ADS8328IBPW [TI]

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE; 低功耗, 16位, 500千赫,单/双单极性输入,模拟 - 数字转换器,串行接口
ADS8328IBPW
型号: ADS8328IBPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
低功耗, 16位, 500千赫,单/双单极性输入,模拟 - 数字转换器,串行接口

转换器 模数转换器 光电二极管 输入元件
文件: 总50页 (文件大小:1860K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL  
CONVERTERS WITH SERIAL INTERFACE  
Check for Samples: ADS8327, ADS8328  
1
FEATURES  
APPLICATIONS  
Communications  
2.7-V to 5.5-V Analog Supply, Low Power:  
Transducer Interface  
Medical Instruments  
Magnetometers  
Industrial Process Control  
Data Acquisition Systems  
Automatic Test Equipment  
10.6 mW (500 kHz, +VA = 2.7 V,  
+VBD = 1.8 V)  
500-kHz Sampling Rate  
Excellent DC Performance  
±1.5 LSB Typ, ±2 LSB Max INL  
±0.6 LSB Typ, ±1 LSB Max DNL  
16-Bit NMC Over Temperature  
±0.5 mV Max Offset Error at 2.7 V  
±1 mV Max Offset Error at 5 V  
DESCRIPTION  
The ADS8327 is a low power, 16-bit, 500-kSPS  
analog-to-digital converter with a unipolar input. The  
device includes a 16-bit capacitor-based SAR A/D  
converter with inherent sample and hold.  
Excellent AC Performance at fI = 10 kHz with  
91 dB SNR, 100 dB SFDR, 96 dB THD  
Built-In Conversion Clock (CCLK)  
The ADS8328 is based on the same core and  
includes a 2-to-1 input MUX with programmable  
option of TAG bit output. Both the ADS8327 and  
ADS8328 offer a high-speed, wide voltage serial  
interface and are capable of chain mode operation  
when multiple converters are used.  
1.65 V to 1.5×(+VA) I/O Supply  
SPI/DSP Compatible Serial  
SCLK up to 50 MHz  
Comprehensive Power-Down Modes:  
Deep Power-Down  
Nap Power-Down  
These converters are available in a 16-lead TSSOP  
or 4x4 QFN packages and are fully specified for  
operation over the industrial 40°C to +85°C  
temperature range.  
Auto Nap Power-Down  
Unipolar Input Range: 0 V to VREF  
Software Reset  
Table 1. Low Power, High-Speed SAR Converter  
Family  
Global CONVST (Independent of CS)  
Programmable Status/Polarity EOC/INT  
16-Pin 4×4 QFN or 16-Pin TSSOP Packages  
Multi-Chip Daisy Chain Mode  
Type/Speed  
Single  
500 kHz  
ADS8327  
ADS8328  
1 MHz  
ADS8329  
ADS8330  
16 Bit Pseudo-Diff  
Dual  
Programmable TAG Bit Output  
Auto/Manual Channel Select Mode  
OUTPUT  
LATCH  
and  
3−STATE  
DRIVER  
ADS8328 ADS8327  
SDO  
SAR  
NC  
+IN1  
+IN0  
COM  
+
_
CDAC  
+IN  
FS/CS  
SCLK  
SDI  
CONVERSION  
and  
CONTROL  
LOGIC  
COMPARATOR  
−IN  
REF+  
REF−  
CONVST  
OSC  
EOC/INT/CDI  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
© 20062011, Texas Instruments Incorporated  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
MAXIMUM  
INTEGRAL  
LINEARITY  
(LSB)  
MAXIMUM  
DIFFERENTIAL  
LINEARITY  
(LSB)  
MAXIMUM  
OFFSET  
ERROR  
(mV)  
TRANSPORT  
MEDIA  
QUANTITY  
PACKAGE  
TYPE  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
ORDERING  
INFORMATION  
MODEL  
ADS8327IPW  
Tube 90  
TSSOP-16  
4×4 QFN-16  
TSSOP-16  
4×4 QFN-16  
TSSOP-16  
4×4 QFN-16  
TSSOP-16  
4×4 QFN-16  
PW  
RSA  
PW  
Tape and reel  
2000  
ADS8327IPWR  
ADS8327I  
±3  
±2  
±3  
±2  
1/+2  
±1.25  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Small tape and  
reel 250  
ADS8327IRSAT  
Tape and reel  
3000  
ADS8327IRSAR  
ADS8327IBPW  
ADS8327IBPWR  
Tube 90  
Tape and reel  
2000  
ADS8327IB  
ADS8328I  
ADS8328IB  
±1  
±1  
Small tape and  
reel 250  
ADS8327IBRSAT  
RSA  
PW  
Tape and reel  
3000  
ADS8327IBRSAR  
ADS8328IPW  
Tube 90  
Tape and reel  
2000  
ADS8328IPWR  
1/+2  
±1.25  
Small tape and  
reel 250  
ADS8328IRSAT  
RSA  
PW  
Tape and reel  
3000  
ADS8328IRSAR  
ADS8328IBPW  
ADS8328IBPWR  
Tube 90  
Tape and reel  
2000  
±1  
±1  
Small tape and  
reel 250  
ADS8328IBRSAT  
ADS8328IBRSAR  
RSA  
Tape and reel  
3000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
2
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range, unless otherwise noted.(1)  
UNIT  
+IN to AGND  
Voltage  
0.3 V to +VA + 0.3 V  
0.3 V to +VA + 0.3 V  
0.3 V to 7 V  
IN to AGND  
+VA to AGND  
+REF to AGND  
0.3 V to +VA + 0.3 V  
0.3 V to +0.3 V  
0.3 V to 7 V  
Voltage range  
REF to AGND  
+VBD to BDGND  
AGND to BDGND  
0.3 V to 0.3 V  
0.3 V to +VBD + 0.3 V  
0.3 V to +VBD + 0.3 V  
40°C to +85°C  
65°C to +150°C  
+150°C  
Digital input voltage to BDGND  
Digital output voltage to BDGND  
Operating free-air temperature range  
Storage temperature range  
TA  
Tstg  
Junction temperature (TJ max)  
Power dissipation  
(TJMax - TA)/qJA  
86°C/W  
TSSOP-16  
Package  
qJA thermal impedance  
Power dissipation  
(TJMax TA)/qJA  
47°C/W  
4×4 QFN-16  
Package  
qJA thermal impedance  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS8327 ADS8328  
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
SPECIFICATIONS  
TA = 40°C to 85°C, +VA = 2.7 V to 3.6 V, +VBD = 1.65 V to 1.5 × (+VA), VREF = 2.5 V, and fSAMPLE = 500 kHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
(1)  
Full-scale input voltage  
+IN (IN) or (+INx COM)  
+IN, +IN0, +IN1  
0
AGND 0.2  
AGND 0.2  
+VREF  
+VA + 0.2  
AGND + 0.2  
45  
V
V
Absolute input voltage  
IN or COM  
Input capacitance  
40  
pF  
nA  
No ongoing conversion,  
DC Input  
Input leakage current  
1  
1
At dc  
108  
101  
Input channel isolation, ADS8328 only  
SYSTEM PERFORMANCE  
dB  
VI = ±1.25 VPP at 50 kHz  
Resolution  
16  
Bits  
Bits  
No missing codes  
16  
2  
ADS8327IB,  
ADS8328IB  
±1.2  
±2  
2
3
INL  
DNL  
EO  
Integral linearity  
LSB(2)  
LSB(2)  
mV  
ADS8327I, ADS8328I  
3  
ADS8327IB,  
ADS8328IB  
1  
±0.6  
±1  
1
Differential  
linearity  
ADS8327I, ADS8328I  
1  
2
ADS8327IB,  
ADS8328IB  
0.5  
0.8  
±0.1  
0.5  
0.8  
Offset error(3)  
ADS8327I, ADS8328I  
±0.1  
0.2  
0.07  
0.3  
70  
Offset error drift  
Gain error  
ppm/°C  
%FSR  
EG  
0.25  
0.25  
Gain error drift  
ppm/°C  
At dc  
CMRR  
Common-mode rejection ratio  
dB  
VI = 0.4 VPP at 1 MHz  
50  
Noise  
33  
mV RMS  
PSRR  
Power-supply rejection ratio  
At FFFFh output code(3)  
78  
dB  
SAMPLING DYNAMICS  
tCONV  
Conversion time  
18  
3
CCLK  
CCLK  
tSAMPLE1  
tSAMPLE2  
Manual trigger  
Auto trigger  
3
Acquisition time  
Throughput rate  
Aperture delay  
Aperture jitter  
500  
kHz  
ns  
5
10  
ps  
Step response  
100  
100  
ns  
Overvoltage recovery  
ns  
(1) Ideal input span, does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input [+IN (IN)] of 2.5 V when +VA = 2.7 V.  
4
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
SPECIFICATIONS (continued)  
TA = 40°C to 85°C, +VA = 2.7 V to 3.6 V, +VBD = 1.65 V to 1.5 × (+VA), VREF = 2.5 V, and fSAMPLE = 500 kHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC CHARACTERISTICS  
VIN = 2.5 VPP at 10 kHz  
VIN = 2.5 VPP at 100 kHz  
VIN = 2.5 VPP at 10 kHz  
VIN = 2.5 VPP at 100 kHz  
VIN = 2.5 VPP at 10 kHz  
VIN = 2.5 VPP at 100 kHz  
VIN = 2.5 VPP at 10 kHz  
VIN = 2.5 VPP at 100 kHz  
98  
83.5  
88.5  
85  
(4)  
THD  
Total harmonic distortion  
Signal-to-noise ratio  
dB  
dB  
dB  
SNR  
88.5  
81  
SINAD  
SFDR  
Signal-to-noise + distortion  
101  
84  
Spurious-free dynamic range  
dB  
3dB small-signal bandwidth  
30  
MHz  
CLOCK  
Internal conversion clock frequency  
SCLK External serial clock  
10.5  
1
11  
80  
5
12.2  
33  
MHz  
MHz  
Used as I/O clock only  
As I/O clock and conversion clock  
21  
EXTERNAL VOLTAGE REFERENCE INPUT  
VREF(REF+ REF)  
(REF) AGND  
3.6 V +VA 2.7 V  
0.3  
2.525  
0.1  
Input reference  
range  
VREF  
V
0.1  
(5)  
Resistance  
Reference input  
kΩ  
DIGITAL INPUT/OUTPUT  
Logic familyCMOS  
High-level input voltage  
VIH  
VIL  
II  
(+VA × 1.5) V +VBD 1.65 V  
(+VA × 1.5) V +VBD 1.65 V  
VI = +VBD or BDGND  
0.65 × (+VBD)  
+VBD + 0.3  
0.35 × (+VBD)  
50  
V
V
Low-level input voltage  
Input current  
0.3  
50  
nA  
pF  
CI  
Input capacitance  
(+VA × 1.5) V +VBD 1.65 V,  
IO = 100 mA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
+VBD 0.6  
+VBD  
0.4  
V
V
(+VA × 1.5) V +VBD 1.65 V,  
IO = 100 mA  
0
CO  
CL  
Output capacitance  
5
pF  
pF  
Load capacitance  
30  
Data formatstraight binary  
POWER-SUPPLY REQUIREMENTS  
+VBD  
+VA  
1.65  
2.7  
+VA  
1.5 × (+VA)  
V
V
Power-supply  
voltage  
3.6  
5
500-kHz Sample rate  
NAP/Auto-NAP mode  
Deep power-down mode  
500 kSPS  
3.8  
0.2  
2
mA  
Supply current  
0.4  
50  
nA  
mA  
mW  
Buffer I/O supply current  
Power dissipation  
0.2  
10.6  
+VA = 2.7 V, +VBD = 1.8 V  
14  
TEMPERATURE RANGE  
TA Operating free-air temperature  
40  
+85  
°C  
(4) Calculated on the first nine harmonics of the input frequency.  
(5) Can vary ±30%.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
SPECIFICATIONS  
TA = 40°C to 85°C, +VA = 4.5 V to 5.5 V, +VBD = 1.65 V to 5.5 V, VREF = 4.096 V, and fSAMPLE = 500 kHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
(1)  
Full-scale input voltage  
+IN (IN) or (+INx COM)  
0
AGND 0.2  
AGND 0.2  
+VREF  
+VA + 0.2  
AGND + 0.2  
45  
V
V
+IN, +IN0, +IN1  
Absolute input voltage  
IN or COM  
Input capacitance  
40  
pF  
nA  
No ongoing conversion,  
DC Input  
Input leakage current  
1  
1
At dc  
109  
101  
Input channel isolation, ADS8328 only  
SYSTEM PERFORMANCE  
dB  
VI = ±1.25 VPP at 50 kHz  
Resolution  
16  
Bits  
Bits  
No missing codes  
16  
2  
ADS8327IB,  
ADS8328IB  
±1.5  
±2  
2
3
INL  
DNL  
EO  
Integral linearity  
LSB(2)  
LSB(2)  
mV  
ADS8327I, ADS8328I  
3  
ADS8327IB,  
ADS8328IB  
1  
±0.7  
±1  
1
Differential  
linearity  
ADS8327I, ADS8328I  
1  
2
ADS8327IB,  
ADS8328IB  
1  
±0.4  
1
Offset error(3)  
ADS8327I, ADS8328I  
1.25  
±0.4  
0.5  
0.07  
0.3  
70  
1.25  
Offset error drift  
Gain error  
ppm/°C  
%FSR  
EG  
0.25  
0.25  
Gain error drift  
ppm/°C  
At dc  
CMRR Common-mode rejection ratio  
Noise  
dB  
VI = 1 VPP at 1 MHz  
50  
33  
mV RMS  
PSRR  
Power-supply rejection ratio  
At FFFFh output code(3)  
78  
dB  
SAMPLING DYNAMICS  
tCONV  
Conversion time  
Acquisition time  
18  
3
CCLK  
CCLK  
tSAMPLE  
Manual trigger  
Auto trigger  
3
1
tSAMPLE  
2
Throughput rate  
Aperture delay  
Aperture jitter  
500  
kHz  
ns  
5
10  
ps  
Step response  
100  
100  
ns  
Overvoltage recovery  
ns  
(1) Ideal input span, does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input [+IN (IN)] of 4.096 V when +VA = 5 V.  
6
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
SPECIFICATIONS (continued)  
TA = 40°C to 85°C, +VA = 4.5 V to 5.5 V, +VBD = 1.65 V to 5.5 V, VREF = 4.096 V, and fSAMPLE = 500 kHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC CHARACTERISTICS  
VIN = 4.096 VPP at 10 kHz  
-96  
95.7  
95.7  
91  
(4)  
THD  
SNR  
Total harmonic distortion  
Signal-to-noise ratio  
VIN = 4.096 VPP at 100 kHz, ADS8327/28IB  
VIN = 4.096 VPP at 100 kHz, ADS8327/28I  
VIN = 4.096 VPP at 10 kHz  
dB  
dB  
dB  
VIN = 4.096 VPP at 100 kHz  
89  
VIN = 4.096 VPP at 10 kHz  
91  
SINAD Signal-to-noise + distortion  
VIN = 4.096 VPP at 100 kHz  
88  
VIN = 4.096 VPP at 10 kHz  
100  
98.8  
98.8  
30  
SFDR  
Spurious-free dynamic range  
VIN = 4.096 VPP at 100 kHz, ADS8327/28IB  
VIN = 4.096 VPP at 100 kHz, ADS8327/28I  
dB  
3dB Small-signal bandwidth  
MHz  
CLOCK  
Internal conversion clock frequency  
SCLK External serial clock  
10.9  
1
12  
12.6  
50  
MHz  
MHz  
Used as I/O clock only  
As I/O clock and conversion clock  
21  
EXTERNAL VOLTAGE REFERENCE INPUT  
VREF (REF+ REF)  
5.5 V +VA 4.5 V  
0.3  
4.096  
80  
4.2  
0.1  
Input reference  
range  
VREF  
V
(REF) AGND  
0.1  
(5)  
Resistance  
Reference input  
kΩ  
DIGITAL INPUT/OUTPUT  
Logic familyCMOS  
VIH  
VIL  
II  
High-level input voltage  
Low-level input voltage  
Input current  
5.5 V +VBD 4.5 V  
5.5 V +VBD 4.5 V  
VI = +VBD or BDGND  
0.65 × (+VBD)  
+VBD + 0.3  
0.35 × (+VBD)  
50  
V
V
0.3  
-50  
nA  
pF  
CI  
Input capacitance  
5
5
5.5 V +VBD 4.5 V,  
IO = 100 mA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
+VBD 0.6  
+VBD  
0.4  
V
V
5.5 V +VBD 4.5 V,  
IO = 100 mA  
0
CO  
CL  
Output capacitance  
pF  
pF  
Load capacitance  
30  
Data formatstraight binary  
POWER-SUPPLY REQUIREMENTS  
+VBD  
1.65  
4.5  
3.3  
5
5.5  
5.5  
6.2  
0.5  
50  
V
V
Power supply  
voltage  
+VA  
500-kHz Sample rate  
NAP/Auto-NAP mode  
Deep power-down mode  
500 kSPS  
5
mA  
Supply current  
0.3  
6
nA  
Buffer I/O supply current  
Power dissipation  
1
mA  
+VA = 5 V, +VBD = 5 V  
+VA = 5 V, +VBD = 1.8 V  
30  
25.4  
38.5  
32  
mW  
TEMPERATURE RANGE  
TA  
Operating free-air temperature  
40  
+85  
°C  
(4) Calculated on the first nine harmonics of the input frequency.  
(5) Can vary ±30%  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
TIMING CHARACTERISTICS  
All specifications typical at 40°C to 85°C, +VA = 2.7 v, +VBD = 1.8 V(1)  
(2)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
External,  
fCCLK = 1/2 fSCLK  
0.5  
10.5  
fCCLK  
Frequency, conversion clock, CCLK  
MHz  
12.2  
Internal  
fCCLK = 1/2 fSCLK  
10.5  
11  
tsu(CSF-EOC)  
th(CSF-EOC)  
twL(CONVST)  
tsu(CSF-EOS)  
th(CSF-EOS)  
tsu(CSR-EOS)  
th(CSR-EOS)  
Setup time, falling edge of CS to EOC  
Hold time, falling edge of CS to EOC  
Pulse duration, CONVST low  
1
0
CCLK  
ns  
40  
20  
20  
20  
20  
ns  
Setup time, falling edge of CS to EOS  
Hold time, falling edge of CS to EOS  
Setup time, rising edge of CS to EOS  
Hold time, rising edge of CS to EOS  
ns  
ns  
ns  
ns  
Setup time, falling edge of CS to first falling  
SCLK  
tsu(CSF-SCLK1F)  
5
ns  
twL(SCLK)  
twH(SCLK)  
Pulse duration, SCLK low  
Pulse duration, SCLK high  
8
8
t
c(SCLK) 8  
ns  
ns  
tc(SCLK) 8  
I/O Clock only  
30  
I/O and conversion clock  
I/O Clock, chain mode  
47.6  
30  
2000  
tc(SCLK)  
Cycle time, SCLK  
ns  
I/O and conversion clock,  
chain mode  
47.6  
7.5  
2000  
Delay time, falling edge of SCLK to SDO  
invalid  
td(SCLKF-SDOINVALID)  
td(SCLKF-SDOVALID)  
td(CSF-SDOVALID)  
10-pF Load  
10-pF Load  
10-pF Load  
ns  
ns  
ns  
Delay time, falling edge of SCLK to SDO  
valid  
16  
13  
Delay time, falling edge of CS to SDO valid,  
SDO MSB output  
tsu(SDI-SCLKF)  
th(SDI-SCLKF)  
Setup time, SDI to falling edge of SCLK  
Hold time, SDI to falling edge of SCLK  
8
4
ns  
ns  
Delay time, rising edge of CS/FS to SDO  
3-state  
td(CSR-SDOZ)  
8
ns  
ns  
ns  
Setup time, 16th falling edge of SCLK  
before rising edge of CS/FS  
tsu(16th SCLKF-CSR)  
td(SDO-CDI)  
10  
Delay time, CDI high to SDO high in daisy  
chain mode  
10-pF Load, chain mode  
25  
(1) All input signals are specified with tr = tf = 1.5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
8
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
TIMING CHARACTERISTICS  
All specifications typical at 40°C to 85°C, +VA = +VBD = 5 V  
(1) (2)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
External,  
fCCLK = 1/2 fSCLK  
0.5  
10.5  
fCCLK  
Frequency, conversion clock, CCLK  
MHz  
12.6  
Internal  
fCCLK = 1/2 fSCLK  
10.9  
12  
tsu(CSF-EOC)  
th(CSF-EOC)  
twL(CONVST)  
tsu(CSF-EOS)  
th(CSF-EOS)  
tsu(CSR-EOS)  
th(CSR-EOS)  
Setup time, falling edge of CS to EOC  
Hold time, falling edge of CS to EOC  
Pulse duration, CONVST low  
1
0
CCLK  
ns  
40  
20  
20  
20  
20  
ns  
Setup time, falling edge of CS to EOS  
Hold time, falling edge of CS to EOS  
Setup time, rising edge of CS to EOS  
Hold time, rising edge of CS to EOS  
ns  
ns  
ns  
ns  
Setup time, falling edge of CS to first falling  
SCLK  
tsu(CSF-SCLK1F)  
5
ns  
twL(SCLK)  
twH(SCLK)  
Pulse duration, SCLK low  
Pulse duration, SCLK high  
8
8
t
c(SCLK) 8  
ns  
ns  
tc(SCLK) 8  
I/O Clock only  
20  
I/O and conversion clock  
I/O Clock, chain mode  
47.6  
20  
2000  
tc(SCLK)  
Cycle time, SCLK  
ns  
I/O and conversion clock,  
chain mode  
47.6  
2
2000  
Delay time, falling edge of SCLK to SDO  
invalid  
td(SCLKF-SDOINVALID)  
td(SCLKF-SDOVALID)  
td(CSF-SDOVALID)  
10-pF Load  
10-pF Load  
10-pF Load  
ns  
ns  
ns  
Delay time, falling edge of SCLK to SDO  
valid  
10  
Delay time, falling edge of CS to SDO  
valid, SDO MSB output  
8.5  
tsu(SDI-SCLKF)  
th(SDI-SCLKF)  
Setup time, SDI to falling edge of SCLK  
Hold time, SDI to falling edge of SCLK  
8
4
ns  
ns  
Delay time, rising edge of CS/FS to SDO  
3-state  
td(CSR-SDOZ)  
5
ns  
ns  
ns  
Setup time, 16th falling edge of SCLK  
before rising edge of CS/FS  
tsu(16th SCLKF-CSR)  
td(SDO-CDI)  
10  
Delay time, CDI high to SDO high in  
daisy-chain mode  
10-pF Load, chain mode  
16  
(1) All input signals are specified with tr = tf = 1.5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
PIN ASSIGNMENTS  
ADS8327  
ADS8328  
PW PACKAGE  
(TOP VIEW)  
PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+VA  
RESERVED  
+IN  
−IN  
AGND  
REF−  
REF+ (REFIN)  
NC  
+VBD  
SCLK  
BDGND  
SDO  
+VA  
+IN1  
+IN0  
COM  
AGND  
REF−  
+VBD  
SCLK  
BDGND  
SDO  
SDI  
FS/CS  
EOC/INT  
CONVST  
SDI  
FS/CS  
EOC/INT  
CONVST  
REF+ (REFIN)  
NC  
NC − No internal connection  
ADS8327  
ADS8328  
RSA PACKAGE  
(TOP VIEW)  
RSA PACKAGE  
(TOP VIEW)  
16 15 14 13  
16 15 14 13  
REF+(REFIN)  
NC  
1
2
12 RESERVED  
REF+(REFIN)  
NC  
1
2
12 +IN1  
+VA  
+VA  
11  
10  
9
11  
10  
9
CONVST  
EOC/INT/CDI  
+VBD  
SCLK  
CONVST  
EOC/INT/CDI  
+VBD  
SCLK  
3
4
3
4
6
7
8
6
7
8
5
5
NC − No internal connection  
CAUTION: The thermal pad is internally connected to the substrate. This pad can be connected to the analog ground or left  
floating. Keep the thermal pad separate from the digital ground, if possible.  
10  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
NAME  
SLAS415E APRIL 2006REVISED JANUARY 2011  
ADS8327 Terminal Functions  
NO.  
TSSOP  
I/O  
DESCRIPTION  
QFN  
15  
8
AGND  
5
14  
9
I
Analog ground  
BDGND  
CONVST  
Interface ground  
3
Freezes sample and hold, starts conversion with next rising edge of internal clock  
Status output. If programmed as EOC, this pin is low (default) when a conversion is in  
progress. If programmed as an interrupt (INT), this pin is low for a preprogrammed  
duration after the end of conversion and valid data are to be output. The polarity of EOC  
or INT is programmable. This pin can also be used as a chain data input when the device  
is operated in chain mode.  
EOC/ INT/ CDI  
FS/CS  
10  
4
O
I
Frame sync signal for TMS320 DSP serial interface or chip select input for SPI interface  
slave select (SS).  
11  
5
+IN  
3
4
13  
14  
2
I
I
Noninverting input  
IN  
Inverting input, usually connected to ground  
No connection  
NC  
8
REF+  
REF–  
RESERVED  
SCLK  
SDI  
7
1
I
I
External reference input.  
Connect to AGND through individual via.  
Reserved, connect to AGND or +VA  
Clock for serial interface  
Serial data in  
6
16  
12  
9
2
I
15  
12  
13  
1
6
I
SDO  
7
O
Serial data out  
+VA  
11  
10  
Analog supply, +2.7 V to +5.5 VDC.  
Interface supply  
+VBD  
16  
ADS8328 Terminal Functions  
NO.  
NAME  
I/O  
DESCRIPTION  
TSSOP  
QFN  
15  
8
AGND  
5
14  
4
I
Analog ground  
BDGND  
COM  
Interface ground  
14  
3
Common inverting input, usually connected to ground  
Freezes sample and hold, starts conversion with next rising edge of internal clock  
CONVST  
9
I
Status output. If programmed as EOC, this pin is low (default) when a conversion is in  
progress. If programmed as an interrupt (INT), this pin is low for a preprogrammed  
duration after the end of conversion and valid data are to be output. The polarity of EOC  
or INT is programmable. This pin can also be used as a chain data input when the device  
is operated in chain mode.  
EOC/ INT/  
CDI  
10  
4
O
FS/CS  
+IN1  
+IN0  
NC  
11  
2
5
12  
13  
2
I
I
Frame sync signal for TMS320 DSP serial interface or chip select input for SPI interface  
Second noninverting input.  
3
I
First noninverting input  
8
I
No connection.  
REF+  
REF–  
SCLK  
SDI  
7
1
External reference input.  
6
16  
9
I
Connect to AGND through individual via.  
Clock for serial interface  
15  
12  
13  
1
I
6
I
Serial data in (conversion start and reset possible)  
Serial data out  
SDO  
+VA  
7
O
11  
10  
Analog supply, +2.7 V to +5.5 VDC.  
Interface supply  
+VBD  
16  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
MANUAL TRIGGER / READ While Sampling  
(use internal CCLK, EOC and INT polarity programmed as active low)  
Nth  
CONVST  
twL(CONVST)  
Nth  
EOC  
(active low)  
tSAMPLE1 = 3 CCLKs min  
tCONV = 18 CCLKs  
tSAMPLE1 = 3 CCLKs min  
INT  
(active low)  
th(CSR-EOS)  
th(CSF-EOC)  
th(CSF-EOS)  
th(CSF-EOC)  
tsu(CSF-EOC)  
tsu(CSF-EOS)  
CS/FS  
SCLK  
1
1 . . . . . . . . . . . . . . . . . . . . 16  
Nth−1st  
td(CSR-EOS) = 20 ns min  
SDO  
SDI  
Nth  
1101b  
1101b  
READ Result  
READ Result  
Figure 1. Timing for Conversion and Acquisition Cycles for Manual Trigger (Read While Sampling)  
AUTO TRIGGER / READ While Sampling  
(use internal CCLK, EOC and INT polarity programmed as active low)  
CONVST = 1  
EOC  
(active low)  
Nth  
tCONV = 18 CCLKs  
tSAMPLE2 = 3 CCLKs  
tCONV = 18 CCLKs  
tSAMPLE2 = 3 CCLKs  
INT  
(active low)  
th(CSF-EOS)  
th(CSF-EOC)  
tsu(CSF-EOS)  
tsu(CSF-EOS)  
CS/FS  
SCLK  
SDO  
1 . . . . . . . . . . . . . . . . . . .16  
N − 1st  
1
1 . . . . . . . . . . . . . . . . . . .16  
th(CSF-EOC)  
N − 2nd  
Nth  
1110b. . . . . . . . . . . . . .  
CONFIGURE  
1101b  
1101b  
SDI  
READ Result  
READ Result  
Figure 2. Timing for Conversion and Acquisition Cycles for Autotrigger (Read While Sampling)  
12  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
MANUAL TRIGGER / READ While Converting  
(use internal CCLK, EOC and INT polarity programmed as active low)  
N + 1st  
CONVST  
Nth  
twL(CONVST)  
Nth  
N + 1st  
EOC  
(active low)  
tCONV = 18 CCLKs  
tSAMPLE1 = 3 CCLKs min  
INT  
(active low)  
th(CSF-EOS)  
tsu(CSR-EOS)  
tsu(CSF-EOS)  
CS/FS  
tsu(CSF-EOC)  
th(CSF-EOC)  
SCLK  
SDO  
1
1 . . . . . . . . . . . . . . . . . . . .16  
N − 1st  
N th  
1101b  
1101b  
SDI  
READ Result  
READ Result  
Figure 3. Timing for Conversion and Acquisition Cycles for Manual Trigger (Read While Converting)  
AUTO TRIGGER / READ While Converting  
(use internal CCLK, EOC and INT polarity programmed as active low)  
CONVST = 1  
N + 1st  
EOC  
(active low)  
tCONV = 18 CCLKs  
Nth  
tCONV = 18 CCLKs  
tSAMPLE2 = 3 CCLKs min  
tSAMPLE2 = 3 CCLKs min  
INT  
(active low)  
th(CSF-EOS)  
tsu(CSR-EOS)  
tsu(CSF-EOS)  
th(CSF-EOS)  
th(CSR-EOS)  
CS/FS  
1 . . . . . . . . . . . . . . . . . . 16  
SCLK  
SDO  
tsu(CSR-EOS)  
1 . . . . . . . . . . . . . . . . . . 16  
N − 1st  
1 . . . . . . . . . . . . . . . . . . .16  
??  
Nth  
N − 2nd  
1110b . . . . . . . . . . . . . . .  
1101b  
1101b  
SDI  
CONFIGURE  
READ Result  
READ Result  
Figure 4. Timing for Conversion and Acquisition Cycles for Autotrigger (Read While Converting)  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
15  
14  
1
2
3
4
5
6
7
16  
SCLK  
CS/FS  
t
c(SCLK)  
t
t
su(16thSCLK−CSR)  
t
su(CSF−SCLK1F)  
wH(SCLK)  
t
wL(SCLK)  
t
d(SCLKF−SDOINVALID)  
t
d(CSR−SDOZ)  
t
d(SCLKF−SDOVALID)  
t
d(CSF−SDOVALID)  
Hi−Z  
SDO  
SDI  
MSB−1 MSB−2 MSB−3  
MSB−5 MSB−6  
LSB+2 LSB+1 LSB  
MSB  
MSB−4  
t
h(SDI−SCLKF)  
MSB  
MSB−1 MSB−2 MSB−3 MSB−4 MSB−5 MSB−6  
LSB+2 LSB+1  
LSB  
t
su(SDI−SCLKF)  
Figure 5. Detailed SPI Transfer Timing  
MANUAL TRIGGER / READ While Sampling  
(use internal CCLK active high, EOC and INT active low, TAG enabled, auto channel select)  
Nth CH0  
Nth CH1  
CONVST  
twL(CONVST)  
twL(CONVST)  
Nth CH0  
EOC  
(active low)  
Nth CH1  
tCONV = 18 CCLKs  
tCONV = 18 CCLKs  
tSAMPLE1 = 3 CCLKs min  
INT  
(active low)  
tsu(CSF-EOS)  
th(CSF-EOC)  
CS/FS  
SCLK  
1 . . . . . . . . . . . . . . . . . . . . . . . 16  
17  
1 . . . . . . . . . . . . . . . . . . . . . . . 16  
17  
td(CSR-EOS) = 20 ns MIN  
Hi−Z  
Hi−Z  
Nth CH0  
SDO  
SDI  
N−1th CH1  
TAG = 0  
TAG = 1  
1101b  
1101b  
READ Result  
READ Result  
Figure 6. Simplified Dual Channel Timing  
14  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
TYPICAL CHARACTERISTICS  
At 40°C to 85°C, VREF (REF+ REF) = 4.096 V when +VA = +VBD = 5 V or VREF (REF+ REF) = 2.5 V  
when +VA = +VBD = 2.7 V, fSCLK = 21 MHz, fI = DC for DC curves, and fI = 100 kHz for AC curves, unless  
otherwise noted.  
CROSSTALK  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
INTEGRAL NONLINEARITY  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
1.8  
1.7  
110  
105  
100  
95  
+VA = 5 V  
1.6  
+VA = 5 V  
+VA = 5 V  
+VA = 2.7  
90  
1.5  
1.4  
0.6  
0.5  
85  
80  
+VA = 2.7 V  
+VA = 2.7  
80  
5
20 35 50 65  
-40 -25 -10  
0
50  
100  
150  
200  
-40 -25 -10  
5
20  
35  
50 65 80  
T
- Free-Air Temperature - °C  
F -Frequency - kHz  
TA - Free-Air Temperature - °C  
A
Figure 7.  
Figure 8.  
Figure 9.  
DIFFERENTIAL NONLINEARITY  
vs  
INTEGRAL NONLINEARITY  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
EXTERNAL CLOCK FREQUENCY  
EXTERNAL CLOCK FREQUENCY  
EXTERNAL CLOCK FREQUENCY  
2
2
2
+VA = 5 V  
+VA = 5 V  
+VA = 2.7 V  
1.5  
1
1.5  
1
1.5  
Max  
MAX  
1
Max  
0.5  
0.5  
0
0.5  
0
-0.5  
-1  
0
-0.5  
-1  
MIN  
Min  
-0.5  
-1  
Min  
10  
-1.5  
-2  
-1.5  
-2  
-1.5  
-2  
20  
0
5
15  
20  
10  
15  
0
5
10  
15  
20  
0
5
External Clock Frequency - MHz  
External Clock Frequency - MHz  
External Clock Frequency - MHz  
Figure 10.  
Figure 11.  
Figure 12.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
INTEGRAL NONLINEARITY  
OFFSET VOLTAGE  
OFFSET VOLTAGE  
vs  
vs  
vs  
EXTERNAL CLOCK FREQUENCY  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
1
0.8  
0.6  
2
1.5  
1
1
+VA = 2.7 V  
Max  
0.8  
0.5  
0
0.6  
0.4  
+VA = 5 V  
0.4  
-0.5  
-1  
Min  
0.2  
0
0.2  
0
+VA = 2.7  
-1.5  
-2  
-40 -25 -10  
5
20 35 50 65 80  
0
5
10  
15  
20  
25  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
T
- Free-Air Temperature - °C  
External Clock Frequency - MHz  
A
+VA - Supply Voltage - V  
Figure 13.  
Figure 14.  
Figure 15.  
POWER-SUPPLY REJECTION  
RATIO  
GAIN ERROR  
vs  
GAIN ERROR  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
SUPPLY RIPPLE FREQUENCY  
-80  
-0.065  
-0.068  
-0.065  
-0.068  
-78  
-76  
-74  
-72  
-70  
+VA = 5 V  
+VA = 5 V  
-0.070  
-0.073  
-0.075  
-0.070  
+VA = 2.7 V  
+VA = 2.7  
-0.073  
-0.075  
0
20  
40  
60  
80  
100  
-40 -25 -10  
5
20  
35 50 65 80  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
Supply Ripple Frequency - kHz  
+VA - Supply Voltage - V  
T
- Free-Air Temperature - °C  
A
Figure 16.  
Figure 17.  
Figure 18.  
SIGNAL-TO-NOISE AND  
DISTORTION  
SIGNAL-TO-NOISE RATIO  
vs  
TOTAL HARMONIC DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
INPUT FREQUENCY  
-150  
92  
90  
92  
+VA = 5 V  
+VA = 5 V  
90  
88  
86  
84  
-100  
-95  
-90  
-85  
-80  
+VA = 5 V  
88  
86  
+VA = 2.7 V  
+VA = 2.7 V  
+VA = 2.7 V  
82  
80  
84  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
f
- Input Frequency - kHz  
f
- Input Frequency - kHz  
f
- Input Frequency - kHz  
i
i
i
Figure 19.  
Figure 20.  
Figure 21.  
16  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
TYPICAL CHARACTERISTICS (continued)  
SIGNAL-TO-NOISE AND  
DISTORTION  
SPURIOUS-FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE RATIO  
vs  
vs  
vs  
INPUT FREQUENCY  
FULL-SCALE RANGE  
FULL-SCALE RANGE  
92  
88  
84  
80  
92  
88  
110  
105  
10 kHz Input  
10 kHz Input  
2.7 V  
2.7 V  
5 V  
5 V  
100  
95  
+VA = 5 V  
84  
80  
+VA = 2.7 V  
90  
76  
72  
76  
72  
85  
80  
0
1
2
3
4
5
1
2
Full Scale Range - V  
0
3
4
60  
80  
100  
5
0
20  
40  
Full Scale Range - V  
f
- Input Frequency - kHz  
i
Figure 22.  
Figure 23.  
Figure 24.  
TOTAL HARMONIC DISTORTION  
SPURIOUS-FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs  
vs  
vs  
FULL-SCALE RANGE  
FULL-SCALE RANGE  
FREE-AIR TEMPERATURE  
-100  
-96  
102  
-100  
10 KHz  
10 kHz Input  
100  
98  
2.7 V  
2.7 V  
+VA = 2.7 V, 10 kHz Input  
-98  
-96  
-94  
5 V  
5 V  
96  
+VA = 5 V, 100 kHz Input  
-92  
-88  
94  
92  
90  
0
1
2
3
4
5
0
1
2
3
4
5
-25  
20  
-40  
-10  
5
35 50 65 80  
Full Scale Range - V  
Full Scale Range - V  
T
- Free-Air Temperature - °C  
A
Figure 25.  
Figure 26.  
Figure 27.  
SIGNAL-TO-NOISE AND  
DISTORTION  
SPURIOUS-FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE RATIO  
vs  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
92  
91  
90  
89  
92  
91  
90  
89  
88  
87  
102  
+VA = 5 V, 100 kHz Input  
+VA =5 V, 100 kHz Input  
+VA = 2.7 V, 10 kHz Input  
+VA = 5 V, 100 kHz Input  
100  
98  
+VA = 2.7 V, 10 kHz Input  
+VA = 2.7 V, 10 kHz Input  
96  
94  
88  
87  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
A
A
A
Figure 28.  
Figure 29.  
Figure 30.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
EFFECTIVE NUMBER OF BITS  
INTERNAL CLOCK FREQUENCY  
INTERNAL CLOCK FREQUENCY  
vs  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
12  
11.8  
11.6  
11.4  
11.2  
11.0  
12  
14.9  
14.7  
14.5  
14.3  
+VA = 5 V  
11.8  
11.6  
+VA = 5 V, 100 kHz Input  
+VA = 2.7 V  
11.4  
11.2  
11  
+VA = 2.7 V, 10 kHz Input  
-40 -25 -10 20 35 50 65 80  
5
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
-40 -25 -10  
5
20  
35 50 65 80  
T
- Free-Air Temperature - °C  
+VA - Supply Voltage - V  
T
- Free-Air Temperature - °C  
A
A
Figure 31.  
Figure 32.  
Figure 33.  
ANALOG SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
vs  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5.6  
5.1  
320  
12  
10  
8
500 kSPS  
NAP Mode  
PD Mode  
300  
280  
260  
240  
6
4.6  
4
4.1  
3.6  
2
0
220  
200  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
3.7  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
4.2  
5.2  
4.7  
+VA - Supply Voltage - V  
+VA - Supply Voltage - V  
+VA - Supply Voltage - V  
Figure 34.  
Figure 35.  
Figure 36.  
ANALOG SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
vs  
vs  
vs  
SAMPLE RATE  
SAMPLE RATE  
FREE-AIR TEMPERATURE  
6
5
4
3
2
5.5  
400  
500 kSPS Sample Rate  
PD Mode  
Autonap Mode  
5
+VA = 5 V  
300  
200  
+VA = 5 V  
+VA = 5 V  
4.5  
4
+VA = 2.7 V  
+VA = 2.7 V  
+VA = 2.7 V  
100  
3.5  
3
1
0
0
-40 -25 -10  
5
20 35 50 65 80  
20  
25  
0
100  
200  
300  
400  
500  
600  
0
5
10  
15  
T
- Free-Air Temperature - °C  
Sample Rate - kSPS  
Sample Rate - kSPS  
A
Figure 37.  
Figure 38.  
Figure 39.  
18  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
TYPICAL CHARACTERISTICS (continued)  
ANALOG SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
0.4  
0.3  
NAP Mode  
+VA = 5 V  
+VA = 2.7  
0.2  
0.1  
0
-40 -25 -10  
5
20 35 50 65 80  
T
- Free-Air Temperature - °C  
A
Figure 40.  
INL  
DNL  
2
3
2.5  
2
f
= 500 kSPS,  
f
= 500 kSPS,  
i
i
+VA = 5 V,  
+VA = 5 V,  
= 4.096 V  
1.5  
V
= 4.096 V  
V
ref  
ref  
1.5  
1
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-3  
0
30000  
40000  
Code  
50000  
60000  
70000  
10000  
20000  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
Code  
Figure 41.  
INL  
Figure 42.  
DNL  
3
2
f
i
= 500 kSPS,  
f
= 500 kSPS,  
2.5  
2
i
+VA = 2.7 V,  
= 2.5 V  
1.5  
+VA = 2.7 V,  
= 2.5 V  
V
ref  
V
ref  
1.5  
1
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
3
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
10000  
20000  
30000  
Code  
40000  
50000  
60000  
70000  
Code  
Figure 43.  
Figure 44.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
FFT  
FFT  
0
-20  
-40  
0
1 kHz Input,+VA = 2.7 V,  
= 2.5 V, f = 500 kSPS  
s
10 kHz Input,+VA = 2.7 V,  
= 2.5 V, f = 500 kSPS  
V
-20  
ref  
V
ref  
s
-40  
-60  
-60  
-80  
-100  
-120  
-80  
-100  
-120  
-140  
-160  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 45.  
Figure 46.  
FFT  
FFT  
0
0
100 kHz Input,  
+VA = 2.7 V, V = 2.5 V,  
1 kHz Input,+VA = 5 V,  
= 4.096 V, f = 500 kSPS  
-20  
V
-20  
-40  
ref  
ref  
s
f
= 500 kSPS  
s
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-160  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 47.  
Figure 48.  
20  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
TYPICAL CHARACTERISTICS (continued)  
FFT  
FFT  
0
0
-20  
10 kHz Input,+VA = 5 V,  
= 4.096 V, f = 500 kSPS  
100 kHz Input,+VA = 5 V,  
= 4.096 V, f = 500 kSPS  
V
-20  
V
ref  
s
ref  
s
-40  
-40  
-60  
-80  
-60  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 49.  
Figure 50.  
THEORY OF OPERATION  
The ADS8327/28 is a high-speed, low power, successive approximation register (SAR) analog-to-digital  
converter (ADC) that uses an external reference. The architecture is based on charge redistribution, which  
inherently includes a sample/hold function.  
The ADS8327/28 has an internal clock that is used to run the conversion but can also be programmed to run the  
conversion based on the external serial clock, SCLK.  
The ADS8327 has one analog input. The analog input is provided to two input pins: +IN and IN. When a  
conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a  
conversion is in progress, both +IN and IN inputs are disconnected from any internal function.  
The ADS8328 has two inputs. Both inputs share the same common pinCOM. The negative input is the same  
as the IN pin for the ADS8327. The ADS8328 can be programmed to select a channel manually or can be  
programmed into the auto channel select mode to sweep between channel 0 and 1 automatically.  
ANALOG INPUT  
When the converter enters hold mode, the voltage difference between the +IN and IN inputs is captured on the  
internal capacitor array. The voltage on the IN input is limited between AGND 0.2 V and AGND + 0.2 V,  
allowing the input to reject small signals which are common to both the +IN and IN inputs. The +IN input has a  
range of 0.2 V to VREF + 0.2 V. The input span (+IN (IN)) is limited to 0 V to VREF  
.
The (peak) input current through the analog inputs depends upon a number of factors: sample rate, input  
voltage, and source impedance. The current into the ADS8327/28 charges the internal capacitor array during the  
sample period. After this capacitance has been fully charged, there is no further input current. The source of the  
analog input voltage must be able to charge the input capacitance (45 pF) to a 16-bit settling level within the  
minimum acquisition time (238 ns). When the converter goes into hold mode, the input impedance is greater than  
1 G.  
Care must be taken regarding the absolute analog input voltage. To maintain linearity of the converter, the +IN  
and IN inputs and the span (+IN (IN)) should be within the limits specified. Outside of these ranges,  
converter linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass  
filters should be used. Care should be taken to ensure that the output impedance of the sources driving the +IN  
and IN inputs are matched. If this is not observed, the two inputs could have different settling times. This may  
result in an offset error, gain error, and linearity error which change with temperature and input voltage.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
Device in Hold Mode  
40 pF  
40 pF  
150 W  
+IN  
4 pF  
+VA  
AGND  
4 pF  
150 W  
−IN  
AGND  
Figure 51. Input Equivalent Circuit  
Driver Amplifier Choice  
The analog input to the converter needs to be driven with a low noise, op-amp like the THS4031 or  
OPA365 . An RC filter is recommended at the input pins to low-pass filter the noise from the source. Two  
resistors of 20and a capacitor of 470 pF is recommended. The input to the converter is a unipolar input voltage  
in the range 0 V to VREF. The minimum -3dB bandwidth of the driving operational amplifier can be calculated to:  
f3db = (ln(2) ×(n+1))/(2p × tACQ  
)
where n is equal to 16, the resolution of the ADC (in the case of the ADS8327/28). When tACQ = 238 ns  
(minimum acquisition time), the minimum bandwidth of the driving amplifier is 7.9 MHz. The bandwidth can be  
relaxed if the acquisition time is increased by the application. The OPA365, OPA827, or THS4031 from Texas  
Instruments are recommended. The THS4031 used in the source follower configuration to drive the converter is  
shown in the typical input drive configuration, Figure 52. For the ADS8330, a series resistor of 0should be  
used on the COM input (or no resistor at all).  
Bipolar to Unipolar Driver  
In systems where the input is bipolar, the THS4031 can be used in the inverting configuration with an additional  
DC bias applied to its + input so as to keep the input to the ADS8327/28 within its rated operating voltage range.  
This configuration is also recommended when the ADS8327/28 is used in signal processing applications where  
good SNR and THD performance is required. The DC bias can be derived from the REF3225 or the REF3240  
reference voltage ICs. The input configuration shown in Figure 53 is capable of delivering better than 91-dB SNR  
and 96-dB THD at an input frequency of 10 kHz. In case bandpass filters are used to filter the input, care  
should be taken to ensure that the signal swing at the input of the bandpass filter is small so as to keep the  
distortion introduced by the filter minimal. In such cases, the gain of the circuit shown in Figure 53 can be  
increased to keep the input to the ADS8327/28 large to keep the SNR of the system high. Note that the gain of  
the system from the + input to the output of the THS4031 in such a configuration is a function of the gain of the  
AC signal. A resistor divider can be used to scale the output of the REF3225 or REF3240 to reduce the voltage  
at the DC input to THS4031 to keep the voltage at the input of the converter within its rated operating range.  
5 V  
ADS8327  
+VA  
Input Signal  
(0 V to 4 V)  
20 W  
+IN  
THS4031  
470 pF  
-IN  
50 W  
20 W  
Figure 52. Unipolar Input Drive Configuration  
22  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
5 V  
ADS8327  
+VA  
1 VDC  
20 W  
THS4031  
+IN  
600 W  
Input Signal  
(-2V to 2 V)  
470 pF  
20 W  
-IN  
600 W  
Figure 53. Bipolar Input Drive Configuration  
REFERENCE  
The ADS8327/28 can operate with an external reference with a range from 0.3 V to 4.2 V. A clean, low noise,  
well-decoupled reference voltage on this pin is required to ensure good performance of the converter. A low  
noise band-gap reference like the REF3240 can be used to drive this pin. A 10-mF ceramic decoupling capacitor  
is required between the REF+ and REFpins of the converter. These capacitors should be placed as close as  
possible to the pins of the device. REFshould be connected to its own via to the analog ground plane with the  
shortest possible distance.  
CONVERTER OPERATION  
The ADS8327/28 has an oscillator that is used as an internal clock which controls the conversion rate. The  
frequency of this clock is 10.5 MHz minimum. The oscillator is always on unless the device is in the deep  
power-down state or the device is programmed for using SCLK as the conversion clock (CCLK). The minimum  
acquisition (sampling) time takes 3 CCLKs (this is equivalent to 238 ns at 12.6 MHz) and the conversion time  
takes 18 conversion clocks (CCLK) (~1500 ns) to complete one conversion.  
The conversion can also be programmed to run based on the external serial clock, SCLK, if is so desired. This  
allows a system designer to achieve system synchronization. The serial clock SCLK, is first reduced to 1/2 of its  
frequency before it is used as the conversion clock (CCLK). For example, with a 21-MHz SCLK this provides a  
10.5-MHz clock for conversions. If it is desired to start a conversion at a specific rising edge of the SCLK when  
the external SCLK is programmed as the source of the conversion clock (CCLK) (and manual start of conversion  
is selected), the setup time between CONVST and that rising SCLK edge should be observed. This ensures the  
conversion is complete in 18 CCLKs (or 36 SCLKs). The minimum setup time is 20 ns to ensure synchronization  
between CONVST and SCLK. In many cases the conversion can start one SCLK period (or CCLK) later which  
results in a 19 CCLK (or 37 SCLK) conversion. The 20 ns setup time is not required once synchronization is  
relaxed.  
The duty cycle of SCLK is not critical as long as it meets the minimum high and low time requirements of 8 ns.  
Since the ADS8327/28 is designed for high-speed applications, a higher serial clock (SCLK) must be supplied to  
be able to sustain the high throughput with the serial interface and so the clock period of SCLK must be at most  
1 ms (when used as conversion clock (CCLK). The minimum clock frequency is also governed by the parasitic  
leakage of the capacitive digital-to-analog (CDAC) capacitors internal to the ADS8327/28.  
CFR_D10  
Conversion Clock  
= 1  
= 0  
OSC  
(CCLK)  
SPI Serial  
Clock (SCLK)  
Divider  
1/2  
Figure 54. Converter Clock  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS8327 ADS8328  
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
Manual Channel Select Mode  
The conversion cycle starts with selecting an acquisition channel by writing a channel number to the command  
register (CMR). This cycle time can be as short as 4 serial clocks (SCLK).  
Auto Channel Select Mode  
Channel selection can also be done automatically if auto channel select mode is enabled. This is the default  
channel select mode. The dual channel converter, ADS8328, has a built-in 2-to-1 MUX. If the device is  
programmed for auto channel select mode then signals from channel 0 and channel 1 are acquired with a fixed  
order. Channel 0 is accessed first in the next cycle after the command cycle that configured CFR_D11 to 1 for  
auto channel select mode. This automatic access stops the cycle after the command cycle that sets CFR_D11 to  
'0'.  
Start of a Conversion  
The end of acquisition or sampling instance (EOS) is the same as the start of a conversion. This is initiated by  
bringing the CONVST pin low for a minimum of 40 ns. After the minimum requirement has been met, the  
CONVST pin can be brought high. CONVST acts independent of FS/CS so it is possible to use one common  
CONVST for applications requiring simultaneous sample/hold with multiple converters. The ADS8327/28  
switches from sample to hold mode on the falling edge of the CONVST signal. The ADS8327/28 requires 18  
conversion clock (CCLK) edges to complete a conversion. The conversion time is equivalent to 1500 ns with a  
12-MHz internal clock. The minimum time between two consecutive CONVST signals is 21 CCLKs.  
A conversion can also be initiated without using CONVST if it is so programmed (CFR_D9 = 0). When the  
converter is configured as auto trigger, the next conversion is automatically started three conversion clocks  
(CCLK) after the end of a conversion. These three conversion clocks (CCLK) are used as the acquisition time. In  
this case the time to complete one acquisition and conversion cycle is 21 CCLKs.  
Table 2. Different Types of Conversion  
MODE  
SELECT CHANNEL  
Auto Channel Select(1)  
START CONVERSION  
Auto Trigger  
Automatic  
No need to write channel number to the CMR. Use internal sequencer for the  
ADS8328.  
Start a conversion based on the conversion  
clock CCLK.  
Manual Channel Select  
Manual Trigger  
Manual  
Write the channel number to the CMR.  
Start a conversion with CONVST.  
(1) Auto channel select should be used with auto trigger and also with the TAG bit enabled.  
Status Output EOC/INT  
When the status pin is programmed as EOC and the polarity is set as active low, the pin works in the following  
manner: The EOC output goes LOW immediately following CONVST going LOW when manual trigger is  
programmed. EOC stays LOW throughout the conversion process and returns to HIGH when the conversion has  
ended. The EOC output goes low for three conversion clocks (CCLK) after the previous rising edge of EOC, if  
auto trigger is programmed.  
This status pin is programmable. It can be used as an EOC output (CFR.D[7:6] = 1, 1) where the low time is  
equal to the conversion time. This status pin can be used as INT. (CFR.D[7:6] = 1, 0) which is set LOW at the  
end of a conversion is brought to HIGH (cleared) by the next read cycle. The polarity of this pin, used as either  
function (EOC or INT), is programmable through CFR_D7.  
24  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
Power-Down Modes  
The ADS8327/28 has a comprehensive built-in power-down feature. There are three power-down modes: Deep  
power-down mode, Nap power-down mode, and auto nap power-down mode. All three power-down modes are  
enabled by setting the related CFR bits. The first two power-down modes are activated when enabled. A wakeup  
command, 1011b, can resume device operation from a power-down mode. Auto nap power-down mode works  
slightly different. When the converter is enabled in auto nap power-down mode, an end of conversion instance  
(EOC) puts the device into auto nap power-down. The beginning of sampling resumes operation of the converter.  
The contents of the configuration register is not affected by any of the power-down modes. Any ongoing  
conversion when nap or deep power-down is activated is aborted.  
100  
10  
1
0.1  
20  
10020  
20020  
30020  
40020  
Settling Time − ns  
Figure 55. Typical Analog Supply Current Drop versus Time After Power-Down  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
Deep Power-Down Mode  
Deep power-down mode can be activated by writing to configuration register bit CFR_D2. When the device is in  
deep power-down mode, all blocks except the interface are in power-down. The external SCLK is blocked to the  
analog block. The analog blocks no longer have bias currents and the internal oscillator is turned off. In this  
mode, supply current falls from 5 mA to 6 nA in 100 ns. The wake-up time after a power-down is 1 ms. When bit  
D2 in the configuration register is set to 0, the device is in deep power-down. Setting this bit to '1' or sending a  
wake-up command can resume the converter from the deep power-down state.  
Nap Mode  
In nap mode the ADS8327/28 turns off biasing of the comparator and the mid-volt buffer. In this mode supply  
current falls from 5 mA in normal mode to about 0.3 mA in 200 ns after the configuration cycle. The wake-up  
(resume) time from nap power-down mode is 3 CCLKs (238 ns with a 12.6-MHz conversion clock). As soon as  
the CFR_D3 bit in the control register is set to '0', the device goes into nap power-down mode, regardless of the  
conversion state. Setting this bit to '1' or sending a wake-up command can resume the converter from the nap  
power-down state.  
Auto Nap Mode  
Auto nap mode is almost identical to nap mode. The only difference is the time when the device is actually  
powered down and the method to wake up the device. Configuration register bit D4 is only used to  
enable/disable auto nap mode. If auto nap mode is enabled, the device turns off biasing after the conversion has  
finished, which means the end of conversion activates auto nap power-down mode. The supply current falls from  
5 mA in normal mode to about 0.3 mA in 200 ns. A CONVST resumes the device and turns biasing on again in 3  
CCLKs (238 ns with a 12.6-MHz conversion clock). The device can also be woken up by disabling auto nap  
mode when bit D4 of the configuration register is set to '1'. Any channel select command 0XXXb, wake-up  
command, or the set default mode command 1111b can also wake up the device from auto nap power-down.  
NOTE  
1. This wake-up command is the word 1011b in the command word. This command sets bits D2  
and D3 to 1 in the configuration register but not D4. But a wake-up command does remove the  
device from either one of these power-down states, deep/nap/auto nap power-down.  
2. Wake-up time is defined as the time between when the host processor tries to wake up the  
converter and when a convert start can occur.  
Table 3. Power-Down Mode Comparisons  
TYPE OF  
POWER-DOWN  
POWER  
CONSUMPTION  
ACTIVATED BY  
ACTIVATION TIME  
RESUME POWER BY  
RESUME TIME  
ENABLE  
Normal operation  
Deep power-down  
5 mA/3.8 mA  
6 nA/2 nA  
Setting CFR  
Setting CFR  
100 ns  
Woken up by command 1011b  
1 ms  
Set CFR  
Woken up by command 1011b to achieve 6.6 mA  
since (1.3 + 12)/2 = 6.6  
Nap power-down  
0.3 mA/0.2 mA  
200 ns  
200 ns  
3 CCLKs  
3 CCLKs  
Set CFR  
Set CFR  
Woken up by CONVST, any channel select  
command, default command 1111b, or wake up  
command 1011b.  
EOC (end of  
conversion)  
Auto nap power-down  
26  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
 
 
 
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
N
N+1  
Converter  
CONVST  
State  
Converter  
State  
N+1 −th Sampling  
N −th Conversion  
N+1 −th Conversion  
Read While Converting  
CS  
20 ns MIN  
Read N−1 −th Result  
1 CCLK MIN  
(For Read Result)  
Read While Sampling  
0 ns MIN  
20 ns MIN  
CS  
Read N −th Result  
(For Read Result)  
Figure 56. Read While Converting versus Read While Sampling (Manual trigger)  
Manual Trigger  
CONVST  
N
N+1  
Converter  
State  
Resume  
N −th Sampling  
>=3CCLK  
N −th Conversion  
=18 CCLK  
Activation  
Resume N+1 −th Sampling N+1 −th Conversion Activation  
>=3CCLK  
=18 CCLK  
20 ns MIN  
20 ns MIN  
1 CCLK MIN  
Read N−1 −th  
Result  
Read While Converting  
CS  
Read N −th  
Result  
20 ns MIN  
20 ns MIN  
Read While Sampling  
CS  
0 ns MIN  
20 ns MIN  
20 ns MIN  
20 ns MIN  
Read N−1 −th  
Result  
Read N −th  
Result  
20 ns MIN  
Figure 57. Read While Converting versus Read While Sampling with Deep or Nap Power-Down  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
40 ns MIN  
Manual Trigger Case 1  
CONVST  
N
N+1  
EOC  
(programmed  
Active Low)  
Converter  
N+1 −th Conversion  
=18 CCLK  
Resume  
POWERDOWN  
POWERDOWN  
N −th Sampling  
N −th Conversion  
=18 CCLK  
Resume N+1 −th Sampling  
>=3CCLK  
State  
>=3CCLK  
6 CCLKs  
6 CCLKs  
Read While Converting  
CS  
20 ns MIN  
20 ns MIN  
Read N −th  
Result  
Read N−1 −th  
Result  
20 ns MIN  
20 ns MIN  
1 CCLK MIN  
1 CCLK MIN  
20 ns MIN  
Read While Sampling  
CS  
0 ns MIN  
Read N −th  
Result  
Read N−1 −th  
Result  
20 ns MIN  
40 ns MIN  
N+1  
Manual Trigger Case 2 (wake up by CONVST)  
CONVST  
N
EOC  
(programmed  
Active Low)  
Converter  
State  
POWER  
DOWN  
POWER  
DOWN  
Resume  
N −th Sampling  
>=3CCLK  
N −th Conversion  
=18 CCLK  
N+1 −th Sampling N+1 −th Conversion  
Resume  
>=3CCLK  
=18 CCLK  
Read While Converting  
CS  
20 ns MIN  
20 ns MIN  
Read N −th  
Result  
Read N−1 −th  
Result  
20 ns MIN  
20 ns MIN  
20 ns MIN  
Read While Sampling  
0 ns MIN  
20 ns MIN  
Read N −th  
Result  
Read N−1 −th  
Result  
CS  
20 ns MIN  
20 ns MIN  
Figure 58. Read While Converting versus Read While Sampling with Auto Nap Power-Down  
28  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
Total Acquisition + Conversion Cycle Time:  
Automatic:  
Manual:  
= 21 CCLKs  
21 CCLKs  
Manual + deep  
power-down:  
4SCLK + 100 ms + 3 CCLK + 18 CCLK +16 SCLK + 1 ms  
Manual + nap power-down: 4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK +16 SCLK  
Manual + auto nap  
power-down:  
4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK +16 SCLK (use wakeup to resume)  
Manual + auto nap  
power-down:  
1 CCLK + 3 CCLK + 3 CCLK + 18 CCLK +16 SCLK (use CONVST to resume)  
DIGITAL INTERFACE  
The serial clock is designed to accommodate the latest high-speed processors with an SCLK frequency up to 50  
MHz. Each cycle is started with the falling edge of FS/CS. The internal data register content which is made  
available to the output register at the EOC is presented on the SDO output pin at the falling edge of FS/CS. This  
is the MSB. Output data are valid at the falling edge of SCLK with td(SCLKFSDOVALID) delay so that the host  
processor can read it at the falling edge. Serial data input is also read with the falling edge of SCLK.  
The complete serial I/O cycle starts with the first falling edge of SCLK after the falling edge of FS/CS and ends  
16 (see NOTE) falling edges of SCLK later. The serial interface is very flexible. It works with CPOL = 0, CPHA =  
1 or CPOL = 1, CPHA = 0. This means the falling edge of FS/CS may fall while SCLK is high. The same  
relaxation applies to the rising edge of FS/CS where SCLK may be high or low as long as the last SCLK falling  
edge happens before the rising edge of FS/CS.  
NOTE  
There are cases where a cycle is four SCLKs or up to 24 SCLKs depending on the read  
mode combination. See Table 4 for details.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
Internal Register  
The internal register consists of two parts, 4 bits for the command register (CMR) and 12 bits for configuration  
data register (CFR).  
Table 4. Command Set Defined by Command Register (CMR)(1)  
WAKE UP FROM  
AUTO NAP  
MINIMUM SCLKs  
REQUIRED  
D[15:12]  
HEX  
COMMAND  
D[11:0]  
R/W  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
Select analog input channel 0(2)  
Select analog input channel 1(2)  
Reserved  
Don't care  
Y
Y
Y
Y
4
4
W
W
Don't care  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Don't care  
Don't care  
Don't care  
CFR Value  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Wake up  
4
W
R
R
W
W
Read CFR  
16  
16  
16  
4
Read data  
Write CFR  
1111b  
Default mode (load CFR with default value) Don't care  
(1) When SDO is not in 3-state (FS/CS low and SCLK running), the bits from SDO are always part (depending on how many SCLKs are  
supplied) of the previous conversion result.  
(2) These two commands apply to the ADS8328 only.  
WRITING TO THE CONVERTER  
There are two different types of writes to the register, a 4-bit write to the CMR and a full 16-bit write to the CMR  
plus CFR. The command set is listed in Table 4. A simple command requires only 4 SCLKs and the write takes  
effect at the 4th falling edge of SCLK. A 16-bit write or read takes at least 16 SCLKs (see Table 7 for exceptions  
that require more than 16 SCLKs).  
Configuring the Converter and Default Mode  
The converter can be configuring with command 1110b (write to the CFR) or command 1111b (default mode). A  
write to the CFR requires a 4-bit command followed by 12-bits of data. A 4-bit command takes effect at the fourth  
falling edge of SCLK. A CFR write takes effect at the 16th falling edge of SCLK.  
A default mode command can be achieved by simply tying SDI to +VBD. As soon as the chip is selected at least  
four 1s are clocked in by SCLK. The default value of the CFR is loaded into the CFR at the 4th falling edge of  
SCLK.  
CFR default values are all 1s (except for CFR_D1, this bit is ignored by the ADS8327 and is always read as a 0).  
The same default values apply for the CFR after a power-on reset (POR) and SW reset.  
30  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
READING THE CONFIGURATION REGISTER  
The host processor can read back the value programmed in the CFR by issuing command 1100b. The timing is  
similar to reading a conversion result except CONVST is not used and there is no activity on the EOC/INT pin.  
The CFR value read back contains the first four MSBs of conversion data plus valid 12-bit CFR contents.  
Table 5. Configuration Register (CFR) Map  
SDI BIT  
DEFINITION  
CFR D[11 0]  
Channel select mode  
D11 Default = 1  
0: Manual channel select enabled. Use channel select commands to  
access a different channel.  
1: Auto channel select enabled. All channels are sampled and  
converted sequentially until the cycle after this bit is set to 0.  
Conversion clock (CCLK) source select  
0: Conversion clock (CCLK) = SCLK/2  
D10 Default = 1  
1: Conversion clock (CCLK) = Internal OSC  
Trigger (conversion start) select: start conversion at the end of sampling (EOS). If D9 = 0, the D4 setting is ignored.  
D9 Default = 1  
D8 Default = 0  
D7 Default = 1  
0: Auto trigger automatically starts (4 internal clocks after EOC inactive) 1: Manual trigger manually started by falling edge of CONVST  
Don't care  
Don't care  
Pin 10 polarity select when used as an output (EOC/INT)  
0: EOC Active high/INT active high  
1: EOC Active low/INT active low  
1: Pin used as EOC  
Pin 10 function select when used as an output (EOC/INT)  
0: Pin used as INT  
D6 Default = 1  
D5 Default = 1  
D4 Default = 1  
D3 Default = 1  
D2 Default = 1  
Pin 10 I/O select for chain mode operation  
0: Pin 10 is used as CDI input (chain mode enabled)  
1: Pin 10 is used as EOC/INT output  
Auto nap power-down enable/disable (mid voltage and comparator shut down between cycles). This bit setting is ignored if D9 = 0.  
0: Auto nap power-down enabled (not activated) 1: Auto nap power-down disabled  
Nap power-down (mid voltage and comparator shut down between cycles). This bit is set to 1 automatically by wake-up command.  
0: Enable/activate device in nap power-down  
1: Remove device from nap power-down (resume)  
Deep power-down. This bit is set to 1 automatically by wake-up command.  
0: Enable/activate device in deep power-down  
1: Remove device from deep power-down (resume)  
D1 Default =  
0: ADS8327  
1: ADS8328  
TAG bit enable. This bit is ignored by the ADS8327 and is always read 0.  
0: TAG bit disabled.  
1: TAG bit output enabled. TAG bit appears at the 17th SCLK.  
1: Normal operation  
Reset  
D0 Default = 1  
0: System reset  
READING CONVERSION RESULT  
The conversion result is available to the input of the output data register (ODR) at EOC and presented to the  
output of the output register at the next falling edge of CS or FS. The host processor can then shift the data out  
via the SDO pin any time except during the quiet zone. This is 20 ns before and 20 ns after the end of sampling  
(EOS) period. End of sampling (EOS) is defined as the falling edge of CONVST when manual trigger is used or  
the end of the 3rd conversion clock (CCLK) after EOC if auto trigger is used.  
The falling edge of FS/CS should not be placed at the precise moment (minimum of at least one conversion  
clock (CCLK) delay) at the end of a conversion (by default when EOC goes high), otherwise the data are corrupt.  
If FS/CS is placed before the end of a conversion, the previous conversion result is read. If FS/CS is placed after  
the end of a conversion, the current conversion result is read.  
The conversion result is 16-bit data in straight binary format as shown in Table 5. Generally 16 SCLKs are  
necessary, but there are exceptions where more than 16 SCLKS are required (see Table 7). Data output from  
the serial output (SDO) is left adjusted MSB first. The trailing bits are filled with the TAG bit first (if enabled) plus  
all zeros. SDO remains low until FS/CS is brought high again.  
SDO is active when FS/CS is low. The rising edge of FS/CS 3-states the SDO output.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS8327 ADS8328  
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
NOTE  
Whenever SDO is not in 3-state (when FS/CS is low and SCLK is running), a portion of  
the conversion result is output at the SDO pin. The number of bits depends on how many  
SCLKs are supplied. For example, a manual select channel command cycle requires 4  
SCLKs, therefore 4 MSBs of the conversion result are output at SDO. The exception is  
SDO outputs all 1s during the cycle immediately after any reset (POR or software reset).  
If SCLK is used as the conversion clock (CCLK) and a continuous SCLK is used, it is not possible to clock out all  
16 SDO bits during the sampling time (6 SCLKs) because of the quiet zone requirement. In this case it is better  
to read the conversion result during the conversion time (36 SCLKs or 48 SCLKs in auto nap mode).  
Table 6. Ideal Input Voltages and Output Codes  
DESCRIPTION  
Full scale range  
ANALOG VALUE  
DIGITAL OUTPUT  
STRAIGHT BINARY  
VREF  
Least significant bit (LSB)  
Full scale  
VREF/65536  
+VREF 1 LSB  
VREF/2  
BINARY CODE  
HEX CODE  
FFFF  
1111 1111 1111 1111  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
Midscale  
8000  
Midscale 1 LSB  
Zero  
VREF/21 LSB  
0 V  
7FFF  
0000  
TAG Mode  
The ADS8328 includes a feature, TAG, that can be used as a tag to indicate which channel sourced the  
converted result. An address bit is added after the LSB read out from SDO indicating which channel the result  
came from if TAG mode is enabled. This address bit is 0 for channel 0 and 1 for channel 1. The converter  
requires more than the 16 SCLKs that are required for a 4 bit command plus 12 bit CFR or 16 data bits because  
of the additional TAG bit.  
Chain Mode  
The ADS8327/28 can operate as a single converter or in a system with multiple converters. System designers  
can take advantage of the simple high-speed SPI compatible serial interface by cascading them in a single chain  
when multiple converters are used. A bit in the CFR is used to reconfigure the EOC/INT status pin as a  
secondary serial data input, chain data input (CDI), for the conversion result from an upstream converter. This is  
chain mode operation. A typical connection of three converters is shown in Figure 59.  
Micro Controller  
INT  
GPIO1  
GPIO2  
GPIO3  
SDOSCLK  
SDI  
SDI  
CONVST  
CONVST  
CONVST  
SDO  
SCLK  
SCLK  
SCLK  
SDI  
CS  
SDI  
CS  
CS  
ADS8327  
#1  
ADS8327  
#2  
ADS8327  
#3  
SDO  
CDI  
SDO  
CDI  
EOC/INT  
Program Device #1 CFR_D5 = 1  
Program Devices #2 and #3 CFR_D5 = 0  
Figure 59. Multiple Converters Connected Using Chain Mode  
32  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
When multiple converters are used in chain mode, the first converter is configured in regular mode while the rest  
of the converters downstream are configured in chain mode. When a converter is configured in chain mode, the  
CDI input data goes straight to the output register, therefore the serial input data passes through the converter  
with a 16 SCLK (if the TAG feature is disabled) or a 24 SCLK delay, as long as CS is active. See Figure 60 for  
detailed timing. In this timing the conversion in each converters are done simultaneously.  
Cascaded Manual Trigger/Read While Sampling  
(Use internal CCLK, EOC active low, and INT active low) CS held  
low during the N times 16 bits transfer cycle.  
CONVST #1,  
CONVST #2,  
CONVST #3  
Nth  
EOC #1  
(active low)  
tSAMPLE1 = 3 CCLKs min  
tCONV = 18 CCLKs  
INT #3  
(active low)  
td(CSR-EOS) = 20 ns min  
CS/FS #1  
SCLK #1,  
SCLK #2,  
SCLK #3  
1 . . . . . . . . . . . . . . . . . . 16  
1 . . . . . . . . . . . . . . . . . . 16  
1 . . . . . . . . . . . . . . . . . . 16  
Hi-Z  
Hi-Z  
SDO #1,  
CDI #2  
Nth from #1  
td(CSR-EOS) = 20 ns min  
CS/FS #2,  
CS/FS #3  
td(SDO-CDI)  
SDO #2,  
CDI #3  
Hi-Z  
Hi-Z  
Hi-Z  
Nth from #2  
Nth from #1  
Nth from #2  
Nth from #1  
Nth from #1  
td(SDO-CDI)  
Hi-Z  
SDO #3  
Nth from #3  
SDI #1,  
SDI #2,  
SDI #3  
1110............  
1101b  
1101b  
CONFIGURE  
READ Result  
READ Result  
Figure 60. Simplified Cascade Mode Timing with Shared CONVST and Continuous CS  
Care must be given to handle the multiple CS signals when the converters are operating in chain mode. The  
different chip select signals must be low for the entire data transfer (in this example 48 bits for three converters).  
The first 16-bit word after the falling chip select is always the data from the chip that received the chip select  
signal.  
Case 1: If chip select is not toggled (CS stays low), the next 16 bits are data from the upstream converter, and so  
on. This is shown in Figure 60. If there is no upstream converter in the chain, as converter #1 in the example, the  
same data from the converter is going to be shown repeatedly.  
Case 2: If the chip select is toggled during a chain mode data transfer cycle, as illustrated in Figure 61, the same  
data from the converter is read out again and again in all three discrete 16-bit cycles. This is not a desired result.  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS8327 ADS8328  
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
Cascaded Manual Trigger/Read While Sampling  
(Use internal CCLK, EOC, and INT polarity programmed as active low)  
CS held low during the N times 16 bits transfer cycle.  
CONVST #1,  
CONVST #2,  
CONVST #3  
Nth  
EOC #1  
(active low)  
tSAMPLE1 = 3 CCLKs min  
td(EOS-CSF) = 20 ns min  
tCONV = 18 CCLKs  
INT #1  
(active low)  
td(CSR-EOS) = 20 ns min  
CS/FS #1  
SCLK #1,  
SCLK #2,  
SCLK #3  
1
16  
1
16  
=
1
16  
SDO #1,  
CDI #2  
Nth from #1  
Nth from #1  
Nth from #1  
td(EOS-CSF)  
20 ns min  
td(CSR-EOS)  
20 ns min  
=
CS/FS #2  
SCLK #2,  
SDO #2,  
CDI #3  
Nth from #2  
Nth from #1  
t
Nth from #1  
t
=
=
d(EOS-CSF)  
d(CSR-EOS)  
20 ns min  
CS/FS #3  
SDO #3  
20 ns min  
SDI #1,  
SDI #2,  
SDI #3  
Nth from #2  
Nth from #1  
Nth from #3  
1110............  
1101b  
1101b  
CONFIGURE  
READ Result  
READ Result  
Figure 61. Simplified Cascade Mode Timing with Shared CONVST and Discrete CS  
Figure 62 shows a slightly different scenario where CONVST is not shared by the second converter. Converters  
#1 and #3 have the same CONVST signal. In this case, converter #2 simply passes previous conversion data  
downstream.  
34  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
 
 
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
Cascaded Manual Trigger/Read While Sampling  
(Use internal CCLK, EOC active low and INT active low)  
CS held low during the N times 16 bits transfer cycle.  
Note : old data shown.  
CONVST #1,  
CONVST #3  
CONVST #2 = 1  
Nth  
EOC #1  
(active low)  
tSAMPLE1 = 3 CCLKs min  
tCONV = 18 CCLKs  
INT #1  
(active low)  
td(CSR-EOS) = 20 ns min  
CS/FS #1  
SCLK #1,  
SCLK #2,  
1 . . . . . . . . . . . . . . . . . .16  
1 . . . . . . . . . . . . . . . . . .16  
1 . . . . . . . . . . . . . . . . . .16  
SCLK #3  
Hi-Z  
Hi-Z  
SDO #1,  
CDI #2  
Nth from #1  
td(CSR-EOS) = 20 ns min  
CS/FS #2,  
CS/FS #3  
td(SDO-CDI)  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
SDO #2,  
CDI #3  
Nth from #1  
N − 1th from #2  
td(SDO-CDI)  
SDO #3  
SDI #1,  
SDI #2,  
SDI #3  
N − 1th from #2  
Nth from #3  
Nth from #1  
1110............  
1101b  
1101b  
CONFIGURE  
READ Result  
READ Result  
Figure 62. Simplified Cascade Timing (Separate CONVST)  
The number of SCLKs required for a serial read cycle depends on the combination of different read modes, TAG  
bit, chain mode, and the way a channel is selected, i.e., auto channel select. This is listed in Table 7.  
Table 7. Required SCLKs For Different Read Out Mode Combinations  
CHAIN MODE  
ENABLED CFR.D5 SELECT CFR.D11  
AUTO CHANNEL  
NUMBER OF SCLK PER SPI  
READ  
TAG ENABLED CFR.D1  
TRAILING BITS  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16  
17  
16  
None  
MSB is TAG bit plus zero(s)  
None  
17  
16  
TAG bit plus 7 zeros  
None  
24  
TAG bit plus 7 zeros  
None  
16  
24  
TAG bit plus 7 zeros  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS8327 ADS8328  
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
SCLK skew between converters and data path delay through the converters configured in chain mode can affect  
the maximum frequency of SCLK. The delay can also be affected by supply voltage and loading. It may be  
necessary to slow down the SCLK when the devices are configured in chain mode.  
ADS 8327 #3  
Serial data  
output  
CDI  
SDO  
Logic  
Delay  
Logic  
Delay  
D
Q
Plus PAD  
2.7 ns  
Plus PAD  
8.3 ns  
CLK  
ADS 8327 #2  
SDO  
CDI  
Logic  
Delay  
Logic  
Delay  
D
Q
CLK  
Plus PAD  
2.7 ns  
Plus PAD  
8.3 ns  
ADS 8327 # 1  
SDO  
CDI  
Logic  
Delay  
Plus PAD  
2.7 ns  
Logic  
Delay  
Plus PAD  
8.3 ns  
D
Q
Serial data  
input  
CLK  
SCLK input  
Figure 63. Typical Delay Through Converters Configured in Chain Mode  
RESET  
The converter has two reset mechanisms, a power-on reset (POR) and a software reset using CFR_D0. These  
two mechanisms are NOR-ed internally. When a reset (software or POR) is issued, all register data are set to the  
default values (all 1s) and the SDO output (during the cycle immediately after reset) is set to all 1s. The state  
machine is reset to the power-on state.  
SW RESET  
CDI  
POR  
SET  
SAR Shift  
Register  
Intermediate  
Latch  
Output  
Register  
SDO  
SCLK  
Conversion Clock  
EOC  
Latched by Falling Edge of CS  
Latched by End Of  
Conversion  
CS  
EOC  
Figure 64. Digital Output Under Reset Condition  
36  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
When the device is powered up, the POR sets the device in default mode when AVDD reaches 1.5 V. When the  
device is powered down, the POR circuit requires AVDD to remain below 125 mV for a duration of at least 350  
ms to ensure proper discharging of internal capacitors and to correct the behavior of the device when powered  
up again. If AVDD drops below 400 mV but remains above 125 mV, the internal POR capacitor does not  
discharge fully and the device requires a software reset to perform correctly after the recovery of AVDD (this is  
shown as the undefined zone in Figure 65).  
AVDD (V)  
5.500  
5.000  
Specified Supply  
Voltage Range  
4.000  
3.000  
2.700  
2.000  
1.500  
1.000  
POR  
Trigger Level  
0.400  
0.125  
Undefined Zone  
0
0.350  
t (s)  
Figure 65. Relevant Voltage Levels for POR  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS8327 ADS8328  
 
 
ADS8327  
ADS8328  
SLAS415E APRIL 2006REVISED JANUARY 2011  
www.ti.com  
APPLICATION INFORMATION  
TYPICAL CONNECTION  
Analog +5 V  
4.7 mF  
AGND  
Ext Ref Input  
Analog Input  
10 mF  
AGND  
+VA REF+ REF− AGND IN+ IN−  
FS/CS  
SDO  
SDI  
Interface  
Supply  
+1.8 V  
Host  
Processor  
SCLK  
ADS8327  
BDGND  
CONVST  
4.7 mF  
+VBD  
EOC/INT  
Figure 66. Typical Circuit Configuration  
Part Change Notification # 20071101000  
The ADS8327 and ADS8328 devices underwent a silicon change under Texas Instruments Part Change  
Notification (PCN) number 20071101000. Details on this part change can be obtained from the Product  
Information Center at Texas Instruments or by contacting your local sales/distribution office. Devices with a date  
code of 82xx and higher are covered by this PCN.  
38  
Submit Documentation Feedback  
© 20062011, Texas Instruments Incorporated  
Product Folder Link(s): ADS8327 ADS8328  
ADS8327  
ADS8328  
www.ti.com  
SLAS415E APRIL 2006REVISED JANUARY 2011  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (June 2009) to Revision E  
Page  
Updated Figure 60 .............................................................................................................................................................. 33  
Updated Figure 61 .............................................................................................................................................................. 34  
Changes from Revision C (March 2008) to Revision D  
Page  
Added +REF to AGND and REF to AGND specifications to Absolute Maximum Ratings table ........................................ 3  
Revised conditions of 2.7 V to 3.6 V Specifications table to +VA = 2.7 V to 3.6 V and +VDB = 1.65 V to 1.5 × (+VA) ...... 4  
Revised conditions of 2.7 V to 3.6 V Specifications table to +VA = 2.7 V to 3.6 V and +VDB = 1.65 V to 1.5 × (+VA) ...... 5  
Changed test condition of Supply current, Nap mode row to NAP/Auto-NAP mode in 2.7 V to 3.6 V Specifications  
table ...................................................................................................................................................................................... 5  
Changed test condition of Supply current, PD Mode row to Deep power-down mode in Specifications table .................... 5  
Revised conditions of 4.5 V to 5.5 V Specifications table to read +VA = 4.5 V to 5.5 V and +VDB = 1.65 V to 5.5 V ........ 6  
Revised conditions of 4.5 V to 5.5 V Specifications table to read +VA = 4.5 V to 5.5 V and +VDB = 1.65 V to 5.5 V ........ 7  
Changed test condition of Supply current, Nap mode row to NAP/Auto-NAP mode in 4.5 V to 5.5 V Specifications  
table ...................................................................................................................................................................................... 7  
Changed test condition of Supply current, PD Mode row to Deep power-down mode in 4.5 V to 5.5 V Specifications  
table ...................................................................................................................................................................................... 7  
Corrected typo in Figure 1 .................................................................................................................................................. 12  
Updated SDO trace in Figure 2 .......................................................................................................................................... 12  
Changed N 1th to N + 1st in CONVST trace of Figure 3 ................................................................................................ 13  
Corrected EOC and SDO traces in Figure 4 ...................................................................................................................... 13  
Added last sentence to Driver Amplifier Choice section ..................................................................................................... 22  
Updated Figure 52 .............................................................................................................................................................. 22  
Updated Figure 53 .............................................................................................................................................................. 23  
Changed fifth sentence of the Deep Power-Down Mode section ....................................................................................... 26  
Changed second sentence of Nap Mode section ............................................................................................................... 26  
Changed fifth sentence of Auto Nap Mode section ............................................................................................................ 26  
Changed ms to ns in Activation Time column of Table 3 .................................................................................................... 26  
Added Figure 65 and corresponding paragraph to the RESET section ............................................................................. 37  
© 20062011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS8327 ADS8328  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ADS8327IBPW  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
16  
16  
16  
16  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
ADS  
8327I A  
B
ADS8327IBPWG4  
ADS8327IBPWR  
ACTIVE  
ACTIVE  
ACTIVE  
PW  
PW  
PW  
90  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
ADS  
8327I A  
B
2000  
2000  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
B
ADS8327IBPWRG4  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
B
ADS8327IBRSAR  
ADS8327IBRSARG4  
ADS8327IBRSAT  
ADS8327IBRSATG4  
ADS8327IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
RSA  
RSA  
RSA  
RSA  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
ADS  
8327I A  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
QFN  
250  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
QFN  
90  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
ADS8327IPWG4  
ADS8327IPWR  
PW  
90  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
PW  
2000  
2000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
ADS8327IPWRG4  
ADS8327IRSAR  
ADS8327IRSARG4  
ADS8327IRSAT  
PW  
Green (RoHS  
& no Sb/Br)  
ADS  
8327I A  
RSA  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
ADS  
(8327I ~ 8327I A)  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
(8327I ~ 8327I A)  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
(8327I ~ 8327I A)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ADS8327IRSATG4  
ADS8328IBPW  
ACTIVE  
QFN  
RSA  
16  
16  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
ADS  
(8327I ~ 8327I A)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
PW  
PW  
PW  
PW  
90  
90  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
-40 to 85  
ADS  
8328I A  
B
ADS8328IBPWG4  
ADS8328IBPWR  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
ADS  
8328I A  
B
2000  
2000  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
B
ADS8328IBPWRG4  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
B
ADS8328IBRSAR  
ADS8328IBRSARG4  
ADS8328IBRSAT  
ADS8328IBRSATG4  
ADS8328IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
RSA  
RSA  
RSA  
RSA  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
ADS  
8328I A  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
QFN  
250  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
QFN  
90  
Green (RoHS  
& no Sb/Br)  
ADS  
(8328I ~ 8328I A)  
ADS8328IPWG4  
ADS8328IPWR  
PW  
90  
Green (RoHS  
& no Sb/Br)  
ADS  
(8328I ~ 8328I A)  
PW  
2000  
2000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
ADS  
(8328I ~ 8328I A)  
ADS8328IPWRG4  
ADS8328IRSAR  
ADS8328IRSARG4  
ADS8328IRSAT  
PW  
Green (RoHS  
& no Sb/Br)  
ADS  
(8328I ~ 8328I A)  
RSA  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
QFN  
Green (RoHS  
& no Sb/Br)  
ADS  
8328I A  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
ADS8328IRSATG4  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
QFN  
RSA  
16  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
ADS  
8328I A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8327IBPWR  
ADS8327IBRSAR  
ADS8327IBRSAT  
ADS8327IPWR  
ADS8327IRSAR  
ADS8327IRSAT  
ADS8328IBPWR  
ADS8328IBRSAR  
ADS8328IBRSAT  
ADS8328IPWR  
ADS8328IRSAR  
ADS8328IRSAT  
TSSOP  
QFN  
PW  
RSA  
RSA  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
4.3  
4.3  
6.9  
4.3  
4.3  
6.9  
4.3  
4.3  
6.9  
4.3  
4.3  
5.6  
4.3  
4.3  
5.6  
4.3  
4.3  
5.6  
4.3  
4.3  
5.6  
4.3  
4.3  
1.6  
1.5  
1.5  
1.6  
1.5  
1.5  
1.6  
1.5  
1.5  
1.6  
1.5  
1.5  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
PW  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
PW  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
QFN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8327IBPWR  
ADS8327IBRSAR  
ADS8327IBRSAT  
ADS8327IPWR  
ADS8327IRSAR  
ADS8327IRSAT  
ADS8328IBPWR  
ADS8328IBRSAR  
ADS8328IBRSAT  
ADS8328IPWR  
ADS8328IRSAR  
ADS8328IRSAT  
TSSOP  
QFN  
PW  
RSA  
RSA  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
367.0  
338.1  
210.0  
367.0  
338.1  
210.0  
367.0  
338.1  
210.0  
367.0  
338.1  
210.0  
367.0  
338.1  
185.0  
367.0  
338.1  
185.0  
367.0  
338.1  
185.0  
367.0  
338.1  
185.0  
35.0  
20.6  
35.0  
35.0  
20.6  
35.0  
35.0  
20.6  
35.0  
35.0  
20.6  
35.0  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
PW  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
PW  
QFN  
TSSOP  
QFN  
2000  
3000  
250  
RSA  
RSA  
QFN  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

ADS8328IBPWG4

具有 2:1 多路复用器的 2.7V 至 5.5V 16 位 500kSPS 串行 ADC | PW | 16 | -40 to 85
TI

ADS8328IBPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8328IBPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8328IBPWRG4

2.7V~5.5V, 16 bit 500KSPS Serial ADC w 2-to-1 MUX 16-TSSOP -40 to 85
TI

ADS8328IBRSAR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8328IBRSAT

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8328IPW

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8328IPW

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8328IPWG4

2.7V~5.5V, 16 bit 500KSPS Serial ADC w 2-to-1 MUX 16-TSSOP -40 to 85
TI

ADS8328IPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
BB

ADS8328IPWR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI

ADS8328IRSAR

LOW POWER, 16-BIT, 500-kHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE
TI