ADS8383IPFBT [TI]

18-BIT, 500-kHz, UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE; 18位, 500千赫,单极性输入,并行接口微功耗采样模拟数字转换器
ADS8383IPFBT
型号: ADS8383IPFBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

18-BIT, 500-kHz, UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE
18位, 500千赫,单极性输入,并行接口微功耗采样模拟数字转换器

转换器 输入元件
文件: 总29页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8383  
SLAS005B – DECEMBER 2002 – REVISED MAY 2003  
18-BIT, 500-kHz, UNIPOLAR INPUT, MICROPOWER SAMPLING  
ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE  
FEATURES  
APPLICATIONS  
D
D
D
D
D
Medical Instruments  
D
D
D
D
D
D
D
D
D
D
500-kHz Sample Rate  
Optical Networking  
Transducer Interface  
18-Bit NMC Ensured Over Temperature  
Zero Latency  
High Accuracy Data Acquisition Systems  
Magnetometers  
Low Power: 110 mW at 500 kHz  
Unipolar Input Range  
DESCRIPTION  
The ADS8383 is an 18-bit, 500 kHz A/D converter. The  
device includes a 18-bit capacitor-based SAR A/D  
converter with inherent sample and hold. The ADS8383  
offers a full 18-bit interface, a 16-bit option where data is  
read using two read cycles or an 8-bit bus option using  
three read cycles.  
Onboard Reference Buffer  
High-Speed Parallel Interface  
Wide Digital Supply  
TheADS8383isavailableina48-leadTQFPpackageand  
is characterized over the industrial –40°C to 85°C  
temperature range.  
8-/16-/18-Bit Bus Transfer  
48-Pin TQFP Package  
BUS 18/16  
Output  
Latches  
and  
3-State  
Drivers  
BYTE  
SAR  
18-/16-/8-Bit  
Parallel DATA  
Output Bus  
+
_
+IN  
–IN  
CDAC  
Comparator  
Clock  
REFIN  
CONVST  
Conversion  
and  
Control Logic  
BUSY  
CS  
RD  
Pleasebe aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products  
conform to specifications per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include testing of all parameters.  
Copyright 2002–2003, Texas Instruments Incorporated  
ADS8383  
www.ti.com  
SLAS005B DECEMBER 2002 REVISED MAY 2003  
Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoamduring  
storageor handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
NO  
MISSING  
CODES  
RESOLU-  
TION (BIT)  
MAXIMUM  
INTEGRAL DIFFERENTIAL  
LINEARITY  
(LSB)  
MAXIMUM  
TRANS-  
PORT  
MEDIA  
TEMPER-  
ATURE  
RANGE  
PACKAGE  
TYPE  
PACKAGE  
DESIGNATOR  
ORDERING  
INFORMATION  
MODEL  
LINEARITY  
(LSB)  
QUANTITY  
Tape and  
reel 250  
ADS8383IPFBT  
ADS8383IPFBR  
ADS8383IBPFBT  
ADS8383IBPFBR  
48 Pin  
TQFP  
40°C to  
85°C  
ADS8383I  
±10  
±7  
2~7  
17  
18  
PFB  
PFB  
Tape and  
reel1000  
Tape and  
reel 250  
48 Pin  
TQFP  
40°C to  
85°C  
ADS8383IB  
1~2.5  
Tape and  
reel1000  
NOTE:  
For the most current specifications and package information, refer to our website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
overoperating free-air temperature range unless otherwise noted  
(1)  
UNIT  
+IN to AGND  
+VA + 0.1 V  
0.5 V  
Voltage  
IN to AGND  
+VA to AGND  
0.3 V to 7 V  
0.3 V to 7 V  
+VBD to BDGND  
+VA to +VBD  
Voltagerange  
0.3 V to 2.5 V  
0.3 V to +VBD + 0.3 V  
0.3 V to +VBD + 0.3 V  
40°C to 85°C  
Digital input voltage to BDGND  
Digital output voltage to BDGND  
Operating free-air temperature range, T  
A
Storage temperature range, T  
stg  
65°C to 150°C  
150°C  
Junctiontemperature(T max)  
J
Powerdissipation  
thermalimpedance  
(T Max T )/θ  
J
A
JA  
TQFP package  
θ
86°C/W  
JA  
Vapor phase (60 sec)  
Infrared (15 sec)  
215°C  
220°C  
Leadtemperature,soldering  
(1)  
Stressesbeyondthoselistedunderabsolutemaximumratingsmaycausepermanentdamagetothedevice. Thesearestressratingsonly,and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
SPECIFICATIONS  
A
T
= 40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 500 kHz (unless otherwise noted)  
ref  
SAMPLE  
TEST CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Analog Input  
Full-scale input voltage (see Note 1)  
+IN – –IN  
0
0.2  
0.2  
V
V
V
ref  
+IN  
V
ref  
+ 0.2  
0.2  
Absoluteinputvoltage  
IN  
Inputcapacitance  
Input leakage current  
SystemPerformance  
Resolution  
45  
1
pF  
nA  
18  
Bits  
Bits  
(+IN – –IN) < 0.5 FS  
(+IN – –IN) 0.5 FS  
18  
17  
ADS8383I  
No missing codes  
ADS8383IB  
18  
(+IN – –IN) < 0.125 FS  
(+IN – –IN) < 0.5 FS  
(+IN – –IN) 0.5 FS  
4  
4
6
6  
ADS8383I  
LSB  
(18 bit)  
Integral linearity (see Notes 2 and 3)  
10  
7  
10  
7
ADS8383IB  
2/3  
(+IN – –IN) < 0.125 FS  
(+IN – –IN) < 0.5 FS  
(+IN – –IN) 0.5 FS  
1  
2
1  
3
ADS8383I  
Differentiallinearity  
LSB (18 bit)  
mV  
2  
7
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
1  
1/1.4  
±0.5  
2.5  
1
1  
Offset error (see Note 4)  
Gain error (see Note 4)  
0.75  
0.1  
0.06  
±0.25  
0.75  
0.1  
0.06  
V
ref  
= 4.096 V  
= 4.096 V  
%FS  
%FS  
V
ref  
Noise  
60  
75  
µV RMS  
dB  
Power supply rejection ratio  
SamplingDynamics  
Conversiontime  
Acquisitiontime  
Throughputrate  
Aperturedelay  
At 3FFFFh output code  
1.5  
µs  
µs  
0.4  
500  
kHz  
ns  
4
15  
Aperturejitter  
ps  
Stepresponse  
150  
150  
ns  
Over voltage recovery  
ns  
(1)  
Ideal input span, does not include gain or offset error.  
LSB means least significant bit  
This is endpoint INL, not best fit.  
(2)  
(3)  
(4)  
Measured relative to an ideal full-scale input (+IN – –IN) of 4.096 V  
3
ADS8383  
www.ti.com  
SLAS005B DECEMBER 2002 REVISED MAY 2003  
SPECIFICATIONS (CONTINUED)  
A
T
= 40°C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 500 kHz (unless otherwise noted)  
ref  
SAMPLE  
TEST CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DynamicCharacteristics  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
ADS8383I  
ADS8383IB  
110  
112  
98  
108  
98  
99  
90  
91  
87  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 4 V at 1 kHz  
pp  
= 4 V at 10 kHz  
pp  
Total harmonic distortion (THD)  
(see Note 1)  
dB  
dB  
dB  
= 4 V at 50 kHz  
pp  
= 4 V at 100 kHz  
pp  
= 4 V at 1 kHz  
pp  
88  
87  
= 4 V at 10 kHz  
pp  
87  
Signal to noise ratio (SNR) (see Note 1)  
87  
= 4 V at 50 kHz  
pp  
87  
87  
= 4 V at 100 kHz  
pp  
87  
86  
= 4 V at 1 kHz  
pp  
87  
86  
= 4 V at 10 kHz  
pp  
86  
Signal to noise + distortion (SINAD)  
(see Note 1)  
86  
= 4 V at 50 kHz  
pp  
86  
85  
= 4 V at 100 kHz  
pp  
85  
110  
112  
98  
= 4 V at 1 kHz  
pp  
= 4 V at 10 kHz  
pp  
108  
98  
Spurious free dynamic range (SFDR)  
(see Note 1)  
dB  
= 4 V at 50 kHz  
pp  
98  
90  
= 4 V at 100 kHz  
pp  
94  
3dB Small signal bandwidth  
3
MHz  
Voltage Reference Input  
Reference voltage at REFIN, V  
ref  
2.5  
4.096  
500  
4.2  
1
V
Reference resistance (see Note 2)  
Reference current drain  
Bias Input  
kΩ  
mA  
f = 500 kHz  
s
Bias input range  
2
2.048  
2.1  
V
Bias input drift  
±5  
%FS  
µA  
Bias input current, sink  
150  
100  
(1)  
(2)  
Calculated on the first nine harmonics of the input frequency  
Can vary ±20%  
4
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
SPECIFICATIONS (CONTINUED)  
A
T
= 40°C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 500 kHz (unless otherwise noted)  
SAMPLE  
ref  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DigitalInput/Output  
Logicfamily  
CMOS  
V
V
V
V
I
I
I
I
= 5 µA  
= 5 µA  
+VBD1  
0.3  
+V  
BD  
+ 0.3  
0.8  
IH  
IH  
IL  
IL  
Logic level  
V
= 2 TTL loads  
= 2 TTL loads  
+V  
BD  
0.6  
OH  
OL  
OH  
OL  
0.4  
Straight  
Binary  
Dataformat  
PowerSupplyRequirements  
+VBD (see Notes 1 and 2)  
+VA (see Note 2)  
2.95  
4.75  
3.3  
5
5.25  
5.25  
26  
V
V
Power supply voltage  
Supply current, 500-kHz sample rate (see Note 3)  
Power dissipation, 500-kHz sample rate (see Note 3)  
TemperatureRange  
22  
110  
mA  
mW  
130  
Operatingfree-air  
40  
85  
°C  
(1)  
(2)  
(3)  
The difference between +VA and +VBD should be no less than 2.3 V, i.e. if +VA is 5.5 V, +VBD should be at least 2.95 V.  
+VBD +VA 2.3 V  
This includes only +VA current. +VBD current is typical 1 mA with 5 pF load capacitance on all output pins.  
5
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
TIMING CHARACTERISTICS  
All specifications typical at 40°C to 85°C, +VA = +VBD = 5 V (see Notes 1, 2, and 3)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
Conversiontime  
1.5  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ps  
µs  
µs  
CONV  
ACQ  
pd1  
pd2  
w1  
Acquisitiontime  
0.4  
10  
10  
40  
20  
20  
CONVST low to conversion started (BUSY high)  
Propagation delay time, End of conversion to BUSY low  
Pulse duration, CONVST low  
50  
20  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
CONVST falling edge jitter  
su1  
w2  
10  
1
t
t
Pulse duration, BUSY signal low  
Pulse duration, BUSY signal high  
Min(t )  
ACQ  
w3  
1.52  
w4  
Hold time, First data bus data transition (RD low, or CS low for read cycle, or BYTE or  
BUS18/16input changes) after CONVST low  
t
h1  
40  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
Setup time, RD high to CS high  
su2  
w5  
en  
Pulse duration, RD low time  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
20  
20  
5
10  
d2  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
RD high  
d3  
20  
w6  
h2  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling edge  
Delay time, BYTE edge to BUS18/16 edge skew  
Setup time, BYTE or BUS18/16 rising edge to RD falling edge  
Hold time, BYTE or BUS18/16 falling edge to RD falling edge  
125  
Max(t  
)
d5  
pd4  
d4  
0
10  
10  
su3  
h3  
t
t
t
Disable time, RD High (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid  
20  
30  
20  
ns  
ns  
µs  
dis  
d5  
Setup time, BYTE or BUS18/16 change before BUSY falling edge  
10  
su4  
(1)  
(2)  
(3)  
All input signals are specified with t = t = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V + V )/2.  
IL IH  
r
f
Seetimingdiagrams.  
All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.  
6
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
TIMING CHARACTERISTICS  
All specifications typical at 40°C to 85°C, +VA = 5 V, +VBD = 3 V (see Notes 1, 2, and 3)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
µs  
µs  
ns  
t
t
t
t
t
t
t
Conversiontime  
1.5  
CONV  
ACQ  
pd1  
pd2  
w1  
Acquisitiontime  
0.4  
10  
10  
40  
20  
20  
CONVST low to conversion started (BUSY high)  
Propagation delay time, end of conversion to BUSY low  
Pulse duration, CONVST low  
50  
20  
ns  
ns  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
CONVST falling edge jitter  
ns  
su1  
ns  
w2  
10  
1
ps  
t
t
t
Pulse duration, BUSY signal low  
Pulse duration, BUSY signal high  
Min(t  
ACQ  
)
µs  
µs  
ns  
w3  
w4  
h1  
1.52  
Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE or BUS  
18/16input changes) after CONVST low  
40  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
Setup time, RD high to CS high  
su2  
w5  
en  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
30  
30  
10  
10  
d2  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
Pulse duration, RD high time  
d3  
20  
w6  
h2  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling edge  
Delay time, BYTE edge to BUS18/16 edge skew  
Setup time, BYTE or BUS18/16 rising edge to RD falling edge  
Hold time, BYTE or BUS18/16 falling edge to RD falling edge  
125  
Max(td5)  
pd4  
d4  
0
10  
10  
su3  
h3  
t
t
t
Disable time, RD High (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay time  
30  
40  
30  
ns  
ns  
µs  
dis  
d5  
Setup time, BYTE or BUS18/16 change before BUSY falling edge  
10  
su4  
(1)  
(2)  
(3)  
All input signals are specified with t = t = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V + V )/2.  
IL IH  
r
f
Seetimingdiagrams.  
All timing are measured with 10 pF equivalent loads on all data bits and BUSY pins.  
7
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
PIN ASSIGNMENTS  
PFB PACKAGE  
(TOP VIEW)  
36 35 34 33 32 31 30 29 28 27 26 25  
+VBD  
BUS18/16  
BYTE  
CONVST  
RD  
+VBD  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
DB16  
DB17  
AGND  
AGND  
+VA  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CS  
+VA  
AGND  
AGND  
+VA  
REFM  
REFM  
1
2
3
4
5
6
7
8
9 10 11 12  
NC No connection.  
8
ADS8383  
www.ti.com  
NAME  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
TERMINAL FUNCTIONS  
NO.  
I/O  
DESCRIPTION  
AGND  
5, 8, 11,  
12, 14, 15,  
44, 45  
Analogground  
BDGND  
BIAS  
25  
2
I
Digital ground for bus interface digital supply  
Bias to internal circuit  
BUSY  
36  
38  
O
I
Status output. High when a conversion is in progress.  
BUS18/16  
Bus size select input. Used for selecting 18-bit or 16-bit wide bus transfer.  
0: Data bits output on the 18-bit data bus pins DB[17:0].  
1: Last two data bits D[1:0] from 18-bit wide bus output on:  
a) the low byte pins DB[9:2] if BYTE = 0  
b) the high byte pins DB[17:10] if BYTE = 1  
BYTE  
39  
I
Byte select input. Used for 8-bit bus reading.  
0: No fold back  
1: Low byte D[9:2] of the 16 most significant bits is folded back to high byte of the 16 most significant  
pinsDB[17:10].  
CONVST  
CS  
40  
42  
I
I
Convert start  
Chip select  
8-Bit Bus  
BYTE = 1  
16-Bit Bus  
BYTE = 0 BYTE = 0  
18-Bit Bus  
BYTE = 0  
BYTE = 0  
BYTE = 1  
Data Bus  
BUS18/16 = 0 BUS18/16 = 0 BUS18/16 = 1 BUS18/16 = 0 BUS18/16 = 1 BUS18/16 = 0  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
16  
17  
18  
19  
20  
21  
22  
23  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
D17 (MSB)  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D9  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
D1  
D17 (MSB)  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
D1  
D17 (MSB)  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D0(LSB)  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
DB8  
D8  
D8  
D8  
DB7  
D7  
D7  
D7  
DB6  
D6  
D6  
D6  
DB5  
D5  
D5  
D5  
DB4  
D4  
D4  
D4  
DB3  
D3  
D3  
D3  
DB2  
D2  
D2  
D0 (LSB)  
All ones  
All ones  
D2  
DB1  
D1  
D1  
D1  
DB0  
D0 (LSB)  
D0 (LSB)  
D0 (LSB)  
IN  
7
I
I
Invertinginputchannel  
Noninvertinginputchannel  
Noconnection  
+IN  
6
3
NC  
I
REFIN  
REFM  
RD  
1
Referenceinput.  
47, 48  
41  
I
Referenceground.  
I
Synchronization pulse for the parallel output.  
Analog power supplies, 5-V dc  
+VA  
4, 9, 10,  
13, 43, 46  
+VBD  
24, 37  
Digital power supply for bus  
9
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
TIMING DIAGRAMS  
t
t
w2  
w1  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
t
su1  
CS  
CONVERT  
t
(CONV)  
t
(CONV)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
BYTE  
t
h1  
BUS 18/16  
t
su2  
t
pd4  
t
h2  
t
d1  
RD  
t
t
en  
dis  
HiZ  
HiZ  
MSB  
D[17:12] D[9:4]  
DB[17:12]  
HiZ  
HiZ  
HiZ  
HiZ  
DB[11:10]  
DB[9:0]  
D[11:10]  
D[9:0]  
D[3:2] D[1:0]  
Signal internal to device  
Figure 1. Timing for Conversion and Acquisition Cycles With CS and RD Toggling  
10  
ADS8383  
www.ti.com  
CONVST  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
t
w1  
t
w2  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
t
su1  
CS  
CONVERT  
t
(CONV)  
t
(CONV)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
BYTE  
t
h1  
BUS 18/16  
t
pd4  
t
h2  
RD = 0  
t
en  
t
dis  
HiZ  
HiZ  
MSB  
D[17:12] D[9:4]  
DB[17:12]  
HiZ  
HiZ  
HiZ  
HiZ  
DB[11:10]  
DB[9:0]  
D[11:10]  
D[9:0]  
D[3:2] D[1:0]  
Signal internal to device  
NOTE:  
RD cannot be tied to BDGND. Three read cycles are required at power on.  
Figure 2. Timing for Conversion and Acquisition Cycles With CS Toggling, RD Held at BDGND After  
Power-On Initialization  
11  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
t
w1  
t
w2  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
BYTE  
t
h1  
BUS 18/16  
t
pd4  
t
h2  
RD  
t
t
en  
dis  
HiZ  
HiZ  
MSB  
D[17:12] D[9:4]  
DB[17:12]  
HiZ  
HiZ  
HiZ  
HiZ  
DB[11:10]  
DB[9:0]  
D[11:10]  
D[9:0]  
D[3:2] D[1:0]  
Signal internal to device  
Figure 3. Timing for Conversion and Acquisition Cycles With CS Tied to BDGND, RD Toggling  
12  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
t
w2  
t
w1  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
t
(CONV)  
(CONV)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
BYTE  
BUS 18/16  
t
h1  
t
h1  
RD = 0  
t
d5  
D[9:4]  
DB[17:12]  
DB[11:10]  
NextD[17:12]  
D[17:12]  
D[3:2]  
D[11:10]  
D[9:0]  
D[1:0]  
Next D[11:10]  
Next D[9:0]  
DB[9:0]  
Signal internal to device  
NOTE:  
RD cannot be tied to BDGND. Three read cycles are required at power on.  
Figure 4. Timing for Conversion and Acquisition Cycles With CS and RD Held at BDGND After Power-On  
Initialization - Auto Read  
13  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
CS  
RD  
BYTE  
BUS 18/16  
t
en  
t
d3  
t
t
en  
t
d3  
dis  
t
dis  
HiZ  
HiZ  
HiZ  
Valid  
Valid  
Valid  
DB[17:0]  
Figure 5. Detailed Timing for Read Cycles  
14  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
TYPICAL CHARACTERISTICS†  
SIGNAL-TO-NOISE RATIO  
vs  
HISTOGRAM (DC Code Spread)  
FREE-AIR TEMPERATURE  
HALF SCALE 131071 CONVERSIONS  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
87.9  
87.8  
87.7  
87.6  
87.5  
87.4  
87.3  
87.2  
+VA = 5 V,  
+VBD = 3 V  
Code = 131046  
+VA = 5 V,  
+VBD = 3 V  
40 25 10  
5
20  
35  
50  
65  
80  
T
A
Free-Air Temperature °C  
Figure 7  
Figure 6  
SIGNAL-TO-NOISE + DISTORTION  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
87.9  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
+VA = 5 V,  
+VBD = 3 V  
+VA = 5 V,  
+VBD = 3 V  
87.8  
87.7  
87.6  
87.5  
87.4  
87.3  
87.2  
40 25 10  
5
20  
35  
50  
65  
80  
40 25 10  
5
20  
35  
50  
65  
80  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 9  
Figure 8  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
15  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
EFFECTIVE NUMBER OF BITS  
vs  
FREE-AIR TEMPERATURE  
TOTAL HARMONIC DISTORTION  
vs  
FREE-AIR TEMPERATURE  
14.31  
14.30  
14.29  
14.28  
14.27  
14.26  
14.25  
14.24  
14.23  
14.22  
14.21  
14.20  
104  
+VA = 5 V,  
+VBD = 3 V  
+VA = 5 V,  
+VBD = 3 V  
105  
106  
107  
108  
109  
110  
111  
40 25 10  
5
20  
35  
50  
65  
80  
40 25 10  
5
20  
35  
50  
65  
80  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 11  
Figure 10  
SIGNAL-TO-NOISE RATIO  
vs  
SIGNAL-TO-NOISE + DISTORTION  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
87.26  
87.25  
87.24  
87.23  
87.22  
87.21  
87.20  
87.19  
87.18  
87.17  
87.16  
87.15  
89.0  
88.5  
88.0  
87.5  
87.0  
86.5  
86.0  
85.5  
85.0  
+VA = 5 V,  
+VBD = 3 V  
+VA = 5 V,  
+VBD = 3 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
f Input Frequency kHz  
i
f Input Frequency kHz  
i
Figure 12  
Figure 13  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
16  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
SPURIOUS FREE DYNAMIC RANGE  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
120  
115  
110  
105  
100  
95  
14.25  
14.20  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
+VA = 5 V,  
+VBD = 3 V  
+VA = 5 V,  
+VBD = 3 V  
90  
13.85  
0
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
f Input Frequency kHz  
i
f Input Frequency kHz  
i
Figure 15  
Figure 14  
TOTAL HARMONIC DISTORTION  
SUPPLY CURRENT  
vs  
vs  
INPUT FREQUENCY  
SAMPLE RATE  
80  
85  
19  
18  
17  
16  
15  
14  
+VA = 5 V,  
+VBD = 3 V  
+VA = 5 V,  
Current of +VA only  
90  
95  
100  
105  
110  
115  
0
20  
40  
60  
80  
100  
125  
250  
375  
500  
Sample Rate KSPS  
f Input Frequency kHZ  
i
Figure 16  
Figure 17  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
17  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
vs  
vs  
SAMPLE RATE  
SAMPLE RATE  
3.0  
2.5  
2.0  
1.50  
1.25  
Max  
1.00  
+VA = 5 V,  
= 25 °C  
1.5  
Max  
T
A
1.0  
0.75  
0.5  
+VA = 5 V,  
0.50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
= 25 °C  
0.25  
0.00  
0.25  
0.50  
0.75  
1.00  
Min  
Min  
350  
125  
200  
275  
350  
425  
500  
125  
200  
275  
425  
500  
Sample Rate KSPS  
Sample Rate KSPS  
Figure 18  
Figure 19  
OFFSET VOLTAGE  
vs  
SUPPLY VOLTAGE  
GAIN ERROR  
vs  
SUPPLY VOLTAGE  
0.30  
0.32  
0.34  
0.36  
0.38  
0.40  
0.42  
0.44  
0.46  
0.48  
0
T
A
= 25 °C  
0.002  
0.004  
0.006  
0.008  
0.010  
0.012  
4.75  
5.00  
5.25  
4.75  
5.00  
5.25  
+V Supply Voltage V  
A
+V Supply Voltage V  
A
Figure 21  
Figure 20  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
18  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
GAIN ERROR  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
0.01  
0.02  
0.03  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
T
= 25 °C,  
A
Current of +VA only  
V
= 4.1 V  
ref  
V
ref  
= 2.5 V  
17.0  
4.75  
40  
20  
0
20  
40  
60  
80  
5.00  
5.25  
+V Supply Voltage V  
A
T
A
Free-Air Temperature °C  
Figure 23  
Figure 22  
OFFSET VOLTAGE  
vs  
TEMPERATURE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
0.20  
0.22  
0.24  
0.26  
0.28  
0.30  
0.32  
18.14  
V
ref  
= 4.096 V  
+VA = 5 V,  
+VA = 5 V  
18.12  
18.10  
18.08  
18.06  
18.04  
18.02  
18.00  
17.98  
17.96  
T
A
= 25 °C  
V
= 2.5 V  
ref  
40 25 10  
5
20  
35  
50  
65  
80  
40  
20  
0
T
A
20  
40  
60  
80  
T
A
Temperature °C  
Temperature °C  
Figure 24  
Figure 25  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
19  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
DIFFERENTIAL NONLINEARITY (Min)  
DIFFERENTIAL NONLINEARITY (Max)  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
+VA = 5 V,  
= 25 °C  
+VA = 5 V,  
= 25 °C  
T
A
T
A
Max  
Min  
40 25 10  
5
20  
35  
50  
65  
80  
40 25 10  
5
20  
35  
50  
65  
80  
T
A
Temperature °C  
T
A
Temperature °C  
Figure 27  
Figure 26  
INTEGRAL NONLINEARITY (Max)  
INTEGRAL NONLINEARITY (Min)  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
+VA = 5 V,  
+VA = 5 V,  
T = 25 °C  
A
T
= 25 °C  
A
Max  
Min  
40 25 10  
5
20  
35  
50  
65  
80  
40 25 10  
5
20  
T Temperature °C  
A
35  
50  
65  
80  
T
Temperature °C  
A
Figure 28  
Figure 29  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
20  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
OFFSET VOLTAGE  
vs  
REFERENCE VOLTAGE  
INTEGRAL NONLINEARITY  
vs  
REFERENCE VOLTAGE  
0.20  
0.22  
0.24  
0.26  
0.28  
0.30  
0.32  
0.34  
0.36  
0.38  
0.40  
5
4
+VA = 5 V,  
T
A
= 25 °C  
Max  
3
2
1
+VA = 5 V  
Min  
0
1  
2  
3  
4  
5  
6  
2.5  
3.0  
3.5  
4.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
ref  
Reference Voltage V  
V
ref  
Reference Voltage V  
Figure 30  
Figure 31  
DIFFERENTIAL NONLINEARITY  
vs  
REFERENCE VOLTAGE  
5
4
+VA = 5 V  
Max  
3
2
1
0
Min  
1  
2  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
ref  
Reference Voltage V  
Figure 32  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
21  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
DIFFERENTIAL LINEARITY ERROR  
vs  
CODE  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
1  
1.5  
2  
2.5  
3  
0
65536  
131072  
Code  
196605  
262144  
Figure 33  
INTEGRAL LINEARITY ERROR  
vs  
CODE  
7
5
3
1
1  
3  
5  
7  
0
65536  
131072  
Code  
196608  
262144  
Figure 34  
FFT SPECTRAL RESPONSE (100 kHz Input)  
0
20  
40  
60  
16384Points, f = 500 kHz,  
s
(+IN – –IN) = 4 V  
P-P  
80  
100  
120  
140  
160  
180  
0
50000  
100000  
150000  
200000  
250000  
f Frequency Hz  
Figure 35  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
22  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
FFT SPECTRAL RESPONSE (50 kHz Input)  
0
20  
40  
16384Points, f = 500 kHz,  
s
(+IN – –IN) = 4 V  
P-P  
60  
80  
100  
120  
140  
160  
180  
0
50000  
100000  
150000  
200000  
250000  
f Frequency Hz  
Figure 36  
At 40°C to 85°C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V and f  
= 500 kHz (unless otherwise noted)  
sample  
23  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
APPLICATION INFORMATION  
MICROCONTROLLER INTERFACING  
ADS8383 to 8-Bit Microcontroller Interface  
Figure 37 shows a parallel interface between the ADS8383 and a typical microcontroller using the 8-bit data bus.  
The BUSY signal is used as a falling-edge interrupt to the microprocessor.  
Analog 5 V  
0.1 µF  
AGND  
10 µF  
Ext Ref Input  
0.1 µF  
Analog Input  
Ext Bias Voltage  
BIAS  
Micro  
Controller  
1 µF  
Digital 3 V  
AGND  
GPIO  
CS  
BYTE  
BUS18/16  
CONVST  
RD  
AD8383  
0.1 µF  
GPIO  
GPIO  
GPIO  
BDGND  
+VBD  
BDGND  
RD  
AD[7:0]  
DB[17:10]  
Data Bus D[17:0]  
Figure 37. ADS8383 Application Circuitry  
24  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
PRINCIPLES OF OPERATION  
The ADS8383 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The  
architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 37 for  
the application circuit for the ADS8383.  
The conversion clock is generated internally. The conversion time of 1.6 µs is capable of sustaining a 500-kHz  
throughput.  
The analog input is provided to two input pins: +IN and IN. When a conversion is initiated, the differential input on  
these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected  
from any internal function.  
REFERENCE  
The ADS8383 can operate with an external 4.096-V reference for a corresponding full-scale range of 4.096 V.  
BIASING THE ADS8383  
The ADS8383 requires an external 2.048-V bandgap reference to generate the bias currents for internal circuitry.  
Figure 38 shows the internal circuitry used to generate the bias currents. The bias generation circuit also pumps  
100 µA (150 µA max) out from the BIAS pin. The bandgap used should be capable of sinking 100 µA (150 µA max)  
while holding the voltage on the pin steady. Table 1 shows the specification of the bandgap used to drive the BIAS  
pin of the ADS8383.  
5 V  
+V  
A
ADS8383  
100 µA  
BIAS_INT  
BIAS  
AGND  
Figure 38. Bias Current Generation  
Table 1. Bias Specifications  
PARAMETER  
MIN  
TYP  
2.048  
100  
MAX  
2.1  
UNITS  
Output Voltage  
2
V
I
150  
µA  
sink  
Any common bandgap like REF3020 can be used to drive the BIAS pin of the ADS8383. Figure 39 shows how  
REF3020 can be used with the ADS8383. A 1 µF decoupling capacitor is recommended between pins 2 and AGND  
of the ADS8383 for optimal performance.  
5 V  
1
2
50 Ω  
REF3020  
3
2
0.47 µF  
ADS8383  
22 µF  
AGND  
AGND  
Figure 39. Using the REF3020 to Drive the ADS8383 BIAS Pin  
25  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
ANALOG INPUT  
When the converter enters the hold mode, the voltage difference between the +IN and IN inputs is captured on the  
internal capacitor array. The voltage on the IN input is limited between 0.2 V and 0.2 V, allowing the input to reject  
small signals which are common to both the +IN and IN inputs. The +IN input has a range of 0.2 V to V + 0.2 V.  
ref  
The input span (+IN (IN)) is limited to 0 V to V  
.
ref  
The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source  
impedance. Essentially, the current into the ADS8383 charges the internal capacitor array during the sample period.  
After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage  
must be able to charge the input capacitance (45 pF) to an 18-bit settling level within the acquisition time (400 ns)  
of the device. When the converter goes into the hold mode, the input impedance is greater than 1 G.  
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN  
and IN inputs and the span (+IN (IN)) should be within the limits specified. Outside of these ranges, the  
converters linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters  
should be used.  
Care should be taken to ensure that the output impedance of the sources driving the +IN and IN inputs are matched.  
If this is not observed, the two inputs could have different setting times. This may result in offset error, gain error, and  
linearity error which changes with temperature and input voltage.  
DIGITAL INTERFACE  
Timing And Control  
Seethetimingdiagramsinthespecificationssectionfordetailedinformationontimingsignalsandtheirrequirements.  
The ADS8383 uses an internal oscillator generated clock which controls the conversion rate and in turn the  
throughput of the converter. No external clock input is required.  
Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum  
requirement has been met, the CONVST pin can be brought high), while CS is low. The ADS8383 switches from the  
sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal  
is important to the performance of the converter. The BUSY output is brought high immediately following CONVST  
going low. BUSY stays high through the conversion process and returns low when the conversion has ended.  
Sampling starts with the falling edge of the BUSY signal when CS is tied low or starts with the falling edge of CS when  
BUSY is low.  
Both RD and CS can be high during and before a conversion with one exception (CS must be low when CONVST  
goes low to initiate a conversion). Both the RD and CS pins are brought low in order to enable the parallel output bus  
with the conversion.  
Reading Data  
The ADS8383outputsfullparalleldatainstraightbinaryformatasshowninTable 2. The parallel output is activewhen  
CS and RD are both low. There is a minimal quiet zone requirement around the falling edge of CONVST. This is 125  
ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should be attempted within this  
zone. Any other combination of CS and RD sets the parallel output to 3-state. BYTE and BUS18/16 are used for  
multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus.  
BUS18/16 is used whenever the last two bits on the 18-bit bus is output on either bytes of the higher 16-bit bus. Refer  
to Table 2 for ideal output codes.  
26  
ADS8383  
www.ti.com  
SLAS005BDECEMBER 2002 REVISED MAY 2003  
Table 2. Ideal Input Voltages and Output Codes  
DESCRIPTION  
FULL SCALE RANGE  
Least significant bit (LSB)  
Full scale  
ANALOG VALUE  
DIGITAL OUTPUT STRAIGHT BINARY  
V
ref  
V
/262144  
1 LSB  
/2  
BINARY CODE  
HEX CODE  
3FFFF  
ref  
V
11 1111 1111 1111 1111  
10 0000 0000 0000 0000  
01 1111 1111 1111 1111  
00 0000 0000 0000 0000  
ref  
Midscale  
V
20000  
ref  
Midscale 1 LSB  
Zero  
V
/2 1 LSB  
ref  
0 V  
1FFFF  
00000  
The output data is a full 18-bit word (D17D0) on DB17DB0 pins (MSBLSB) if both BUS18/16 and BYTE are low.  
The result may also be read on a 16-bit bus by using only pins DB17DB2. In this case two reads are necessary:  
the first as before, leaving both BUS18/16 and BYTE low and reading the 16 most significant bits (D17D2) on pins  
DB17DB2, then bringing BUS18/16 high while holding BYTE low. When BUS18/16 is high, the lower two bits  
(D1D0) appear on pins DB3DB2.  
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB17DB10. In this  
case three reads are necessary: the first as before, leaving both BUS18/16 and BYTE low and reading the 8 most  
significant bits on pins DB17DB10, then bringing BYTE high while holding BUS18/16 low. When BYTE is high, the  
medium bits (D9D2) appear on pins DB17DB10. The last read is done by bringing BUS18/16 high while holding  
BYTE high. When BUS18/16 is high, the lower two bits (D1D0) appear on pins DB11DB10. The last read cycle  
is not necessary if only the first 16 most significant bits are of interest.  
All of these multiword read operations can be performed with multiple active RD (toggling) or with RD held low for  
simplicity. This is referred to as the AUTO READ operation. Note that RD may not be tied to BDGND permanently  
due to the requirement of power-on initialization.  
Table 3. Conversion Data Read Out  
DATA READ OUT  
BYTE  
BUS18/16  
High  
DB17DB12 DB11DB10  
DB9DB4  
All Ones  
All Ones  
All Ones  
D9D4  
DB3DB2  
All Ones  
D1D0  
DB1DB0  
All Ones  
All Ones  
All Ones  
D1D0  
High  
Low  
High  
Low  
All Ones  
All Ones  
D9D4  
D1D0  
High  
Low  
Low  
All Ones  
D3D2  
All Ones  
D3D2  
D17D12  
D11D10  
POWER-ON INITIALIZATION  
At first power on there are three read cycles required (RD must be toggled three times). If conversion cycle is  
attempted before these intialization read cycles, the first three conversion cycles will not produce valid results. This  
is used to load factory trimming data for a specific device to assure high accuracy of the converter. Because of this  
requirement, the RD pin cannot be tied permanently to BDGND. System designers can still achieve the AUTO READ  
function if the power-on requirement is satisfied.  
LAYOUT  
For optimum performance, care should be taken with the physical layout of the ADS8383 circuitry.  
As the ADS8383 offers single-supply operation, it will often be used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the  
higher the switching speed, the more difficult it is to achieve good performance from the converter.  
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground  
connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any  
single conversion for an n-bit SAR converter, there are at least n windows in which large external transient voltages  
can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic,  
or high power devices.  
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external  
event.  
27  
ADS8383  
www.ti.com  
SLAS005B DECEMBER 2002 REVISED MAY 2003  
On average, the ADS8383 draws very little current from an external reference as the reference voltage is internally  
buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass  
capacitor or capacitors without oscillation. A 0.1-µF bypass capacitor is recommended from pin 1 (REFIN) directly  
to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.  
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog  
ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor.  
If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists  
of an analog ground plane dedicated to the converter and associated analog circuitry.  
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from  
the connection for digital logic until they are connected at the power entry point. Power to the ADS8383 should be  
clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device as possible.  
See Table 4 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is recommended. In some  
situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor or even a Pi filter made up  
of inductors and capacitorsall designed to essentially low-pass filter the 5-V supply, removing the high frequency  
noise.  
Table 4. Power Supply Decoupling Capacitor Placement  
POWER SUPPLY PLANE  
CONVERTER ANALOG SIDE  
CONVERTER DIGITAL SIDE  
SUPPLY PINS  
Pin pairs that require shortest path to decoupling capacitors  
Pins that require no decoupling  
(4,5), (8,9), (10,11), (13,15),  
(43,44),(45,46)  
(24,25)  
37  
12, 14  
28  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

ADS8383IPFBTG4

IC 1-CH 18-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48, Analog to Digital Converter
TI

ADS8401

16-BIT, 1.25 MSPS, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TODIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8401

16-BIT, 1.25 MSPS, PSEUDO-BIPOLAR, FULLY DIFFERENTIAL INPUT, MICRO POWER
TI

ADS8401IBPFBR

16-BIT, 1.25 MSPS, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TODIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8401IBPFBR

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS8401IBPFBRG4

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQFP48, GREEN, PLASTIC, TQFP-48
TI

ADS8401IBPFBT

16-BIT, 1.25 MSPS, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TODIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8401IBPFBTG4

16 Bit 1.25MSPS Parallel ADC W Ref 48-TQFP -40 to 85
TI

ADS8401IPFBR

16-BIT, 1.25 MSPS, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TODIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8401IPFBR

16 Bit 1.25MSPS Parallel ADC W Ref 48-TQFP -40 to 85
TI

ADS8401IPFBT

16-BIT, 1.25 MSPS, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TODIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8401IPFBT

16 Bit 1.25MSPS Parallel ADC W Ref 48-TQFP -40 to 85
TI