ADS8331_15 [TI]

Low-Power, 16-Bit, 500-kSPS, 4-/8-Channel Unipolar Input Analog-to-Digital Converters;
ADS8331_15
型号: ADS8331_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Low-Power, 16-Bit, 500-kSPS, 4-/8-Channel Unipolar Input Analog-to-Digital Converters

文件: 总45页 (文件大小:977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input  
ANALOG-TO-DIGITAL CONVERTERS with Serial Interface  
Check for Samples: ADS8331, ADS8332  
1
FEATURES  
DESCRIPTION  
234  
Low-Power, Flexible Supply Range:  
The ADS8331 is  
a
low-power, 16-bit, 500k  
samples-per-second (SPS) analog-to-digital converter  
(ADC) with a unipolar, 4-to-1 multiplexer (mux) input.  
2.7V to 5.5V Analog Supply  
8.7mW (250kSPS in Auto-Nap Mode,  
VA = 2.7V, VBD = 1.65V)  
The device includes  
a
16-bit capacitor-based  
successive approximation register (SAR) ADC with  
inherent sample and hold.  
14.2mW (500kSPS, VA = 2.7V, VBD = 1.65V)  
Up to 500kSPS Sampling Rate  
Excellent DC Performance:  
The ADS8332 is based on the same core and  
includes a unipolar 8-to-1 input mux. Both devices  
offer a high-speed, wide-voltage serial interface and  
are capable of daisy-chain operation when multiple  
converters are used.  
±1.2 LSB Typ, ±2 LSB Max INL at 2.7V  
±0.6 LSB Typ, –1.0/1.5 LSB Max DNL at 2.7V  
16-Bit NMC Over Temperature  
These converters are available in 24-pin, 4x4 QFN  
and 24-pin TSSOP packages and are fully specified  
for operation over the industrial –40°C to +85°C  
temperature range.  
Excellent AC Performance at 5V, fIN = 1kHz:  
91.5dB SNR, 101dB SFDR, –100dB THD  
Flexible Analog Input Arrangement:  
On-Chip 4-/8-Channel Mux with Breakout  
Auto/Manual Channel Select and Trigger  
Low-Power, High-Speed, SAR Converter Family  
RESOLUTION/TYPE CHANNELS 500kSPS  
1MHz  
ADS8329  
ADS8330  
Other Hardware Features:  
1
2
4
8
1
2
4
8
1
2
ADS8327  
ADS8328  
ADS8331  
ADS8332  
On-Chip Conversion Clock (CCLK)  
Software/Hardware Reset  
16-Bit Pseudo-Diff  
14-Bit Pseudo-Diff  
Programmable Status/Polarity EOC/INT  
Daisy-Chain Mode  
ADS7279  
ADS7280  
Global CONVST (Independent of CS)  
ADS7231  
ADS7232  
Deep, Nap, and Auto-Nap Powerdown  
Modes  
ADS7229  
ADS7230  
SPI™/DSP Compatible Serial Interface  
Separate I/O Supply: 1.65V to VA  
SCLK up to 40MHz (VA = VBD = 5V)  
12-Bit Pseudo-Diff  
BLANKSPACE  
24-Pin 4x4 QFN and 24-Pin TSSOP Packages  
Functional Block Diagram  
MUXOUT  
ADCIN  
Output  
Latch  
and  
3-State  
Driver  
APPLICATIONS  
SDO  
SAR  
M
U
X
IN[0:3]  
or  
IN[0:7]  
Communications  
+
_
CDAC  
FS/CS  
Transducer Interfaces  
Medical Instruments  
Magnetometers  
Industrial Process Control  
Data Acquisition Systems  
Automatic Test Equipment  
Comparator  
SCLK  
SDI  
Conversion  
and  
Control  
Logic  
COM  
REF+  
REF-  
CONVST  
EOC/INT/CDI  
RESET  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
TMS320 is a trademark of Texas Instruments.  
SPI is a trademark of Motorola, Inc..  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2010, Texas Instruments Incorporated  
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
For the most current package and ordering information, see the Package Option Addendum at the end of this  
document, or visit the device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range, unless otherwise noted.(1)  
ADS8331, ADS8332  
–0.3 to VA + 0.3  
–0.3 to 0.3  
UNIT  
V
INX, MUXOUT, ADCIN, REF+ to AGND  
COM, REF– to AGND  
VA to AGND  
Voltage  
V
–0.3 to 7  
V
Voltage range  
VBD to DGND  
–0.3 to 7  
V
AGND to DGND  
–0.3 to 0.3  
V
Digital input voltage to DGND  
–0.3 to VBD + 0.3  
–0.3 to VBD + 0.3  
–40 to +85  
V
Digital output voltage to DGND  
V
Operating free-air temperature range, (TA)  
°C  
°C  
°C  
W
Storage temperature range, (TSTG  
Junction temperature (TJ Max)  
)
–65 to +150  
+150  
Power dissipation  
(TJMax – TA)/qJA  
47  
4x4 QFN-24  
Package  
qJA thermal impedance  
Power dissipation  
°C/W  
W
(TJMax – TA)/qJA  
47  
TSSOP-24  
Package  
qJA thermal impedance  
°C/W  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
ELECTRICAL CHARACTERISTICS: VA = 2.7V  
At TA = –40°C to +85°C, VA = 2.7V, VBD = 1.65V to 2.7V, VREF = 2.5V, and fSAMPLE = 500kSPS, unless otherwise noted.  
ADS8331I, ADS8332I  
ADS8331IB, ADS8332IB  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
(1)  
Full-scale input voltage  
INX – COM, ADCIN – COM  
INX, ADCIN  
0
AGND – 0.2  
AGND – 0.2  
VREF  
0
VREF  
VA + 0.2  
AGND + 0.2  
45  
V
V
VA + 0.2 AGND – 0.2  
AGND + 0.2 AGND – 0.2  
45  
Absolute input voltage  
COM  
V
Input capacitance  
ADCIN  
40  
±1  
40  
±1  
pF  
nA  
Input leakage current  
Unselected ADC input  
SYSTEM PERFORMANCE  
Resolution  
16  
16  
Bits  
Bits  
LSB(2)  
No missing codes  
Integral linearity  
Differential linearity  
Offset error(3)  
16  
–3  
–1  
16  
INL  
DNL  
EO  
±2  
3
2
–2  
–1  
±1.2  
±0.6  
2
±0.6  
1.5 LSB(2)  
–0.5 ±0.15  
0.5  
–0.5 ±0.15  
0.5  
mV  
PPM/°C  
mV  
Offset error drift  
Offset error matching  
Gain error  
±1  
±1  
–0.2  
–0.25 –0.06  
±0.4  
+0.2  
0.25  
–0.2  
–0.25 –0.06  
±0.4  
+0.2  
EG  
0.25 %FSR  
PPM/°C  
Gain error drift  
Gain error matching  
Transition noise  
–0.003  
28  
0.003  
–0.003  
28  
0.003 %FSR  
mV RMS  
PSRR  
Power-supply rejection ratio  
74  
74  
dB  
SAMPLING DYNAMICS  
tCONV  
Conversion time  
Acquisition time  
Throughput rate  
18  
18  
CCLK  
CCLK  
CCLK  
tSAMPLE1  
tSAMPLE2  
Manual-Trigger mode  
Auto-Trigger mode  
3
3
3
3
500  
500  
kSPS  
DYNAMIC CHARACTERISTICS  
VIN = 2.5VPP at 1kHz  
VIN = 2.5VPP at 10kHz  
VIN = 2.5VPP at 1kHz  
VIN = 2.5VPP at 10kHz  
VIN = 2.5VPP at 1kHz  
VIN = 2.5VPP at 10kHz  
VIN = 2.5VPP at 1kHz  
VIN = 2.5VPP at 10kHz  
VIN = 2.5VPP at 1kHz  
VIN = 2.5VPP at 100kHz  
–101  
–95  
88  
–101  
–95  
89  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(4)  
THD  
Total harmonic distortion  
Signal-to-noise ratio  
SNR  
86.5  
87.5  
86  
87.5  
88.5  
87  
SINAD  
SFDR  
Signal-to-noise + distortion  
Spurious-free dynamic range  
Crosstalk  
103  
98  
103  
98  
125  
108  
125  
108  
INX – COM with MUXOUT  
tied to ADCIN  
17  
30  
17  
30  
MHz  
MHz  
–3dB small-signal bandwidth  
ADCIN – COM  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input (INX – COM) of 2.5V when VA = 2.7V.  
(4) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VA = 2.7V (continued)  
At TA = –40°C to +85°C, VA = 2.7V, VBD = 1.65V to 2.7V, VREF = 2.5V, and fSAMPLE = 500kSPS, unless otherwise noted.  
ADS8331I, ADS8332I  
ADS8331IB, ADS8332IB  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
CLOCK  
Internal conversion clock  
frequency  
10.5  
11  
12.2  
25  
10.5  
11  
12.2  
25  
MHz  
MHz  
MHz  
Used as I/O clock only  
SCLK external serial clock  
Used as both I/O clock and  
conversion clock  
1
21  
1
21  
EXTERNAL VOLTAGE REFERENCE INPUT  
Input  
(REF+) – (REF–)  
(REF–) – AGND  
1.2  
2.525  
0.1  
1.2  
2.525  
0.1  
V
V
VREF  
reference  
range(5)  
–0.1  
–0.1  
(6)  
Resistance  
Reference input  
20  
20  
k  
DIGITAL INPUT/OUTPUT  
Logic family  
CMOS  
CMOS  
1.65V < VBD < 2.5V  
2.5V VBD VA  
1.65 < VBD < 2.5V  
2.5V VBD VA  
VIN = VBD or DGND  
0.8 × VBD  
0.65 × VBD  
–0.3  
VBD + 0.3  
0.8 × VBD  
VBD + 0.3  
VBD + 0.3  
0.1 × VBD  
0.25 × VBD  
1
V
V
VIH  
VIL  
High-level input voltage  
VBD + 0.3 0.65 × VBD  
0.1 × VBD  
0.25 × VBD  
1
–0.3  
–0.3  
–1  
V
Low-level input voltage  
–0.3  
V
II  
Input current  
–1  
mA  
pF  
CI  
Input capacitance  
5
5
5
5
VA VBD 1.65V,  
IO = 100mA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VBD – 0.6  
0
VBD  
0.4  
VBD – 0.6  
0
VBD  
0.4  
V
V
VA VBD 1.65V,  
IO = –100mA  
CO  
CL  
SDO pin capacitance  
Load capacitance  
Data format  
Hi-Z state  
pF  
pF  
30  
30  
Straight binary  
Straight binary  
POWER-SUPPLY REQUIREMENTS  
VA  
Analog supply voltage(5)  
2.7  
1.65  
3.6  
VA + 0.2  
6.5  
2.7  
1.65  
3.6  
VA + 0.2  
6.5  
V
V
VBD  
Digital I/O supply voltage  
fSAMPLE = 500kSPS  
5.2  
3.2  
5.2  
3.2  
mA  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
mA  
IA  
Analog supply current  
Nap mode, SCLK = VBD or  
DGND  
325  
400  
325  
400  
mA  
Deep PD mode, SCLK = VBD  
or DGND  
50  
0.1  
250  
0.4  
50  
0.1  
250  
0.4  
nA  
mA  
mA  
fSAMPLE = 500kSPS  
IBD  
Digital I/O supply current  
Power dissipation  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
0.05  
0.05  
VA = 2.7V, VBD = 1.65V,  
fSAMPLE = 500kSPS  
14.2  
8.72  
18.2  
14.2  
8.72  
18.6  
mW  
mW  
VA = 2.7V, VBD = 1.65V,  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
TEMPERATURE RANGE  
TA Operating free-air temperature  
–40  
+85  
–40  
+85  
°C  
(5) The ADS8331/32 operates with VA between 2.7V and 5.5V, and VREF between 1.2V and VA. However, the device may not meet the  
specifications listed in the Electrical Characteristics when VA is between 3.6V and 4.5V.  
(6) Can vary ±30%.  
4
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
ELECTRICAL CHARACTERISTICS: VA = 5V  
At TA = –40°C to +85°C, VA = 5V, VBD = 1.65V to 5V, VREF = 4.096V, and fSAMPLE = 500kSPS, unless otherwise noted.  
ADS8331I, ADS8332I  
ADS8331IB, ADS8332IB  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
(1)  
Full-scale input voltage  
INX – COM, ADCIN – COM  
INX, ADCIN  
0
AGND – 0.2  
AGND – 0.2  
VREF  
0
VREF  
VA + 0.2  
AGND + 0.2  
45  
V
V
VA + 0.2 AGND – 0.2  
AGND + 0.2 AGND – 0.2  
45  
Absolute input voltage  
COM  
V
Input capacitance  
ADCIN  
40  
±1  
40  
±1  
pF  
nA  
Input leakage current  
Unselected ADC input  
SYSTEM PERFORMANCE  
Resolution  
16  
16  
Bits  
Bits  
LSB(2)  
No missing codes  
Integral linearity  
Differential linearity  
Offset error(3)  
16  
–3  
–1  
16  
INL  
DNL  
EO  
±2  
±1  
3
2
1
–2  
–1  
±1  
2
±0.5  
1.5 LSB(2)  
–1 ±0.23  
±1  
–1 ±0.23  
±1  
1
mV  
PPM/°C  
mV  
Offset error drift  
Offset error matching  
Gain error  
–0.125  
0.125  
0.25  
–0.125  
0.125  
EG  
–0.25 –0.06  
–0.25 –0.06  
0.25 %FSR  
PPM/°C  
Gain error drift  
Gain error matching  
Transition noise  
±0.02  
±0.02  
–0.003  
30  
0.003  
–0.003  
30  
0.003 %FSR  
mV RMS  
PSRR  
Power-supply rejection ratio  
78  
78  
dB  
SAMPLING DYNAMICS  
tCONV  
Conversion time  
Acquisition time  
Throughput rate  
18  
18  
CCLK  
CCLK  
CCLK  
tSAMPLE1  
tSAMPLE2  
Manual-Trigger mode  
Auto-Trigger mode  
3
3
3
3
500  
500  
kSPS  
DYNAMIC CHARACTERISTICS  
VIN = 4.096VPP at 1kHz  
VIN = 4.096VPP at 10kHz  
VIN = 4.096VPP at 1kHz  
VIN = 4.096VPP at 10kHz  
VIN = 4.096VPP at 1kHz  
VIN = 4.096VPP at 10kHz  
VIN = 4.096VPP at 1kHz  
VIN = 4.096VPP at 10kHz  
VIN = 4.096VPP at 1kHz  
VIN = 4.096VPP at 100kHz  
–100  
–94  
90.5  
88  
–100  
–95  
91.5  
88  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(4)  
THD  
Total harmonic distortion  
Signal-to-noise ratio  
SNR  
90  
91  
SINAD  
SFDR  
Signal-to-noise + distortion  
Spurious-free dynamic range  
Crosstalk  
87  
87  
101  
96  
101  
96  
119  
107  
119  
107  
INX – COM with MUXOUT  
tied to ADCIN  
22  
40  
22  
40  
MHz  
MHz  
–3dB small-signal bandwidth  
ADCIN – COM  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input (INX – COM) of 4.096V when VA = 5V.  
(4) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VA = 5V (continued)  
At TA = –40°C to +85°C, VA = 5V, VBD = 1.65V to 5V, VREF = 4.096V, and fSAMPLE = 500kSPS, unless otherwise noted.  
ADS8331I, ADS8332I  
ADS8331IB, ADS8332IB  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
CLOCK  
Internal conversion clock  
frequency  
10.9  
11.5  
12.6  
40  
10.9  
11.5  
12.6  
40  
MHz  
MHz  
MHz  
Used as I/O clock only  
SCLK external serial clock  
Used as both I/O clock and  
conversion clock  
1
21  
1
21  
EXTERNAL VOLTAGE REFERENCE INPUT  
Input  
(REF+) – (REF–)  
(REF–) – AGND  
1.2 4.096  
–0.1  
4.2  
0.1  
1.2 4.096  
–0.1  
4.2  
0.1  
V
V
VREF  
reference  
range(5)  
(6)  
Resistance  
Reference input  
20  
20  
kΩ  
DIGITAL INPUT/OUTPUT  
Logic family  
CMOS  
CMOS  
1.65 < VBD < 2.5V  
2.5V VBD VA  
1.65 < VBD < 2.5V  
2.5V VBD VA  
VIN = VBD or DGND  
0.8 × VBD  
0.65 × VBD  
–0.3  
VBD + 0.3  
0.8 × VBD  
VBD + 0.3  
VBD + 0.3  
0.1 × VBD  
0.25 × VBD  
1
V
V
VIH  
VIL  
High-level input voltage  
VBD + 0.3 0.65 × VBD  
0.1 × VBD  
0.25 × VBD  
1
–0.3  
–0.3  
–1  
V
Low-level input voltage  
–0.3  
V
II  
Input current  
–1  
µA  
pF  
CI  
Input capacitance  
5
5
5
5
VA VBD 1.65V,  
IO = 100mA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VBD – 0.6  
0
VBD  
0.4  
VBD – 0.6  
0
VBD  
0.4  
V
V
VA VBD 1.65V,  
IO = –100mA  
CO  
CL  
SDO pin capacitance  
Load capacitance  
Data format  
Hi-Z state  
pF  
pF  
30  
30  
Straight binary  
Straight binary  
POWER-SUPPLY REQUIREMENTS  
VA  
Analog supply voltage(5)  
4.5  
1.65  
5
5.5  
VA + 0.2  
7.75  
4.5  
1.65  
5
5.5  
VA + 0.2  
7.75  
V
V
VBD  
Digital I/O supply voltage  
fSAMPLE = 500kSPS  
6.6  
4.2  
6.6  
4.2  
mA  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
mA  
IA  
Analog supply current  
Nap mode, SCLK = VBD or  
DGND  
390  
500  
390  
500  
mA  
Deep PD mode, SCLK = VBD  
or DGND  
80  
1.2  
0.7  
250  
2.0  
80  
1.2  
0.7  
250  
2.0  
nA  
mA  
mA  
fSAMPLE = 500kSPS  
IBD  
Digital I/O supply current  
Power dissipation  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
VA = 5.0V, VBD = 5.0V,  
fSAMPLE = 500kSPS  
39  
48.75  
39  
48.75  
mW  
mW  
VA = 5.0V, VBD = 5.0V,  
fSAMPLE = 250kSPS in  
Auto-Nap mode  
24.5  
24.5  
TEMPERATURE RANGE  
TA Operating free-air temperature  
–40  
+85  
–40  
+85  
°C  
(5) The ADS8331/32 operates with VA between 2.7V and 5.5V, and VREF between 1.2V and VA. However, the device may not meet the  
specifications listed in the Electrical Characteristics when VA is between 3.6V and 4.5V.  
(6) Can vary ±30%.  
6
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
TIMING CHARACTERISTICS: VA = 2.7V  
At TA = –40°C to +85°C, VA = 2.7V, and VBD = 1.65V, unless otherwise noted.  
(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
External, fCCLK = 1/2 fSCLK  
Internal  
0.5  
10.5 MHz  
fCCLK  
Frequency, conversion clock, CCLK  
10.5  
1
11  
12.2 MHz  
tSU1  
tH1  
Setup time, rising edge of CS to EOC(3)  
CS hold time with respect to EOC(3)  
Pulse duration, CONVST low  
Read while converting  
Read while sampling  
CCLK  
ns  
25  
40  
40  
25  
25  
14  
17  
12  
40  
47.6  
40  
tWL1  
tWH1  
tSU2  
tH2  
ns  
Pulse duration, CS high  
ns  
Setup time, rising edge of CS to EOS  
CS hold time with respect to EOS  
Setup time, falling edge of CS to first falling edge of SCLK  
Pulse duration, SCLK low  
Read while sampling  
Read while converting  
ns  
ns  
tSU3  
tWL2  
tWH2  
ns  
tSCLK – tWH2  
tSCLK – tWL2  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SCLK high  
I/O clock only  
I/O and conversion clocks  
I/O clock, daisy-chain mode  
1000  
tSCLK  
Cycle time, SCLK  
I/O and conversion clocks,  
daisy-chain mode  
47.6  
8
1000  
ns  
tD1  
Delay time, falling edge of SCLK to SDO invalid  
Delay time, falling edge of SCLK to SDO valid  
10pF load  
10pF load  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tD2  
35  
35  
tD3  
Delay time, falling edge of CS to SDO valid, SDO MSB output 10pF load  
Setup time, SDI to falling edge of SCLK  
tSU4  
tH3  
8
8
Hold time, SDI to falling edge of SCLK  
tD4  
Delay time, rising edge of CS to SDO 3-state  
10pF load  
15  
40  
tSU5  
tH4  
Setup time, last falling edge of SCLK before rising edge of CS  
Hold time, last falling edge of SCLK before rising edge of CS  
Setup time, rising edge of SCLK to rising edge of CS  
Hold time, rising edge of SCLK to rising edge of CS  
Delay time, falling edge of CS to deactivation of INT  
15  
2
(4)  
tSU6  
10  
2
(4)  
tH5  
tD5  
10pF load  
(1) All input signals are specified with tr = tf = 1.5ns (10% to 90% of VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See the Timing Diagrams section.  
(3) The EOC and EOS signals are the inverse of each other.  
(4) Applies to the 5th or 17th rising SCLK when sending 4-bit or 16-bit commands, respectively, to the ADS8331/32.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TIMING CHARACTERISTICS: VA = 5V  
At TA = –40°C to +85°C, and VA = VBD = 5V, unless otherwise noted.  
(1) (2)  
PARAMETER  
TEST CONDITIONS  
External, fCCLK = 1/2 fSCLK  
Internal  
MIN TYP  
MAX UNIT  
0.5  
10.5 MHz  
fCCLK  
Frequency, conversion clock, CCLK  
10.9 11.5  
12.6 MHz  
tSU1  
tH1  
Setup time, rising edge of CS to EOC(3)  
CS hold time with respect to EOC(3)  
Pulse duration, CONVST low  
Read while converting  
Read while sampling  
1
20  
40  
40  
20  
20  
8
CCLK  
ns  
tWL1  
tWH1  
tSU2  
tH2  
ns  
Pulse duration, CS high  
ns  
Setup time, rising edge of CS to EOS  
CS hold time with respect to EOS  
Setup time, falling edge of CS to first falling edge of SCLK  
Pulse duration, SCLK low  
Read while sampling  
Read while converting  
ns  
ns  
tSU3  
tWL2  
tWH2  
ns  
12  
11  
25  
47.6  
25  
tSCLK – tWH2  
tSCLK – tWL2  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SCLK high  
I/O clock only  
I/O and conversion clocks  
I/O clock, daisy-chain mode  
1000  
tSCLK  
Cycle time, SCLK  
I/O and conversion clocks,  
daisy-chain mode  
47.6  
5
1000  
ns  
tD1  
Delay time, falling edge of SCLK to SDO invalid  
Delay time, falling edge of SCLK to SDO valid  
10pF load  
10pF load  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tD2  
20  
20  
tD3  
Delay time, falling edge of CS to SDO valid, SDO MSB output 10pF load  
Setup time, SDI to falling edge of SCLK  
tSU4  
tH3  
8
8
Hold time, SDI to falling edge of SCLK  
tD4  
Delay time, rising edge of CS to SDO 3-state  
10pF load  
10  
20  
tSU5  
tH4  
Setup time, last falling edge of SCLK before rising edge of CS  
Hold time, last falling edge of SCLK before rising edge of CS  
Setup time, rising edge of SCLK to rising edge of CS  
Hold time, rising edge of SCLK to rising edge of CS  
Delay time, falling edge of CS to deactivation of INT  
10  
2
(4)  
tSU6  
10  
2
(4)  
tH5  
tD5  
10pF load  
(1) All input signals are specified with tr = tf = 1.5ns (10% to 90% of VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See the Timing Diagrams section.  
(3) The EOC and EOS signals are the inverse of each other.  
(4) Applies to the 5th or 17th rising SCLK when sending 4-bit or 16-bit commands, respectively, to the ADS8331/32.  
8
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
TIMING DIAGRAMS  
tWL1  
CONVST  
EOC  
(active low)  
tSU2  
tH1  
tSU5  
CS  
tSCLK  
SCLK  
tD1  
tD2  
tD4  
High-Z  
High-Z  
MSB  
tD3  
MSB - 1 MSB - 2 MSB - 3  
LSB + 1  
LSB  
TAG2  
X
TAG1  
TAG0  
X
'0'  
'0'  
SDO  
SDI  
tSU4  
'1'  
'1'  
'0'  
'1'  
X
X
X
X
X
tH3  
Figure 1. Read While Sampling (Shown with Manual-Trigger Mode)  
CONVST  
21 Conversion Clock Cycles  
EOC  
(active low)  
tH2  
tSU1  
CS  
tWL2  
tSU3  
tH4  
SCLK  
tWH2  
tSU5  
High-Z  
tD4  
High-Z  
MSB  
'1'  
MSB - 1 MSB - 2 MSB - 3  
LSB  
X
TAG2  
TAG1  
X
TAG0  
SDO  
SDI  
'1'  
'0'  
'1'  
X
X
X
Figure 2. Read While Converting (Shown with Auto-Trigger Mode at 500 kSPS)  
tSU6  
CS  
tH5  
tSU3  
SCLK  
tH3  
MSB - 1  
MSB  
MSB - 2  
LSB + 1  
LSB  
Don’t Care  
tD4  
SDI  
tD3  
tD1  
tD2  
LSB + 1  
LSB  
‘0’  
SDO  
MSB  
MSB - 1  
MSB - 2  
Figure 3. SPI I/O  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TIMING DIAGRAMS (continued)  
CS  
tH1  
EOC  
(active low)  
tD5  
INT  
(active low)  
Figure 4. Relationship among CS, EOC, and INT  
PIN ASSIGNMENTS  
RGE PACKAGE  
4x4 QFN-24  
(TOP VIEW)  
PW PACKAGE  
TSSOP-24  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
IN1  
IN2  
24  
23  
IN0  
COM  
IN4/NC(1)  
IN5/NC(1)  
ADCIN  
AGND  
1
2
3
4
5
6
18  
17  
IN3  
IN4/NC(3)  
IN5/NC(3)  
IN6/NC(3)  
22  
21  
20  
19  
MUXOUT  
ADCIN  
AGND  
REF-  
IN6/NC(1)  
16 REF-  
15 REF+  
14 VA  
ADS8331  
ADS8332  
ADS8331  
ADS8332  
IN7/NC(1)  
IN7/NC(3)  
RESET  
REF+  
VA  
18  
17  
16  
15  
14  
13  
Thermal Pad(2)  
(Bottom Side)  
RESET  
EOC/INT/CDI  
SCLK  
VBD  
13 VBD  
EOC/INT/CDI  
10  
11  
12  
CONVST  
DGND  
SDO  
FS/CS  
SDI  
(3) NC = No internal connection (ADS8331  
only).  
(1) NC = No internal connection (ADS8331  
only).  
(2) Connect thermal pad to analog ground.  
10  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
ADS8331 PIN DESCRIPTIONS  
PIN NO.  
NAME  
ADCIN  
AGND  
TSSOP  
QFN  
18  
I/O  
DESCRIPTION  
21  
20  
14  
23  
15  
I
I
ADC input  
17  
Analog ground  
Digital interface ground  
DGND  
11  
COM  
20  
Common ADC input (usually connected to AGND)  
CONVST  
12  
I
Conversion start. Freezes sample and hold, starts conversion.  
Status output. If programmed as end-of-conversion (EOC), this pin is low (default) when a  
conversion is in progress. If programmed as an interrupt (INT), this pin is low (default) after  
EOC/INT/CDI  
9
6
O/O/I the end of conversion and returns high after FS/CS goes low. The polarity of EOC or INT is  
programmable.  
This pin can also be used as a chain data input (CDI) when operated in daisy-chain mode.  
FS/CS  
IN[0:3]  
11  
1-3, 24  
4-7  
8
21-24  
1-4  
19  
I
I
Frame sync signal for DSP (such as TMS320™ DSP) or chip select input for SPI.  
Mux inputs  
NC  
O
I
No connection  
Mux output  
MUXOUT  
REF+  
22  
18  
15  
External reference input  
External reference ground (connect to AGND through an individual via on the printed circuit  
board)  
REF–  
19  
16  
RESET  
SCLK  
SDI  
8
5
7
I
I
External reset (active low)  
SPI clock for serial interface  
SPI serial data in  
10  
12  
13  
17  
16  
9
I
SDO  
VA  
10  
14  
13  
O
SPI serial data out  
Analog supply, +2.7V to +5.5V  
Digital interface supply  
VBD  
ADS8332 PIN DESCRIPTIONS  
PIN NO.  
NAME  
ADCIN  
AGND  
TSSOP  
21  
QFN  
18  
I/O  
DESCRIPTION  
I
I
ADC input  
20  
17  
Analog ground  
DGND  
14  
11  
Digital interface ground  
COM  
23  
20  
Common ADC input (usually connected to AGND)  
Conversion start. Freezes sample and hold, starts conversion.  
CONVST  
15  
12  
I
Status output. If programmed as end-of-conversion (EOC), this pin is low (default) when a  
conversion is in progress. If programmed as an interrupt (INT), this pin is low (default) after  
EOC/INT/CDI  
9
6
8
O/O/I the end of conversion and returns high after FS/CS goes low. The polarity of EOC or INT is  
programmable.  
This pin can also be used as a chain data input (CDI) when operated in daisy-chain mode.  
FS/CS  
IN[0:7]  
11  
I
I
Frame sync signal for DSP (such as TMS320™ DSP) or chip select input for SPI.  
Mux inputs  
1-7, 24  
1-4,  
21-24  
MUXOUT  
REF+  
22  
18  
19  
15  
O
I
Mux output  
External reference input  
External reference ground (connect to AGND through an individual via on the printed circuit  
board)  
REF–  
19  
16  
RESET  
SCLK  
SDI  
8
5
7
I
I
External reset (active low)  
SPI clock for serial interface  
SPI serial data in  
10  
12  
13  
17  
16  
9
I
SDO  
VA  
10  
14  
13  
O
SPI serial data out  
Analog supply, +2.7 V to +5.5 V  
Digital interface supply  
VBD  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: DC Performance  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, and fSAMPLE = 500kSPS, unless otherwise noted.  
INTEGRAL LINEARITY ERROR  
vs CODE  
INTEGRAL LINEARITY ERROR  
vs CODE  
3
2
3
2
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 5.0V  
VREF = 4.096V  
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
8000h  
8000h  
C000h  
FFFFh  
C000h  
FFFFh  
0000h  
4000h  
0000h  
4000h  
Output Code  
Output Code  
Figure 5.  
Figure 6.  
DIFFERENTIAL LINEARITY ERROR  
vs CODE  
DIFFERENTIAL LINEARITY ERROR  
vs CODE  
3
2
3
2
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 5.0V  
VREF = 4.096V  
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
8000h  
8000h  
C000h  
FFFFh  
C000h  
FFFFh  
0000h  
4000h  
0000h  
4000h  
Output Code  
Output Code  
Figure 7.  
Figure 8.  
ANALOG SUPPLY CURRENT  
vs ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT IN NAP MODE  
vs ANALOG SUPPLY VOLTAGE  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
500  
450  
400  
350  
300  
VREF = 4.096V  
VREF = 4.096V  
VREF = 2.500V  
VREF = 2.500V  
VA (V)  
VA (V)  
Figure 9.  
Figure 10.  
12  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: DC Performance (continued)  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, and fSAMPLE = 500kSPS, unless otherwise noted.  
ANALOG SUPPLY CURRENT  
DEEP POWER-DOWN CURRENT  
vs TEMPERATURE  
vs SAMPLING RATE IN AUTO-NAP MODE  
8
7
6
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 2.7V  
VREF = 2.500V  
0
50  
100 150 200 250 300 350 400 450  
Sampling Rate (kHz)  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Figure 11.  
Figure 12.  
INTERNAL CLOCK FREQUENCY  
vs ANALOG SUPPLY VOLTAGE  
CHANGE IN GAIN  
vs TEMPERATURE  
4
3
12.2  
11.7  
11.2  
10.7  
10.2  
VA = VBD = 2.7V  
VREF = 2.500V  
2
VREF = 4.096V  
1
VREF = 2.500V  
0
VA = VBD = 5.0V  
VREF = 4.096V  
-1  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
VA (V)  
Figure 13.  
Figure 14.  
CHANGE IN OFFSET  
vs TEMPERATURE  
CHANGE IN ANALOG SUPPLY CURRENT  
vs TEMPERATURE  
6
5
1.0  
0.8  
4
0.6  
VA = VBD = 2.7V  
VREF = 2.500V  
3
0.4  
2
0.2  
1
VA = VBD = 2.7V  
VREF = 2.500V  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 5.0V  
VREF = 4.096V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 15.  
Figure 16.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: DC Performance (continued)  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, and fSAMPLE = 500kSPS, unless otherwise noted.  
CHANGE IN DIGITAL SUPPLY CURRENT  
vs TEMPERATURE  
CHANGE IN INTERNAL CLOCK FREQUENCY  
vs TEMPERATURE  
1.0  
0.8  
150  
125  
100  
75  
0.6  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 2.7V  
VREF = 2.500V  
0.4  
50  
0.2  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 5.0V  
VREF = 4.096V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 17.  
Figure 18.  
CHANGE IN ANALOG SUPPLY CURRENT IN NAP MODE  
vs TEMPERATURE  
25  
VA = VBD = 2.7V  
VREF = 2.500V  
20  
15  
10  
5
VA = VBD = 5.0V  
VREF = 4.096V  
0
-5  
-10  
-15  
-20  
-25  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Figure 19.  
14  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: AC Performance  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, fSAMPLE = 500kSPS, and fIN = 10kHz, unless otherwise noted.  
OUTPUT CODE HISTOGRAM  
OUTPUT CODE HISTOGRAM  
FOR A DC INPUT (8192 Conversions)  
FOR A DC INPUT (8192 Conversions)  
VA = VBD = 2.7V  
VA = VBD = 5.0V  
VREF = 2.500V  
VREF = 4.096V  
6336  
4791  
1665  
1643  
1088  
768  
53  
7FFD  
40  
0
0
7FFE  
7FFF  
Code  
8000  
8001  
7FFD  
7FFE  
7FFF  
Code  
8000  
8001  
Figure 20.  
Figure 21.  
FREQUENCY SPECTRUM  
FREQUENCY SPECTRUM  
(8192 Point FFT, fIN = 1.0376kHz, –0.2dB)  
(8192 Point FFT, fIN = 1.0376kHz, –0.2dB)  
0
-20  
0
-20  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 5.0V  
VREF = 4.096V  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
Figure 22.  
Figure 23.  
FREQUENCY SPECTRUM  
FREQUENCY SPECTRUM  
(8192 Point FFT, fIN = 10.0708kHz, –0.2dB)  
(8192 Point FFT, fIN = 10.0708kHz, –0.2dB)  
0
-20  
0
-20  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 5.0V  
VREF = 4.096V  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
Figure 24.  
Figure 25.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS: AC Performance (continued)  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, fSAMPLE = 500kSPS, and fIN = 10kHz, unless otherwise noted.  
SIGNAL-TO-NOISE + DISTORTION  
vs TEMPERATURE  
SIGNAL-TO-NOISE RATIO  
vs INPUT FREQUENCY  
93  
92  
91  
90  
89  
88  
87  
95  
90  
85  
80  
fIN = 1.03760kHz, -0.2dB  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 2.7V  
VREF = 2.500V  
1
10  
fIN (kHz)  
100  
250  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Figure 26.  
Figure 27.  
TOTAL HARMONIC DISTORTION  
vs INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs INPUT FREQUENCY  
-65  
-70  
105  
100  
95  
VA = VBD = 2.7V  
VREF = 2.500V  
-75  
-80  
90  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 5.0V  
VREF = 4.096V  
-85  
85  
-90  
80  
-95  
75  
VA = VBD = 2.7V  
VREF = 2.500V  
-100  
-105  
70  
65  
1
10  
fIN (kHz)  
100  
250  
1
10  
fIN (kHz)  
100  
250  
Figure 28.  
Figure 29.  
SIGNAL-TO-NOISE + DISTORTION  
vs INPUT FREQUENCY  
95  
90  
85  
80  
75  
70  
65  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
1
10  
fIN (kHz)  
100  
250  
Figure 30.  
16  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
TYPICAL CHARACTERISTICS: AC Performance (continued)  
At TA = +25°C, VREF (REF+ – REF–) = 4.096V when VA = VBD = 5V or VREF (REF+ – REF–) = 2.5V when VA = VBD = 2.7V,  
fSCLK = 21MHz, fSAMPLE = 500kSPS, and fIN = 10kHz, unless otherwise noted.  
EFFECTIVE NUMBER OF BITS  
vs INPUT FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs POWER-SUPPLY RIPPLE FREQUENCY  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
VRIPPLE = 0.5VPP  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
1
10  
100  
250  
0.1  
1
10  
100  
500  
Ripple Frequency (kHz)  
fIN (kHz)  
Figure 31.  
Figure 32.  
CROSSTALK  
vs INPUT FREQUENCY  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
VA = VBD = 5.0V  
VREF = 4.096V  
VA = VBD = 2.7V  
VREF = 2.500V  
-130  
1
10  
100  
250  
fIN (kHz)  
Figure 33.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
THEORY OF OPERATION  
DESCRIPTION  
The ADS8331/32 is a high-speed, low-power, successive approximation register (SAR) analog-to-digital  
converter (ADC) that uses an external reference. The architecture is based on charge redistribution, which  
inherently includes a sample/hold function.  
The ADS8331/32 has an internal clock that is used to run the conversion. However, the ADS8331/32 can be  
programmed to run the conversion based on the external serial clock (SCLK).  
The analog input to the ADS8331/32 is provided to two input pins: one of the INX input channels and the shared  
COM pin. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor  
array. While a conversion is in progress, both INX and COM inputs are disconnected from any internal function.  
The ADS8331 has four analog inputs while the ADS8332 has eight inputs. All inputs share the same common  
pin, COM. Both the ADS8331 and ADS8332 can be programmed to select a channel manually or can be  
programmed into the auto channel select mode to sweep through the input channels automatically.  
SIGNAL CONDITIONING  
The ADS8331/32 has the flexibility to add signal conditioning between the MUXOUT and ADCIN pins, such as a  
programmable gain amplifier (PGA) or filter. This feature reduces the system component count and cost because  
each input channel does not require separate signal conditioning circuits, especially if the source impedance  
connected to each channel is similar in value.  
ANALOG INPUT  
When the converter enters the hold mode, the voltage difference between the INX and COM inputs is captured  
on the internal capacitor array. The voltage on the COM pin is limited between (AGND – 0.2V) and (AGND +  
0.2V). This limitation allows the ADS8331/32 to reject small signals that are common to both the INX and COM  
inputs. The INX inputs have a range of –0.2V to (VA + 0.2V). The input span of (INX – COM) is limited to 0V to  
VREF  
.
The peak input current through the analog inputs depends upon a number of factors: reference voltage, sample  
rate, input voltage, and source impedance. The current flowing into the ADS8331/32 charges the internal  
capacitor array during the sample period. After this capacitance has been fully charged, there is no further input  
current. The source of the analog input voltage must be able to charge the maximum input capacitance (45pF) to  
a 16-bit settling level within the minimum acquisition time (238ns). When the converter goes into hold mode, the  
input impedance is greater than 1GΩ.  
Care must be taken regarding the absolute analog input voltage. To maintain linearity of the converter, the INX  
inputs, the COM input, and the input span of (INX – COM) should be within the limits specified. If these inputs are  
outside of these ranges, the linearity of the converter may not meet specifications. To minimize noise,  
low-bandwidth input signals with low-pass filters should be used. Care should be taken to ensure that the output  
impedance of the sources driving the INX and COM inputs are matched, as shown in Figure 34. If this matching  
is not observed, the two inputs could have different settling times, which may result in an offset error, gain error,  
and linearity error that change with temperature and input voltage.  
MUXOUT ADCIN  
Device in Hold Mode; Last Input Sampled from IN0  
ESD  
40pF  
ESD  
40W  
50W  
50W  
ESD  
IN0  
ESD  
ESD  
4pF  
INX  
AGND  
40pF  
55W  
VA  
COM  
ESD  
AGND  
Figure 34. Input Equivalent Circuit  
18  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
Driver Amplifier Choice  
In order to take advantage of the high sample rate offered by the ADS8331/32, the analog inputs to the converter  
should be driven with low-noise operational amplifiers (op amps), such as the OPA365, OPA211, OPA827, or  
THS4031. An RC filter is recommended at each of the input channels to low-pass filter noise generated by the  
input driving sources. These channels can accept unipolar signals with voltages between INX and COM in the  
range of 0V to VREF. If RC filters are not used between the op amps and the input channels, the minimum –3dB  
bandwidth required by the driving op amps for the sampled signals to settle to within 1/2 LSB of the final voltage  
can be calculated using Equation 1:  
(n + 1) ´ ln(2)  
f
³
-3dB  
2p ´ tSAMPLE_MIN  
(1)  
Where:  
n = resolution of the converter (n = 16 for the ADS8331/32).  
tSAMPLE_MIN = minimum acquisition time.  
The minimum value of tSAMPLE in the Electrical Characteristics tables is 238ns (3 CCLKs with the internal  
oscillator at 12.6MHz). Substituting these values for n and tSAMPLE_MIN into Equation 1 shows f–3dB must be at  
least 7.9MHz. This bandwidth can be relaxed if the acquisition time is increased or an RC filter is added between  
the driving op amp and the corresponding input channel (refer to Texas Instruments' Application Report  
SBAA173 and associated references for additional information, available for download at www.ti.com). The  
OPA365 used in the source-follower (unity-gain) configuration is shown in Figure 35 with recommended values  
for the RC filter.  
Input Signal  
(0V to 4V)  
MUXOUT  
ADCIN  
5V  
VA  
20W  
ADS8331  
ADS8332  
OPA365  
INX  
1000pF  
COM  
Figure 35. Unipolar Input Drive Configuration  
Bipolar to Unipolar Driver  
In systems where the input signal is bipolar, op amps such as the OPA365 and OPA211 can be used in the  
inverting configuration with a dc bias applied to the noninverting input in order to keep the input signal to the  
ADS8331/32 within its rated operating voltage range. This configuration is also recommended when the  
ADS8331/32 is used in signal-processing applications where good SNR and THD performance is required. The  
dc bias can be derived from low-noise reference voltage ICs such as the REF5025 or REF5040. The input  
configuration shown in Figure 36 is capable of delivering better than 91dB SNR and –99dB THD at an input  
frequency of 1kHz. If bandpass filters are used to filter the input to the driving op amp, the signal swing at the  
input of the bandpass filter should be small enough to minimize the distortion introduced by the filter. In these  
cases, the gain of the circuit shown in Figure 36 can be increased to maintain a large enough input signal to the  
ADS8331/32 to keep the system SNR as high as possible.  
MUXOUT  
ADCIN  
5V  
2.048VDC  
VA  
20W  
OPA211  
INX  
ADS8331  
ADS8332  
600W  
1000pF  
Input Signal  
(-2V to +2V)  
COM  
600W  
Figure 36. Bipolar Input Drive Configuration  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS8331 ADS8332  
 
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
REFERENCE  
The ADS8331/32 can operate with an external reference with a range from 1.2V to 4.2V. A clean, low-noise  
reference voltage on this pin is required to ensure good converter performance. A low-noise band-gap reference  
such as the REF5025 or REF5040 can be used to drive this pin. A 10mF ceramic bypass capacitor is required  
between the REF+ and REF– pins of the converter. This capacitor should be placed as close as possible to the  
pins of the device. Note that the REF– pin should not be connected to the AGND pin of the converter; instead,  
the REF– pin must be connected to the analog ground plane with a separate via.  
CONVERTER OPERATION  
The ADS8331/32 has an internal oscillator that can be used as the conversion clock (CCLK) source. The  
minimum frequency of this oscillator is 10.5MHz. The internal oscillator is only active during the conversion  
period unless the converter is using Auto-Trigger and/or Auto-Nap modes. The minimum acquisition/sampling  
time for the ADS8331/32 is 3 CCLKs (250ns with a 12MHz conversion clock), while the minimum conversion time  
is 18 CCLKs (1500ns with a 12MHz conversion clock).  
As shown in Figure 37, the ADS8331/32 can also be programmed to run conversions using the external serial  
clock (SCLK). This feature allows system designers to achieve system synchronization. Each rising edge of  
SCLK toggles the state of the conversion clock (CCLK), which reduces the frequency of SCLK by a factor of two  
before it is used as CCLK. For example, a 21MHz SCLK provides a 10.5MHz CCLK. If the start of a conversion  
must occur on a specific rising edge of SCLK when the external serial clock is used for the conversion clock (and  
Manual-Trigger mode is enabled), a minimum setup time of 20ns between the falling edge of CONVST and the  
rising edge of SCLK must be met. This timing ensures the conversion is completed in 18 CCLKs (36 SCLKs).  
The duty cycle of SCLK is not critical, as long as the minimum high and low times (11ns for VA = 5.0V) are  
satisfied. Because the ADS8331/32 is designed for high-speed applications, a high-frequency serial clock must  
be supplied to maintain the high throughput of the interface. This requirement can be accomplished if the period  
of SCLK is at most 1ms when SCLK is used as the conversion clock (CCLK). The 1ms maximum period for SCLK  
is also set by the leakage of charge from the capacitors in the capacitive digital-to-analog converter (CDAC)  
block in the ADS8331/32. If SCLK is used as the conversion clock, the SCLK source must have minimal rise/fall  
times and low jitter to provide the best converter performance.  
CFR_D10  
Conversion Clock  
= 1  
= 0  
Oscillator  
(CCLK)  
SPI Serial  
Clock (SCLK)  
Divide by 2  
Figure 37. Conversion Clock Source  
Manual Channel Select Mode  
Manual Channel Select mode is enabled through the Configuration register (CFR) by setting the CFR_D11 bit to  
'0' (see Table 5). The acquisition process starts with selecting an input channel. This selection is done by writing  
the desired channel number to the Command register (CMR); see Table 4 for further details. The associated  
timing diagram is shown in Figure 38.  
CS  
SCLK  
< 30ns  
Mux switch  
CHOLD  
CHNEW  
Figure 38. Manual Channel Select Timing  
20  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
Auto Channel Select Mode  
Channel selection can also be done automatically if Auto Channel Select mode (default) is enabled (CFR_D11 =  
'1'). If the device is programmed for Auto Channel Select mode, then signals from all channels are acquired in a  
fixed order. In Auto Channel Select mode, the first conversion after entering this mode is always from the  
channel of the last conversion completed before this mode is enabled. The channels are then sequentially  
scanned up to and including the last channel (that is, channel 3 for the ADS8331 and channel 7 for the  
ADS8332) and then back to the channel that started the sequence. For example, if the last channel used in the  
conversion before enabling Auto Channel Select mode was channel 2, the sequence for the ADS8332 would be:  
2, 3, 4, 5, 6, 7, 2, etc., as shown in Figure 39. If the last channel in Manual Channel Select mode happened to be  
channel 7, the sequence would be: 7, 7, 7, etc. Figure 40 shows when the next channel in the sequence  
activates during Auto Channel Select mode. This timing allows the next channel to settle before it is acquired.  
This automatic sequencing stops the cycle after CFR_D11 is set to '0'.  
Manual Channel Select Channel 2  
Enable Auto Channel Select  
Conversion Start is Automatic or Manual  
Manual- or Auto-Trigger Mode  
Ch 2  
Ch 7  
Ch 3  
Ch 6  
Ch 4  
Ch 5  
Figure 39. Auto Channel Select for the ADS8332  
CCLK  
EOC  
(active low)  
1 CCLK Minimum  
Channel #  
N - 1  
N
Figure 40. Channel-Number Update in Auto Channel Select Mode Timing  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Start of a Conversion  
The end of acquisition is the same as the start of a conversion. This process is initiated by bringing the CONVST  
pin low for a minimum of 40ns. After the minimum requirement has been met, the CONVST pin can be brought  
high. CONVST acts independently of FS/CS so it is possible to use one common CONVST for applications that  
require simultaneous sample/hold with multiple converters. The ADS8331/32 switches from sample to hold mode  
on the falling edge of the CONVST signal. The ADS8331/32 requires 18 conversion clock (CCLK) cycles to  
complete a conversion. The conversion time is equivalent to 1500ns with a 12MHz internal clock. The minimum  
time between two consecutive CONVST signals is 21 CCLKs.  
A conversion can also be initiated without using CONVST if the ADS8331/32 is programmed for Auto-Trigger  
mode (CFR_D9 = '0'). When the converter is configured in this mode, and with CFR_D8 = '0', the next  
conversion is automatically started three conversion clocks (CCLK) after the end of a conversion. These three  
conversion clocks (CCLK) are used for the acquisition time. In this case, the time to complete one acquisition  
and conversion cycle is 21 CCLKs. Table 1 summarizes the different conversion modes.  
Table 1. Different Types of Conversion  
MODE  
SELECT CHANNEL  
Auto Channel Select(1)  
START CONVERSION  
Auto-Trigger Mode  
Automatic  
No need to write channel number to CMR. Use internal sequencer for  
ADS8331/32.  
Start a conversion based on conversion  
clock CCLK  
Manual Channel Select  
Manual-Trigger Mode  
Manual  
Write channel number to CMR  
Start a conversion with CONVST  
(1) Auto channel select should be used with Auto-Trigger mode and TAG bit output enabled.  
Status Output Pin (EOC/INT)  
The status output pin is programmable. It can be used as an EOC output (CFR_D[7:6] = '11') where the low time  
is equal to the conversion time. When the status pin is programmed as EOC and the polarity is set as active low,  
the pin works in the following manner: the EOC output goes low immediately following CONVST going low with  
Manual-Trigger mode enabled. EOC stays low throughout the conversion process and returns high when the  
conversion has ended. If Auto-Trigger mode is enabled, the EOC output remains high for three conversion clocks  
(CCLK) after the previous rising edge of EOC .  
This status pin can also be used as an interrupt output, INT (CFR_D[7:6] = '10'), which is set low at the end of a  
conversion, and is brought high (cleared) by the next read cycle. The polarity of this pin, whether used as EOC  
or INT, is programmable through the CFR_D7 bit.  
22  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
Power-Down Modes and Acquisition Time  
There are three power-down modes that reduce power dissipation: Nap, Deep, and Auto-Nap. The first two, Nap  
and Deep Power-Down modes, are enabled/disabled by bits CFR_D3 and CFR_D2, respectively, in the  
Configuration register (see Table 5 for details).  
Deep Power-Down mode provides maximum power savings. When this mode is enabled, the analog core in the  
converter is shut down, and the analog supply current falls from 6.6mA (VA = 5.0V) to 1mA in 2ms. The wakeup  
time from Deep Power-Down mode is 1ms. The device can wake up from Deep Power-Down mode by either  
disabling this mode, issuing the wakeup command, loading the default value into the CFR, or performing a reset  
(either with the software reset command, CFR_D0 bit, or the external reset). See Table 4 and Table 5 along with  
the Reset Function section for further information.  
In Nap Power-Down mode, the bias currents for the analog core of the device are significantly reduced. Because  
the bias currents are not completely shut off, the ADS8331/32 can wake up from this power-down mode much  
faster than from Deep Power-Down mode. After Nap Power-Down mode is enabled, the analog supply current  
falls from 6.6mA (VA = 5.0V) to 0.39mA in 200ns. The wakeup time from this mode is three conversion clock  
cycles (CCLK). The device can wake up from Nap Power-Down mode in the same manner as waking up from  
Deep Power-Down mode.  
The third power-down mode, Auto-Nap, is enabled/disabled by bit CFR_D4 in the Configuration register (see  
Table 5 for details). Once this mode is enabled, the device is controlled by the digital core logic on the chip. The  
device is automatically placed into Nap Power-Down mode after the next end of conversion (EOC). The analog  
supply current falls from 6.6mA (VA = 5.0V) to 0.39mA in 200ns. A conversion start wakes up the device in three  
conversion clock cycles. Issuing the wake-up command, loading the default value into the CFR, disabling  
Auto-Nap Power-Down mode, issuing a manual channel select command, or resetting the device can wake the  
ADS8331/32 from Auto-Nap Power-Down mode. A comparison of the three power-down modes is listed in  
Table 2.  
Table 2. Comparison of Power-Down Modes  
POWER  
TYPE OF  
POWER-DOWN  
CONSUMPTION  
(VA = 5.0V)  
POWER-DOWN  
BY:  
POWER-DOWN TIME  
WAKEUP BY:  
WAKEUP TIME  
ENABLE  
Normal operation  
Deep power-down  
Nap power-down  
6.6mA  
1mA  
1ms  
Setting CFR_D2  
Setting CFR_D3  
2ms  
Wakeup command 1011b  
Set CFR_D2  
Set CFR_D3  
0.39mA  
200ns  
Wakeup command 1011b  
3 CCLKs  
Auto-Nap  
power-down  
EOC (end of  
conversion)  
CONVST, any channel select command, default  
command 1111b, or wakeup command 1011b.  
0.39mA  
200ns  
3 CCLKs  
Set CFR_D4  
The default acquisition time is three conversion clock (CCLK) cycles. Figure 41 shows the timing diagram for  
CONVST, EOC, and auto-nap power-down signals in Manual-Trigger mode. As shown in the diagram, the device  
wakes up after a conversion is triggered by the CONVST pin going low. However, a conversion is not yet started  
at this time. The conversion start signal to the analog core of the chip is internally generated no less than six  
conversion clock (CCLK) cycles later, to allow at least three CCLKs for wake up and three CCLKs for acquisition.  
The ADS8331/32 enters Nap Power-Down mode one conversion cycle after the end of conversion (EOC).  
CCLK  
CONVST  
CONVST_OUT  
3 + 3 = 6 Cycles  
(internal)  
1 Cycle  
NAP_ACTIVE  
(internal)  
EOC  
(active low)  
Figure 41. Timing for CONVST, EOC, and Auto-Nap Power-Down Signals in Manual-Trigger Mode (Three  
Conversion Clock Cycles for Acquisition)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
The ADS8331/32 can support sampling rates of up to 500kSPS in Auto-Trigger mode. This rate is selectable by  
programming the CFR_D8 bit in the Configuration register. In 500kSPS mode, consecutive conversion start  
pulses to the analog core are generated 21 conversion clock cycles apart. In 250kSPS mode, consecutive  
conversion-start pulses are 42 conversion clock cycles apart. The Nap and Deep Power-Down modes are  
available with either sampling rate; however, Auto-Nap mode is available only with a sampling rate of 250kSPS  
when Auto-Trigger mode is enabled. The analog core cannot be powered down when the Auto-Nap mode  
sampling rate is 500kSPS because at that rate, there is no period of time when the analog core is not actively  
being used.  
Figure 42 shows the timing diagram for conversion start and auto-nap power-down signals for a 250kSPS  
sampling rate in Auto-Trigger mode. For a 16-bit ADC output word, consecutive new conversion start pulses are  
generated 2 × (18 + 3) cycles apart. NAP_ACTIVE (the signal to power down the analog core in Nap and  
Auto-Nap modes) goes low six (3 + 3) conversion clock cycles before the conversion start falling edge, thus  
powering up the analog core. It takes three conversion clock cycles after NAP_ACTIVE goes low to power up the  
analog core. The analog core is powered down a cycle after the end of a conversion. For a 16-bit ADC with a  
500kSPS sampling rate and three conversion clock cycle sampling, consecutive conversion start pulses are  
generated 21 conversion clock cycles apart.  
1
37  
2
38  
3
19  
20  
21  
42  
43  
CCLK  
CONVST_OUT  
(internal)  
EOC  
(active low)  
NAP_ACTIVE  
(internal)  
Figure 42. Timing for Conversion Start and Auto-Nap Power-Down Signals in Auto-Trigger Mode  
(250kSPS Sampling and Three Conversion Clock Cycles for Acquisition)  
Timing diagrams for reading from the ADS8331/32 with various trigger and power-down modes are shown in  
Figure 43 through Figure 45. The total (acquisition + conversion) times for the different trigger and power-down  
modes are listed in Table 3.  
Table 3. Total Acquisition + Conversion Times  
MODE  
ACQUISITION + CONVERSION TIME  
Auto-Trigger at 500kSPS  
= 21 CCLK  
Manual-Trigger  
21 CCLK  
Manual-Trigger with Deep Power-Down  
Manual-Trigger with Nap Power-Down  
4 SCLK + 1ms + 3 CCLK + 18 CCLK + 16 SCLK + 2ms  
4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 16 SCLK + 200ns  
4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 1 CCLK + 200ns (using wakeup to resume)  
3 CCLK + 3 CCLK + 18 CCLK + 1 CCLK + 200ns (using CONVST to resume)  
Manual-Trigger with Auto-Nap Power-Down  
24  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
(N+1)  
N
CONVST  
EOC  
(active low)  
Sample (N + 1)  
Conversion N  
Conversion (N + 1)  
tH2  
tSU1  
Read While Converting  
CS  
Read Result (N - 1)  
Read While Sampling  
tSU2  
tH1  
CS  
Read Result N  
Figure 43. Read While Converting vs Read While Sampling (Manual-Trigger Mode)  
BLANKSPACE  
(N+1)  
N
CONVST  
Note  
(1)  
Note  
Power-Down  
(1)  
Wakeup  
Sample N  
³ 3 CCLK  
Conversion N  
Power-Down Wakeup  
Sample (N + 1)  
³ 3 CCLK  
Conversion (N + 1)  
Converter State  
= 18 CCLK  
= 18 CCLK  
tH2  
tH2  
Read While Converting  
Read Result  
(N - 1)  
Note  
(2)  
Note  
(3)  
Note  
(2)  
Note  
(3)  
Read Result  
N
CS  
tSU2  
tSU2  
Read While Sampling  
Note  
(2)  
Note  
(2)  
Note  
(3)  
Note  
(3)  
Read Result  
(N - 1)  
Read Result  
N
CS  
(1) Converter is in acquisition mode between end of conversion and activation of Nap or Deep Power-Down mode.  
(2) Command on SDI pin to wake up converter (minimum of four SCLKs).  
(3) Command on SDI pin to place converter into Nap or Deep Power-Down mode (minimum of 16 SCLKs).  
Figure 44. Read While Converting vs Read While Sampling with Nap or Deep Power-Down  
(Manual-Trigger Mode)  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
tWL1  
MANUAL TRIGGER CASE 1 (Wakeup Using CONVST):  
(N+1)  
N
CONVST  
EOC  
(active low)  
Note  
(1)  
Note  
(1)  
Wakeup  
Sample N  
³ 3 CCLK  
Conversion N  
Power-Down Wakeup  
Sample (N + 1)  
³ 3 CCLK  
Conversion (N + 1)  
Power-Down  
Converter State  
= 18 CCLK  
= 18 CCLK  
³ 6 CCLK  
³ 6 CCLK  
tH2  
tSU1  
tH2  
tSU1  
Read While Converting  
Read Result  
(N - 1)  
Read Result  
N
CS  
tSU2  
tSU2  
Read While Sampling  
Read Result  
(N - 1)  
Read Result  
N
CS  
tWL1  
MANUAL TRIGGER CASE 2 (Wakeup Using Wakeup Command):  
(N+1)  
N
CONVST  
EOC  
(active low)  
Note  
(1)  
Note  
Power-Down  
(1)  
Wakeup  
Sample N  
³ 3 CCLK  
Conversion N  
Power-Down Wakeup  
Sample (N + 1)  
³ 3 CCLK  
Conversion (N + 1)  
Converter State  
= 18 CCLK  
= 18 CCLK  
tH2  
tSU1  
tH2  
tSU1  
Read While Converting  
Read Result  
(N - 1)  
Note  
(2)  
Note  
(2)  
Read Result  
N
CS  
tSU2  
tSU2  
Read While Sampling  
Read Result  
(N - 1)  
Read Result  
N
Note  
(2)  
Note  
(2)  
CS  
(1) Time between end of conversion and Nap Power-Down mode is 1 CCLK.  
(2) Command on SDI to wake up converter (minimum of four SCLKs).  
Figure 45. Read While Converting vs Read While Sampling with Auto-Nap Power-Down  
26  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
DIGITAL INTERFACE  
The serial interface is designed to accommodate the latest high-speed processors with an SCLK frequency of up  
to 40MHz (VA = VBD = 5.0V). Each cycle starts with the falling edge of FS/CS. The internal data register  
content, which is made available to the output register at the end of conversion, is presented on the SDO output  
pin on the falling edge of FS/CS. The first bit is the most significant bit (MSB). The output data bits are valid on  
the falling edge of SCLK with the tD2 delay (see the Timing Characteristics)so that the host processor can read  
the data on the falling edge. Serial data input is also read on the falling edge of SCLK.  
The complete serial I/O cycle starts after the falling edge of FS/CS and ends 16 falling edges of SCLK later (see  
NOTE). The serial interface works with CPOL = '1', CPHA = '0'. This setting means the falling edge of FS/CS  
may fall while SCLK is high. The same timing relaxation applies to the rising edge of FS/CS where SCLK may be  
high or low as long as the last SCLK falling edge happens before the rising edge of FS/CS.  
NOTE  
There are cases where a cycle can be anywhere from 4 SCLKs up to 24 SCLKs,  
depending on the read mode combination. See Table 4 for details.  
Internal Register  
The internal register consists of two parts: four bits for the Command register (CMR) and 12 bits for the  
Configuration register (CFR).  
Table 4. Command Set Defined by Command Register (CMR)(1)  
WAKE UP  
FROM  
MINIMUM  
SCLKs  
D[15:12]  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
HEX  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
COMMAND  
Select analog input channel 0  
Select analog input channel 1  
Select analog input channel 2  
Select analog input channel 3  
Select analog input channel 4(2)  
Select analog input channel 5(2)  
Select analog input channel 6(2)  
Select analog input channel 7(2)  
Reserved  
D[11:0]  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Reserved  
Reserved  
Reserved  
Don't care  
Don't care  
Don't care  
CFR Value  
AUTO-NAP  
REQUIRED  
R/W  
W
W
W
W
W
W
W
W
W
R
Y
Y
4
4
Y
4
Y
4
Y
4
Y
4
Y
4
Y
4
Y
4
Reserved  
Reserved  
Wake up  
Read CFR  
16  
16  
16  
Read data  
R
Write CFR  
W
Default mode  
(load CFR with default value)  
1111b  
Fh  
Don't care  
Y
4
W
(1) The first four bits from SDO after the falling edge of FS/CS are the four MSBs from the previous conversion result. The next 12 bits from  
SDO are the contents of the CFR.  
(2) These commands apply only to the ADS8332; they are reserved (not availble) for the ADS8331.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
WRITING TO THE CONVERTER  
There are two different types of writes to the register: a 4-bit write to the CMR and a full 16-bit write to the CMR  
plus CFR. The command set is listed in Table 4 and the configuration register map is listed in Table 5. A simple  
command requires only four SCLKs; the write takes effect on the fourth falling edge of SCLK. A 16-bit write or  
read takes at least 16 SCLKs (see Table 7 for exceptions that require more than 16 SCLKs).  
Configuring the Converter and Default Mode  
The converter can be configured with command 1110b (write to the CFR) or command 1111b (default mode). A  
write to the CFR requires a 4-bit command followed by 12 bits of data. A 4-bit command takes effect on the  
fourth falling edge of SCLK. A write to the CFR takes effect on the 16th falling edge of SCLK.  
The CFR default value for each bit is '1'. The default values are applied to the CFR after issuing command 1111b  
or when the device is reset with a power-on reset (POR), software reset, or external reset using the RESET pin  
(see the Reset Function section).  
The communication protocol of the ADS8331/32 is full duplex. That is, data are transmitted to and from the  
device simultaneously. For example, the input mux channel can be changed via the SDI pin while data are being  
read via the SDO pin. All commands, except Read CFR, output conversion data on the SDO pin. If a Read CFR  
command is issued, the Read Data command can then be used to read back the conversion result.  
READING THE CONFIGURATION REGISTER  
The host processor can read back the value programmed in the CFR by issuing command 1100b. The timing is  
similar to reading a conversion result except CONVST is not used. There is also no activity on the EOC/INT pin.  
The CFR value readback contains the first four bits (MSBs) of the previous conversion data plus the 12-bit CFR  
contents.  
Table 5. Configuration Register (CFR) Map  
CFR SDI BIT  
(Default = FFFh)  
DEFINITION  
Channel select mode  
BIT = '0'  
BIT = '1'  
Manual channel select enabled. Use channel Auto channel select enabled. Channels are  
D11  
D10  
select commands to access a desired  
channel.  
sampled and converted sequentially until the  
cycle after this bit is set to 0.  
Conversion clock (CCLK) source select  
Conversion clock (CCLK) = SCLK/2  
Conversion clock (CCLK) = internal OSC  
Trigger (conversion start) select: start  
conversion at the end of sampling (EOS). If  
D9 = '0' and D8 = '0', the D4 setting is  
ignored.  
Auto-Trigger: conversions automatically start  
three conversion clocks after EOC at  
500kSPS  
Manual-Trigger: conversions manually start  
on falling edge of CONVST  
D9  
D8  
D7  
D6  
D5  
Sample rate for Auto-Trigger mode  
500kSPS (21 CCLKs)  
EOC/INT active high  
Pin used as INT  
250kSPS (42 CCLKs)  
EOC/INT active low  
Pin 10 polarity select when used as an  
output (EOC/INT)  
Pin 10 function select when used as an  
output (EOC/INT)  
Pin used as EOC  
Pin 10 I/O select for daisy-chain mode  
operation  
Pin 10 is used as CDI input  
(daisy-chain mode enabled)  
Pin 10 is used as EOC/INT output  
Auto-Nap Power-Down enable/disable.  
This bit setting is ignored if D9 = '0' and D8  
='0'.  
Auto-Nap Power-Down mode enabled (not  
activated)  
D4  
Auto-Nap Power-Down mode disabled  
Nap Power-Down. This bit is set to 1  
automatically by wake-up command.  
Nap Power-Down disabled  
(resume normal operation)  
D3  
D2  
Nap Power-Down enabled  
Deep Power-Down enabled  
Deep Power-Down. This bit is set to 1  
automatically by wake-up command.  
Deep Power-Down disabled  
(resume normal operation)  
TAG bit output enabled. TAG bits appear  
after conversion data  
D1  
D0  
TAG bit output enable  
Software reset  
TAG bit output disabled  
System reset, returns to '1' automatically  
Normal operation  
28  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
READING THE CONVERSION RESULT  
The conversion result is available to the input of the output data register (ODR) at EOC and presented to the  
output of the output register at the next falling edge of FS/CS. The host processor can then shift the data out via  
the SDO pin at any time except during the quiet zone. This duration is 20ns before and 20ns after the end of  
sampling (EOS) period. End of sampling (EOS) is defined as the falling edge of CONVST when Manual-Trigger  
mode is used or the end of the third conversion clock (CCLK) after EOC if Auto-Trigger mode is used.  
The falling edge of FS/CS should not be placed at the precise moment at the end of a conversion (by default  
when EOC goes high). Otherwise, the data could be corrupt. If FS/CS is placed before the end of a conversion,  
the previous conversion result is read. If FS/CS is placed after the end of a conversion, the current conversion  
result is read.  
The conversion result is 16-bit data in straight binary format as shown in Table 6. Generally 16 SCLKs are  
necessary, but there are exceptions when more than 16 SCLKs are required (see Table 7). Data output from the  
serial output (SDO) is left-adjusted MSB first. The trailing bits are filled with three TAG bits first (if enabled) plus  
all '0's. SDO remains low until FS/CS is brought high again.  
SDO is active when FS/CS is low. The rising edge of FS/CS 3-states the SDO output.  
NOTE  
Whenever SDO is not in 3-state (that is, when FS/CS is low and SCLK is running), a  
portion of the conversion result is output at the SDO pin. The number of bits depends on  
how many SCLKs are supplied. For example, a manual channel select command cycle  
requires 4 SCLKs. Therefore, four MSBs of the conversion result are output at SDO. The  
exception is when SDO outputs all '1's during the cycle immediately after any reset (POR,  
software reset, or external reset).  
If SCLK is used as the conversion clock (CCLK) and a continuous SCLK is used, it is not possible to clock out all  
16 bits from SDO during the sampling time (6 SCLKs) because of the quiet zone requirement. In this case, it is  
better to read the conversion result during the conversion time (36 SCLKs or 48 SCLKs in Auto-Nap mode).  
Table 6. Ideal Input Voltages and Output Codes  
DESCRIPTION  
Full-scale range  
ANALOG VALUE  
VREF  
DIGITAL OUTPUT  
STRAIGHT BINARY  
Least significant bit (LSB)  
Full-scale  
VREF/65536  
VREF – 1 LSB  
VREF/2  
BINARY CODE  
HEX CODE  
FFFF  
1111 1111 1111 1111  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
Midscale  
8000  
Midscale – 1 LSB  
Zero  
VREF/2– 1 LSB  
0 V  
7FFF  
0000  
TAG Mode  
The ADS8331/32 includes a TAG feature that can be used to indicate which channel sourced the converted  
result. If TAG mode is enabled, three address bits are added after the LSB of the conversion data is read out  
from SDO to indicate which channel corresponds to the result. These address bits are '000' for channel 0, '001'  
for channel 1, '010' for channel 2, '011' for channel 3, '100' for channel 4, '101' for channel 5, '110' for channel 6,  
and '111' for channel 7. The converter requires at least 19 SCLKs when TAG mode is enabled in order to  
transfer the 16-bit conversion result and the three TAG bits.  
Daisy-Chain Mode  
The ADS8331/32 can operate as a single converter or in a system with multiple converters. System designers  
can take advantage of the simple, high-speed, SPI-compatible serial interface by cascading converters in a  
single chain when multiple converters are used. The CFR_D5 bit in the Configuration register is used to  
reconfigure the EOC/INT status pin as the chain data input (CDI) pin, a secondary serial data input, for the  
conversion result from an upstream converter. This configuration is called daisy-chain mode operation. A typical  
connection of three converters in daisy-chain mode is shown in Figure 46.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
MICROCONTROLLER  
CS3  
INT  
CS1  
CS2  
SDO SCLK  
SDI  
SDI  
CONVST  
CONVST  
CONVST  
SDO  
SCLK  
SCLK  
SCLK  
SDI  
CS  
SDI  
CS  
CS  
ADS8331/32  
#1  
ADS8331/32  
#2  
ADS8331/32  
#3  
SDO  
CDI  
SDO  
CDI  
EOC/INT  
Program Device #1: CFR_D5 = ‘1’  
Program Devices #2 and #3: CFR_D5 = ‘0’  
Figure 46. Multiple Converters Connected Using Daisy-Chain Mode  
When multiple converters are used in daisy-chain mode, the first converter is configured in regular mode while  
the rest of the converters downstream are configured in daisy-chain mode. When a converter is configured in  
daisy-chain mode, the CDI input data go straight to the output register. Therefore, the serial input data passes  
through the converter with either a 16 SCLK (if the TAG feature is disabled) or 24 SCLK delay, as long as CS is  
active. See Figure 47 for detailed timing. In this timing diagram, the conversion in each converter is performed  
simultaneously.  
Manual Trigger, Read While Sampling  
(Use internal CCLK, EOC active low, and TAG mode disabled)  
CONVST #1  
CONVST #2  
CONVST #3  
EOC #1  
(active low)  
Conversion N  
tCONV = 18 CCLK  
tSAMPLE1 = 3 CCLK min  
tSU2  
CS #1  
SCLK #1  
SCLK #2  
SCLK #3  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
High-Z  
tSU2  
High-Z  
SDO #1  
CDI #2  
Conversion N  
from Device #1  
CS #2  
CS #3  
High-Z  
High-Z  
High-Z  
High-Z  
SDO #2  
CDI #3  
Conversion N  
from Device #2  
Conversion N  
from Device #1  
SDO #3  
Conversion N  
from Device #3  
Conversion N  
from Device #2  
Conversion N  
from Device #1  
SDI #1  
SDI #2  
SDI #3  
Don't Care  
Configure  
Read Data  
Read Data  
Don't Care  
Figure 47. Simplified Dasiy-Chain Mode Timing with Shared CONVST and Continuous CS  
The multiple CS signals must be handled with care when the converters are operating in daisy-chain mode. The  
different chip select signals must be low for the entire data transfer (in this example, 48 bits for three  
conversions). The first 16-bit word after the falling chip select is always the data from the chip that received the  
chip select signal.  
30  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
Case 1: If chip select is not toggled (CS stays low), the next 16 bits of data are from the upstream converter, and  
so on. This configuration is shown in Figure 47.  
Case 2: If the chip select is toggled during a daisy-chain mode data transfer cycle, as illustrated in Figure 48, the  
same data from the converter are read out again and again in all three discrete 16-bit cycles. This state is not a  
desired result.  
Manual Trigger, Read While Sampling  
(Use internal CCLK, EOC active low, and TAG mode disabled)  
CONVST #1  
CONVST #2  
CONVST #3  
EOC #1  
(active low)  
Conversion N  
tCONV = 18 CCLK  
tSAMPLE1 = 3 CCLK min  
tWH1  
tSU2  
tWH1  
CS #1  
SCLK #1  
SCLK #2  
SCLK #3  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
High-Z  
tWH1  
High-Z  
tWH1  
High-Z  
tSU2  
High-Z  
SDO #1  
CDI #2  
Conversion N  
from Device #1  
Conversion N  
from Device #1  
Conversion N  
from Device #1  
CS #2  
CS #3  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
SDO #2  
CDI #3  
Conversion N  
from Device #2  
Conversion N  
from Device #2  
Conversion N  
from Device #2  
SDO #3  
Conversion N  
from Device #3  
Conversion N  
from Device #3  
Conversion N  
from Device #3  
SDI #1  
SDI #2  
SDI #3  
Don't Care  
Don't Care  
Don't Care  
Configure  
Read Data  
Read Data  
Don't Care  
Figure 48. Simplified Daisy-Chain Mode Timing with Shared CONVST and Noncontinuous CS  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS8331 ADS8332  
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
Figure 49 shows a slightly different scenario where CONVST is not shared with the second converter. Converters  
#1 and #3 have the same CONVST signal. In this case, converter #2 simply passes previous conversion data  
downstream.  
Manual Trigger, Read While Sampling  
(Use internal CCLK, EOC active low, and TAG mode disabled)  
CONVST #1  
CONVST #3  
CONVST #2  
EOC #1  
(active low)  
Conversion N  
tCONV = 18 CCLK  
tSAMPLE1 = 3 CCLK min  
tSU2  
CS #1  
SCLK #1  
SCLK #2  
SCLK #3  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
1. . . . . . . . . . . . . .16  
High-Z  
tSU2  
High-Z  
SDO #1  
CDI #2  
Conversion N  
from Device #1  
CS #2  
CS #3  
High-Z  
High-Z  
High-Z  
High-Z  
SDO #2  
CDI #3  
Conversion (N - 1)  
from Device #2(1)  
Conversion N  
from Device #1  
SDO #3  
Conversion N  
Conversion (N - 1)  
from Device #2(1)  
Conversion N  
from Device #3  
from Device #1  
SDI #1  
SDI #2  
SDI #3  
Don't Care  
Configure  
Read Data  
Read Data  
Don't Care  
(1) Data from device #2 is from previous converison.  
Figure 49. Simplified Daisy-Chain Mode Timing with Separate CONVST and Continuous CS  
The number of SCLKs required for a serial read cycle depends on the combination of different read modes, TAG  
mode, daisy-chain mode, and the manner in which a channel is selected (for example, Auto Channel Select  
mode). The required number of SCLKs for different readout modes are listed in Table 7.  
Table 7. Required SCLKs For Different Readout Mode Combinations  
DAISY-CHAIN MODE  
CFR_D5  
TAG MODE  
CFR_D1  
NUMBER OF SCLK CYCLES  
PER SPI READ  
TRAILING BITS  
1
1
0
0
0
1
0
1
16  
19  
16  
None  
TAG bits plus up to 5 zeros  
None  
24  
TAG bits plus 5 zeros  
32  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
SCLK skew between converters in a daisy-chain configuration can affect the maximum frequency of SCLK. The  
skew can also be affected by supply voltage and loading. It may be necessary to slow down the SCLK when the  
devices are configured in daisy-chain mode.  
RESET FUNCTION  
The ADS8331/32 can be reset with three different methods: internal POR, software reset, and external reset  
using the RESET pin.  
The internal POR circuit is activated when power is initially applied to the converter. This internal circuit  
eliminates the need for commands to be sent to the converter after power-on in order to set the default mode of  
operation (see the Power-On Sequence Timing section for further details).  
Software reset can be used to place the converter in the default mode by setting the CFR_D0 bit to '0' in the  
Configuration register (see Table 5). This bit is automatically returned to '1' (default) after the converter is reset.  
This reset method is useful in systems that cannot dedicate a separate control signal to the RESET pin. In these  
situations, the RESET pin must be connected to VBD in order for the ADS8331/32 to operate properly.  
If communication in the system becomes corrupted and a software reset cannot be issued, the RESET pin can  
be used to reset the device manually. In order to reset the device and return the device to default mode, this pin  
must held low for a minimum of 25ns.  
After the ADS8331/32 detects a reset condition, the minimum time before the device can be reconfigured by  
FS/CS going low and data clocking in on SDI is 2ms.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
APPLICATION INFORMATION  
TYPICAL CONFIGURATION EXAMPLE  
Figure 50 illustrates a typical circuit configuration using the ADS8331/32.  
Analog +5V  
4.7mF  
External  
Reference  
Input  
AGND  
22mF  
Analog Input  
AGND  
REF+ REF- AGND  
ADCIN  
COM  
INX  
MUXOUT  
VA  
Interface  
Supply  
+1.8V  
FS/CS  
SDO  
SDI  
4.7mF  
SCLK  
DGND  
VBD  
Host  
Processor  
ADS8331/32  
CONVST  
EOC/INT  
Figure 50. Typical Circuit Configuration  
POWER-ON SEQUENCE TIMING  
During power-on of the ADS8331/32, the digital interface supply voltage (VBD) should not exceed the analog  
supply voltage (VA). This condition is specified in the Power-Supply Requirements section of the Electrical  
Characteristics tables. If the analog and digital interface supplies for the converter are not generated by a single  
voltage source, it is recommended to power-on the analog supply and wait for it to reach its final value before the  
digital interface supply is activated. Furthermore, the voltages applied to the analog input pins (INX, ADCIN) and  
digital input pins (RESET, FS/CS, SCLK, SDI, and CONVST) should not exceed the voltages on VA and VBD,  
respectively, during the power-on sequence. This requirement prevents these input pins from powering the  
ADS8331/32 through the ESD protection diodes/circuitry, and causing an increase in current consumption, until  
both supplies are fully powered (see the Electrical Characteristics and Figure 34 for further details).  
Communication with the ADS8331/32, such as initiating a conversion with CONVST or writing to the  
Configuration register, should not occur for a minimum of 2ms after the analog and digital interface supplies have  
finished the power-on sequence and reached the respective final values in the system. This time is required for  
the internal POR to activate and place the digital core of the device into the default mode of operation. This  
minimum delay time must also be adhered to whenever a reset condition occurs (see the Reset Function section  
for additional information).  
34  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
 
 
ADS8331  
ADS8332  
www.ti.com  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
LAYOUT  
For optimum performance, care should be taken with the physical layout of the ADS8331/32 circuitry. This  
consideration is particularly true if the reference voltage is low and/or the conversion rate is high. With a  
conversion clock of 12MHz, the ADS8331/32 makes a bit decision every 83ns. That is, for each subsequent bit  
decision, the capacitor array must be switched and charged, and the input to the comparator settled to a 16-bit  
level, all within one conversion clock cycle.  
The basic SAR architecture is sensitive to spikes on the power supply, reference, and ground connections that  
occur just prior to latching the comparator output. Thus, during any single conversion for an n-bit SAR converter,  
there are n windows in which large external transient voltages can easily affect the conversion result. Such  
spikes might originate from switching power supplies, digital logic, and high-power devices, to name a few  
potential sources. This particular source of error can be very difficult to track down if the glitch is almost  
synchronous to the converter CCLK signal because the phase difference between the two changes with time and  
temperature, causing sporadic misoperation.  
With this possibility in mind, power to the ADS8331/32 should be clean and well-bypassed. A 0.1mF ceramic  
bypass capacitor should be placed as close as possible to the ADS8331/32 package. In addition, a 1mF to 10mF  
capacitor and a 5or 10series resistor may be used to low-pass filter a noisy supply.  
The reference should be similarly bypassed with a 22mF capacitor. Again, a series resistor and large capacitor  
can be used to low-pass filter the reference voltage. If the reference voltage originates from an op amp, make  
sure that the op amp can drive the bypass capacitor without oscillation (the series resistor can help in this case).  
Although the ADS8331/32 draws very little current from the reference on average, there can still be  
instantaneous current demands placed on the external input and reference circuitry.  
The OPA365 or OPA211 from Texas Instrumets provide optimum performance for buffering the signal inputs; the  
OPA350 can be used to effectively buffer the reference input.  
Also, keep in mind that the ADS8331/32 offers no inherent rejection of noise or voltage variation in regards to the  
reference input. This consideration is of particular concern when the reference input is tied to the power supply.  
Any noise and ripple from the supply will appear directly in the digital results. While high-frequency noise can be  
filtered, voltage variation resulting from the line frequency (50Hz or 60Hz) can be difficult to remove.  
The AGND pin on the ADS8331/32 should be placed on a clean ground point. In many cases, this location is the  
analog ground. Avoid connecting the AGND pin too close to the grounding point for a microprocessor,  
microcontroller, or digital signal processor. If needed, run a ground trace directly from the converter to the  
power-supply connection point. The ideal layout includes an analog ground plane for the converter and  
associated analog circuitry.  
Copyright © 2009–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS8331 ADS8332  
ADS8331  
ADS8332  
SBAS363B DECEMBER 2009REVISED DECEMBER 2010  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers from previous revisions may differ from the page numbers in the current version.  
Changes from Revision A (November 2010) to Revision B  
Page  
Deleted Ordering Information table ....................................................................................................................................... 2  
Changes from Original (December 2009) to Revision A  
Page  
Changed two part numbers for 500kSPS, 14-Bit Pseudo-Diff converter in SAR Converter Family table ............................ 1  
Deleted availability date for release of TSSOP package ...................................................................................................... 1  
Changed BDGND to DGND in Absolute Maximum Ratings ................................................................................................. 2  
Deleted Aperture Delay, Aperture Jitter, Step Response, and Overvoltage Recovery parameters from 2.7V table ........... 3  
Changed Input Leakage Current parameter for 2.7V table .................................................................................................. 3  
Changed Offset Error Matching parameter for 2.7V table .................................................................................................... 3  
Changed High-Level Input Voltage parameter and values for 2.7V table ............................................................................ 4  
Changed Low-Level Input Voltage parameter and values for 2.7V table ............................................................................. 4  
Changed Input Current parameter values from –50 (min) and 50 (max) to –1 (min) and 1 (max) for 2.7V table ................ 4  
Changed Power Dissipation maximum value from 18.2 to 18.6 for 2.7V table .................................................................... 4  
Deleted Aperture Delay, Aperture Jitter, Step Response, and Overvoltage Recovery parameters from 5V table .............. 5  
Changed Input Leakage Current parameter for 5V table ..................................................................................................... 5  
Changed Offset Error Matching parameter for 5V table ....................................................................................................... 5  
Changed High-Level Input Voltage parameter and values for 5V table ............................................................................... 6  
Changed Low-Level Input Voltage parameters and values for 5V table .............................................................................. 6  
Changed Input Current parameter values from –50 (min) and 50 (max) to –1 (min) and 1 (max) for 5V table ................... 6  
Changed 2.7V Timing Characteristics table ......................................................................................................................... 7  
Changed 5V Timing Characteristics table ............................................................................................................................ 8  
Changed Figure 2 ................................................................................................................................................................. 9  
Changed Figure 3 ................................................................................................................................................................. 9  
Changed Figure 34 ............................................................................................................................................................. 18  
Added new paragraph to the end of the Configuring the Converter and Default Mode section ......................................... 28  
Deleted Figure 50 and changed text in first paragraph ...................................................................................................... 33  
Changed text in last sentence of first paragraph in Power-On Sequence Timing section ................................................. 34  
36  
Submit Documentation Feedback  
Copyright © 2009–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8331 ADS8332  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS8331IBPW  
ADS8331IBPWR  
ADS8331IBRGER  
ADS8331IBRGET  
ADS8331IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
60  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
RGE  
RGE  
PW  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
VQFN  
Green (RoHS  
& no Sb/Br)  
Contact TI Distributor  
or Sales Office  
TSSOP  
TSSOP  
VQFN  
60  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
ADS8331IPWR  
ADS8331IRGER  
ADS8331IRGET  
ADS8332IBPW  
ADS8332IBPWR  
ADS8332IBRGER  
ADS8332IBRGET  
ADS8332IPW  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
RGE  
RGE  
PW  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
Request Free Samples  
Purchase Samples  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
VQFN  
60  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
RGE  
RGE  
PW  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
VQFN  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
Request Free Samples  
Purchase Samples  
TSSOP  
TSSOP  
VQFN  
60  
Green (RoHS  
& no Sb/Br)  
ADS8332IPWR  
ADS8332IRGER  
ADS8332IRGET  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
VQFN  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2011  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jan-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8331IBPWR  
ADS8331IBRGER  
ADS8331IBRGET  
ADS8331IPWR  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
PW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
6.95  
4.25  
4.25  
6.95  
4.25  
4.25  
6.95  
4.25  
4.25  
6.95  
4.25  
4.25  
8.3  
4.25  
4.25  
8.3  
1.6  
1.15  
1.15  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
2000  
3000  
250  
ADS8331IRGER  
ADS8331IRGET  
ADS8332IBPWR  
ADS8332IBRGER  
ADS8332IBRGET  
ADS8332IPWR  
RGE  
RGE  
PW  
4.25  
4.25  
8.3  
1.15  
1.15  
1.6  
2000  
3000  
250  
RGE  
RGE  
PW  
4.25  
4.25  
8.3  
1.15  
1.15  
1.6  
2000  
3000  
250  
ADS8332IRGER  
ADS8332IRGET  
RGE  
RGE  
4.25  
4.25  
1.15  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jan-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8331IBPWR  
ADS8331IBRGER  
ADS8331IBRGET  
ADS8331IPWR  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
PW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
2000  
3000  
250  
346.0  
346.0  
190.5  
346.0  
346.0  
190.5  
346.0  
346.0  
190.5  
346.0  
346.0  
190.5  
346.0  
346.0  
212.7  
346.0  
346.0  
212.7  
346.0  
346.0  
212.7  
346.0  
346.0  
212.7  
33.0  
29.0  
31.8  
33.0  
29.0  
31.8  
33.0  
29.0  
31.8  
33.0  
29.0  
31.8  
2000  
3000  
250  
ADS8331IRGER  
ADS8331IRGET  
ADS8332IBPWR  
ADS8332IBRGER  
ADS8332IBRGET  
ADS8332IPWR  
RGE  
RGE  
PW  
2000  
3000  
250  
RGE  
RGE  
PW  
2000  
3000  
250  
ADS8332IRGER  
ADS8332IRGET  
RGE  
RGE  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

ADS8332

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332I

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IB

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IBPW

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IBPWR

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IBPWT

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IBRGER

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IBRGET

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IPW

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IPWR

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IPWT

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI

ADS8332IRGER

Low-Power, 16-Bit, 500kSPS, 4-/8-Channel Unipolar Input ANALOG-TO-DIGITAL CONVERTERS with Serial Interface
TI