ADS8557 [TI]

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS; 16-14-12位六通道同时采样的模拟数字转换器
ADS8557
型号: ADS8557
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
16-14-12位六通道同时采样的模拟数字转换器

转换器
文件: 总40页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
16-, 14-, 12-Bit, Six-Channel, Simultaneous Sampling  
ANALOG-TO-DIGITAL CONVERTERS  
1
FEATURES  
DESCRIPTION  
2
Family of 16-, 14-, 12-Bit, Pin- and  
Software-Compatible ADCs  
The ADS8556/7/8 contain six low-power, 16-, 14-, or  
12-bit, successive approximation register (SAR)  
based analog-to-digital converters (ADCs) with true  
Six SAR ADCs Grouped in Three Pairs  
bipolar  
inputs.  
Each  
channel  
contains  
a
Maximum Data Rate Per Channel with Internal  
Conversion Clock and Reference:  
ADS8556: 630kSPS (PAR) or 450kSPS (SER)  
ADS8557: 670kSPS (PAR) or 470kSPS (SER)  
ADS8558: 730kSPS (PAR) or 500kSPS (SER)  
sample-and-hold circuit that allows simultaneous  
high-speed multi-channel signal acquisition.  
The ADS8556/7/8 support data rates of up to  
730kSPS in parallel interface mode or up to 500kSPS  
if the serial interface is used. The bus width of the  
parallel interface can be set to eight or 16 bits. In  
serial mode, up to three output channels can be  
activated.  
Maximum Data Rate with External Conversion  
Clock and Reference:  
800kSPS (PAR) or 530kSPS (SER)  
Pin-Selectable or Programmable Input Voltage  
Ranges: Up to ±12V  
The ADS8556/7/8 is specified over the full industrial  
temperature range of –40°C to +125°C and is  
available in an LQFP-64 package.  
Excellent Signal-to-Noise Performance:  
91.5dB (ADS8556)  
85dB (ADS8557)  
ADS8556  
Clock  
Generator  
ADS8557  
ADS8558  
73.9dB (ADS8558)  
CONVST_A  
CH_A0  
Comparator  
Programmable and Buffered Internal  
Reference: 0.5V to 2.5V and 0.5V to 3.0V  
CDAC 1  
S/H  
AGND  
BUSY/INT  
RANGE/XCLK  
HW/SW  
Buffer  
Control  
Logic  
Comprehensive Power-Down Modes:  
Deep Power-Down (Standby Mode)  
Partial Power-Down  
SAR Register 1/2  
REF /WR  
EN  
STBY  
RESET  
REFC_A  
CH_A1  
CDAC 2  
S/H  
AGND  
Auto-Nap Power-Down  
Comparator  
Comparator  
Selectable Parallel or Serial Interface  
CONVST_B  
CH_B0  
CDAC 3  
S/H  
Operating Temperature Range:  
–40°C to +125°C  
AGND  
Buffer  
Config  
Register  
SAR Register 3/4  
LQFP-64 Package  
REFC_B  
CH_B1  
CDAC 4  
S/H  
AGND  
APPLICATIONS  
Comparator  
Comparator  
Power Quality Measurement  
Protection Relays  
Multi-Axis Motor Control  
Programmable Logic Controllers  
Industrial Data Acquisition  
CONVST_C  
CH_C0  
CDAC 5  
S/H  
AGND  
Buffer  
CS/FS  
SAR Register 5/6  
RD  
I/O  
DB[15:0]  
WORD/BYTE  
PAR/SER  
REFC_C  
CH_C1  
CDAC 6  
S/H  
AGND  
Comparator  
Buffer  
BVDD  
BGND  
Internal 2.5V  
Reference  
String DAC  
REF_IO  
AVDD  
AGND  
HVDD  
HVSS  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2009, Texas Instruments Incorporated  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
RESOLUTION  
(Bits)  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
ADS8556IPM  
ADS8556IPMR  
ADS8557IPM  
ADS8557IPMR  
ADS8558IPM  
ADS8558IPMR  
Tray, 160  
Tape and Reel, 1000  
Tray, 160  
ADS8556I  
16  
14  
12  
LQFP-64  
LQFP-64  
LQFP-64  
PM  
PM  
PM  
ADS8557I  
ADS8558I  
Tape and Reel, 1000  
Tray, 160  
Tape and Reel, 1000  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
ADS8556, ADS8557, ADS8558  
–0.3 to +18  
UNIT  
V
Supply voltage, HVDD to AGND  
Supply voltage, HVSS to AGND  
Supply voltage, AVDD to AGND  
Supply voltage, BVDD to BGND  
Analog input voltage  
–18 to +0.3  
V
–0.3 to +6  
V
–0.3 to +6  
V
HVSS – 0.3 to HVDD + 0.3  
AGND – 0.3 to AVDD + 0.3  
BGND – 0.3 to BVDD + 0.3  
±0.3  
V
Reference input voltage with respect to AGND  
Digital input voltage with respect to BGND  
Ground voltage difference AGND to BGND  
Input current to all pins except supply  
Maximum virtual junction temperature, TJ  
Human body model (HBM)  
V
V
V
–10 to +10  
mA  
°C  
+150  
±2000  
±500  
V
V
JEDEC standard 22, test method A114-C.01, all pins  
ESD ratings  
Charged device model (CDM)  
JEDEC standard 22, test method C101, all pins  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
TYP  
5
MAX  
5.5  
UNIT  
V
Supply voltage, AVDD to AGND  
Supply voltage, BVDD to BGND  
Low-voltage levels  
5V logic levels  
2.7  
3.0  
5
3.6  
V
4.5  
5.5  
V
Range 1 (±2 × VREF  
Range 2 (±4 × VREF  
Range 1 (±2 × VREF  
Range 2 (±4 × VREF  
)
)
)
)
2 × VREF  
4 × VREF  
–16.5  
–16.5  
0.5  
16.5  
V
Input supply voltage, HVDD to AGND  
Input supply voltage, HVSS to AGND  
16.5  
V
–2 × VREF  
–4 × VREF  
3.0  
V
V
Reference input voltage (VREF  
Analog inputs  
)
2.5  
V
Range 1 (±2 × VREF  
Range 1 (±4 × VREF  
)
)
–2 × VREF  
–4 × VREF  
–40  
+2 × VREF  
+4 × VREF  
+125  
V
(also see the Analog Inputs section)  
V
Operating ambient temperature range, TA  
°C  
DISSIPATION RATINGS(1)  
DERATING FACTOR  
ABOVE TA = +25°C  
T
A +25°C  
TA = +70°C  
POWER RATING  
TA = +85°C  
POWER RATING  
TA = +125°C  
POWER RATING  
PACKAGE  
POWER RATING  
LQFP-64  
20.8mW/°C  
2.60W  
1.66W  
1.35W  
0.52W  
(1) Based on High-K θJA  
.
THERMAL CHARACTERISTICS  
Over recommended operating conditions, unless otherwise noted.  
ADS8556, ADS8557, ADS8558  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
74  
MAX  
UNIT  
°C/W  
°C/W  
Low-K thermal resistance(1)  
High-K thermal resistance(1)  
θJA  
Junction-to-air thermal resistance  
48  
Junction-to-case thermal  
resistance  
θJC  
16  
°C/W  
mW  
mW  
mW  
ADS8556, HVDD = +15V, HVSS = –15V, AVDD = 5V,  
BVDD = 3V, and fDATA = maximum  
251.7  
253.2  
262.2  
298.5  
303.0  
318.0  
ADS8557, HVDD = +15V, HVSS = –15V, AVDD = 5V,  
BVDD = 3V, and fDATA = maximum  
PD  
Device power dissipation  
ADS8558, HVDD = +15V, HVSS = –15V, AVDD = 5V,  
BVDD = 3V, and fDATA = maximum  
(1) Modeled in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3.  
Copyright © 2006–2009, Texas Instruments Incorporated  
3
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS8556  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = 630kSPS in parallel mode or 450kSPS in  
serial mode, unless otherwise noted.  
ADS8556  
PARAMETER  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
DC ACCURACY  
Resolution  
16  
Bits  
Bits  
No missing codes  
16  
–3  
At TA = –40°C to +85°C  
±1.5  
±1.5  
±0.75  
±0.75  
±0.8  
±3.5  
±0.25  
±6  
3
4
LSB  
Integral linearity error  
INL  
At TA = –40°C to +125°C  
At TA = –40°C to +85°C  
At TA = –40°C to +125°C  
–4  
LSB  
–1  
1.5  
2
LSB  
Differential linearity error  
DNL  
–1  
LSB  
Offset error  
–4.0  
4.0  
mV  
Offset error drift  
µV/°C  
%FSR  
ppm/°C  
dB  
Gain error  
Referenced to voltage at REFIO  
Referenced to voltage at REFIO  
–0.75  
280  
0.75  
Gain error drift  
Power-supply rejection ratio  
SAMPLING DYNAMICS  
Acquisition time  
PSRR At output code FFFFh, related to AVDD  
60  
tACQ  
ns  
µs  
Conversion time per ADC  
tCONV  
1.26  
18.5  
68.0  
tCCLK  
ns  
Internal conversion clock period  
Throughput rate  
tCCLK  
Parallel interface,  
internal clock and reference  
630  
450  
kSPS  
kSPS  
fDATA  
Serial interface,  
internal clock and reference  
AC ACCURACY  
At fIN = 10kHz, TA = –40°C to +85°C  
SNR  
90  
89  
91.5  
91.5  
89.5  
89.5  
–94  
–94  
95  
dB  
dB  
dB  
dB  
dB  
Signal-to-noise ratio  
At fIN = 10kHz, TA = –40°C to +125°C  
At fIN = 10kHz, TA = –40°C to +85°C  
SINAD  
87  
Signal-to-noise ratio + distortion  
Total harmonic distortion(2)  
At fIN = 10kHz, TA = –40°C to +125°C  
86.5  
At fIN = 10kHz, TA = –40°C to +85°C  
THD  
–90  
At fIN = 10kHz, TA = –40°C to +125°C  
–89.5  
At fIN = 10kHz, TA = –40°C to +85°C  
SFDR  
90  
dB  
dB  
Spurious-free dynamic range  
Channel-to-channel isolation  
–3dB small-signal bandwidth  
At fIN = 10kHz, TA = –40°C to +125°C  
89.5  
95  
At fIN = 10kHz  
100  
48  
dB  
In 4 × VREF mode  
In 2 × VREF mode  
MHz  
MHz  
24  
(1) All values are at TA = +25°C.  
(2) Calculated on the first nine harmonics of the input frequency.  
4
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
ELECTRICAL CHARACTERISTICS: ADS8557  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5.5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = 670kSPS in parallel mode or 470kSPS in  
serial mode, unless otherwise noted.  
ADS8557  
PARAMETER  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
DC ACCURACY  
Resolution  
14  
Bits  
Bits  
No missing codes  
Integral linearity error  
14  
–1  
–1  
–4  
INL  
±0.4  
±0.25  
±0.8  
±3.5  
±0.25  
±6  
1
1
4
LSB  
Differential linearity error  
Offset error  
DNL  
LSB  
mV  
Offset error drift  
µV/°C  
%FSR  
ppm/°C  
dB  
Gain error  
Referenced to voltage at REFIO  
Referenced to voltage at REFIO  
–0.75  
0.75  
Gain error drift  
Power-supply rejection ratio  
SAMPLING DYNAMICS  
Acquisition time  
PSRR At output code FFFFh, related to AVDD  
60  
tACQ  
280  
ns  
µs  
Conversion time per ADC  
tCONV  
1.19  
18.5  
64.1  
tCCLK  
ns  
Internal conversion clock period  
Throughput rate  
tCCLK  
Parallel interface,  
internal clock and reference  
670  
470  
kSPS  
kSPS  
fDATA  
Serial interface,  
internal clock and reference  
AC ACCURACY  
Signal-to-noise ratio  
SNR At fIN = 10kHz  
SINAD At fIN = 10kHz  
THD At fIN = 10kHz  
SFDR At fIN = 10kHz  
At fIN = 10kHz  
84  
83  
85  
84  
dB  
dB  
Signal-to-noise ratio + distortion  
Total harmonic distortion(2)  
Spurious-free dynamic range  
Channel-to-channel isolation  
–91  
92  
–86  
dB  
86  
dB  
100  
48  
dB  
In 4 × VREF mode  
MHz  
MHz  
–3dB small-signal bandwidth  
In 2 × VREF mode  
24  
(1) All values are at TA = +25°C.  
(2) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2006–2009, Texas Instruments Incorporated  
5
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS8558  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = 730kSPS in parallel mode or 500kSPS in  
serial mode, unless otherwise noted.  
ADS8558  
PARAMETER  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
DC ACCURACY  
Resolution  
12  
Bits  
Bits  
No missing codes  
Integral linearity error  
12  
INL  
–0.75  
–0.5  
–4  
±0.2  
±0.2  
±0.8  
±3.5  
±0.25  
±6  
0.75  
LSB  
Differential linearity error  
Offset error  
DNL  
0.5  
4
LSB  
mV  
Offset error drift  
µV/°C  
%FSR  
ppm/°C  
dB  
Gain error  
Referenced to voltage at REFIO  
Referenced to voltage at REFIO  
–0.75  
0.75  
Gain error drift  
Power-supply rejection ratio  
SAMPLING DYNAMICS  
Acquisition time  
PSRR At output code FFFFh, related to AVDD  
60  
tACQ  
280  
ns  
µs  
Conversion time per ADC  
tCONV  
1.09  
18.5  
58.8  
tCCLK  
ns  
Internal conversion clock period  
Throughput rate  
tCCLK  
Parallel interface,  
internal clock and reference  
730  
500  
kSPS  
kSPS  
fDATA  
Serial interface,  
internal clock and reference  
AC ACCURACY  
Signal-to-noise ratio  
SNR At fIN = 10kHz  
SINAD At fIN = 10kHz  
THD At fIN = 10kHz  
SFDR At fIN = 10kHz  
At fIN = 10kHz  
73  
73  
73.9  
73.8  
–89  
92  
dB  
dB  
Signal-to-noise ratio + distortion  
Total harmonic distortion(2)  
Spurious-free dynamic range  
Channel-to-channel isolation  
–84  
dB  
84  
dB  
100  
48  
dB  
In 4 × VREF mode  
MHz  
MHz  
–3dB small-signal bandwidth  
In 2 × VREF mode  
24  
(1) All values are at TA = +25°C.  
(2) Calculated on the first nine harmonics of the input frequency.  
6
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
ELECTRICAL CHARACTERISTICS: GENERAL  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5.5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
ADS8556, ADS8557, ADS8558  
PARAMETER  
ANALOG INPUT  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
RANGE pin/RANGE bit = 0  
–4 × VREF  
–2 × VREF  
+4 × VREF  
+2 × VREF  
V
V
Bipolar full-scale range  
Input capacitance  
CHXX  
RANGE pin/RANGE bit = 1  
Input range = ±4 × VREF  
Input range = ±2 × VREF  
No ongoing conversion  
10  
20  
pF  
pF  
µA  
ns  
ps  
ps  
Input leakage current  
±1  
Aperture delay  
5
Aperture delay matching  
Aperture jitter  
Common CONVST for all channels  
250  
50  
EXTERNAL CLOCK INPUT (XCLK)  
External clock frequency  
External clock duty cycle  
REFERENCE VOLTAGE OUTPUT (REFOUT  
fXCLK An external reference must be used for fXCLK > fCCLK  
1
18  
20  
55  
MHz  
%
45  
)
2.5V operation, REFDAC = 0x3FF  
2.485  
2.496  
2.985  
2.995  
2.5  
2.5  
3.0  
3.0  
±10  
73  
2.515  
2.504  
3.015  
3.005  
V
V
2.5V operation, REFDAC = 0x3FF at +25°C  
VREF  
Reference voltage  
3.0V operation, REFDAC = 0x3FF  
V
3.0V operation, REFDAC = 0x3FF at +25°C  
V
Reference voltage drift  
Power-supply rejection ratio  
Output current  
dVREF/dT  
ppm/°C  
dB  
PSRR  
IREFOUT DC current  
–2  
2
mA  
mA  
ms  
µF  
Short-circuit current(2)  
IREFSC  
50  
10  
Turn-on settling time  
tREFON  
At CREF_x pins  
4.7  
10  
External load capacitance  
At REFIO pins  
100  
470  
nF  
Tuning range  
REFDAC Internal reference output voltage range  
0.2 × VREF  
VREF  
V
REFDAC resolution  
10  
–1  
–2  
–4  
Bits  
LSB  
LSB  
LSB  
REFDAC differential nonlinearity  
REFDAC integral nonlinearity  
REFDAC offset error  
DNLDAC  
±0.1  
±0.1  
1
2
4
INLDAC  
VOSDAC VREF = 0.5V (DAC = 0x0CC)  
±0.65  
REFERENCE VOLTAGE INPUT (REFIN  
Reference input voltage  
Input resistance  
)
VREFIN  
0.5  
2.5  
100  
5
3.025  
1
V
M  
pF  
Input capacitance  
Reference input current  
SERIAL CLOCK INPUT (SCLK)  
Serial clock input frequency  
Serial clock period  
µA  
fSCLK  
tSCLK  
0.1  
0.0278  
40  
36  
10  
60  
MHz  
µs  
Serial clock duty cycle  
DIGITAL INPUTS(3)  
%
Logic family  
CMOS with Schmitt-Trigger  
High-level input voltage  
Low-level input voltage  
Input current  
0.7 × BVDD  
BVDD + 0.3  
0.3 × BVDD  
+50  
V
V
BGND – 0.3  
–50  
VI = BVDD to BGND  
nA  
pF  
Input capacitance  
5
(1) All values are at TA = +25°C.  
(2) Reference output current is not limited internally.  
(3) Specified by design.  
Copyright © 2006–2009, Texas Instruments Incorporated  
7
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: GENERAL (continued)  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5.5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
ADS8556, ADS8557, ADS8558  
PARAMETER  
DIGITAL OUTPUTS(4)  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Logic family  
CMOS  
High-level output voltage  
Low-level output voltage  
High-impedance-state output current  
Output capacitance  
IOH = 100µA  
IOH = –100µA  
BVDD – 0.6  
BGND  
BVDD  
V
V
BGND + 0.4  
50  
–50  
nA  
pF  
pF  
5
Load capacitance  
30  
POWER-SUPPLY REQUIREMENTS  
Analog supply voltage  
AVDD  
BVDD  
HVDD  
HVSS  
4.5  
2.7  
5.0  
3.0  
5.5  
5.5  
V
V
Buffer I/O supply voltage  
Input positive supply voltage  
Input negative supply voltage  
5.0  
10.0  
–10.0  
30.0  
14.0  
14.0  
14.0  
16.5  
–5.0  
36.0  
16.5  
17.0  
18.0  
V
–16.5  
V
fDATA = maximum  
mA  
mA  
mA  
mA  
ADS8556, fDATA = 250kSPS (auto-NAP mode)  
ADS8557, fDATA = 250kSPS (auto-NAP mode)  
ADS8558, fDATA = 250kSPS (auto-NAP mode)  
Analog supply current(5)  
IAVDD  
IBVDD  
IHVDD  
Auto-NAP mode, no ongoing conversion,  
internal conversion clock  
4.0  
6.0  
mA  
Power-down mode  
0.1  
0.9  
0.5  
50.0  
2.0  
µA  
mA  
mA  
fDATA = maximum  
fDATA = 250kSPS (auto-NAP mode)  
1.5  
Buffer I/O supply current(6)  
Auto-NAP mode, no ongoing conversion,  
internal conversion clock  
0.1  
10.0  
µA  
Power-down mode  
0.1  
3.0  
3.1  
3.3  
1.6  
10.0  
3.5  
3.6  
4.0  
2.0  
µA  
mA  
mA  
mA  
mA  
ADS8556, fDATA = maximum  
ADS8557, fDATA = maximum  
ADS8558, fDATA = maximum  
fDATA = 250kSPS (auto-NAP mode)  
Input positive supply current(7)  
Auto-NAP mode, no ongoing conversion,  
internal conversion clock  
0.2  
0.3  
µA  
Power-down mode  
0.1  
3.6  
3.6  
4.0  
1.8  
10.0  
4.0  
4.2  
4.8  
2.2  
µA  
mA  
mA  
mA  
mA  
ADS8556, fDATA = maximum  
ADS8557, fDATA = maximum  
ADS8558, fDATA = maximum  
fDATA = 250kSPS (auto-NAP mode)  
Input negative supply current(8)  
IHVSS  
Auto-NAP mode, no ongoing conversion,  
internal conversion clock  
0.2  
0.1  
0.25  
10.0  
µA  
µA  
Power-down mode  
(4) Specified by design.  
(5) At AVDD = 5V.  
(6) At BVDD = 3V, parallel mode, load capacitance = 6pF/pin.  
(7) At HVDD = 15V.  
(8) At HVSS = –15V.  
8
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
ELECTRICAL CHARACTERISTICS: GENERAL (continued)  
Over recommended operating free-air temperature range of –40°C to +125°C, AVDD = 4.5V to 5.5V, BVDD = 2.7V to 5.5V,  
HVDD = 10V to 15V, HVSS = –15V to –10V, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
ADS8556, ADS8557, ADS8558  
PARAMETER  
CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
POWER-SUPPLY REQUIREMENTS (continued)  
ADS8556, fDATA = maximum  
251.7  
298.5  
mW  
mW  
mW  
mW  
mW  
mW  
ADS8557, fDATA = maximum  
253.2  
262.2  
122.5  
122.5  
122.5  
303.0  
318.0  
150.0  
152.5  
157.5  
ADS8558, fDATA = maximum  
ADS8556, fDATA = 250kSPS (auto-NAP mode)  
ADS8557, fDATA = 250kSPS (auto-NAP mode)  
ADS8558, fDATA = 250kSPS (auto-NAP mode)  
Power dissipation(9)  
Auto-NAP mode, no ongoing conversion,  
internal conversion clock  
26.0  
3.8  
38.3  
mW  
Power-down mode  
580.0  
µW  
(9) At AVDD = 5V, BVDD = 3V, HVDD = 15V, and HVSS = –15V.  
EQUIVALENT INPUT CIRCUITS  
Input range: ±2VREF  
Input range: ±4VREF  
RSER = 200W RSW = 130W  
RSER = 200W RSW = 130W  
CH_XX  
CH_XX  
CS = 20pF  
CS = 20pF  
CS = 10pF  
VDC  
VDC  
CPAR = 5pF  
CPAR = 5pF  
CS = 10pF  
AGND  
AGND  
RSER = 200W RSW = 130W  
RSER = 200W RSW = 130W  
Copyright © 2006–2009, Texas Instruments Incorporated  
9
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
PIN CONFIGURATION  
PM PACKAGE  
LQFP-64  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DB14/REFBUFEN  
CH_C1  
48  
1
2
DB13/SDI  
DB12  
47 AVDD  
46 AVDD  
3
CH_C0  
45  
DB11  
4
DB10/SDO_C  
DB9/SDO_B  
DB8/SDO_A  
5
44 AGND  
43 AGND  
6
CH_B1  
42  
7
ADS8556  
ADS8557  
ADS8558  
BGND  
BVDD  
8
41 AVDD  
40 AVDD  
9
DB7/HBEN/DCEN  
CH_B0  
39  
10  
11  
12  
13  
14  
15  
16  
DB6/SCLK  
DB5/DCIN_A  
DB4/DCIN_B  
DB3/DCIN_C  
DB2/SEL_C  
DB1/SEL_B  
38 AGND  
37 AGND  
CH_A1  
36  
35 AVDD  
34 AVDD  
CH_A0  
33  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
10  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
TERMINAL FUNCTIONS  
DESCRIPTION  
NAME  
PIN #  
TYPE(1)  
PARALLEL INTERFACE (PAR/SER = 0)  
SERIAL INTERFACE (PAR/SER = 1)  
Hardware mode (HW/SW = 0):  
Reference buffers enable input.  
When low, all reference buffers are enabled (mandatory if  
internal reference is used). When high, all reference buffers  
are disabled.  
Data bit 14 input/output  
Output is '0' for the ADS8557/8  
DB14/REFBUFEN  
1
DIO/DI  
Software mode (HW/SW = 1):Connect to BGND or BVDD.  
The reference buffers are controlled by bit C24 (REFBUF) in  
control register (CR).  
Data bit 13 input/output  
Output is MSB for the ADS8557 and '0' for the  
ADS8558  
Hardware mode (HW/SW = 0): Connect to BGND  
Software mode (HW/SW = 1): Serial data input  
DB13/SDI  
2
DIO/DI  
Data bit 12 input/output  
Output is '0' for the ADS8558  
DB12  
DB11  
3
4
5
DIO  
DIO  
Connect to BGND  
Connect to BGND  
Data bit 11 input/output  
Output is MSB for the ADS8558  
When SEL_C = 1, data output for channel C  
When SEL_C = 0, this pin should be tied to BGND  
DB10/SDO_C  
DIO/DO  
Data bit 10 input/output  
Data bit 9 input/output  
When SEL_B = 1, data output for channel B  
When SEL_B = 0, this pin should be tied to BGND  
When SEL_C = 0, data from channel C1 are also available  
on this output  
DB9/SDO_B  
DB8/SDO_A  
6
7
DIO/DO  
DIO/DO  
Data output for channel A  
When SEL_C = 0, data from channel C0 are also available  
on this output  
Data bit 8 input/output  
When SEL_C = 0 and SEL_B = 0, SDO_A acts as the single  
data output for all channels  
BGND  
BVDD  
8
9
P
P
Buffer IO ground, connect to digital ground plane  
Buffer IO supply, connect to digital supply (2.7V to 5.5V). Decouple with a 1µF ceramic capacitor or a combination  
of 100nF and 10µF ceramic capacitors to BGND.  
Word mode (WORD/BYTE = 0):  
Data bit 7 input/output  
Daisy-chain enable input.  
When high, DB[5:3] serve as daisy-chain inputs DCIN[A:C].  
If daisy-chain mode is not used, connect to BGND.  
When high, the high byte is output first on  
Byte mode (WORD/BYTE = 1):  
High byte enable input.  
DB7/HBEN/DCEN  
10  
DIO/DI/DI  
DB[15:8]. When low, the low byte is output first on  
DB[15:8].  
Word mode (WORD/BYTE = 0):  
Data bit 6 input/output  
DB6/SCLK  
DB5/DCIN_A  
DB4/DCIN_B  
DB3/DCIN_C  
DB2/SEL_C  
DB1/SEL_B  
11  
12  
13  
14  
15  
16  
DIO/DI  
DIO/DI  
DIO/DI  
DIO/DI  
DIO/DI  
DIO/DI  
Serial interface clock input (36MHz max)  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
Word mode (WORD/BYTE = 0):  
Data bit 5 input/output  
When DCEN = 1, daisy-chain data input for channel A  
When DCEN = 0, connect to BGND  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
Word mode (WORD/BYTE = 0):  
Data bit 4 input/output  
When SEL_B = 1 and DCEN = 1, daisy-chain data input for  
channel B  
When DCEN = 0, connect to BGND  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
Word mode (WORD/BYTE = 0):  
Data bit 3 input/output  
When SEL_C = 1 and DCEN = 1, daisy-chain data input for  
channel C  
When DCEN = 0, connect to BGND  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
Word mode (WORD/BYTE = 0):  
Data bit 2 input/output  
Select SDO_C input.  
When high, SDO_C is active. When low, SDO_C is disabled.  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
Word mode (WORD/BYTE = 0):  
Data bit 1 input/output  
Select SDO_B input.  
When high, SDO_B is active. When low, SDO_B is disabled.  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
(1) AI = analog input; AIO = analog input/output; DI = digital input; DO = digital output; DIO = digital input/output; and P = power supply.  
Copyright © 2006–2009, Texas Instruments Incorporated  
11  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
TERMINAL FUNCTIONS (continued)  
DESCRIPTION  
NAME  
PIN #  
TYPE(1)  
PARALLEL INTERFACE (PAR/SER = 0)  
SERIAL INTERFACE (PAR/SER = 1)  
Word mode (WORD/BYTE = 0):  
Data bit 0 (LSB) input/output  
Select SDO_A input.  
When high, SDO_A is active. When low, SDO_A is disabled.  
Should always be high.  
DB0/SEL_A  
17  
DIO/DI  
Byte mode (WORD/BYTE = 1):  
Connect to BGND or BVDD  
When CR bit C21 = 0 (BUSY/INT), converter busy status output. Transitions high when a conversion has been  
started and remains high during the entire process. Transitions low when the conversion data of all six channels  
are latched to the output register and remains low thereafter.  
In sequential mode (SEQ = 1 in the CR), the BUSY output transitions high when a conversion has been started  
and goes low for a single conversion clock cycle (tCCLK) whenever a channel pair conversion is completed.  
When bit C21 = 1 (BUSY/INT in CR), interrupt output. This bit transitions high after a conversion has been  
completed and remains high until the conversion result has been read.  
BUSY/INT  
18  
DO  
The polarity of BUSY/INT output can be changed using bit C20 (BUSY L/H) in the control register.  
Chip select input.  
Frame synchronization.  
CS/FS  
RD  
19  
20  
DI/DI  
DI  
When low, the parallel interface is enabled. When  
The falling edge of FS controls the frame transfer.  
high, the interface is disabled.  
Read data input.  
When low, the parallel data output is enabled.  
When high, the data output is disabled.  
Connect to BGND  
Hardware mode (HW/SW = 0): Conversion start of channel pair C.  
The rising edge of this signal initiates simultaneous conversion of analog signals at inputs CH_C[1:0]. CONVST_C  
should remain high during the entire conversion cycle, otherwise both ADCs of channel C are put in partial  
power-down mode (see the Reset and Power-down Modes sections).  
CONVST_C  
CONVST_B  
CONVST_A  
21  
22  
DI  
DI  
DI  
Software mode (HW/SW = 1): Conversion start of channel pair C in sequential mode (CR bit C23 = 1) only;  
connect to BGND or BVDD otherwise  
Hardware mode (HW/SW = 0): Conversion start of channel pair B.  
The rising edge of this signal initiates simultaneous conversion of analog signals at inputs CH_B[1:0]. CONVST_B  
should remain high during the entire conversion cycle; otherwise, both ADCs of channel B are put into partial  
power-down mode (see the Reset and Power-down Modes sections).  
Software mode (HW/SW = 1): Conversion start of channel pair B in sequential mode (CR bit C23 = 1) only;  
connect to BGND or BVDD otherwise  
Hardware mode (HW/SW = 0): Conversion start of channel pair A.  
The rising edge of this signal initiates simultaneous conversion of analog signals at inputs CH_A[1:0]. CONVST_A  
should remain high during the entire conversion cycle; otherwise, both ADCs of channel A are put into partial  
power-down mode (see the Reset and Power-down Modes sections).  
23  
24  
Software mode (HW/SW = 1): Conversion start of all selected channels except in sequential mode  
(CR bit C23 = 1): Conversion start of channel pair A only  
Standby mode input. When low, the entire device is powered-down (including the internal clock and reference).  
When high, the device operates in normal mode.  
STBY  
DI  
P
25, 32,  
37, 38,  
43, 44,  
49, 52,  
53, 55,  
57, 59  
Analog ground, connect to analog ground plane  
Pin 25 may have a dedicated ground if the difference between its potential and AGND is always kept within  
±300mV.  
AGND  
26, 34,  
35, 40,  
41, 46,  
47, 50,  
60  
Analog power supply (4.5V to 5.5V). Decouple each pin with a 100nF ceramic capacitor to AGND. Use an  
additional 10µF capacitor to AGND close to the device but without compromising the placement of the smaller  
capacitor. Pin 26 may have a dedicated power supply if the difference between its potential and AVDD is always  
kept within ±300mV.  
AVDD  
P
Hardware mode (HW/SW = 0): Input voltage range select input.  
When low, the analog input range is ±4VREF. When high, the analog input range is ±2VREF  
.
RANGE/XCLK  
RESET  
27  
28  
DI/DIO  
DI  
Software mode (HW/SW = 1): External conversion clock input, if CR bit C11 (CLKSEL) is set high or internal  
conversion clock output, if CR bit C10 (CLKOUT_EN) is set high. If not used, connect to BVDD or BGND.  
Reset input, active high. Aborts any ongoing conversions. Resets the internal control register to 0x000003FF. The  
RESET pulse should be at least 50ns long.  
Output mode selection input.  
When low, data are transferred in word mode using  
DB[15:0]. When high, data are transferred in byte  
mode using DB[15:8] with the byte order controlled  
by HBEN pin while two accesses are required for a  
complete 16-bit transfer.  
WORD/BYTE  
HVSS  
29  
30  
DI  
P
Connect to BGND  
Negative supply voltage for the analog inputs (–16.5V to –5V).  
Decouple with a 100nF ceramic capacitor to AGND placed next to the device and a 10µF capacitor to AGND close  
to the device but without compromising the placement of the smaller capacitor.  
12  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
TERMINAL FUNCTIONS (continued)  
DESCRIPTION  
NAME  
PIN #  
TYPE(1)  
PARALLEL INTERFACE (PAR/SER = 0)  
SERIAL INTERFACE (PAR/SER = 1)  
Positive supply voltage for the analog inputs (5V to 16.5V). Decouple with a 100nF ceramic capacitor to AGND  
placed next to the device and a 10µF capacitor to AGND close to the device but without compromising the  
placement of the smaller capacitor.  
HVDD  
31  
P
Analog input of channel A0. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C26  
(RANGE_A) in software mode.  
CH_A0  
CH_A1  
CH_B0  
CH_B1  
CH_C0  
CH_C1  
33  
36  
39  
42  
45  
48  
AI  
AI  
AI  
AI  
AI  
AI  
Analog input of channel A1. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C26  
(RANGE_A) in software mode.  
Analog input of channel B0. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C27  
(RANGE_B) in software mode.  
Analog input of channel B1. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C27  
(RANGE_B) in software mode.  
Analog input of channel C0. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C28  
(RANGE_C) in software mode.  
Analog input of channel C1. The input voltage range is controlled by RANGE pin in hardware mode or CR bit C28  
(RANGE_C) in software mode.  
Reference voltage input/output (0.5V to 3.025V).  
The internal reference is enabled via REFEN/WR pin in hardware mode or CR bit C25 (REFEN) in software mode.  
The output value is controlled by the internal DAC (CR bits C[9:0]). Connect a 470nF ceramic decoupling  
capacitor between this pin and pin 52.  
REFIO  
51  
AIO  
Decoupling capacitor for reference of channels A.  
Connect a 10µF ceramic decoupling capacitor between this pin and pin 53.  
REFC_A  
REFC_B  
REFC_C  
PAR/SER  
54  
56  
58  
61  
AI  
AI  
AI  
DI  
Decoupling capacitor for reference of channels B.  
Connect a 10µF ceramic decoupling capacitor between this pin and pin 55.  
Decoupling capacitor for reference of channels C.  
Connect a 10µF ceramic decoupling capacitor between this pin and pin 57.  
Interface mode selection input.  
When low, the parallel interface is selected. When high, the serial interface is enabled.  
Mode selection input.  
HW/SW  
62  
DI  
When low, the hardware mode is selected and part works according to the settings of external pins. When high,  
the software mode is selected in which the device is configured by writing into the control register.  
Hardware mode (HW/SW = 0):  
Hardware mode (HW/SW = 0):  
Internal reference enable input.  
Internal reference enable input.  
When high, the internal reference is enabled (the  
reference buffers are to be enabled). When low,  
the internal reference is disabled and an external  
reference is applied at REFIO.  
When high, the internal reference is enabled (the reference  
buffers are to be enabled). When low, the internal reference  
is disabled and an external reference should be applied at  
REFIO.  
REFEN/WR  
63  
64  
DI  
Software mode (HW/SW = 1): Write input.  
The parallel data input is enabled, when CS and  
WR are low. The internal reference is enabled by  
the CR bit C25 (REFEN).  
Software mode (HW/SW = 1): Connect to BGND or BVDD.  
The internal reference is enabled by CR bit C25 (REFEN).  
Data bit 15 (MSB) input/output  
Output is '0' for the ADS8557/8  
DB15  
DIO  
Connect to BGND  
Copyright © 2006–2009, Texas Instruments Incorporated  
13  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
TIMING CHARACTERISTICS  
t1  
CONVST_x  
tCONV  
tD1  
tACQ  
BUSY  
(C20 = C21 = 0)  
t3  
t2  
FS  
tSCLK  
SCLK  
1
32  
tD3  
tD4  
tD2  
tH2  
ADS8556  
SDO_x  
CH_x0  
MSB  
CH_x1  
D3  
CH_x1  
D2  
tH1  
CH_x1  
D1  
CH_x1  
LSB  
tS1  
SDI or  
DCIN_x  
Don’t  
Care  
Don’t Care  
D31  
D3  
D2  
D1  
D0  
Figure 1. Serial Operation Timing Diagram (All Three SDOs Active)  
Serial Interface Timing Requirements(1)  
Over recommended operating free-air temperature range at –40°C to +125°C, AVDD = 5V, and BVDD = 2.7V to 5.5V, unless  
otherwise noted.  
ADS8556, ADS8557, ADS8558  
TEST  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tACQ  
Acquisition time  
280  
ADS8556  
ADS8557  
ADS8558  
1.26  
1.19  
1.09  
tCONV  
Conversion time  
t1  
t2  
CONVST_x low time  
20  
0
BUSY low to FS low time  
ADS8556  
ADS8557  
ADS8558  
40  
20  
0
Bus access finished to next conversion  
start time  
t3  
tD1  
tD2  
tD3  
tD4  
tH1  
tH2  
tS1  
CONVST_x high to BUSY high delay  
FS low to SDO_x active delay  
5
20  
12  
15  
10  
5
SCLK rising edge to new data valid delay  
FS high to SDO_x 3-state delay  
Input data to SCLK falling edge hold time  
Output data to SCLK rising edge hold time  
Input data to SCLK falling edge setup time  
Serial clock period  
5
5
3
tSCLK  
0.0278  
10  
(1) All input signals are specified with tR = tF = 1.5ns (10% to 90% of BVDD) and timed from a voltage level of (VIL + VIH)/2.  
14  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
t1  
CONVST_A  
CONVST_B  
CONVST_C  
tCONV  
tACQ  
tD1  
BUSY  
(C20 = C21 = 0)  
t3  
t2  
CS  
t6  
t7  
t4  
t5  
RD  
tD5  
tD5  
tH3  
CH  
A0  
CH  
A1  
CH  
B0  
CH  
B1  
CH  
C0  
CH  
C1  
DB[15:0]  
Figure 2. Parallel Read Access Timing Diagram  
Parallel Interface Timing Requirements (Read Access)(1)  
Over recommended operating free-air temperature range at –40°C to +125°C, AVDD = 5V, and BVDD = 2.7V to 5.5V, unless  
otherwise noted.  
ADS8556, ADS8557, ADS8558  
TEST  
PARAMETER  
tACQ  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Acquisition time  
Conversion time  
280  
ADS8556  
ADS8557  
ADS8558  
1.26  
1.19  
1.09  
tCONV  
t1  
t2  
CONVST_x low time  
20  
0
BUSY low to CS low time  
ADS8556  
ADS8557  
ADS8558  
40  
20  
0
Bus access finished to next conversion  
start time(2)  
t3  
t4  
CS low to RD low time  
0
t5  
RD high to CS high time  
0
t6  
RD pulse width  
30  
10  
5
t7  
Minimum time between two read accesses  
CONVST_x high to BUSY high delay  
RD falling edge to output data valid delay  
Output data to RD rising edge hold time  
tD1  
tD5  
tH3  
20  
20  
5
(1) All input signals are specified with tR = tF = 1.5ns (10% to 90% of BVDD) and timed from a voltage level of (VIL + VIH)/2.  
(2) Refer to CS signal or RD, whichever occurs first.  
Copyright © 2006–2009, Texas Instruments Incorporated  
15  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
CS  
t10  
t9  
t8  
t11  
WR  
tS2  
tH4  
C
[31:16]  
C
[15:0]  
Don’t C  
Care [31:24]  
C
[23:16]  
C
[15:8]  
C
[7:0]  
DB[15:0]  
Word Mode  
(WORD/BYTE = 0)  
Byte Mode  
(WORD/BYTE = 1)  
Figure 3. Parallel Write Access Timing Diagram  
Parallel Interface Timing Requirements (Write Access)(1)  
Over recommended operating free-air temperature range at –40°C to +125°C, AVDD = 5V, and BVDD = 2.7V to 5.5V, unless  
otherwise noted.  
ADS8556, ADS8557, ADS8558  
PARAMETER  
MIN  
0
TYP  
MAX  
UNIT  
ns  
t8  
CS low to WR low time  
t9  
WR low pulse width  
15  
10  
0
ns  
t10  
t11  
tS2  
tH4  
WR high pulse width  
ns  
WR high to CS high time  
ns  
Output data to WR rising edge setup time  
Data output to WR rising edge hold time  
5
ns  
5
ns  
(1) All input signals are specified with tR = tF = 1.5ns (10% to 90% of BVDD) and timed from a voltage level of (VIL + VIH)/2.  
16  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
TYPICAL CHARACTERISTICS  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
INL vs CODE  
(ADS8556 ±10VIN Range)  
INL vs CODE  
(ADS8556 ±5VIN Range)  
3.0  
2.5  
3.0  
2.5  
AVDD = BVDD = 5V  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
fDATA = Max  
HVSS = -15V  
HVDD = 15V  
fDATA = Max  
2.0  
2.0  
1.5  
1.5  
Internal Reference  
Internal Reference  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0
0
0
8190 16380 24570 32760 40950 49140 57330 65520  
0
0
0
8190 16380 24570 32760 40950 49140 57330 65520  
Code  
Code  
Figure 4.  
Figure 5.  
DNL vs CODE  
(ADS8556 ±10VIN Range)  
DNL vs CODE  
(ADS8556 ±5VIN Range)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
fDATA = Max  
fDATA = Max  
Internal Reference  
Internal Reference  
-0.5  
-1.0  
-0.5  
-1.0  
8190 16380 24570 32760 40950 49140 57330 65520  
8190 16380 24570 32760 40950 49140 57330 65520  
Code  
Code  
Figure 6.  
Figure 7.  
INL vs CODE  
(ADS8557 ±10VIN Range)  
INL vs CODE  
(ADS8557 ±5VIN Range)  
1.0  
0.8  
1.0  
0.8  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
0.6  
0.6  
fDATA = Max  
fDATA = Max  
0.4  
0.4  
Internal Reference  
Internal Reference  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2000 4000 6000 8000 10000 12000 14000 16000  
2000 4000 6000 8000 10000 12000 14000 16000  
Code  
Code  
Figure 8.  
Figure 9.  
Copyright © 2006–2009, Texas Instruments Incorporated  
17  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
DNL vs CODE  
(ADS8557 ±10VIN Range)  
DNL vs CODE  
(ADS8557 ±5VIN Range)  
1.0  
0.8  
1.0  
0.8  
AVDD = BVDD = 5V  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
fDATA = Max  
HVSS = -15V  
HVDD = 15V  
fDATA = Max  
0.6  
0.6  
0.4  
0.4  
Internal Reference  
Internal Reference  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
2000 4000 6000 8000 10000 12000 14000 16000  
0
2000 4000 6000 8000 10000 12000 14000 16000  
Code  
Code  
Figure 10.  
Figure 11.  
INL vs CODE  
(ADS8558)  
DNL vs CODE  
(ADS8558)  
0.75  
0.5  
0.4  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
0.50  
0.25  
0
0.3  
fDATA = Max  
fDATA = Max  
0.2  
Internal Reference  
Internal Reference  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.25  
-0.50  
-0.75  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
Code  
Figure 12.  
Figure 13.  
OFFSET ERROR vs TEMPERATURE  
GAIN ERROR vs TEMPERATURE  
4
3
0.75  
0.50  
0.25  
0
2
1
0
-1  
-2  
-3  
-4  
-0.25  
-0.50  
-0.75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 14.  
Figure 15.  
18  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
PSRR vs AVDD NOISE FREQUENCY  
CONVERSION TIME vs TEMPERATURE  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
CSUPPLY = 100nF on AVDD  
ADS8556  
ADS8557  
ADS8558  
0
20  
40  
60  
80 100 120 140 160 180 200  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
AVDD Noise Frequency (kHz)  
Figure 16.  
Figure 17.  
CODE HISTOGRAM  
(8192 Hits)  
SNR vs TEMPERATURE  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
8192 Samples  
Range = +4 ´ VREF  
ADS8556  
ADS8557  
Internal Reference  
T = +25°C  
AVDD = BVDD = 5V  
HVSS = -15V, HVDD = 15V  
fSIGNAL = 10kHz, fDATA = Max  
Range = ±4 ´ VREF  
Internal Reference  
ADS8558  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-3  
-2  
-1  
0
1
2
Code  
Figure 18.  
Figure 19.  
SINAD vs TEMPERATURE  
THD vs TEMPERATURE  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
AVDD = BVDD = 5V, HVSS = -15V, HVDD = 15V  
fSIGNAL = 10kHz, fDATA = Max, Range = ±4 ´ VREF  
ADS8556  
Internal Reference  
ADS8558  
ADS8557  
ADS8557  
AVDD = BVDD = 5V  
HVSS = -15V, HVDD = 15V  
fSIGNAL = 10kHz, fDATA = Max  
Range = ±4 ´ VREF  
ADS8556  
Internal Reference  
ADS8558  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 20.  
Figure 21.  
Copyright © 2006–2009, Texas Instruments Incorporated  
19  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
FREQUENCY SPECTRUM  
(2048-Point FFT, fIN = 10kHz, ±10VIN Range)  
SFDR vs TEMPERATURE  
100  
98  
96  
94  
92  
90  
88  
86  
0
-20  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
-40  
fSAMPLE = 500kSPS  
fSIGNAL = 10kHz  
-60  
ADS8556  
Range = ±4 ´ VREF  
-80  
Internal Reference  
T = +25°C  
ADS8557  
-100  
-120  
-140  
-160  
-180  
AVDD = BVDD = 5V  
HVSS = -15V, HVDD = 15V  
fSIGNAL = 10kHz, fDATA = Max  
ADS8558  
Range = ±4 ´ VREF  
Internal Reference  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (kHz)  
Figure 22.  
Figure 23.  
FREQUENCY SPECTRUM  
(2048-Point FFT, fIN = 10kHz, ±5VIN Range)  
CHANNEL-TO-CHANNEL ISOLATION vs  
INPUT NOISE FREQUENCY  
0
120  
115  
110  
105  
100  
95  
AVDD = BVDD = 5V  
HVSS = -15V, HVDD = 15V  
fSAMPLE = 500kSPS  
AVDD = BVDD = 5V  
HVSS = -15V  
HVDD = 15V  
-20  
-40  
fDATA = Max  
fSIGNAL = 10kHz  
Range = ±2 ´ VREF  
-60  
Range = ±2 ´ VREF  
Internal Reference  
Internal Reference  
T = +25°C  
-80  
-100  
-120  
-140  
-160  
-180  
90  
85  
80  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (kHz)  
0
30  
60  
90 120 150 180 210 240 270 300  
Noise Frequency (kHz)  
Figure 24.  
Figure 25.  
INTERNAL REFERENCE VOLTAGE vs  
ANALOG SUPPLY VOLTAGE (2.5V Mode)  
INTERNAL REFERENCE VOLTAGE vs TEMPERATURE  
(2.5V Mode)  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
VREF  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
AVDD (V)  
Figure 26.  
Figure 27.  
20  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
INTERNAL REFERENCE VOLTAGE vs TEMPERATURE  
(3.0V Mode)  
ANALOG SUPPLY CURRENT vs TEMPERATURE  
3.005  
3.004  
3.003  
3.002  
3.001  
3.000  
2.999  
2.998  
2.997  
2.996  
2.995  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
fDATA = Max  
AVDD = 5V  
Internal Reference  
fDATA = 250kSPS (A-NAP)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 28.  
Figure 29.  
ADS8556  
ANALOG SUPPLY CURRENT vs DATA RATE  
BUFFER I/O SUPPLY CURRENT vs TEMPERATURE  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
BVDD = 5V  
Normal Operation  
fDATA = Max  
AVDD = 5V  
Internal Reference  
A-NAP Mode  
fDATA = 250kSPS (A-NAP)  
6
4
2
0
45 90 135 180 225 270 315 360 405 450 495 540 585 630  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Sample Rate (kSPS)  
Figure 30.  
Figure 31.  
ADS8556  
ADS8556  
INPUT SUPPLY CURRENT vs TEMPERATURE  
INPUT SUPPLY CURRENT vs INPUT SUPPLY VOLTAGE  
4.5  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
IHVSS (fDATA = Max)  
4.0  
IHVSS (fDATA = Max)  
3.5  
IHVDD (fDATA = Max)  
3.0  
IHVDD (fDATA = Max)  
HVSS = -15V  
HVDD = 15V  
Range = ±4 ´ VREF  
2.5  
2.0  
1.5  
Internal Reference  
IHVSS (250kSPS A-NAP)  
1.0  
IHVSS (250kSPS A-NAP)  
IHVDD (250kSPS A-NAP)  
0.5  
IHVDD (250kSPS A-NAP)  
0
5
6
7
8
9
10  
11 12  
13  
14  
15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
HVDD, |HVSS| (V)  
Figure 32.  
Figure 33.  
Copyright © 2006–2009, Texas Instruments Incorporated  
21  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, over entire supply voltage range, VREF = 2.5V (internal), and fDATA = maximum, unless otherwise noted.  
ADS8556  
INPUT SUPPLY CURRENT vs DATA RATE  
3.6  
IHVSS  
3.3  
3.0  
IHVSS (A-NAP)  
2.7  
2.4  
2.1  
IHVDD (A-NAP)  
1.8  
1.5  
IHVDD  
1.2  
0.9  
HVSS = -15V  
HVDD = 15V  
0.6  
0.3  
0
Range = ±4 ´ VREF  
450 540 630  
0
90  
180  
270  
360  
Data Rate (kSPS)  
Figure 34.  
22  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
GENERAL DESCRIPTION  
period, there is no further input current flow and the  
input impedance is greater than 1M. To ensure a  
defined start condition, the sampling capacitors of the  
ADS8556/7/8 are pre-charged to a fixed internal  
voltage, before switching into sampling mode.  
The ADS8556/7/8 series include six 16-, 14-, and  
12-bit  
analog-to-digital  
converters  
(ADCs)  
respectively that operate based on the successive  
approximation register (SAR) principle. The  
architecture is designed on the charge redistribution  
principle,  
which  
inherently  
includes  
a
To maintain the linearity of the converter, the inputs  
should always remain within the specified range of  
HVSS – 0.2V to HVDD + 0.2V.  
sample-and-hold function. The six analog inputs are  
grouped into three channel pairs. These channel  
pairs can be sampled and converted simultaneously,  
preserving the relative phase information of the  
signals of each pair. Separate conversion start  
signals allow simultaneous sampling on each channel  
pair: on four channels or on all six channels.  
The minimum –3dB bandwidth of the driving  
operational amplifier can be calculated using  
Equation 1:  
ln(2) ´ (n + 1)  
f
=
-3dB  
2p ´ tACQ  
(1)  
These devices accept single-ended, bipolar analog  
input signals in the selectable ranges of ±4VREF or  
±2VREF with an absolute value of up to ±12V; see the  
Analog Inputs section.  
where:  
n = 16, 14, or 12; n is the resolution of the  
ADS8556/7/8  
The devices offer an internal 2.5V/3V reference  
source followed by a 10-bit digital-to-analog converter  
(DAC) that allows the reference voltage VREF to be  
adjusted in 2.44mV or 2.93mV steps, respectively.  
With a minimum acquisition time of tACQ = 280ns, the  
required minimum bandwidth of the driving amplifier  
is 6.7MHz for the ADS8556, 6MHz for the ADS8557,  
or 5.2MHz for the ADS8558. The required bandwidth  
can be lower if the application allows a longer  
acquisition time. A gain error occurs if a given  
application does not fulfill the bandwidth requirement  
shown in Equation 1.  
The ADS8556/7/8 also offer a selectable parallel or  
serial interface that can be used in hardware or  
software mode; see the Device Configuration section  
for details.  
A driving operational amplifier may not be required, if  
the impedance of the signal source (RSOURCE) fulfills  
the requirement of Equation 2:  
ANALOG  
This section addresses the analog input circuit, the  
ADCs and control signals, and the reference design  
of the device.  
tACQ  
RSOURCE  
<
- (RSER + RSW)  
CS ln(2) ´ (n + 1)  
(2)  
Analog Inputs  
where:  
n = 16, 14, or 12; n is the resolution of the ADC,  
CS = 10pF is the sample capacitor value for VIN  
±4 × VREF mode,  
RSER = 200is the input resistor value,  
and RSW = 130is the switch resistance value  
The inputs and the converters are of single-ended,  
bipolar type. The absolute voltage range can be  
selected using the RANGE pin (in hardware mode) or  
RANGE_x bits (in software mode) in the control  
register (CR) to either ±4VREF or ±2VREF. With the  
reference set to 2.5V (CR bit C18 = 0), the input  
voltage range can be ±10V or ±5V. With the  
reference source set to 3V (CR bit C18 = 1), an input  
voltage range of ±12V or ±6V can be configured. The  
logic state of the RANGE pin is latched with the  
falling edge of BUSY (if CR bit C20 = 0).  
=
With tACQ = 280ns, the maximum source impedance  
should be less than 2.0kfor the ADS8556, 2.3kΩ  
for the ADS8557, and 2.7kfor the ADS8558 in VIN  
= ±4VREF mode or less than 0.8kfor the ADS8556,  
1.0kfor the ADS8557, and 1.2kfor the ADS8558  
in VIN = ±2VREF mode. The source impedance can be  
higher if the application allows longer acquisition time.  
The input current on the analog inputs depends on  
the actual sample rate, input voltage, and signal  
source impedance. Essentially, the current into the  
analog inputs charges the internal capacitor array  
only during the sampling period (tACQ). The source of  
the analog input voltage must be able to charge the  
input capacitance of 10pF in ±4VREF mode or 20pF in  
±2VREF to a 12-, 14-, 16-bit accuracy level within the  
acquisition time of 280ns at maximum data rate; see  
the Equivalent Input Circuit. During the conversion  
Analog-to-Digital Converter (ADC)  
The devices include six ADCs that operate with either  
an internal or an external conversion clock. The  
conversion time can be as low as 1.09µs with internal  
conversion clock (ADS8558). When an external clock  
and reference are used, the minimum conversion  
time is 925ns.  
Copyright © 2006–2009, Texas Instruments Incorporated  
23  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
 
 
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
Conversion Clock  
remain high during the entire conversion cycle; this is  
while the BUSY signal remains active. A falling edge  
during an ongoing conversion puts the related ADC  
pair into partial power-down mode (see the Reset and  
Power-Down Modes section for more details).  
The device uses either an internally-generated or an  
external (XCLK) conversion clock signal (in software  
mode only). In default mode, the device generates an  
internal clock. When the CLKSEL bit is set high (bit  
C11 in the CR), an external conversion clock of up to  
20MHz (max) can be applied on pin 27. In both  
cases, 18.5 clock cycles are required for a complete  
conversion including the pre-charging of the sample  
capacitors. The external clock can remain low  
between conversions.  
A conversion start must not be issued during an  
ongoing conversion on the same channel pair. It is  
allowed to initiate conversions on the other input  
pairs, however (see the Sequential Mode section for  
more details).  
If a parallel interface is used, the behavior of the  
output port depends on which CONVST_x signals  
have been issued. Figure 35 shows examples of  
different scenarios.  
The conversion clock duty cycle should be 50%.  
However, the ADS8556/7/8 function properly with a  
duty cycle between 45% and 55%.  
CONVST_x  
The analog inputs of each channel pair (CH_x0/1) are  
held with the rising edge of the corresponding  
CONVST_x signal. Only in software mode (except  
sequential mode), CONVST_A is used for all six  
ADCs. The conversion automatically starts with the  
next edge of the conversion clock. CONVST_x should  
BUSY  
(C20 = C21 = 0)  
CS  
CONVST_A  
CONVST_C  
CONVST_B  
RD  
CH  
A0  
CH  
A1  
CH  
C0  
CH  
C1  
CH  
A0  
CH  
A1  
CH  
C0  
DB[15:0]  
CONVST_B  
CONVST_A  
CONVST_B  
RD  
CH  
B0  
CH  
B1  
CH  
B0  
CH  
B1  
CH  
B0  
CH  
B1  
CH  
B0  
DB[15:0]  
NOTE: Boxed areas indicate the minimum required frame to acquire all data.  
Figure 35. Data Output versus CONVST_x  
24  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
BUSY/INT  
Table 1 lists some examples of internal reference  
DAC settings with a reference range set to 2.5V.  
However, to ensure proper performance, the DAC  
output voltage should not be programmed below  
0.5V.  
The BUSY signal indicates if a conversion is in  
progress. It goes high with a rising edge of any  
CONVST_x signal and goes low when the output  
data of the last channel pair are available in the  
respective output register. The readout of the data  
can be initiated immediately after the falling edge of  
BUSY. A falling edge of a CONVST_x input during an  
ongoing conversion (when BUSY is high) powers  
down the corresponding ADC pair.  
The buffered output of the DAC should be decoupled  
with  
a
100nF capacitor (minimum); for best  
performance, a 470nF capacitor is recommended. If  
the internal reference is placed into power-down  
(default), an external reference voltage can drive the  
REFIO pin.  
In sequential mode, the BUSY signal goes low only  
for one clock cycle. See the Sequential Mode section  
for more details.  
The voltage at the REFIO pin is buffered with three  
internal amplifiers, one for each ADC pair. The output  
of each buffer needs to be decoupled with a 10µF  
capacitor between pin pairs 53 and 54, 55 and 56,  
and 57 and 58. The 10µF capacitors are available as  
ceramic 0805-SMD components and in X5R quality.  
The polarity of the BUSY/INT signal can be changed  
using CR bit C20.  
Reference  
The internal reference buffers can be powered down  
to decrease the power dissipation of the device. In  
this case, external reference drivers can be  
connected to REFC_A, REFC_B, and REFC_C pins.  
With 10µF decoupling capacitors, the minimum  
required bandwidth can be calculated using  
Equation 4:  
The ADS8556/7/8 provides an internal, low-drift 2.5V  
reference source. To increase the input voltage  
range, the reference voltage can be switched to 3V  
mode using the VREF bit (bit C18 in the CR). The  
reference feeds a 10-bit string-DAC controlled by bits  
C[9:0] in the control register. The buffered DAC  
output is connected to the REFIO pin. In this way, the  
voltage at this pin is programmable in 2.44mV  
(2.92mV in 3V mode) steps and adjustable to the  
application needs without additional external  
components. The actual output voltage can be  
calculated using Equation 3:  
ln(2)  
f
=
-3dB  
2p ´ tCONV  
(4)  
With the minimum tCONV of 1.09µs, the external  
reference buffers require a minimum bandwidth of  
1.02kHz.  
Range ´ (Code + 1)  
VREF  
=
1024  
(3)  
Table 1. DAC Setting Examples (2.5V Operation)  
where:  
DECIMAL  
CODE  
BINARY  
CODE  
HEXADECIMAL  
CODE  
VREF OUT (V)  
Range = the chosen maximum reference voltage  
output range (2.5V or 3V),  
Code = the decimal value of the DAC register  
content  
0.500  
1.25  
204  
511  
00 1100 1100  
01 1111 1111  
11 1111 1111  
CC  
1FF  
3FF  
2.500  
1023  
Copyright © 2006–2009, Texas Instruments Incorporated  
25  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
 
 
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
DIGITAL  
significant bit (MSB), the output data are changed at  
the rising edge of SCLK, so that the host processor  
can read it at the following falling edge. Output data  
of the ADS8557 and ADS8558 maintain the 16-bit  
format with leading zeros.  
This section describes the digital control and the  
timing of the device in detail.  
Device Configuration  
Serial data input SDI are latched at the falling edge of  
SCLK.  
Depending on the desired mode of operation, the  
ADS8556/7/8 can be configured using the external  
pins and/or the control register (CR), as shown in  
Table 2.  
The serial interface can be used with one, two, or  
three output ports. These ports are enabled with pins  
SEL_A, SEL_B, and SEL_C. If all three serial data  
output ports (SDO_A, SDO_B, and SDO_C) are  
selected, the data can be read with either two 16-bit  
data transfers or with one 32-bit data transfer. The  
data of channels CH_x0 are available first, followed  
by data from channels CH_x1. The maximum  
achievable data throughput rate is 450kSPS for the  
ADS8556, 470kSPS for the ADS8557, and 500kSPS  
for the ADS8558 in this case.  
Parallel Interface  
To use the device with the parallel interface, the  
PAR/SER pin should be held low. The maximum  
achievable data throughput rate using the internal  
clock is 630kSPS for the ADS8556, 670kSPS for the  
ADS8557, and 730kSPS for the ADS8558 in this  
case.  
Access to the ADS8556/7/8 is controlled as illustrated  
in Figure 2 and Figure 3.  
If the application allows a data transfer using two  
ports only, SDO_A and SDO_B outputs are used.  
The device outputs data from channel CH_A0  
followed by CH_A1 and CH_C0 on SDO_A, while  
data from channel CH_B0 followed by CH_B1 and  
CH_C1 occurs on SDO_B. In this case, a data  
transfer of three consecutive 16-bit words or one  
continuous 48-bit word is supported. The maximum  
achievable data throughput rate is 375kSPS for the  
ADS8556, 390kSPS for the ADS8557, and 400kSPS  
for the ADS8558.  
The device can either operate with  
a
16-bit  
(WORD/BYTE pin set low) or an 8-bit (WORD/BYTE  
pin set high) parallel interface. If 8-bit operation is  
used, the HBEN pin selects if the low-byte (DB7 low)  
or the high-byte (DB7 high) is available on the data  
output DB[15:8] first.  
Serial Interface  
The serial interface mode is selected by setting the  
PAR/SER pin high. In this case, each data transfer  
starts with the falling edge of the frame  
synchronization input (FS). The conversion results  
are presented on the serial data output pins SDO_A,  
SDO_B, and SDO_C depending on the selections  
made using the SEL_x pins. Starting with the most  
The output SDO_A is selected if only one serial data  
port is used in the application. The data are available  
in the following order: CH_A0, CH_A1, CH_B0,  
CH_B1, CH_C0, and, finally CH_C1. Data can be  
read using six 16-bit transfers, three 32-bit transfers,  
or a single 96-bit transfer. The maximum achievable  
data throughput rate is 250kSPS for the ADS8556/7  
and 260kSPS for the ADS8558 in this case.  
Figure 1 (the serial operation timing diagram) and  
Figure 36 show all possible scenarios in more detail.  
Table 2. ADS8556/7/8 Configuration Settings  
HARDWARE MODE (HW/SW = 0)  
SOFTWARE MODE (HW/SW = 1)  
CONVERSION START CONTROLLED BY SEPARATE CONVERSION START CONTROLLED BY CONVST_A  
INTERFACE MODE  
CONVST_x PINS  
PIN ONLY, EXCEPT IN SEQUENTIAL MODE  
Configuration using control register bits C[31:0] only;  
status of pins 27 (only if used as RANGE input) and 63 is  
disregarded  
Parallel  
(PAR/SER = 0)  
Configuration using pins, optionally, control bits C[22:18],  
C[15:13], and C[9:0]  
Configuration using control register bits C[31:0] only;  
status of pins 1, 27 (only if used as RANGE input), and  
63 is disregarded; each access requires a control register  
update via SDI (see the Serial Interface section for  
details)  
Serial  
(PAR/SER = 1)  
Configuration using pins, optionally, control bits C[22:18],  
C[15:13], and C[9:0]; bits C[31:24] are disregarded  
26  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
CONVST_A  
CONVST_B  
CONVST_C  
BUSY  
(C20 = C21 = 0)  
48 SCLKs  
SEL_A = SEL_B = 1, SEL_C = 0  
FS  
SDO_A  
CHA0  
CHB0  
CHA1  
CHB1  
CHC0  
CHC1  
SDO_B  
SEL_A = 1, SEL_B = SEL_C = 0  
FS  
96 SCLKs  
SDO_A  
CHA0  
CHA1  
CHB0  
CHB1  
CHC0  
CHC1  
Figure 36. Serial Interface: Data Output with One or Two Active SDOs  
word and byte modes. In word mode, the first write  
Hardware Mode  
access updates only the upper eight bits and stores  
the lower eight bits (C[23:16]) for an update that  
takes place with the second write access along with  
C[15:0].  
With the HW/SW input (pin 62) set low, the device  
functions are controlled via the pins and, optionally,  
control register bits C[22:18], C[15:13], and C[9:0].  
If the serial interface is used, input data containing  
control register contents are required with each read  
access to the device in this mode (combined  
read/write access). For initialization purposes, all 32  
bits of the register should be set (bit C16 must be set  
to '1' during that access to allow the update of the  
entire register content). To minimize switching noise  
on the interface, an update of the first eight bits  
(C[31:24]) with the remaining bits held low can be  
performed thereafter.  
It is possible to generally use the part in hardware  
mode but to switch it into software mode to initialize  
or adjust the control register settings (for example,  
the internal reference DAC) and back to hardware  
mode thereafter.  
Software Mode  
When the HW/SW input is set high, the device  
operates in software mode with functionality set only  
by the control register bits (corresponding pin settings  
are ignored).  
Figure 37 illustrates the different control register  
update options.  
If parallel interface is used, an update of all control  
register settings is performed by issuing two 16-bit  
write accesses on pins DB[15:0] in word mode or four  
8-bit accesses on pins DB[15:8] in byte mode (to  
avoid losing data, the entire sequence must be  
finished before starting a new conversion). CS should  
be held low during the two or four write accesses to  
completely update the configuration register. It is also  
possible to update only the upper eight bits (C[31:24])  
using a single write access and pins DB[15:8] in both  
Control Register (CR);  
Default Value = 0x000003FF  
The control register settings can only be changed in  
software mode and are not affected when switching  
to hardware mode thereafter. The register values are  
independent from input pin settings. Changes are  
active with the rising edge of WR in parallel interface  
mode or with the 32nd falling SCLK edge of the  
access in which the register content has been  
updated in serial mode. Optionally, the register can  
also be partially updated by writing only the upper  
eight bits (C[31:24]). The CR content is defined in  
Table 3.  
Copyright © 2006–2009, Texas Instruments Incorporated  
27  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
RESET  
(or Power-Up)  
BUSY  
(C20 = C21 = 0)  
PAR/SER = 1  
FS  
Continuous Update  
Continuous Update  
C
[31:24]  
C
[31:24]  
C[31:0]  
Initialization Data  
SDI  
PAR/SER = 0; WORD/BYTE = 0  
CS  
WR  
Initialization Data  
Update  
C
[31:16]  
C
[15:0]  
C
[31:24]  
C
[15:0]  
DB[15:0]  
PAR/SER = 0; WORD/BYTE = 1  
WR  
Initialization Data  
Update  
C
[31:24]  
C
[23:16]  
C
[15:8]  
C
[7:0]  
C
[31:24]  
C
[23:16]  
DB[15:8]  
Figure 37. Control Register Update Options  
28  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
Table 3. Control Register (CR)  
ACTIVE IN  
BIT  
NAME  
DESCRIPTION  
HARDWARE MODE  
0 = Channel pair C disabled for next conversion (default)  
1 = Channel pair C enabled  
C31  
CH_C  
No  
0 = Channel pair B disabled for next conversion (default)  
1 = Channel pair B enabled  
C30  
C29  
C28  
C27  
C26  
C25  
C24  
C23  
C22  
C21  
CH_B  
CH_A  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
0 = Channel pair A disabled for next conversion (default)  
1 = Channel pair A enabled  
0 = Input voltage range selection for channel pair C: 4VREF (default)  
1 = Input voltage range selection for channel pair C: 2VREF  
RANGE_C  
RANGE_B  
RANGE_A  
REFEN  
0 = Input voltage range selection for channel pair B: 4VREF (default)  
1 = Input voltage range selection for channel pair B: 2VREF  
0 = Input voltage range selection for channel pair A: 4VREF (default)  
1 = Input voltage range selection for channel pair A: 2VREF  
0 = Internal reference source disabled (default)  
1 = Internal reference source enabled  
0 = Internal reference buffers enabled (default)  
1 = Internal reference buffers disabled  
REFBUF  
SEQ  
0 = Sequential convert start mode disabled (default)  
1 = Sequential convert start mode enabled (bit 11 must be '1' in this case)  
0 = Normal operation (default)  
1 = Auto-NAP feature enabled  
A-NAP  
0 = BUSY/INT pin in normal mode (BUSY) (default)  
1 = BUSY/INT pin in interrupt mode (INT)  
BUSY/INT  
0 = BUSY active high while INT active low (default)  
1 = BUSY active low while INT active high  
C20  
C19  
C18  
BUSY L/H  
Don’t use  
VREF  
Yes  
This bit is always set to '0'  
0 = Internal reference voltage: 2.5V (default)  
1 = Internal reference voltage: 3V  
Yes  
0 = Normal operation (conversion results available on SDO_x) (default)  
1 = Control register contents output on SDO_x with next access  
C17  
C16  
C15  
C14  
READ_EN  
C23:0_EN  
PD_C  
Yes  
Yes  
Yes  
Yes  
0 = Control register bits C[31:24] update only (serial mode only) (default)  
1 = Entire control register update enabled (serial mode only)  
0 = Normal operation (default)  
1 = Power-down for channel pair C enabled (bit 31 must be '0' in this case)  
0 = Normal operation (default)  
1 = Power-down for channel pair B enabled (bit 30 must be '0' in this case)  
PD_B  
0 = Normal operation (default)  
1 = Power-down for channel pair A enabled (bit 29 must be '0' in this case)  
C13  
C12  
C11  
PD_A  
Yes  
Don't use  
CLKSEL  
This bit is always '0'  
0 = Normal operation with internal conversion clock (mandatory in hardware mode) (default)  
1 = External conversion clock (applied through pin 27) used  
No  
0 = Normal operation (default)  
1 = Internal conversion clock available at pin 27  
C10  
CLKOUT_EN  
No  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
REFDAC[9]  
REFDAC[8]  
REFDAC[7]  
REFDAC[6]  
REFDAC[5]  
REFDAC[4]  
REFDAC[3]  
REFDAC[2]  
REFDAC[1]  
REFDAC[0]  
Bit 9 (MSB) of reference DAC value; default = 1  
Bit 8 of reference DAC value; default = 1  
Bit 7 of reference DAC value; default = 1  
Bit 6 of reference DAC value; default = 1  
Bit 5 of reference DAC value; default = 1  
Bit 4 of reference DAC value; default = 1  
Bit 3 of reference DAC value; default = 1  
Bit 2 of reference DAC value; default = 1  
Bit 1 of reference DAC value; default = 1  
Bit 0 (LSB) of reference DAC value; default = 1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2006–2009, Texas Instruments Incorporated  
29  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
Daisy-Chain Mode (in Serial Mode Only)  
XCLK  
The serial interface of the ADS8556/7/8 supports a  
daisy-chain feature that allows cascading of multiple  
CONVST_A  
devices to minimize the board space requirements  
and simplify routing of the data and control lines. In  
this case, pins DB5/DCIN_A, DB4/DCIN_B, and  
CONVST_B  
DB3/DCIN_C are used as serial data inputs for  
channels A, B, and C, respectively. Figure 39 shows  
CONVST_C  
an example of a daisy-chain connection of three  
tCCLK  
devices sharing a common CONVST line to allow  
simultaneous sampling of 18 analog channels along  
BUSY  
(C20 = 0)  
with the corresponding timing diagram. To activate  
the daisy-chain mode, the DCEN pin must be pulled  
CS  
high. As a result of the time specifications tS1, tH1, and  
tD3, the maximum SCLK frequency that may be used  
in daisy-chain mode is 27.78MHz (assuming 50%  
duty cycle).  
RD  
CH  
A0  
CH  
A1  
CH  
B0  
CH  
B1  
CH  
C0  
CH  
C1  
D[15:0]  
Sequential Mode (in Software Mode with External  
Conversion clock Only)  
(1) EOC = end of conversion (internal signal).  
Figure 38. Sequential Mode Timing  
The three channel pairs of the ADS8556/7/8 can be  
run in sequential mode, with the corresponding  
CONVST_x signals interleaved, when an external  
clock is used. To activate the device in sequential  
mode, CR bits C11 (CLKSEL) and C23 (SEQ) must  
be asserted. In this case, the BUSY output indicates  
a finished conversion by going low (when C20 = 0) or  
high (when C20 = 1) for only a single conversion  
clock cycle in case of ongoing conversions of any  
other channel pairs. Figure 38 shows the behavior of  
the BUSY output in this mode. Each conversion start  
should be initiated during the high phase of the  
external clock, as shown in Figure 38. The minimum  
time required between two CONVST_x pulses in the  
time required to read the conversion result of a  
channel (pair).  
Output Data Format  
The data output format of the ADS8556/7/8 is binary  
twos complement, as shown in Table 4.  
For the ADS8557, which delivers 14-bit conversion  
results, the leading two bits of the 16-bit frame are '0'  
in the serial interface mode. In parallel interface  
mode, the output pins DB[15:14] are held low.  
Respectively, as the ADS8558 outputs 12 bits of  
data, the first four bits of a serial 16-bit frame are  
zeros, in parallel interface mode the output pins  
DB[15:12] are held low.  
Table 4. Output Data Format  
BINARY CODE (HEXADECIMAL CODE)  
ADS8557  
DESCRIPTION  
INPUT VOLTAGE VALUE  
ADS8556  
ADS8558  
0111 1111 1111 1111  
(7FFF)  
0001 1111 1111 1111  
(1FFF)  
0000 0111 1111 1111  
(7FF)  
Positive full-scale  
+4VREF or +2VREF  
0000 0000 0000 0000  
(0000)  
0000 0000 0000 0000  
(0000)  
0000 0000 0000 0000  
(0000)  
Midscale + 0.5LSB  
Midscale – 0.5LSB  
Negative full-scale  
VREF/(2 × resolution)  
–VREF/(2 × resolution)  
–4VREF or –2VREF  
1111 1111 1111 1111  
(FFFF)  
0011 1111 1111 1111  
(3FFF)  
0000 1111 1111 1111  
(FFF)  
1000 0000 0000 0000  
(8000)  
0010 0000 0000 0000  
(2000)  
0000 1000 0000 0000  
(800)  
30  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
CONVST  
FS  
SCLK  
ADS8556  
ADS8556  
ADS8556  
#1  
#2  
#3  
CONVST_A  
CONVST_A  
CONVST_A  
FS  
SCLK  
FS  
SCLK  
FS  
SCLK  
SDO_A  
SDO_B  
SDO_C  
DCIN_A  
DCIN_B  
DCIN_C  
SDO_A  
SDO_B  
SDO_C  
DCIN_A  
DCIN_B  
DCIN_C  
SDO_A  
SDO_B  
SDO_C  
To  
Processing  
Unit  
DCEN = 1  
CONVST  
BUSY  
(C20 = C21 = 0)  
FS  
16-Bit Data CHx0  
ADS8556 #3  
16-Bit Data CHx1  
ADS8556 #3  
16-Bit Data CHx0  
ADS8556 #2  
16-Bit Data CHx1  
ADS8556 #2  
16-Bit Data CHx0  
ADS8556 #1  
16-Bit Data CHx1  
ADS8556 #1  
SDO_x #3  
Don’t Care  
Figure 39. Example of Daisy-Chaining Three ADS8556s  
Reset and Power-Down Modes  
AVDD (V)  
5.500  
The device supports two reset mechanisms:  
a
power-on reset (POR) and a pin-controlled reset  
(RESET) that can be issued using pin 28. Both the  
POR and RESET act as a master reset that causes  
any ongoing conversion to be interrupted, the control  
register content to be set to the default value, and all  
channels to be switched into sample mode.  
Specified Supply  
Voltage Range  
5.000  
4.500  
4.000  
3.000  
When the device is powered up, the POR sets the  
device in default mode when AVDD reaches 1.5V.  
When the device is powered down, the POR circuit  
requires AVDD to remain below 125mV at least  
350ms to ensure proper discharging of internal  
capacitors and to ensure correct behavior of the  
device when powered up again. If the AVDD drops  
below 400mV but remains above 125mV (see the  
undefined zone in Figure 40), the internal POR  
capacitor does not discharge fully and the device  
requires a pin-controlled reset to perform correctly  
after the recovery of AVDD.  
2.000  
1.500  
1.000  
POR  
Trigger Level  
0.400  
0.125  
Undefined Zone  
0
0.350  
t (s)  
Figure 40. POR: Relevant Voltage Levels  
Copyright © 2006–2009, Texas Instruments Incorporated  
31  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
The entire device, except the digital interface, can be  
powered down by pulling the STBY pin low (pin 24).  
As the digital interface section remains active, data  
can be retrieved while in stand-by mode. To power  
the part on again, the STBY pin must be brought  
high. The device is ready to start a new conversion  
after 10ms required to activate and settle the internal  
circuitry. This user-controlled approach can be used  
in applications that require lower data throughput  
rates and lowest power dissipation. The content of  
CR is not changed during standby mode. It is not  
results). The next rising edge of the CONVST_x  
signal should be issued at least six conversion cycle  
periods after the reset pulse and starts a new  
conversion, as shown in Figure 41. The internal  
reference remains active during the partial  
power-down mode.  
The auto-NAP power-down mode is enabled by  
asserting the A-NAP bit (C22) in the control register.  
If the auto-NAP mode is enabled, the ADS8556/7/8  
automatically reduce the current requirement to 6mA  
after finishing  
a conversion; thus, the end of  
required to perform  
a pin-controlled reset after  
conversion actually activates the power-down mode.  
Triggering a new conversion by applying a positive  
CONVST_x edge puts the device back into normal  
operation, starts the acquisition of the analog input,  
returning to normal operation.  
While the standby mode impacts the entire device,  
each device channel pair can also be individually  
switched off by setting control register bits C[15:13]  
(PD_x). When reactivated, the relevant channel pair  
requires 10ms to fully settle before starting a new  
conversion. The internal reference remains active,  
except all channels are powered down at the same  
time.  
and automatically starts  
a new conversion six  
conversion clock cycles later. Therefore, a complete  
conversion cycle takes 24.5 conversion clock cycles;  
thus, the maximum throughput rate in auto-NAP  
power-down mode is reduced to a maximum of  
380kSPS for the ADS8556, 395kSPS for the  
ADS8557, and 420kSPS for the ADS8558 in serial  
mode. In parallel mode, the maximum data rates are  
500kSPS for the ADS8556, 530kSPS for the  
ADS8557, and 580kSPS for the ADS8558. The  
internal reference remains active during the auto-NAP  
In partial power-down mode, each of the three  
channel pairs of the ADS8556/7/8 can be individually  
put into a power-saving condition that reduces the  
current requirement to 2mA per channel pair by  
bringing the corresponding CONVST_x signal low  
during an ongoing conversion when BUSY is high.  
The relevant channel pair is activated again by  
issuing a RESET pulse (to avoid loss of data from the  
active channels, this RESET pulse should be  
generated after retrieving the latest conversion  
mode. Table  
5
compares the analog current  
requirements of the devices in the different modes.  
BUSY  
CONVST_A/C  
ADC CH_Ax/Cx  
CONVST_B  
ACQ  
CONV  
ACQ  
CONV  
ACQ  
6 ´ tCCLK Min  
RESET  
ADC CH_Bx  
ACQ CONV Power-Down  
ACQ  
CONV  
ACQ  
Figure 41. Partial Power-Down  
32  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
Table 5. Maximum Analog Current (IAVDD) Demand of the ADS8556/7/8  
NORMAL  
OPERATION  
POWER-UP  
TO NORMAL  
POWER-UP  
TO NEXT  
ANALOG  
TO  
OPERATIONAL  
MODE  
CURRENT  
ACTIVATED  
BY  
POWER-  
DOWN DELAY RESUMED BY  
OPERATION CONVERSION  
(IAVDD  
)
ENABLED BY  
DELAY  
START TIME DISABLED BY  
12mA/channel  
Normal operation pair (maximum  
data rate)  
Power on  
CONVST_x  
Power off  
Power off  
Partial  
CONVST_x  
low while  
BUSY is high  
2mA (channel  
power-down of  
pair x)  
At falling edge  
of BUSY  
Power on  
RESET pulse  
CONVST_x  
Immediate  
Immediate  
6 × tCCLK  
channel pair x  
A-NAP = 1 (CR  
bit)  
Each end of  
conversion  
At falling edge  
of BUSY  
A-NAP = 0 (CR  
bit)  
Auto-NAP  
6mA  
6 × tCCLK  
Immediate after  
completing  
register update  
Power-down of  
channel pair x  
16µA (channel  
PD_x = 1 (CR  
bit)  
PD_x = 0 (CR  
bit)  
HW/SW = 1  
Power on  
Immediate  
10ms  
10ms  
HW/SW = 0  
pair x)  
Stand-by  
50µA  
STBY = 0  
Immediate  
STBY = 1  
Immediate  
Power off  
The AVDD supply provides power to the internal  
circuitry of the ADC. It can be set in the range of 4.5V  
to 5.5V. Because the supply current of the device is  
typically 30mA, it is not possible to use a passive  
filter between the digital board supply of the  
application and the AVDD pin. A linear regulator is  
recommended to generate the analog supply voltage.  
Each AVDD pin should be decoupled to AGND with a  
100nF capacitor. In addition, a single 10µF capacitor  
should be placed close to the device but without  
compromising the placement of the smaller capacitor.  
Optionally, each supply pin can be decoupled using a  
1µF ceramic capacitor without the requirement for a  
10µF capacitor.  
GROUNDING  
All GND pins should be connected to a clean ground  
reference. This connection should be kept as short as  
possible to minimize the inductance of this path. It is  
recommended to use vias connecting the pads  
directly to the ground plane. In designs without  
ground planes, the ground trace should be kept as  
wide as possible. Avoid connections that are too  
close to the grounding point of a microcontroller or  
digital signal processor.  
Depending on the circuit density on the board,  
placement of the analog and digital components, and  
the related current loops, a single solid ground plane  
for the entire printed circuit board (PCB) or a  
dedicated analog ground area may be used. In case  
The BVDD supply is only used to drive the digital I/O  
buffers and can be set in the range of 2.7V to 5.5V.  
This range allows the device to interface with most  
state-of-the-art processors and controllers. To limit  
the noise energy from the external digital circuitry to  
the device, BVDD should be filtered. A 10resistor  
can be placed between the external digital circuitry  
and the device, because the current drawn is typically  
below 2mA (depending on the external loads). A  
bypass ceramic capacitor of 1µF (or alternatively, a  
pair of 100nF and 10µF capacitors) should be placed  
between the BVDD pin and pin 8.  
of a separated analog ground area, ensure  
a
low-impedance connection between the analog and  
digital ground of the ADC by placing a bridge  
underneath (or next) to the ADC. Otherwise, even  
short undershoots on the digital interface lower than  
–300mV lead to the conduction of ESD diodes  
causing current flow through the substrate and  
degrading the analog performance.  
During PCB layout, care should be taken to avoid any  
return currents crossing sensitive analog areas or  
signals.  
The high-voltage supplies (HVSS and HVDD) are  
connected to the analog inputs. Noise and glitches on  
these supplies directly couple into the input signals.  
Place a 100nF ceramic decoupling capacitor, located  
as close to the device as possible, between each of  
pins 30, 31, and AGND. An additional 10µF capacitor  
is used that should be placed close to the device but  
without compromising the placement of the smaller  
capacitor.  
SUPPLY  
The ADS8556/7/8 require four separate supplies: the  
analog supply for the ADC (AVDD), the buffer I/O  
supply for the digital interface (BVDD), and the  
high-voltage supplies driving the analog input circuitry  
(HVDD and HVSS). Generally, there are no specific  
requirements with regard to the power sequencing of  
the device. However, when HVDD is supplied before  
AVDD, the internal ESD structure conducts,  
increasing IHVDD beyond the specified value.  
Figure 42 shows a layout recommendation for the  
ADS8556/7/8 along with the proper decoupling and  
reference capacitor placement and connections.  
Copyright © 2006–2009, Texas Instruments Incorporated  
33  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
SBAS404AOCTOBER 2006REVISED AUGUST 2009 ............................................................................................................................................... www.ti.com  
ADS8556/7/8  
Top View  
To AVDD  
To AVDD  
To DUT  
AVDD Source  
10  
mF  
0.1mF  
10mF  
10mF  
10mF  
0.47mF 0.1mF  
64 63 62 61  
58  
56  
54  
51  
0.1  
mF  
1
2
48  
AVDD  
AVDD  
45  
3
To AVDD  
0.1  
mF  
4
5
AGND  
AGND  
42  
6
0.1  
mF  
7
BGND  
BVDD  
10  
11  
12  
13  
14  
15  
16  
AVDD  
AVDD  
39  
1
mF  
To  
BVDD  
To AVDD  
0.1  
mF  
AGND  
AGND  
36  
0.1  
mF  
To AVDD  
AVDD  
AVDD  
33  
0.1  
mF  
17 18 19 20 21 22 23 24  
27 28 29  
0.1mF  
0.1mF  
0.1mF  
10mF  
10mF  
To  
AVDD  
To  
HVSS/HVDD  
LEGEND  
TOP layer; copper pour and traces  
Lower layer; AGND area  
Lower layer; BGND area  
Via  
(1) All 0.1µF, 0.47µF, and 1µF capacitors should be placed as close to the ADS8556/7/8 as possible.  
(2) All 10µF capacitors should be close to the device but without compromising the placement of the smaller capacitors.  
Figure 42. Layout Recommendation  
34  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
ADS8556  
ADS8557  
ADS8558  
www.ti.com ............................................................................................................................................... SBAS404AOCTOBER 2006REVISED AUGUST 2009  
APPLICATION INFORMATION  
The actual values of the resistors and capacitors  
depend on the bandwidth and performance  
requirements of the application. For highest data rate,  
it is recommended to use a filter capacitor value of  
1nF and a series resistor of 22to fulfill the settling  
requirements to an accuracy level of 16 bits within the  
acquisition time of 280ns.  
The minimum configuration of the ADS8556/7/8 in  
parallel mode is shown in Figure 43. In this case, the  
BUSY signal is not used while the SW generates the  
required signals in a timely manner. TI’s OPA2211 is  
used as an input driver, supporting bandwidth that  
allows running the device at the maximum data rate.  
R1  
R2  
AVDD  
AGND  
ADS8556  
RF  
CH_A0  
CH_A1  
Input #1  
CF  
CF  
BVDD  
OPA2211  
AGND  
STBY  
RF  
Input #2  
RANGE  
REFEN/WR  
AGND  
R1  
R2  
REFC_A  
REFC_B  
10mF  
AGND  
R1  
AGND  
CONVST_A  
CONVST_B  
CONVST_C  
RESET  
10mF  
R2  
AVDD  
AGND  
Host  
Controller  
CS  
RF  
RD  
CH_B0  
CH_B1  
Input #3  
Input #4  
CF  
DB[15:0]  
OPA2211  
AGND  
CF  
RF  
AGND  
R1  
R2  
REFIO  
0.47mF  
10mF  
AGND  
R1  
AGND  
R2  
REFC_C  
AVDD  
ADS8556  
AGND  
AVDD  
AVDD  
AVDD  
AVDD  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
RF  
HW/SW  
PAR/SER  
BVDD  
CH_C0  
CH_C1  
Input #5  
Input #6  
CF  
CF  
WORD/BYTE  
BVDD  
BGND  
OPA2211  
AGND  
BGND  
1mF  
RF  
BGND  
AGND  
R1  
R2  
HVSS  
HVSS  
AGND  
AGND  
AGND  
0.1mF  
0.1mF  
10mF  
0.1mF  
0.1mF  
0.1mF  
0.1mF  
0.1mF  
0.1mF  
0.1mF  
10mF  
0.1mF  
10mF  
AGND  
AGND  
HVDD  
HVSS  
AVDD  
Figure 43. Minimum Configuration in Parallel Interface Mode  
Copyright © 2006–2009, Texas Instruments Incorporated  
35  
Product Folder Link(s): ADS8556 ADS8557 ADS8558  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Aug-2009  
PACKAGING INFORMATION  
Orderable Device  
ADS8556IPM  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PM  
64  
64  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS8556IPMR  
ADS8557IPM  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS8557IPMR  
ADS8558IPM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
ADS8558IPMR  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8556IPMR  
ADS8557IPMR  
ADS8558IPMR  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
64  
64  
64  
1000  
1000  
1000  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
12.3  
12.3  
12.3  
12.3  
12.3  
12.3  
2.5  
2.5  
2.5  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8556IPMR  
ADS8557IPMR  
ADS8558IPMR  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
64  
64  
64  
1000  
1000  
1000  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
41.0  
41.0  
41.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

ADS8557I

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8557IPM

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8557IPMR

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8558

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8558I

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8558IPM

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8558IPMR

16-14-12-Bit Six-Channel Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8568

12-, 14-, 16-Bit, Eight-Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8568EVM-PDK

The ADS8568EVM allows evaluation of all aspects of the ADS8568 device.
TI

ADS8568SPM

12-, 14-, 16-Bit, Eight-Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8568SPMR

12-, 14-, 16-Bit, Eight-Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI

ADS8568SRGCR

12-, 14-, 16-Bit, Eight-Channel, Simultaneous Sampling ANALOG-TO-DIGITAL CONVERTERS
TI