ADS8481IBRGZT [TI]

18 位 1MSPS 并行 ADC,具有基准电压 | RGZ | 48 | -40 to 85;
ADS8481IBRGZT
型号: ADS8481IBRGZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

18 位 1MSPS 并行 ADC,具有基准电压 | RGZ | 48 | -40 to 85

转换器
文件: 总30页 (文件大小:1841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
ADS8481  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING  
ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE  
FEATURES  
APPLICATIONS  
Medical Instruments  
Optical Networking  
Transducer Interface  
High Accuracy Data Acquisition Systems  
Magnetometers  
0 to 1 MSPS Sampling Rate  
18-Bit NMC Ensured Over Temperature  
Low ±0.1 mV Offset Error  
Low 0.2 ppm/°C Offset Error Temperature  
Drift  
Low 0.6 ppm/°C Gain Error Temperature Drift  
Zero Latency  
DESCRIPTION  
The ADS8481 is an 18-bit, 1-MSPS A/D converter  
with an internal 4.096-V reference and  
Low Power: 220 mW at 1 MSPS  
a
Unipolar Single-Ended Input Range: 0 V to  
Vref  
pseudo-differential unipolar single-ended input. The  
device includes a 18-bit capacitor-based SAR A/D  
converter with inherent sample and hold. The  
ADS8481 offers a full 18-bit interface, a 16-bit option  
where data is read using two read cycles, or an 8-bit  
bus option using three read cycles.  
Onboard Reference  
Onboard Reference Buffer  
High-Speed Parallel Interface  
Wide Digital Supply 2.7 V ~ 5.25 V  
8-/16-/18-Bit Bus Transfer  
7x7 QFN Package  
The ADS8481 is available in a 7x7 QFN package  
and is characterized over the industrial –40°C to  
85°C temperature range.  
HIGH SPEED SAR CONVERTER FAMILY  
TYPE/SPEED  
18-Bit Pseudo-Diff  
500 kHz  
580 kHz  
ADS8381  
750 kHz  
1 MHz  
1.25 MHz  
2 MHz  
3 MHz  
4MHz  
ADS8383  
ADS8481  
ADS8380(S)  
ADS8382(S)  
18-Bit Pseudo-Bipolar, Fully Diff  
16-Bit Pseudo-Diff  
ADS8482  
ADS8371 ADS8471  
ADS8401  
ADS8405  
ADS8411  
ADS8412  
ADS8472  
ADS8402  
16-Bit Pseudo-Bipolar, Fully Diff  
ADS8406  
14-Bit Pseudo-Diff  
12-Bit Pseudo-Diff  
ADS7890 (s)  
ADS7891  
ADS7886  
ADS7883  
ADS7881  
BYTE  
16-/8-Bit  
Parallel DATA  
Output Bus  
Output  
Latches  
and  
3-State  
Drivers  
SAR  
+
+IN  
−IN  
CDAC  
_
BUS 18/16  
Comparator  
Clock  
REFIN  
CONVST  
BUSY  
CS  
Conversion  
and  
Control Logic  
4.096-V  
Internal  
Reference  
REFOUT  
RD  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2006, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
MAXIMUM  
INTEGRAL  
LINEARITY  
(LSB)  
MAXIMUM  
DIFFERENTIAL  
LINEARITY (LSB)  
NO MISSING  
CODES  
RESOLUTION  
(BIT)  
TRANS-  
PORT  
MEDIA  
QTY.  
TEMPER-  
ATURE  
RANGE  
PACKAGE  
TYPE  
PACKAGE  
DESIGNATOR  
ORDERING  
INFORMATION  
MODEL  
ADS8482IRGZT  
ADS8481IRGZR  
ADS8481IBRGZT  
ADS8481IBRGZR  
Tape and  
reel 250  
7x7 48 Pin  
QFN  
–40°C to  
85°C  
ADS8481I  
±5  
–1 to +2.5  
–1 to +1.5  
18  
18  
RGZ  
RGZ  
Tape and  
reel 1000  
Tape and  
reel 250  
7x7 48 Pin  
QFN  
–40°C to  
85°C  
ADS8481IB  
±3.5  
Tape and  
reel 1000  
(1) For the most current specifications and package information, refer to our website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
V
+IN to AGND  
–IN to AGND  
–0.4 to +VA + 0.1  
–0.4 to 0.5  
–0.3 to 7  
V
Voltage  
+VA to AGND  
+VBD to BDGND  
+VA to +VBD  
V
–0.3 to 7  
V
–0.3 to 2.55  
–0.3 to +VBD + 0.3  
–0.3 to +VBD + 0.3  
–40 to 85  
V
Digital input voltage to BDGND  
Digital output voltage to BDGND  
V
V
TA  
Operating free-air temperature range  
°C  
°C  
°C  
Tstg Storage temperature range  
Junction temperature (TJ max)  
–65 to 150  
150  
Power dissipation  
(TJMax – TA)/θJA  
22  
QFN package  
θJA thermal impedance  
Vapor phase (60 sec)  
Infrared (15 sec)  
°C/W  
°C  
215  
Lead temperature, soldering  
220  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
SPECIFICATIONS  
TA = –40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage(1)  
+IN – (–IN)  
0
–0.2  
–0.2  
Vref  
Vref +0.2  
0.2  
V
V
+IN  
–IN  
Absolute input voltage  
Input capacitance  
Input leakage current  
SYSTEM PERFORMANCE  
Resolution  
65  
1
pF  
nA  
18  
18  
18  
Bits  
Bits  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
18  
No missing codes  
Integral linearity(2)(3)  
Differential linearity  
–5 –1.5/+1.9  
–3.5 –1.5/+1.9  
–1 –0.5/+0.7  
–1 –0.5/+0.7  
5
3.5  
2.5  
1.5  
0.5  
0.5  
LSB  
(18 bit)  
LSB  
(18 bit)  
–0.5  
–0.5  
±0.1  
±0.1  
±0.2  
±0.05  
±0.05  
±0.6  
30  
Offset error(4)  
mV  
Offset error temperature drift  
Gain error(4)(5)  
ppm/°C  
%FS  
ADS8481I  
Vref = 4.096 V  
Vref = 4.096 V  
–0.075  
–0.075  
0.075  
0.075  
ADS8481IB  
%FS  
Gain error temperature drift  
Noise  
ppm/°C  
µV RMS  
dB  
Power supply rejection ratio  
SAMPLING DYNAMICS  
Conversion time  
At 3FFFFh output code  
60  
650  
710  
1
ns  
ns  
Acquisition time  
250  
Throughput rate  
MHz  
ns  
Aperture delay  
4
5
Aperture jitter  
ps  
Step response  
150  
150  
ns  
Over voltage recovery  
ns  
(1) Ideal input span, does not include gain or offset error.  
(2) LSB means least significant bit  
(3) This is endpoint INL, not best fit.  
(4) Measured relative to an ideal full-scale input [+IN – (–IN)] of 4.096 V  
(5) This specification does not include the internal reference voltage error and drift.  
3
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
SPECIFICATIONS (Continued)  
TA = –40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
ADS8481I  
ADS8481IB  
–110  
–112  
–106  
–108  
–98  
–99  
92  
VIN = 4 Vpp at 1 kHz  
Total harmonic distortion (THD)(1)  
VIN = 4 Vpp at 10 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 1 kHz  
VIN = 4 Vpp at 10 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 1 kHz  
VIN = 4 Vpp at 10 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 1 kHz  
VIN = 4 Vpp at 10 kHz  
VIN = 4 Vpp at 100 kHz  
dB  
94  
91  
Signal to noise ratio (SNR)(1)  
dB  
dB  
93  
90  
92  
91  
93  
90  
Signal to noise + distortion (SINAD)(1)  
92  
89  
91  
110  
112  
108  
107  
98  
Spurious free dynamic range (SFDR)(1)  
dB  
98  
–3dB Small signal bandwidth  
VOLTAGE REFERENCE INPUT  
Reference voltage at REFIN, Vref  
Reference resistance(2)  
15  
MHz  
3.0  
4.096  
500  
4.2  
1
V
kΩ  
mA  
Reference current drain  
fs = 1 MHz  
(1) Calculated on the first nine harmonics of the input frequency.  
(2) Can vary ±20%  
4
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
SPECIFICATIONS (Continued)  
TA = –40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
INTERNAL REFERENCE OUTPUT  
Internal reference start-up time  
Reference voltage range, Vref  
Source current  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
From 95% (+VA), with 1-µF storage capacitor  
120  
4.111  
10  
ms  
V
IO = 0 A  
4.081  
4.096  
Static load  
µA  
Line regulation  
+VA = 4.75 V to 5.25 V  
IO = 0 A  
60  
±6  
µV  
Drift  
PPM/C  
DIGITAL INPUT/OUTPUT  
Logic family – CMOS  
VIH  
IIH = 5 µA  
+VBD–1  
–0.3  
+VBD +0.3  
0.8  
VIL  
Logic level  
VOH  
IIL = 5 µA  
V
IOH = 2 TTL loads  
IOL = 2 TTL loads  
+VBD– 0.6  
VOL  
0.4  
Data format – Straight Binary  
POWER SUPPLY REQUIREMENTS  
+VBD  
+VA  
2.7  
3.3  
5
5.25  
5.25  
48  
V
V
Power supply  
voltage  
4.75  
Supply current(1)  
fs = 1 MHz  
fs = 1 MHz  
44  
mA  
mW  
Power dissipation(1)  
TEMPERATURE RANGE  
Operating free-air  
220  
240  
–40  
85  
°C  
(1) This includes only +VA current. +VBD current is typical 1 mA with 5 pF load capacitance on all output pins.  
5
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TIMING CHARACTERISTICS  
All specifications typical at –40°C to 85°C, +VA =+VBD = 5 V  
(1)(2)(3)  
PARAMETER  
MIN TYP  
MAX UNIT  
t(CONV)  
t(ACQ)  
t(HOLD)  
tpd1  
Conversion time  
710  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
Acquisition time  
250  
Sample capacitor hold time  
CONVST low to BUSY high  
Propagation delay time, end of conversion to BUSY low  
25  
40  
15  
15  
tpd2  
tpd3  
Propagation delay time, start of convert state to rising edge of BUSY  
Pulse duration, CONVST low  
tw1  
40  
20  
20  
tsu1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
tw2  
CONVST falling edge jitter  
10  
tw3  
tw4  
th1  
Pulse duration, BUSY signal low  
t(ACQ)min  
Pulse duration, BUSY signal high  
710  
Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE or  
BUS18/16 input changes) after CONVST low  
40  
ns  
td1  
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu2  
tw5  
ten  
Setup time, RD high to CS high  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
20  
20  
td2  
5
10  
20  
20  
50  
td3  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
Pulse duration, RD high  
tw6  
tw7  
th2  
Pulse duration, CS high  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
tpd4  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
0
ns  
td4  
tsu3  
th3  
tdis  
td5  
td6  
td7  
tsu5  
Delay time, BYTE edge to BUS18/16 edge skew  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, BYTE or BUS18/16 transition to RD falling edge  
Hold time, BYTE or BUS18/16 transition to RD falling edge  
Disable time, RD high (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay  
20  
0
Delay time, CS rising edge to BUSY falling edge  
50  
50  
Delay time, BUSY falling edge to CS rising edge  
BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16  
transition setup time, from BUS18/16 to next BUS18/16.  
50  
ns  
tsu(ABORT) Setup time from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST are used to abort) or to the  
next falling edge of CS (when CS is used to abort).  
60  
610  
ns  
(1) All input signals are specified with tr = tf = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
(3) All timing are measured with 20-pF equivalent loads on all data bits and BUSY pins.  
6
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TIMING CHARACTERISTICS  
All specifications typical at –40°C to 85°C, +VA = 5 V +VBD = 3 V  
(1)(2)(3)  
PARAMETER  
MIN TYP  
MAX UNIT  
t(CONV)  
t(ACQ)  
t(HOLD)  
tpd1  
Conversion time  
710  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
Acquisition time  
250  
Sample capacitor hold time  
CONVST low to BUSY high  
Propagation delay time, end of conversion to BUSY low  
25  
40  
25  
25  
tpd2  
tpd3  
Propagation delay time, start of convert state to rising edge of BUSY  
Pulse duration, CONVST low  
tw1  
40  
20  
20  
tsu1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
tw2  
CONVST falling edge jitter  
10  
tw3  
tw4  
th1  
Pulse duration, BUSY signal low  
t(ACQ)min  
Pulse duration, BUSY signal high  
710  
Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE or  
BUS18/16 input changes) after CONVST low  
40  
ns  
td1  
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu2  
tw5  
ten  
Setup time, RD high to CS high  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
30  
30  
td2  
5
10  
20  
20  
50  
td3  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
Pulse duration, RD high  
tw6  
tw7  
th2  
Pulse duration, CS high  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
tpd4  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
0
ns  
td4  
tsu3  
th3  
tdis  
td5  
td6  
td7  
tsu5  
Delay time, BYTE edge to BUS18/16 edge skew  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, BYTE or BUS18/16 transition to RD falling edge  
Hold time, BYTE or BUS18/16 transition to RD falling edge  
Disable time, RD high (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay  
30  
0
Delay time, CS rising edge to BUSY falling edge  
50  
50  
Delay time, BUSY falling edge to CS rising edge  
BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16  
transition setup time, from BUS18/16 to next BUS18/16.  
50  
ns  
tsu(ABORT) Setup time from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST are used to abort) or to the  
next falling edge of CS (when CS is used to abort).  
70  
620  
ns  
(1) All input signals are specified with tr = tf = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
(3) All timing are measured with 20-pF equivalent loads on all data bits and BUSY pins.  
7
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
PIN ASSIGNMENTS  
RGZ PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
+VBD  
BUS18/16  
BYTE  
CONVST  
RD  
+VBD  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
DB16  
DB17  
AGND  
AGND  
+VA  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
4
5
CS  
+VA  
6
7
AGND  
AGND  
+VA  
REFM  
REFM  
8
9
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
NC − No internal connection  
NOTE: The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
8
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
PIN ASSIGNMENTS (continued)  
TERMINAL FUNCTIONS  
NAME  
NO RGZ  
I/O  
DESCRIPTION  
8, 9, 17, 20,  
23, 24, 26,  
27  
AGND  
Analog ground  
BDGND  
BUSY  
37  
48  
Digital ground for bus interface digital supply  
O
Status output. High when a conversion is in progress.  
Bus size select input. Used for selecting 18-bit or 16-bit wide bus transfer.  
0: Data bits output on the 18-bit data bus pins DB[17:0].  
1: Last two data bits D[1:0] from 18-bit wide bus output on:  
a) the low byte pins DB[9:2] if BYTE = 0  
BUS18/16  
2
I
b) the high byte pins DB[17:10] if BYTE = 1  
Byte select input. Used for 8-bit bus reading.  
BYTE  
3
I
0: No fold back  
1: Low byte D[9:2] of the 16 most significant bits is folded back to high byte of the 16 most significant pins DB[17:10].  
CONVST  
CS  
4
6
I
I
Convert start. The falling edge of this input ends the acquisition period and starts the hold period.  
Chip select. The falling edge of this input starts the acquisition period.  
8-BIT BUS  
BYTE = 1  
16-BIT BUS  
BYTE = 0  
18-BIT BUS  
BYTE = 0  
Data Bus  
BYTE = 0  
BYTE = 1  
BYTE = 0  
BUS18/16 = 1  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
D1  
BUS18/16 = 0  
BUS18/16 = 0  
BUS18/16 = 1  
BUS18/16 = 0  
BUS18/16 = 0  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
28  
29  
30  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
D17 (MSB)  
D9  
All ones  
D17 (MSB)  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D17 (MSB)  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
All ones  
All ones  
All ones  
All ones  
All ones  
D1  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D0 (LSB)  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
DB8  
D8  
D8  
D8  
DB7  
D7  
D7  
D7  
DB6  
D6  
D6  
D6  
DB5  
D5  
D5  
D5  
DB4  
D4  
D4  
D4  
DB3  
D3  
D3  
D3  
DB2  
D2  
D2  
D0 (LSB)  
All ones  
All ones  
D2  
DB1  
D1  
D1  
D1  
DB0  
D0 (LSB)  
D0 (LSB)  
D0 (LSB)  
–IN  
19  
18  
I
I
Inverting input channel  
+IN  
Noninverting input channel  
No connection  
NC  
15  
REFIN  
REFOUT  
REFM  
13  
I
O
I
Reference input  
14  
Reference output. Add 1-µF capacitor between the REFOUT pin and REFM pin when internal reference is used.  
11, 12  
Reference ground  
Synchronization pulse for the parallel output. When CS is low, this serves as output enable and puts the previous  
conversion results on the bus.  
RD  
5
I
7, 10, 16,  
21, 22, 25  
+VA  
Analog power supplies, 5-V DC  
Digital power supply for bus  
+VBD  
1, 36  
9
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS  
INTERNAL REFERENCE VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
DC HISTOGRAM  
(8192 Conversion Outputs)  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2500  
4.098  
4.0972  
4.09719  
4.09718  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V  
T
= 25°C  
A
T
= 25°C,  
A
4.0975  
f = 1 MSPS,  
2000  
1846  
1683  
i
V
= 4.096 V,  
ref  
Input = Midscale  
1626  
4.097  
4.0965  
4.096  
1500  
1000  
4.09717  
4.09716  
1003  
785  
4.09715  
488  
446  
500  
0
4.09714  
4.09713  
4.0955  
4.095  
111  
132  
32  
30  
0
0
6
4
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40 -25 -10  
5
20 35  
50 65 80  
Supply Voltage - V  
T
- Free-Air Temperature - °C  
A
Output Code  
Figure 1.  
Figure 2.  
Figure 3.  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
SAMPLE RATE  
44  
43.5  
43  
44.4  
44.2  
44  
+VA = 5 V,  
+VBD = 5 V,  
f = 1 MSPS,  
T
= 25°C,  
A
+VA = 5 V,  
+VBD = 5 V,  
f = 1 MSPS,  
i
i
T
= 25°C,  
V
= 4.096 V  
ref  
A
43.8  
43.6  
43.4  
43.2  
43  
44  
43.8  
43.6  
V
= 4.096 V  
ref  
V
= 4.096 V  
42.5  
ref  
42  
41.5  
41  
43.4  
43.2  
43  
40.5  
40  
39.5  
42.8  
42.6  
39  
38.5  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40 -25 -10  
5
20 35 50 65 80  
250  
500  
750  
1000  
Supply Voltage - V  
T
- Free-Air Temperature - °C  
Sample Rate - KSPS  
A
Figure 4.  
Figure 5.  
Figure 6.  
DIFFERENTIAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
INTEGRAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
vs  
SUPPLY VOLTAGE  
1.5  
1
4
3
2
1
1.5  
1
+VA = 5 V,  
+VBD = 5 V,  
f = 1 MSPS,  
i
Max  
V
= 4.096 V  
Max  
ref  
Max  
0.5  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
0.5  
0
-1  
-2  
f = 1 MSPS,  
i
T = 25°C  
A
V
= 4.096 V  
f = 1 MSPS,  
i
ref  
0
0
-0.5  
-1  
Min  
V
= 4.096 V  
ref  
Min  
Min  
-0.5  
-1  
-3  
-4  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
A
A
Supply Voltage - V  
Figure 7.  
Figure 8.  
Figure 9.  
10  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
vs  
INTEGRAL NONLINEARITY  
vs  
REFERENCE VOLTAGE  
vs  
SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
4
3
1.5  
1
4
3
2
V
T
= 5 V,  
DD  
V
T
= 5 V,  
DD  
= 25°C  
= 25°C  
A
A
f = 1 MSPS  
Max  
i
f = 1 MSPS  
i
Max  
2
1
Max  
+VA = 5 V,  
+VBD = 5 V,  
= 25°C  
1
0.5  
T
A
0
f = 1 MSPS,  
i
0
V
= 4.096 V  
ref  
0
-0.5  
-1  
Min  
-1  
-1  
Min  
-2  
-3  
-4  
-2  
Min  
3.8  
-3  
-4  
3.2  
3.6  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
3
3.4  
4
4.2  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
Reference Voltage - V  
Reference Voltage - V  
Supply Voltage - V  
Figure 10.  
Figure 11.  
Figure 12.  
OFFSET ERROR  
vs  
FREE-AIR TEMPERATURE  
OFFSET ERROR  
vs  
SUPPLY VOLTAGE  
OFFSET ERROR  
vs  
REFERENCE VOLTAGE  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
0
0
V
T
= 5 V,  
DD  
T
= 25°C,  
A
-0.01  
-0.02  
-0.01  
-0.02  
= 25°C,  
A
f = 1 MSPS,  
i
f = 1 MSPS  
i
V
= 4.096 V  
ref  
-0.03  
-0.03  
-0.04  
-0.05  
-0.06  
-0.04  
-0.05  
-0.06  
-0.07  
+VA = 5 V,  
+VBD = 5 V,  
f = 1 MSPS,  
-0.07  
-0.08  
-0.08  
i
V
= 4.096 V  
ref  
-0.09  
-0.1  
-0.09  
-0.1  
-0.09  
-0.1  
-40 -25 -10  
5
20 35 50 65 80  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.75  
4.95  
4.85  
5.05  
5.15  
5.25  
T
- Free-Air Temperature - °C  
Reference Voltage - V  
A
Supply Voltage - V  
Figure 13.  
Figure 14.  
Figure 15.  
GAIN ERROR  
vs  
SUPPLY VOLTAGE  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
GAIN ERROR  
vs  
REFERENCE VOLTAGE  
-0.01  
-0.02  
-0.02  
0.1  
V
= 5 V,  
DD  
T
= 25°C,  
+VA = 5 V,  
+VBD = 5 V,  
f = 1 MSPS,  
0.08  
A
-0.025  
-0.03  
T
= 25°C,  
f = 1 MSPS,  
A
i
f = 1 MSPS  
i
0.06  
0.04  
i
V
= 4.096  
ref  
V
= 4.096 V  
ref  
-0.03  
-0.04  
-0.035  
-0.04  
0.02  
0
-0.045  
-0.05  
-0.05  
-0.02  
-0.04  
-0.06  
-0.055  
-0.06  
-0.06  
-0.07  
-0.08  
-0.08  
-0.1  
-0.065  
-0.07  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
-40 -25 -10  
5
20 35 50 65 80  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
T
- Free-Air Temperature - °C  
Supply Voltage - V  
A
Reference Voltage - V  
Figure 16.  
Figure 17.  
Figure 18.  
11  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
TOTAL HARMONIC DISTORTION  
OFFSET ERROR TEMPERATURE  
DRIFT DISTRIBUTION (25 Samples)  
GAIN ERROR TEMPERATURE  
DRIFT DISTRIBUTION (25 Samples)  
vs  
REFERENCE VOLTAGE  
12  
-110  
-111  
-112  
10  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
10  
8
10  
8
f = 1 MSPS,  
i
f
= 1 MSPS,  
s
f = 1 MSPS  
i
8
6
4
V
= 4.096 V  
T
= 25°C,  
ref  
A
V
= 4.096 V  
ref  
f = 2 kHz  
i
7
5
6
4
-113  
-114  
4
4
3
3
2
2
2
0
-115  
-116  
2
0
1
1
-0.54 -0.16 0.21  
0.59  
0.97  
1.30  
0.02 0.06  
0.10 0.14 0.18 0.22  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1  
- Reference Voltage - V  
V
Gain Error Drift - ppm/C  
Offset Drift - ppm/C  
ref  
Figure 19.  
Figure 20.  
Figure 21.  
SIGNAL-TO-NOISE RATIO  
vs  
REFERENCE VOLTAGE  
SIGNAL-TO-NOISE + DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
REFERENCE VOLTAGE  
FREE-AIR TEMPERATURE  
-112  
94  
93  
94  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
-112.50  
-113  
93  
92  
91  
90  
89  
f
= 1 MSPS,  
f
= 1 MSPS,  
T = 25°C,  
A
s
s
f
= 1 MSPS,  
s
T
= 25°C,  
A
V
= 4.096 V,  
92  
91  
90  
89  
ref  
f = 2 kHz  
f = 2 kHz  
i
i
f = 2 kHz  
i
-113.50  
-114  
-114.50  
-115  
88  
87  
88  
87  
-115.50  
-116  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1  
-40 -25 -10  
5
20 35 50 65 80  
V
- Reference Voltage - V  
V
- Reference Voltage - V  
ref  
T
- Free-Air Temperature - °C  
ref  
A
Figure 22.  
Figure 23.  
Figure 24.  
SPURIOUS FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE RATIO  
vs  
FREE-AIR TEMPERATURE  
SIGNAL-TO-NOISE + DISTORTION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
95  
94.5  
94  
95  
116.5  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
94.5  
94  
f
= 1 MSPS,  
f
= 1 MSPS,  
V = 4.096 V,  
ref  
116  
s
s
V
= 4.096 V,  
ref  
93.5  
93  
93.5  
93  
f = 2 kHz  
f = 2 kHz  
i
i
115.5  
92.5  
92  
92.5  
92  
115  
+VA = 5 V,  
+VBD = 5 V,  
114.5  
91.5  
91  
91.5  
91  
f
= 1 MSPS,  
s
V
= 4.096 V,  
114  
ref  
f = 2 kHz  
90.5  
90  
90.5  
90  
i
113.5  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
A
A
A
Figure 25.  
Figure 26.  
Figure 27.  
12  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
DNL  
1.5  
+VA = 5 V, +VBD = 5 V, TA = 25°C, fi = 1 MSPS, Vref = 4.096 V  
1
0.5  
0
-0.5  
-1  
-1.5  
0
65536  
131072  
196608  
262144  
Output Code  
Figure 28.  
INL  
3.5  
2.5  
1.5  
+VA = 5 V, +VBD = 5 V, TA = 25°C, fi = 1 MSPS, Vref = 4.096 V  
0.5  
0
-0.5  
-1.5  
-2.5  
-3.5  
0
65536  
131072  
Output Code  
Figure 29.  
196608  
262144  
FFT  
0
+VA = 5 V, +VBD = 5 V,  
= 25°C, f = 1 MSPS,  
s
-25  
-50  
T
A
V
= 4.096 V, f = 100 kHz,  
ref  
i
32768 Points  
-75  
-100  
-125  
-150  
-175  
-200  
-225  
0
100  
200  
300  
400  
500  
f - Frequency - kHz  
Figure 30.  
13  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
TIMING DIAGRAMS  
t
w2  
t
w1  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
t
w7  
t
su1  
t
d7  
CS  
t
t
d6  
pd3  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(HOLD)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
t
t
su(ABORT)  
su(ABORT)  
BYTE  
t
su5  
t
h1  
BUS 18/16  
t
su5  
t
t
pd4  
su2  
t
h2  
t
d1  
RD  
t
dis  
t
en  
Hi−Z  
Hi−Z  
D[17:12] D[9:4]  
DB[17:12]  
MSB  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
D[11:10] D[3:2]  
D[1:0]  
DB[11:10]  
DB[9:0]  
D[9:0]  
Signal internal to device  
Figure 31. Timing for Conversion and Acquisition Cycles With CS and RD Toggling  
14  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
t
w1  
t
w2  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
t
t
w7  
su1  
t
d7  
CS  
t
pd3  
t
d6  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(HOLD)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
t
t
su(ABORT)  
su(ABORT)  
BYTE  
t
t
h1  
su5  
BUS 18/16  
t
pd4  
t
h2  
RD = 0  
t
en  
t
en  
t
dis  
t
dis  
t
en  
Repeated  
Previous  
D[17:12]  
MSB  
D[17:12]  
Hi−Z  
Hi−Z  
Hi−Z  
D[17:12]  
D[9:4]  
D[3:2]  
DB[17:12]  
DB[11:10]  
Repeated  
D[11:10]  
Previous  
D[11:10]  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
D[11:10]  
D[1:0]  
Repeated  
D [9:0]  
Previous  
D [9:0]  
D[9:0]  
DB[9:0]  
Signal internal to device  
Figure 32. Timing for Conversion and Acquisition Cycles With CS Toggling, RD Tied to BDGND  
15  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
t
w1  
t
w2  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
t
(CONV)  
(CONV)  
t
(HOLD)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(ABORT)  
su(ABORT)  
BYTE  
t
su5  
t
h1  
BUS 18/16  
t
su5  
t
pd4  
t
h2  
RD  
t
dis  
t
en  
MSB  
Hi−Z  
Hi−Z  
D[17:12] D[9:4]  
DB[17:12]  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
D[11:10] D[3:2]  
D[1:0]  
DB[11:10]  
DB[9:0]  
D[9:0]  
Signal internal to device  
Figure 33. Timing for Conversion and Acquisition Cycles With CS Tied to BDGND, RD Toggling  
16  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
t
w2  
t
w1  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
t
(CONV)  
(CONV)  
t
pd3  
t
pd3  
t
(HOLD)  
t
(HOLD)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(ABORT)  
su(ABORT)  
BYTE  
t
t
su5  
su5  
BUS 18/16  
t
t
su5  
su5  
t
h1  
t
h1  
RD = 0  
t
d5  
D[17:12]  
D[11:10]  
D[9:0]  
D[9:4]  
D[3:2]  
Next D[17:12]  
DB[17:12]  
DB[11:10]  
D[1:0]  
Next D[11:10]  
Next D[9:0]  
Previous LSB  
DB[9:0]  
Signal internal to device  
Figure 34. Timing for Conversion and Acquisition Cycles With CS and RD Tied to BDGND - Auto Read  
17  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
TYPICAL CHARACTERISTICS (continued)  
CS  
RD  
BYTE  
t
su5  
BUS 18/16  
t
en  
t
d3  
t
dis  
t
en  
t
d3  
t
dis  
Hi−Z  
Hi−Z  
Hi−Z  
Valid  
Valid  
Valid  
DB[17:0]  
Figure 35. Detailed Timing for Read Cycles  
18  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
APPLICATION INFORMATION  
MICROCONTROLLER INTERFACING  
ADS8481 to 8-Bit Microcontroller Interface  
Figure 36 shows a parallel interface between the ADS8481 and a typical microcontroller using the 8-bit data bus.  
The BUSY signal is used as a falling-edge interrupt to the microcontroller.  
Analog 5 V  
0.1 µF  
AGND  
10 µF  
Ext Ref Input  
0.1 µF  
Analog Input  
Micro  
Controller  
Digital 3 V  
GPIO  
CS  
AD8481  
0.1 µF  
GPIO  
GPIO  
GPIO  
RD  
BYTE  
BDGND  
+VBD  
BUS18/16  
CONVST  
RD  
BDGND  
AD[7:0]  
DB[17:10]  
Data Bus D[17:0]  
Figure 36. ADS8481 Application Circuitry  
Analog 5 V  
AGND  
0.1 µF  
10 µF  
0.1 µF  
1 µF  
AGND  
ADS8481  
Figure 37. ADS8481 Using Internal Reference  
19  
Submit Documentation Feedback  
 
 
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
PRINCIPLES OF OPERATION  
The ADS8481 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The  
architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 36  
for the application circuit for the ADS8481.  
The conversion clock is generated internally. The conversion time of 710 ns is capable of sustaining a 1 MHz  
throughput.  
The analog input is provided to two input pins: +IN and –IN. When a conversion is initiated, the differential input  
on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are  
disconnected from any internal function.  
REFERENCE  
The ADS8481 can operate with an external reference with a range from 3.0 V to 4.2 V. The reference voltage on  
the input pin #1 (REFIN) of the converter is internally buffered. A clean, low noise, well-decoupled reference  
voltage on this pin is required to ensure good performance of the converter. A low noise band-gap reference like  
the REF3240 can be used to drive this pin. A 0.1-µF decoupling capacitor is required between REFIN and  
REFM pins (pin #13 and pin #12) of the converter. This capacitor should be placed as close as possible to the  
pins of the device. Designers should strive to minimize the routing length of the traces that connect the terminals  
of the capacitor to the pins of the converter. An RC network can also be used to filter the reference voltage. A  
100-series resistor and a 0.1-µF capacitor, which can also serve as the decoupling capacitor can be used to  
filter the reference voltage.  
REFM  
ADS8481  
0.1 mF  
100 W  
REFIN  
REF3240  
Figure 38. Reference Circuit  
The ADS8481 also has limited low pass filtering capability built into the converter. The equivalent circuitry on the  
REFIN input is as shown in Figure 39.  
10 kW  
REFIN  
+
_
To CDAC  
300 pF  
830 pF  
REFM  
To CDAC  
Figure 39. Reference Circuit  
The REFM input of the ADS8481 should always be shorted to AGND.  
A 4.096-V internal reference is included. When internal reference is used, pin 14 (REFOUT) is connected to pin  
13 (REFIN) with a 0.1-µF decoupling capacitor and 1-nF storage capacitor between pin 14 (REFOUT) and pins  
11 and 12 (REFM) (see Figure Figure 37). The internal reference of the converter is double buffered. If an  
external reference is used, the second buffer provides isolation between the external reference and the CDAC.  
This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 14 (REFOUT) can  
be left unconnected (floating) if an external reference is used.  
20  
Submit Documentation Feedback  
 
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
PRINCIPLES OF OPERATION (continued)  
ANALOG INPUT  
When the converter enters the hold mode, the voltage difference between the +IN and –IN inputs is captured on  
the internal capacitor array. The voltage on the -IN input is limited between –0.2 V and 0.2 V, allowing the input  
to reject small signals which are common to both the +IN and –IN inputs. The +IN input has a range of –0.2 V to  
Vref + 0.2 V. The input span [+IN – (–IN)] is limited to 0 V to Vref.  
The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and  
source impedance. Essentially, the current into the ADS8481 charges the internal capacitor array during the  
sample period. After this capacitance has been fully charged, there is no further input current. The source of the  
analog input voltage must be able to charge the input capacitance (65 pF) to an 18-bit settling level within the  
acquisition time (250 ns) of the device. When the converter goes into the hold mode, the input impedance is  
greater than 1 G.  
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the  
+IN and –IN inputs and the span [+IN – (–IN)] must be within the limits specified. Outside of these ranges, the  
converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass  
filters are used.  
Care must be taken to ensure that the output impedance of the sources driving the +IN and –IN inputs are  
matched. If this is not observed, the two inputs could have different settling times. This may result in offset error,  
gain error, and linearity error which varies with temperature and input voltage.  
The analog input to the converter needs to be driven with a low noise, high-speed op-amp like the THS4031. An  
RC filter is recommended at the input pins to low-pass filter the noise from the source. A series resistor of 20 Ω  
and a decoupling capacitor of 680 pF is recommended. The input to the converter is a uni-polar input voltage in  
the range 0 to Vref. The THS4031 can be used in the source follower configuration to drive the converter.  
Low-Pass Filter  
V
+
20 W  
IN  
THS4031  
_
INP  
50 W  
ADS8481  
680 pF  
INM  
Figure 40. Input Circuit  
In systems, where the input is bi-polar, the THS4031 can be used in the inverting configuration with an  
additional DC bias applied to its + input so as to keep the input to the ADS8481 within its rated operating voltage  
range. This configuration is also recommended when the ADS8481 is used in signal processing applications  
where good SNR and THD performance is required. The DC bias can be derived from the REF3220 or the  
REF3240 reference voltage ICs. The input configuration shown below is capable of delivering better than 92dB  
SNR and -100db THD at an input frequency of 100 kHz. In case band-pass filters are used to filter the input,  
care should be taken to ensure that the signal swing at the input of the band-pass filter is small so as to keep  
the distortion introduced by the filter minimal. In such cases, the gain of the circuit shown below can be  
increased to keep the input to the ADS8481 large to keep the SNR of the system high. Note that the gain of the  
system from the + input to the output of the THS4031 in such a configuration is a function of the gain of the AC  
signal. A resistor divider can be used to scale the output of the REF3220 or REF3240 to reduce the voltage at  
the DC input to THS4031 to keep the voltage at the input of the converter within its rated operating range.  
21  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
PRINCIPLES OF OPERATION (continued)  
Bipolar to Unipolar Conversion  
Low-Pass Filter  
380 W  
_
V
IN  
20 W  
380 W  
THS4031  
INP  
+
Vdc  
ADS8481  
680 pF  
INM  
Figure 41. Input Circuit  
DIGITAL INTERFACE  
Timing and Control  
See the timing diagrams in the specifications section for detailed information on timing signals and their  
requirements.  
The ADS8481 uses an internal oscillator generated clock which controls the conversion rate and in turn the  
throughput of the converter. No external clock input is required.  
Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum  
requirement has been met, the CONVST pin can be brought high), while CS is low. The ADS8481 switches from  
the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of  
this signal is important to the performance of the converter. The BUSY output is brought high immediately  
following CONVST going low. BUSY stays high throughout the conversion process and returns low when the  
conversion has ended.  
Sampling starts with the falling edge of the BUSY signal when CS is tied low or starts with the falling edge of CS  
when BUSY is low.  
Both RD and CS can be high during and before a conversion with one exception (CS must be low when  
CONVST goes low to initiate a conversion). Both the RD and CS pins are brought low in order to enable the  
parallel output bus with the conversion.  
Reading Data  
The ADS8481 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is  
active when CS and RD are both low. There is a minimal quiet zone requirement around the falling edge of  
CONVST. This is 50 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read  
should attempted within this zone. Any other combination of CS and RD sets the parallel output to 3-state. BYTE  
and BUS18/16 are used for multiword read operations. BYTE is used whenever lower bits on the bus are output  
on the higher byte of the bus. BUS18/16 is used whenever the last two bits on the 18-bit bus is output on either  
bytes of the higher 16-bit bus. Refer to Table 1 for ideal output codes.  
22  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
Table 1. Ideal Input Voltages and Output Codes  
DESCRIPTION  
Full scale range  
Least significant bit (LSB)  
+Full scale  
ANALOG VALUE  
+Vref  
DIGITAL OUTPUT STRAIGHT BINARY  
(+Vref)/262144  
(+Vref) – 1 LSB  
(+Vref)/2  
BINARY CODE  
HEX CODE  
3FFFF  
11 1111 1111 1111 1111  
10 0000 0000 0000 0000  
01 1111 1111 1111 1111  
00 0000 0000 0000 0000  
Midscale  
20000  
Midscale – 1 LSB  
Zero  
(+Vref)/2 – 1 LSB  
0 V  
1FFFF  
00000  
The output data is a full 18-bit word (D17–D0) on DB17–DB0 pins (MSB–LSB) if both BUS18/16 and BYTE are  
low.  
The result may also be read on an 16-bit bus by using only pins DB17–DB2. In this case two reads are  
necessary: the first as before, leaving both BUS18/16 and BYTE low and reading the 16 most significant bits  
(D17–D2) on pins DB17–DB2, then bringing BUS18/16 high while holding BYTE low. When BUS18/16 is high,  
the lower two bits (D1–D0) appear on pins DB3–DB2.  
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB17–DB10. In  
this case three reads are necessary: the first as before, leaving both BUS18/16 and BYTE low and reading the 8  
most significant bits on pins DB17–DB10, then bringing BYTE high while holding BUS18/16 low. When BYTE is  
high, the medium bits (D9–D2) appear on pins DB17–DB10. The last read is done by bringing BUS18/16 high  
while holding BYTE high. When BUS18/16 is high, the lower two bits (D1–D0) appear on pins DB11–DB10. The  
last read cycle is not necessary if only the first 16 most significant bits are of interest.  
All of these multiword read operations can be performed with multiple active RD (toggling) or with RD held low  
for simplicity. This is referred to as the AUTO READ operation.  
Table 2. Conversion Data Read Out  
DATA READ OUT  
BYTE  
BUS18/16  
PINS  
PINS  
PINS  
PINS  
PINS  
DB17–DB12  
DB11–DB10  
DB9–DB4  
DB3–DB2  
DB1–DB0  
High  
Low  
High  
Low  
High  
High  
Low  
Low  
All One's  
All One's  
D9–D4  
D1–D0  
All One's  
D3–D2  
All One's  
All One's  
All One's  
D9–D4  
All One's  
D1–D0  
All One's  
All One's  
All One's  
D1–D0  
All One's  
D3–D2  
D17–D12  
D11–D10  
RESET  
On power-up, internal POWER-ON RESET circuitry generates the reset required for the device. The first three  
conversions after power-up are used to load factory trimming data for a specific device to assure high accuracy  
of the converter. The results of the first three conversions are invalid and should be discarded.  
The device can also be reset through the use of the combination fo CS and CONVST. Since the BUSY signal is  
held at high during the conversion, either one of these conditions triggers an internal self-clear reset to the  
converter.  
Issue a CONVST when CS is low and the internal convert state is high. The falling edge of CONVST starts  
a reset.  
Issue a CS (select the device) while the internal convert state is high. The falling edge of CS causes a reset.  
Once the device is reset, all output latches are cleared (set to zeroes) and the BUSY signal is brought low. A  
new sampling period is started at the falling edge of the BUSY signal immediately after the instant of the internal  
reset.  
23  
Submit Documentation Feedback  
ADS8481  
www.ti.com  
SLAS385AFEBRUARY 2006REVISED MARCH 2006  
LAYOUT  
For optimum performance, care must be taken with the physical layout of the ADS8481 circuitry.  
As the ADS8481 offers single-supply operation, it is often used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and  
the higher the switching speed, the more difficult it is to achieve good performance from the converter.  
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground  
connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving  
any single conversion for an n-bit SAR converter, there are at least n windows in which large external transient  
voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby  
digital logic, or high power devices.  
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the  
external event.  
On average, the ADS8481 draws very little current from an external reference as the reference voltage is  
internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive  
the bypass capacitor or capacitors without oscillation. A 0.1-µF capacitor is recommended from pin 13 (REFIN)  
directly to pin 12 (REFM). REFM and AGND must be shorted on the same ground plane under the device.  
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the  
analog ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal  
processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal  
layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.  
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate  
from the connection for digital logic until they are connected at the power entry point. Power to the ADS8481  
should be clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device  
as possible. See Table 3 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is  
recommended. In some situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor  
or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply,  
removing the high frequency noise.  
Table 3. Power Supply Decoupling Capacitor Placement  
POWER SUPPLY PLANE  
SUPPLY PINS  
CONVERTER  
DIGITAL SIDE  
CONVERTER ANALOG SIDE  
Pin pairs that require shortest path to decoupling capacitors  
Pins that require no decoupling  
(7,8), (9,10), (16,17), (20,21), (22,23), (25,26)  
24, 26  
36, 37  
1
24  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8481IBRGZT  
ACTIVE  
VQFN  
RGZ  
48  
250  
RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
-40 to 85  
ADS  
8481I  
B
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

ADS8481IBRGZTG4

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IPFBR

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IPFBT

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IRGZR

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IRGZRG4

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IRGZT

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481IRGZTG4

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481PFBR

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8481PFBR

1-CH 18-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQFP48, PLASTIC, TQFP-48
TI

ADS8481RGZR

18-BIT, 1-MSPS, PSEUDO-DIFFERENTIAL UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE
BB

ADS8482

18-BIT, 1-MSPS, PSEUDO-BIPOLAR, FULLY DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE, REFERENCE
BB

ADS8482I

18-BIT, 1-MSPS, PSEUDO-BIPOLAR, FULLY DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE, REFERENCE
BB