0.1  
0.1  
DIGITAL INPUTS(1)  
Logic family  
CMOS  
CMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
0.7 × VDD  
–0.3  
VDD + 0.3 0.7 × VDD  
VDD + 0.3  
0.3 × VDD  
+50  
V
V
0.3 × VDD  
+50  
–0.3  
–50  
IIN VI = VDD or GND  
CI  
–50  
nA  
pF  
Input capacitance  
DIGITAL OUTPUTS(1)  
Logic family  
5
5
CMOS  
CMOS  
High-level output voltage  
Low-level output voltage  
VOH VDD = 4.5V, IOH = –100μA  
VOL VDD = 4.5V, IOL = 100μA  
4.44  
–50  
4.44  
–50  
V
V
0.5  
0.5  
High-impedance state  
output current  
IOZ CS = VDD, VI = VDD or GND  
+50  
+50  
nA  
Output capacitance  
Load capacitance  
CO  
CL  
5
5
pF  
pF  
30  
30  
Straight  
binary  
Straight  
binary  
Data format  
(1) Applies for 5.0V nominal supply: VDD (min) = 4.5V and VDD (max) = 5.5V.  
4
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
ELECTRICAL CHARACTERISTICS: VDD = +2.7V  
At –40°C to +85°C, VREF = +2.5V, –IN = GND, fSAMPLE = 200kHz, and fDCLOCK = 24 × fSAMPLE, unless otherwise noted.  
ADS8326I  
TYP  
ADS8326IB  
TYP  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNIT  
Full-scale range  
FSR +IN – (–IN)  
0
VREF  
0.5  
0
VREF  
0.5  
V
V
Operating common-mode signal  
–0.3  
–0.3  
–IN = GND, off  
5
100  
48  
5
100  
48  
GΩ  
Input resistance  
RON  
–IN = GND, on  
150  
150  
Input capacitance  
–IN = GND, during sampling  
–IN = GND  
pF  
nA  
pF  
Input leakage current  
Differential input capacitance  
±50  
20  
±50  
20  
+IN to –IN, during sampling  
FS sinewave, SINAD =  
–60dB  
Full-power bandwidth  
FSBW  
60  
60  
kHz  
DC ACCURACY  
Resolution  
16  
16  
16  
16  
Bits  
Bits  
No missing codes  
Integral linearity error  
Differential linearity error  
Offset error  
NMC  
INL  
–3  
±2  
±0.5  
±0.75  
±0.2  
±33  
+3  
+2  
–2.5  
–1  
±1  
±0.4  
±0.5  
±0.2  
±16  
±0.3  
30  
+2.5  
+1  
LSB  
DNL  
–1  
LSB  
VOS  
–1.5  
+1.5  
–1  
+1  
mV  
Offset error drift  
Gain error  
TCVOS  
GERR  
ppm/°C  
LSB  
Gain error drift  
TCGERR  
±0.3  
30  
ppm/°C  
μVRMS  
LSB  
Noise  
Power-supply rejection  
SAMPLING DYNAMICS  
2.7V VDD 3.6V  
0.5  
0.5  
Conversion time  
(16 DCLOCKs)  
tCONV 24kHz fDCLOCK 4.8MHz  
3.333  
666.7  
3.333  
666.7  
μs  
μs  
Acquisition time  
(4.5 DCLOCKs)  
tAQ fDCLOCK = 4.8MHz  
0.9375  
0.9375  
Throughput rate  
(22 DCLOCKs)  
200  
4.8  
200  
4.8  
kSPS  
MHz  
Clock frequency  
fDCLOCK  
0.024  
0.024  
AC ACCURACY  
2.5VPP sinewave at 2kHz  
2.5VPP sinewave at 10kHz  
2.5VPP sinewave at 2kHz  
2.5VPP sinewave at 10kHz  
2.5VPP sinewave at 2kHz  
2.5VPP sinewave at 10kHz  
2.5VPP sinewave at 2kHz  
2.5VPP sinewave at 10kHz  
2.5VPP sinewave at 2kHz  
2.5VPP sinewave at 10kHz  
–88  
–75  
–88.5  
–75.5  
91.5  
78  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Bits  
Bits  
Total harmonic distortion  
THD  
SFDR  
SNR  
91  
Spurious-free dynamic  
range  
77.5  
86.5  
86  
87  
Signal-to-noise ratio  
86.5  
85.5  
75  
85  
Signal-to-noise + distortion  
Effective number of bits  
SINAD  
ENOB  
74.5  
13.86  
12.12  
13.94  
12.20  
VOLTAGE REFERENCE INPUT  
Reference voltage  
0.1  
VDD  
0.1  
VDD  
V
CS = GND, fSAMPLE = 0Hz  
CS = VDD  
5
5
5
5
GΩ  
GΩ  
pF  
Reference input resistance  
Reference input capacitance  
24  
70  
25  
5
24  
70  
25  
5
fS = 200kHz  
fS = 100kHz  
fS = 10kHz  
CS = VDD  
90  
33  
7
90  
33  
7
μA  
μA  
μA  
μA  
Reference input current  
0.1  
0.1  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS: VDD = +2.7V (continued)  
At –40°C to +85°C, VREF = +2.5V, –IN = GND, fSAMPLE = 200kHz, and fDCLOCK = 24 × fSAMPLE, unless otherwise noted.  
ADS8326I  
TYP  
ADS8326IB  
TYP  
PARAMETER  
DIGITAL INPUTS(1)  
TEST CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNIT  
Logic family  
LVCMOS  
LVCMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH VDD = 3.6V  
2
–0.3  
–50  
VDD + 0.3  
0.8  
2
–0.3  
–50  
VDD + 0.3  
0.8  
V
V
VIL VDD = 2.7V  
IIN VI = VDD or GND  
CI  
+50  
+50  
nA  
pF  
Input capacitance  
DIGITAL OUTPUTS(1)  
Logic family  
5
5
LVCMOS  
LVCMOS  
High-level output voltage  
Low-level output voltage  
VOH VDD = 2.7V, IOH = –100μA  
VOL VDD = 2.7V, IOL = 100μA  
VDD – 0.2  
–50  
VDD – 0.2  
–50  
V
V
0.2  
0.2  
High-impedance state  
output current  
IOZ CS = VDD, VI = VDD or GND  
+50  
+50  
nA  
Output capacitance  
Load capacitance  
CO  
CL  
5
5
pF  
pF  
30  
30  
Straight  
binary  
Straight  
binary  
Data format  
(1) Applies for 3.0V nominal supply: VDD (min) = 2.7V and VDD (max) = 3.6V.  
ELECTRICAL CHARACTERISTICS  
At –40°C to +85°C, –IN = GND, and fDCLOCK = 24 × fSAMPLE, unless otherwise noted.  
ADS8326I  
ADS8326IB  
TYP  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNIT  
Low-voltage levels  
5V logic levels  
2.7  
4.5  
3.6  
5.5  
2.7  
4.5  
3.6  
5.5  
V
V
Power supply  
VDD  
IDD  
IDD  
VDD = 2.7V, fS = 10kHz,  
fDCLOCK = 4.8MHz  
0.065  
0.69  
1.38  
1.9  
0.085  
1.0  
0.065  
0.69  
1.38  
1.9  
0.085  
1.0  
mA  
mA  
mA  
mA  
mA  
VDD = 2.7V, fS = 100kHz,  
fDCLOCK = 4.8MHz  
VDD = 2.7V, fS = 200kHz,  
fDCLOCK = 4.8MHz  
Operating supply current  
Power-down supply current  
Power dissipation  
2.0  
2.0  
VDD = 5V, fS = 200kHz,  
fDCLOCK = 6MHz  
2.7  
2.7  
VDD = 5V, fS = 250kHz,  
fDCLOCK = 6MHz  
2.0  
3.0  
2.0  
3.0  
VDD = 2.7V  
VDD = 5V  
0.1  
0.2  
0.1  
0.2  
μA  
μA  
VDD = 2.7V, fS = 10kHz,  
fDCLOCK = 4.8MHz  
0.18  
1.86  
3.73  
9.5  
0.23  
2.7  
0.18  
1.86  
3.73  
9.5  
0.23  
2.7  
mW  
mW  
mW  
mW  
mW  
VDD = 2.7V, fS = 100kHz,  
fDCLOCK = 4.8MHz  
VDD = 2.7V, fS = 200kHz,  
fDCLOCK = 4.8MHz  
5.4  
5.4  
VDD = 5V, fS = 200kHz,  
fDCLOCK = 6MHz  
13.5  
15  
13.5  
15  
VDD = 5V, fS = 250kHz,  
fDCLOCK = 6MHz  
10  
10  
VDD = 2.7V, CS = VDD  
VDD = 5V, CS = VDD  
0.3  
0.6  
0.3  
0.6  
μW  
μW  
Power dissipation in power-down  
6
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
PIN CONFIGURATION  
DGK PACKAGE  
MSOP-8  
(TOP VIEW)  
REF  
+IN  
1
2
3
4
8
7
6
5
VDD  
DCLOCK  
DOUT  
ADS8326  
-IN  
GND  
CS/SHDN  
DRB PACKAGE  
SON-8  
(TOP VIEW)  
1
8
VDD  
REF  
2
3
4
7
DCLOCK  
DOUT  
+IN  
-IN  
ADS8326  
6
(Thermal Pad)  
5
CS/SHDN  
GND  
(1) The thermal pad is internally connected to the substrate. This pad can be connected to the analog ground or left  
floating. Keep the thermal pad separate from the digital ground, if possible.  
PIN ASSIGNMENTS  
PIN  
I/O  
DESCRIPTION  
NAME  
REF  
NO.  
1
Analog input  
Analog input  
Analog input  
Reference input  
+IN  
2
Noninverting input  
Inverting analog input  
–IN  
3
GND  
4
Power-supply connection Ground  
CS/SHDN  
DOUT  
5
Digital input  
Digital output  
Digital input  
Chip select when low; Shutdown mode when high.  
6
Serial output data word  
DCLOCK  
VDD  
7
Data clock synchronizes the serial data transfer and determines conversion speed.  
8
Power-supply connection Power supply  
Equivalent Input Circuit (VDD = 5.0V)  
VDD  
VDD  
VDD  
C(SAMPLE)  
48pF  
RON  
RON  
24pF  
50W  
50W  
ANALOG IN  
REF  
I/O  
GND  
GND  
GND  
Diode Turn-On Voltage: 0.35V  
Equivalent Analog Input Circuit  
Equivalent Reference Input Circuit  
Equivalent Digital Input/Output Circuit  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS8326  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TIMING INFORMATION  
tCYC  
CS/SHDN  
Power Down  
Sample  
tSUCS  
Conversion  
DCLOCK  
tCSD  
Use positive clock edge for data transfer  
Hi-Z  
Hi-Z  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0(1)  
DOUT  
0
(MSB)  
(LSB)  
tSMPL  
tCONV  
NOTE: (1) A minimum of 22 clock cycles are required for 16-bit conversion; 24 clock cycles are shown.  
If CS remains low at the end of conversion, a new data stream is shifted out with LSB-first data followed by zeroes indefinitely.  
tCYC  
CS/SHDN  
DCLOCK  
DOUT  
tSUCS  
Power Down  
tCSD  
Hi-Z  
Hi-Z  
(2)  
0
B15 B14 BB5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B0 B11 B12 B13 B14 B15  
(MSB) (LSB) (MSB)  
tCONV  
tSMPL  
NOTE: (2) After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output zeroes indefinitely.  
1.4V  
90%  
10%  
3kW  
DOUT  
DOUT  
Test Point  
tr  
tf  
100pF  
CLOAD  
Voltage Waveforms for DOUT Rise and Fall Times, tr, tf  
Load Circuit for tdDO, tr, and tf  
Test Point  
DCLOCK  
VDD  
tdis Waveform 2, ten  
tdis Waveform 1  
3kW  
DOUT  
tdDO  
100pF  
CLOAD  
DOUT  
thDO  
Voltage Waveforms for DOUT Delay Times, tdDO  
Load Circuit for tdis and ten  
90%  
CS/SHDN  
CS/SHDN  
DCLOCK  
1
4
5
DOUT  
Waveform 1(3)  
90%  
10%  
tdis  
DOUT  
B15  
DOUT  
Waveform 2(4)  
ten  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
(3) Waveform 1 is for an output with internal conditions such that  
the output is high unless disabled by the output control.  
(4) Waveform 2 is for an output with internal conditions such that  
the output is low unless disabled by the output control.  
NOTES:  
Figure 1. Timing Diagrams and Test Circuits for the Parameters in Table 1  
8
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
TIMING INFORMATION (continued)  
Table 1. Timing Characteristics  
SYMBOL  
tSMPL  
tCONV  
tCYC  
tCSD  
tSUCS  
tHDO  
tDIS  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Analog input sample time  
Conversion time  
4.5  
5.0  
DCLOCKs  
16  
DCLOCKs  
Complete cycle time  
22  
DCLOCKs  
CS falling to DCLOCK low  
CS falling to DCLOCK rising  
DCLOCK falling to current DOUT not valid  
CS rising to DOUT tri-state  
DCLOCK falling to DOUT enabled  
DOUT fall time  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
5
15  
70  
20  
5
100  
50  
tEN  
tF  
25  
tR  
DOUT rise time  
7
25  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: VDD = +5V  
At TA = +25°C, VDD = +5V, VREF = +5V. fSAMPLE = 250kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs  
vs  
CODE  
CODE  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0000h  
4000h  
8000h  
C000h  
FFFFh  
0000h  
4000h  
8000h  
C000h  
FFFFh  
Output Code  
Output Code  
Figure 2.  
Figure 3.  
CHANGE IN OFFSET  
vs  
CHANGE IN GAIN  
vs  
TEMPERATURE  
TEMPERATURE  
0.50  
0.25  
0
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
75  
100  
75  
100  
-50  
-25  
0
25  
50  
-50  
-25  
0
25  
50  
Temperature (°C)  
Figure 4.  
Temperature (°C)  
Figure 5.  
10  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, VDD = +5V, VREF = +5V. fSAMPLE = 250kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
CHANGE IN OFFSET  
vs  
CHANGE IN GAIN  
vs  
COMMON-MODE VOLTAGE  
COMMON-MODE VOLTAGE  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-5  
-10  
-5  
-10  
0
0.1 0.2 0.3 0.4 0.5 0.6  
0
0.1 0.2 0.3 0.4 0.5 0.6  
-0.5 -0.4 -0.3 -0.2 -0.1  
-0.5 -0.4 -0.3 -0.2 -0.1  
VCM (V)  
VCM (V)  
Figure 6.  
Figure 7.  
FREQUENCY SPECTRUM  
FREQUENCY SPECTRUM  
(8192 point FFT, fIN = 1.9836kHz, –0.2dB)  
(8192 point FFT, fIN = 9.9792kHz, –0.2dB)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (kHz)  
Frequency (kHz)  
Figure 8.  
Figure 9.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS8326  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, VDD = +5V, VREF = +5V. fSAMPLE = 250kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
SIGNAL-TO-NOISE AND  
SIGNAL-TO-NOISE + DISTORTION  
vs  
SPURIOUS-FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
105  
100  
95  
-105  
-100  
-95  
-90  
-85  
-80  
-75  
-70  
-65  
SNR  
SFDR  
90  
85  
SINAD  
THD(1)  
80  
75  
70  
NOTE: (1) First nine harmonics of the input frequency.  
65  
100 200  
1
10  
100 200  
1
10  
Frequency (kHz)  
Frequency (kHz)  
Figure 10.  
Figure 11.  
EFFECTIVE NUMBER OF BITS  
CHANGE IN SIGNAL-TO-NOISE + DISTORTION  
vs  
vs  
INPUT FREQUENCY  
TEMPERATURE  
16.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
0.25  
0.20  
0.15  
0.10  
0.05  
0
fIN = 1.98364kHz, -0.2dB  
-0.05  
-0.10  
-0.15  
-0.20  
100 200  
75  
100  
1
10  
-50  
-25  
0
25  
50  
Frequency (kHz)  
Temperature (°C)  
Figure 12.  
Figure 13.  
12  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, VDD = +5V, VREF = +5V. fSAMPLE = 250kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
SIGNAL-TO-NOISE + DISTORTION  
PEAK-TO-PEAK NOISE FOR A DC INPUT  
vs  
vs  
INPUT LEVEL  
REFERENCE VOLTAGE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
200  
100  
fIN = 1.98364kHz, -0.2dB  
10  
1
5
0
0.1  
1
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
Reference Voltage (V)  
Input Level (dB)  
Figure 14.  
Figure 15.  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
TEMPERATURE  
SAMPLING RATE  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
10  
1
0.1  
0.01  
0.001  
75  
100  
250  
-50  
-25  
0
25  
50  
1
10  
100  
Temperature (°C)  
Sampling Rate (kHz)  
Figure 16.  
Figure 17.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS8326  
 
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, VDD = +5V, VREF = +5V. fSAMPLE = 250kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
REFERENCE CURRENT  
vs  
POWER-DOWN CURRENT  
vs  
SAMPLING RATE  
TEMPERATURE  
1000  
100  
10  
30  
28  
26  
24  
22  
20  
18  
1
0.1  
250  
1
10  
100  
75  
100  
-50  
-25  
0
25  
50  
Sampling Rate (kHz)  
Temperature (°C)  
Figure 18.  
Figure 19.  
OUTPUT CODE HISTOGRAM FOR A DC INPUT  
(8192 Conversions)  
6990  
592  
610  
0
0
0
0
8001 8002  
7FFC 7FFD 7FFE 7FFF 8000  
Code  
Figure 20.  
14  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS: VDD = +2.7V  
At TA = +25°C, VDD = +2.7V, VREF = +2.5V. fSAMPLE = 200kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
vs  
vs  
CODE  
CODE  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0000h  
4000h  
8000h  
C000h  
FFFFh  
0000h  
4000h  
8000h  
C000h  
FFFFh  
Output Code  
Output Code  
Figure 21.  
Figure 22.  
CHANGE IN OFFSET  
vs  
CHANGE IN GAIN  
vs  
TEMPERATURE  
TEMPERATURE  
0.50  
0.25  
0
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
75  
100  
75  
100  
-50  
-25  
0
25  
50  
-50  
-25  
0
25  
50  
Temperature (°C)  
Figure 23.  
Temperature (°C)  
Figure 24.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
At TA = +25°C, VDD = +2.7V, VREF = +2.5V. fSAMPLE = 200kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
CHANGE IN OFFSET  
vs  
CHANGE IN GAIN  
vs  
COMMON-MODE VOLTAGE  
COMMON-MODE VOLTAGE  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-5  
-10  
-5  
-10  
0
0.1 0.2 0.3 0.4 0.5 0.6  
0
0.1 0.2 0.3 0.4 0.5 0.6  
-0.5 -0.4 -0.3 -0.2 -0.1  
-0.5 -0.4 -0.3 -0.2 -0.1  
VCM (V)  
VCM (V)  
Figure 25.  
Figure 26.  
FREQUENCY SPECTRUM  
FREQUENCY SPECTRUM  
(8192 point FFT, fIN = 1.9775kHz, –0.2dB)  
(8192 point FFT, fIN = 9.9854kHz, –0.2dB)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10 20 30 40 50 60 70 80 90 100  
Frequency (kHz)  
0
10 20 30 40 50 60 70 80 90 100  
Frequency (kHz)  
Figure 27.  
Figure 28.  
16  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
At TA = +25°C, VDD = +2.7V, VREF = +2.5V. fSAMPLE = 200kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
SIGNAL-TO-NOISE AND  
SIGNAL-TO-NOISE + DISTORTION  
vs  
SPURIOUS-FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-100  
-95  
-90  
-85  
-80  
-75  
-70  
-65  
-60  
-55  
-50  
-45  
-40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
55  
SNR  
SFDR  
SINAD  
THD(1)  
NOTE: (1) First nine harmonics of the input frequency.  
100 200  
100 200  
1
10  
1
10  
Frequency (kHz)  
Frequency (kHz)  
Figure 29.  
Figure 30.  
EFFECTIVE NUMBER OF BITS  
CHANGE IN SIGNAL-TO-NOISE + DISTORTION  
vs  
vs  
INPUT FREQUENCY  
TEMPERATURE  
15  
14  
13  
12  
11  
10  
9
0.4  
fIN = 1.97754kHz, -0.2dB  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
8
7
100 200  
75  
100  
1
10  
-50  
-25  
0
25  
50  
Frequency (kHz)  
Temperature (°C)  
Figure 31.  
Figure 32.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
At TA = +25°C, VDD = +2.7V, VREF = +2.5V. fSAMPLE = 200kHz, fCLK = 24 × fSAMPLE, unless otherwise noted.  
SIGNAL-TO-NOISE + DISTORTION  
SUPPLY CURRENT  
vs  
vs  
INPUT LEVEL  
TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
1.30  
fIN = 1.97754kHz, -0.2dB  
0
75  
100  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
-50  
-25  
0
25  
50  
Input Level (dB)  
Temperature (°C)  
Figure 33.  
Figure 34.  
SUPPLY CURRENT  
vs  
REFERENCE CURRENT  
vs  
SAMPLING RATE  
SAMPLING RATE  
10  
1000  
100  
10  
1
0.1  
0.01  
1
0.001  
0.0001  
0.1  
100 200  
100 200  
1
10  
1
10  
Sampling Rate (kHz)  
Sampling Rate (kHz)  
Figure 35.  
Figure 36.  
OUTPUT CODE HISTOGRAM FOR A DC INPUT  
(8192 Conversions)  
4791  
1665  
1643  
40  
0
0
53  
8001 8002  
7FFC 7FFD 7FFE 7FFF  
8000  
Code  
Figure 37.  
18  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
THEORY OF OPERATION  
The ADS8326 is a classic Successive Approximation  
Register (SAR) Analog-to-Digital (A/D) converter. The  
architecture is based on capacitive redistribution that  
inherently includes a sample-and-hold function. The  
converter is fabricated on a 0.6μ CMOS process. The  
architecture and process allow the ADS8326 to  
acquire and convert an analog signal at up to  
250,000 conversions per second while consuming  
The external clock can vary between 24kHz (1kHz  
throughput) and 6.0MHz (250kHz throughput). The  
duty cycle of the clock is essentially unimportant, as  
long as the minimum high and low times are at least  
200ns (VDD = 4.75V or greater). The minimum clock  
frequency is set by the leakage on the internal  
capacitors to the ADS8326.  
The analog input is provided to two input pins: +IN  
less than 10mW from VDD  
.
and –IN. When  
a conversion is initiated, the  
Differential linearity  
for  
the  
ADS8326  
is  
differential input on these pins is sampled on the  
internal capacitor array. While a conversion is in  
progress, both inputs are disconnected from any  
internal function.  
factory-adjusted via a package-level trim procedure.  
The state of the trim elements is stored in non-volatile  
memory and is continuously updated after each  
acquisition cycle, just prior to the start of the  
successive approximation operation. This process  
ensures that one complete conversion cycle always  
returns the part to its factory-adjusted state in the  
event of a power interruption.  
The digital result of the conversion is clocked out by  
the DCLOCK input and is provided serially (most  
significant bit first) on the DOUT pin.  
The digital data that is provided on the DOUT pin is for  
the conversion currently in progress–there is no  
pipeline delay. It is possible to continue to clock the  
ADS8326 after the conversion is complete and to  
obtain the serial data least significant bit first. See the  
Timing Information section for more information.  
The ADS8326 requires an external reference, an  
external clock, and a single power source (VDD). The  
external reference can be any voltage between 0.1V  
and VDD. The value of the reference voltage directly  
sets the range of the analog input. The reference  
input current depends on the conversion rate of the  
ADS8326.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
ANALOG INPUT  
0V to +VREF  
The analog input of ADS8326 is differential. The +IN  
and –IN input pins allow for a differential input signal.  
ADS8326  
Peak-to-Peak  
The amplitude of the input is the difference between  
the +IN and –IN input, or (+IN) – (–IN). Unlike some  
Common-Mode  
Voltage  
converters of this type, the –IN input is not resampled  
later in the conversion cycle. When the converter  
goes into Hold mode or conversion, the voltage  
difference between +IN and –IN is captured on the  
internal capacitor array.  
Figure 38. Methods of Driving the ADS8326  
The range of the –IN input is limited to –0.3V to  
+0.5V. As a result of this limitation, the differential  
1
VDD = 5V  
input could be used to reject signals that are common  
to both inputs in the specified range. Thus, the –IN  
0.5  
input is best used to sense a remote signal ground  
that may move slightly with respect to the local  
0
ground potential.  
-0.3  
The general method for driving the analog input of the  
ADS8326 is shown in Figure 38 and Figure 40. The  
–IN input is held at the common-mode voltage. The  
-1  
+IN input swings from –IN (or common-mode voltage)  
2
2.5  
3
4
5
6
4.8  
to –IN + VREF (or common-mode voltage + VREF ),  
and the peak-to-peak amplitude is +VREF . The value  
of VREF determines the range over which the  
common-mode voltage may vary, as shown in  
Figure 39. Figure 6 and Figure 7 (+5V), and  
Figure 25 and Figure 26 (+2.7V) illustrate the typical  
change in gain and offset as a function of the  
common-mode voltage applied to the –IN pin.  
VREF (V)  
Figure 39. +IN Analog Input: Common-Mode  
Voltage Range vs VREF  
+IN  
Common-Mode Voltage + VREF  
+VREF  
t
Common-Mode Voltage  
-IN = Common-Mode Voltage  
NOTE: The maximum differential voltage between +IN and –IN of the ADS8326 is VREF. See Figure 39 for a further  
explanation of the common-mode voltage range for differential inputs.  
Figure 40. Differential Input Mode of the ADS8326  
20  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
 
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
The input current required by the analog inputs  
Single-Ended  
depends on a number of factors: sample rate, input  
voltage, source impedance, and power-down mode.  
48pF  
10W  
50W  
Essentially, the current into the ADS8326 charges the  
internal capacitor array during the sample period.  
After this capacitance has been fully charged, there is  
no further input current. The source of the analog  
input voltage must be able to charge the input  
capacitance (48pF) to a 16-bit settling level within 4.5  
clock cycles (0.750μs). When the converter goes into  
Hold mode, or while it is in Power-Down mode, the  
input impedance is greater than 1G.  
+IN  
OPA365  
1000pF  
ADS8326  
48pF  
50W  
-IN  
Differential  
Care must be taken regarding the absolute analog  
input voltage. To maintain the linearity of the  
converter, the –IN input should not drop below GND –  
0.3V or exceed GND + 0.5V. The +IN input should  
always remain within the range of GND – 0.3V to VDD  
+ 0.3V, or –IN to –IN + VREF , whichever limit is  
reached first. Outside of these ranges, the converter  
linearity may not meet specifications. To minimize  
noise, low bandwidth input signals with low-pass  
filters should be used. In each case, care should be  
taken to ensure that the output impedance of the  
sources driving the +IN and –IN inputs are matched.  
Often, a small capacitor (20pF) between the positive  
and negative inputs helps to match their impedance.  
To obtain maximum performance from the ADS8326,  
the input circuit from Figure 41 is recommended.  
48pF  
10W  
50W  
+IN  
OPA365  
1000pF  
ADS8326  
1nF  
48pF  
10W  
50W  
-IN  
OPA365  
1000pF  
Figure 41. Single-Ended and Differential Methods  
of Interfacing the ADS8326  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS8326  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
REFERENCE INPUT  
ADS8326  
The external reference sets the analog input range.  
The ADS8326 operates with a reference in the range  
24pF  
50W  
VREF  
OPA350  
of 0.1V to VDD  
. There are several important  
implications to this.  
47mF  
As the reference voltage is reduced, the analog  
voltage weight of each digital output code is reduced.  
This is often referred to as the least significant bit  
(LSB) size and is equal to the reference voltage  
divided by 65,536. This means that any offset or gain  
error inherent in the A/D converter will appear to  
increase (in terms of LSB size) as the reference  
voltage is reduced. For a reference voltage of 2.5V,  
the value of the LSB is 38.15μV, and for a reference  
voltage of 5V, the LSB is 76.3μV.  
Figure 42. Input Reference Circuit and Interface  
When the ADS8326 is in Power-Down mode, the  
input resistance of the reference pin will have a value  
of 5G. Since the input capacitors must be  
recharged before the next conversion starts, an  
operational  
amplifier  
with  
good  
dynamic  
characteristics must be used to buffer the reference  
input.  
The noise inherent in the converter will also appear to  
increase with a lower LSB size. With a 5V reference,  
the internal noise of the converter typically contributes  
only 1.5LSB peak-to-peak of potential error to the  
output code. When the external reference is 2.5V, the  
potential error contribution from the internal noise will  
be two times larger (3LSB). The errors arising from  
the internal noise are Gaussian in nature and can be  
reduced by averaging consecutive conversion results.  
Noise  
The transition noise of the ADS8326 itself is  
extremely low, as shown in Figure 20 (+5V) and  
Figure 37 (+2.7V); it is much lower than competing  
A/D converters. These histograms were generated by  
applying a low-noise DC input and initiating 8192  
conversions. The digital output of the A/D converter  
will vary in output code because of the internal noise  
of the ADS8326. This is true for all 16-bit, SAR-type  
A/D converters. Using a histogram to plot the output  
codes, the distribution should appear bell-shaped with  
the peak of the bell curve representing the nominal  
code for the input value. The ±1σ, ±2σ, and ±3σ  
distributions will represent 68.3%, 95.5%, and 99.7%,  
respectively, of all codes. The transition noise can be  
calculated by dividing the number of codes measured  
by 6, which yields the ±3σ distribution, or 99.7%, of  
all codes. Statistically, up to three codes could fall  
outside the distribution when executing 1000  
conversions. The ADS8326, with < 3 output codes for  
the ±3σ distribution, yields < ±0.5LSB of transition  
noise. Remember, to achieve this low-noise  
performance, the peak-to-peak noise of the input  
signal and reference must be < 50μV.  
For more information regarding noise, see Figure 15,  
Peak-to-Peak Noise for a DC Input vs Reference  
Voltage. Note that the Effective Number Of Bits  
(ENOB) figure is calculated based on the converter  
signal-to-(noise + distortion) ratio with a 1kHz, 0dB  
input signal. SINAD is related to ENOB as follows:  
SINAD = 6.02 × ENOB + 1.76  
With lower reference voltages, extra care should be  
taken to provide a clean layout including adequate  
bypassing,  
a clean power supply, a low-noise  
reference, and a low-noise input signal. Due to the  
lower LSB size, the converter is also more sensitive  
to external sources of error, such as nearby digital  
signals and electromagnetic interference.  
The equivalent input circuit for the reference voltage  
is presented in Figure 42. During the conversion  
process, an equivalent capacitor of 24pF is switched  
on. To obtain optimum performance from the  
ADS8326, special care must be taken in designing  
the interface circuit to the reference input pin. To  
ensure a stable reference voltage, a 47μF tantalum  
capacitor with low ESR should be connected as close  
as possible to the input pin. If a high output  
impedance reference source is used, an additional  
operational amplifier with a current-limiting resistor  
must be placed in front of the capacitors.  
Averaging  
The noise of the A/D converter can be compensated  
by averaging the digital codes. By averaging  
conversion results, transition noise is reduced by a  
factor of 1/n , where n is the number of averages.  
For example, averaging four conversion results  
reduces the transition noise from ±0.5LSB to  
±0.25LSB. Averaging should only be used for input  
signals with frequencies near DC.  
For AC signals, a digital filter can be used to  
low-pass filter and decimate the output codes. This  
works in a similar manner to averaging; for every  
decimation by 2, the signal-to-noise ratio improves by  
3dB.  
22  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
 
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
DIGITAL INTERFACE  
Signal Levels  
A falling CS signal initiates the conversion and data  
transfer. The first 4.5 to 5.0 clock periods of the  
conversion cycle are used to sample the input signal.  
After the fifth falling DCLOCK edge, DOUT is enabled  
and will output a low value for one clock period. For  
the next 16 DCLOCK periods, DOUT will output the  
conversion result, most significant bit first. After the  
least significant bit (B0) has been output, subsequent  
clocks will repeat the output data, but in a least  
significant bit first format.  
The ADS8326 has a wide range of power-supply  
voltage. The A/D converter, as well as the digital  
interface circuit, is designed to accept and operate  
from 2.7V up to 5.5V. This voltage range will  
accommodate different logic levels. When the  
ADS8326 power-supply voltage is in the range of  
4.5V to 5.5V (5V logic level), the ADS8326 can be  
connected directly to another 5V, CMOS-integrated  
circuit. When the ADS8326 power-supply voltage is in  
the range of 2.7V to 3.6V (3V logic level), the  
ADS8326 can be connected directly to another 3.3V  
LVCMOS integrated circuit.  
After the most significant bit (B15) has been  
repeated, DOUT will tri-state. Subsequent clocks will  
have no effect on the converter. A new conversion is  
initiated only when CS has been taken high and  
returned low.  
Serial Interface  
Data Format  
The ADS8326 communicates with microprocessors  
and other digital systems via a synchronous 3-wire  
serial interface, as illustrated in the Timing  
The output data from the ADS8326 is in Straight  
Binary format, as shown in Figure 43. This figure  
represents the ideal output code for a given input  
voltage and does not include the effects of offset,  
gain error, or noise.  
Information  
section.  
The  
DCLOCK  
signal  
synchronizes the data transfer, with each bit being  
transmitted on the falling edge of DCLOCK. Most  
receiving systems will capture the bitstream on the  
rising edge of DCLOCK. However, if the minimum  
hold time for DOUT is acceptable, the system can use  
the falling edge of DCLOCK to capture each bit.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS8326  
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
Straight Binary  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
65535  
65534  
65533  
1000 0000 0000 0001  
1000 0000 0000 0000  
32769  
32768  
32767  
0111 1111 1111 1111  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
2
1
0
2.499962V  
VZ = VCM = 0V  
2.500038V  
VFS = VCM + VREF = 5V  
FS - 1LSB = 4.999924V  
4.999847V  
1LSB = 76.29mV  
38.15mV  
76.29mV  
152.58mV  
V
VMS = VCM + VREF/2 = 2.5V  
Unipolar Analog Input Voltage  
VCM = 0V  
VREF = 5V  
16-BIT  
Straight Binary Output  
VZ = 0000h  
Unipolar Analog Input  
Zero Code  
VCODE = VCM  
Midscale Code  
Full- Scale Code  
VMS = 8000h  
VCODE = VCM + VREF/2  
VCODE = (VCM + VREF) - 1LSB  
VFS = FFFFh  
Figure 43. Ideal Conversion Characteristics (Conditions: VCM = 0V, VREF = 5V)  
24  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
Short Cycling  
POWER DISSIPATION  
Another way to save power is to use the CS signal to  
short-cycle the conversion. The ADS8326 places the  
latest data bit on the DOUT line as it is generated;  
therefore, the converter can easily be short-cycled.  
This term means that the conversion can be  
terminated at any time. For example, if only 14 bits of  
the conversion result are needed, then the conversion  
can be terminated (by pulling CS high) after the 14th  
bit has been clocked out.  
The architecture of the converter, the semiconductor  
fabrication process, and a careful design allow the  
ADS8326 to convert at up to a 250kHz rate while  
requiring very little power. However, for the absolute  
lowest power dissipation, there are several things to  
keep in mind.  
The power dissipation of the ADS8326 scales directly  
with conversion rate. Therefore, the first step to  
achieving the lowest power dissipation is to find the  
lowest conversion rate that will satisfy the  
requirements of the system.  
This technique can also be used to lower the power  
dissipation (or to increase the conversion rate) in  
those applications where an analog signal is being  
monitored until some condition becomes true. For  
example, if the signal is outside a predetermined  
range, the full 16-bit conversion result may not be  
needed. If so, the conversion can be terminated after  
the first n bits, where n might be as low as 3 or 4.  
This results in lower power dissipation in both the  
converter and the rest of the system because they  
spend more time in Power-Down mode.  
In addition, the ADS8326 goes into Power-Down  
mode under two conditions: when the conversion is  
complete and whenever CS is high (see the Timing  
Information section). Ideally, each conversion should  
occur as quickly as possible, preferably at a 6.0MHz  
clock rate. This way, the converter spends the  
longest possible time in Power-Down mode. This is  
very important because the converter not only uses  
power on each DCLOCK transition (as is typical for  
digital CMOS components), but also uses some  
current for the analog circuitry, such as the  
comparator. The analog section dissipates power  
continuously until Power-Down mode is entered.  
POWER-ON RESET  
The ADS8326 bias circuit is self-starting. There may  
be a static current (approximately 1.5mA with VDD  
=
5V) after power-on, unless the circuit is powered  
down. It is recommended to run a single test  
conversion (configured the same as any regular  
conversion) after the power supply reaches at least  
2.4V to ensure the device is put into power-down  
mode.  
Figure 17 and Figure 18 (+5V), and Figure 35 and  
Figure 36 illustrate the current consumption of the  
ADS8326 versus sample rate. For these graphs, the  
converter is clocked at maximum speed regardless of  
the sample rate. CS is held high during the remaining  
sample period.  
There is an important distinction between the  
power-down mode that is entered after a conversion  
is complete and the full power-down mode that is  
enabled when CS is high. CS low will only shut down  
the analog section. The digital section is completely  
shut down only when CS is high. Thus, if CS is left  
low at the end of a conversion, and the converter is  
continually clocked, the power consumption will not  
be as low as when CS is high.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS8326  
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
LAYOUT  
resistor can help in this case). Keep in mind that  
while the ADS8326 draws very little current from the  
reference on average, there are still instantaneous  
current demands placed on the external input and  
reference circuitry.  
For optimum performance, care should be taken with  
the physical layout of the ADS8326 circuitry. This is  
particularly true if the reference voltage is low and/or  
the conversion rate is high. At a 250kHz conversion  
rate, the ADS8326 makes a bit decision every 167ns.  
That is, for each subsequent bit decision, the digital  
output must be updated with the results of the last bit  
decision, the capacitor array appropriately switched  
and charged, and the input to the comparator settled  
to a 16-bit level, all within one clock cycle.  
Texas Instruments' OPA365 op amp provides  
optimum performance for buffering the signal inputs;  
the OPA350 can be used to effectively buffer the  
reference input.  
Also, keep in mind that the ADS8326 offers no  
inherent rejection of noise or voltage variation in  
regards to the reference input. This is of particular  
concern when the reference input is tied to the power  
supply. Any noise and ripple from the supply will  
appear directly in the digital results. While  
high-frequency noise can be filtered out, as described  
in the previous paragraph, voltage variation resulting  
from the line frequency (50Hz or 60Hz) can be  
difficult to remove.  
The basic SAR architecture is sensitive to spikes on  
the power supply, reference, and ground connections  
that occur just prior to latching the comparator output.  
Thus, during any single conversion for an n-bit SAR  
converter, there are n windows in which large  
external transient voltages can easily affect the  
conversion result. Such spikes might originate from  
switching power supplies, digital logic, and  
high-power devices, to name a few potential sources.  
This particular source of error can be very difficult to  
track down if the glitch is almost synchronous to the  
converter DCLOCK signal because the phase  
difference between the two changes with time and  
temperature, causing sporadic misoperation.  
The GND pin on the ADS8326 should be placed on a  
clean ground point. In many cases, this will be the  
analog ground. Avoid connecting the GND pin too  
close to the grounding point for a microprocessor,  
microcontroller, or digital signal processor. If needed,  
run a ground trace directly from the converter to the  
power-supply connection point. The ideal layout will  
include an analog ground plane for the converter and  
associated analog circuitry.  
With this in mind, power to the ADS8326 should be  
clean and well-bypassed. A 0.1μF ceramic bypass  
capacitor should be placed as close as possible to  
the ADS8326 package. In addition, a 1μF to 10μF  
capacitor and a 5or 10series resistor may be  
used to low-pass filter a noisy supply.  
The reference should be similarly bypassed with a  
47μF capacitor. Again, a series resistor and large  
capacitor can be used to low-pass filter the reference  
voltage. If the reference voltage originates from an op  
amp, make sure that the op amp can drive the  
bypass capacitor without oscillation (the series  
26  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
ADS8326  
www.ti.com.................................................................................................................................................. SBAS343C MAY 2007REVISED SEPTEMBER 2009  
APPLICATION CIRCUITS  
high-frequency noise from the supply itself. The exact  
values should be picked such that the filter provides  
adequate rejection of noise. Operational amplifiers  
and voltage reference are connected to analog power  
Figure 44 and Figure 45 show two examples of a  
basic data acquisition system. The ADS8326 input  
range is connected to 2.5V or 4.096V. The 5Ω  
resistor and 1μF to 10μF capacitor filters the  
supply, AVDD  
.
microcontroller noise on the supply, as well as any  
DVDD  
2.7V to 3.6V  
+
0.1mF  
10mF  
AVDD  
5W  
2.7V to 5V  
REF3225  
REF  
OPA350  
10W  
VDD  
+
IN  
OUT  
47mF  
0.1mF  
10mF  
2.2mF  
GND  
0.47mF  
ADS8326  
DSP  
10W  
TMS320C6xx  
or  
+IN  
OPA365  
TMS320C5xx  
or  
VCM + (0V to 2.5V)  
1000pF  
CS  
TMS320C2xx  
1nF  
DOUT  
DCLOCK  
GND  
10W  
-IN  
GND  
OPA365  
VCM  
1000pF  
Figure 44. Basic Data Acquisition System: Example 1  
DVDD  
4.5V to 5.5V  
+
0.1mF  
10mF  
5W  
AVDD  
4.3V to 5.5V  
REF3240  
OUT  
REF  
OPA350  
10W  
VDD  
+
IN  
0.1mF  
10mF  
47mF  
2.2mF  
GND  
0.47mF  
ADS8326  
10W  
Microcontroller  
or  
DSP  
+IN  
OPA365  
0V to 4.096V  
1000pF  
CS  
DOUT  
DCLOCK  
GND  
-IN  
GND  
Figure 45. Basic Data Acquisition System: Example 2  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS8326  
 
 
ADS8326  
SBAS343C MAY 2007REVISED SEPTEMBER 2009.................................................................................................................................................. www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (May, 2008) to Revision C ..................................................................................................... Page  
Released SON-8 package; changed statements regarding SON-8 package availability ..................................................... 1  
Deleted footnote about SON-8 package availability ............................................................................................................. 2  
Deleted footnote about SON-8 package availability ............................................................................................................. 3  
Deleted footnote about SON-8 package availability ............................................................................................................. 7  
Changes from Revision A (August, 2007) to Revision B ............................................................................................... Page  
Changed SON-8 package availability to Q3, 2008 ............................................................................................................... 1  
Changed y-axis unit in Figure 35 from μA to mA ............................................................................................................... 18  
Added Power-On Reset section ......................................................................................................................................... 25  
28  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8326  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8326IBDGKR  
ADS8326IBDGKT  
ADS8326IBDGKTG4  
ADS8326IBDRBR  
ADS8326IBDRBT  
ADS8326IDGKR  
ADS8326IDGKT  
ADS8326IDRBR  
ADS8326IDRBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
SON  
DGK  
DGK  
DGK  
DRB  
DRB  
DGK  
DGK  
DRB  
DRB  
8
8
8
8
8
8
8
8
8
2500 RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
D26  
D26  
D26  
D26  
D26  
D26  
D26  
D26  
D26  
250  
250  
RoHS & Green  
RoHS & Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SON  
VSSOP  
VSSOP  
SON  
SON  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8326IBDRBR  
ADS8326IDRBR  
SON  
SON  
DRB  
DRB  
8
8
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8326IBDRBR  
ADS8326IDRBR  
SON  
SON  
DRB  
DRB  
8
8
3000  
3000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008B  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.65 0.05  
(0.2) TYP  
4
5
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
0.5  
0.3  
8X  
(OPTIONAL)  
0.05  
4218876/A 12/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.575)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218876/A 12/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.63)  
SYMM  
(1.06)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218876/A 12/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

ADS8326IDRBR

16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling
BB

ADS8326IDRBR

16 位、伪差动输入、250kSPS 串行输出、2.7V 至 5.5V 微功耗采样 ADC | DRB | 8 | -40 to 85
TI

ADS8326IDRBT

16-Bit, High-Speed, 2.7V to 5.5V microPower Sampling
BB

ADS8326IDRBT

16 位、伪差动输入、250kSPS 串行输出、2.7V 至 5.5V 微功耗采样 ADC | DRB | 8 | -40 to 85
TI

ADS8327

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8327

LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8327I

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8327IB

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8327IBPW

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8327IBPW

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8327IBPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8327IBPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI