ADS9234R [TI]

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC;
ADS9234R
型号: ADS9234R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC

文件: 总64页 (文件大小:2669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
ADS92x4R 双通道低延迟同步采样 SAR ADC  
1 特性  
2 应用  
1
高分辨率、高吞吐量:  
光学编码器:增量和绝对编码器  
声纳接收器  
ADS9224R16 位、3MSPS、低延迟:333ns  
光纤网络:EDFA 增益控制环路  
电源质量测量  
ADS9234R14 位、3.5MSPS、低延  
迟:285ns  
两个单极、完全差分同步采样通道  
出色的直流和交流性能:  
数字电源  
I/Q 解调器  
ADS9224R:  
医疗成像:CT 扫描仪、MRI 扫描仪  
阻抗分析仪  
16 NMC DNL±2LSB 最大 INL  
94dB SNR–109dB THD  
1MHz 时为 88dB SINAD  
3 说明  
ADS92x4R 是一款引脚兼容型高速双通道同步采样模  
数转换器 (ADC),具有集成基准电压和基准电压缓冲  
器。该器件可由 5V 单电源供电运行,支持单极和全差  
分模拟输入信号,具有出色的直流和交流规格。该器件  
具有高达 1.5MHz 的模拟输入频率,交流性能出色,  
因此适合高带宽数据采集 (DAQ) 系统。  
ADS9234R:  
14 NMC DNL±1LSB 最大 INL  
85.6dB SNR–106dB THD  
1MHz 时为 84dB SINAD  
特性集成:  
内部基准和基准缓冲器  
用于设置共模的内部 REFby2 缓冲器  
该器件支持 SPI 兼容串行(增强型 SPI)和字节宽并  
行接口,因此易于与多种微控制器、数字信号处理器  
(DSP) 和现场可编程门阵列 (FPGA) 搭配使用。此器  
件还支持数据平均功能,该功能可提升高噪声环境中的  
交流性能。  
数据平均  
适用于 MCU FPGA 的增强型 SPI 接口:  
宽读取周期,可借助 MCU 读取数据  
用于通过数字隔离器进行数据传输的时钟重计时  
该器件采用节省空间的 5mm × 5mm VQFN 封装。  
ADS92x4R 的额定扩展温度范围为 –40°C +125°  
C。  
适用于 FPGA DDR 模式  
并行字节模式,方便对接  
扩展温度范围:–40°C +125°C  
器件信息(1)  
器件型号  
ADS92x4R  
封装  
VQFN (32)  
封装尺寸(标称值)  
5.00mm x 5.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
典型应用图  
Absolute/Incremental Encoder  
SONAR  
Reference  
Position  
I
ADC  
ADC  
sine  
0°  
ADC  
ADC  
Baseband  
Signal  
Host  
REF  
Host  
Encoder  
Q
REF  
cosine  
90°  
ADS92x4R  
ADS92x4R  
Local Oscillator  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS876  
 
 
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 26  
7.5 READY/STROBE Output ........................................ 30  
7.6 Programming........................................................... 30  
7.7 Register Maps......................................................... 43  
Application and Implementation ........................ 49  
8.1 Application Information............................................ 49  
8.2 Typical Application .................................................. 51  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics: ADS92x4R....................... 6  
6.6 Electrical Characteristics: ADS9224R....................... 7  
6.7 Electrical Characteristics: ADS9234R....................... 8  
6.8 Timing Requirements................................................ 9  
6.9 Switching Characteristics........................................ 10  
6.10 Typical Characteristics: ADS9224R...................... 15  
6.11 Typical Characteristics: ADS9234R...................... 18  
Detailed Description ............................................ 21  
7.1 Overview ................................................................. 21  
7.2 Functional Block Diagram ....................................... 21  
7.3 Feature Description................................................. 22  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 55  
11 器件和文档支持 ..................................................... 56  
11.1 器件支持................................................................ 56  
11.2 相关文档................................................................ 56  
11.3 相关链接................................................................ 56  
11.4 接收文档更新通知 ................................................. 56  
11.5 社区资源................................................................ 56  
11.6 ....................................................................... 56  
11.7 静电放电警告......................................................... 56  
11.8 Glossary................................................................ 56  
12 机械、封装和可订购信息....................................... 57  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2019) to Revision C  
Page  
已更改 将文档状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
5 Pin Configuration and Functions  
RHB Package  
5-mm × 5-mm, 32-Pin VQFN  
Top View  
AINP_A  
AINM_A  
REFby2  
GND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SDO-0/0A  
SDO-1/1A  
SDO-2/2A  
SDO-3/3A  
SDO-4/0B  
SDO-5/1B  
SDO-6/2B  
SDO-7/3B  
Thermal  
Pad  
REFOUT  
NC  
AINM_B  
AINP_B  
Not to scale  
Pin Functions  
PIN  
NAME  
AINM_A  
NO.  
FUNCTION  
Analog input  
Analog input  
Analog input  
Analog input  
DESCRIPTION  
2
7
1
8
Negative analog input for channel A.  
Negative analog input for channel B.  
Positive analog input for channel A.  
Positive analog input for channel B.  
AINM_B  
AINP_A  
AINP_B  
Analog power-supply pin.  
AVDD  
CONVST  
CS  
12, 29  
13  
Power supply  
Digital input  
Digital input  
Power supply  
Connect a 1-µF decoupling capacitor between pin 12 and pin 11.  
Connect a 1-µF decoupling capacitor between pin 29 and pin 30.  
Conversion start input pin.  
A CONVST rising edge starts the conversion for ADC_A and ADC_B.  
Chip-select input pin; active low.  
The host and device can communicate when CS is low.  
The SDO-x pins go to Hi-Z when CS is high.  
14  
Interface power-supply pin.  
Connect a 1-µF decoupling capacitor between pin 27 and pin 28.  
DVDD  
28  
GND  
NC  
4, 11, 27, 30  
6
Power supply  
Ground  
No external connection  
Asynchronous reset or power-down input pin.  
See the Reset or Power-Down section.  
PD/RST  
26  
25  
Digital input  
READY/STROBE  
Digital output  
Indicates data ready or strobe output for data capture.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
REFby2  
NO.  
FUNCTION  
DESCRIPTION  
REFby2 buffer output.  
3
Analog output  
Analog output  
Connect a 1-µF decoupling capacitor between pin 3 and pin 4.  
Internal reference output.  
REFOUT  
REFM_A  
5
Connect a 1-µF decoupling capacitor between pin 5 and pin 4.  
Negative output of reference buffer A. Negative reference input for  
ADC_A.  
Externally connect to the device GND.  
32  
Analog output  
Analog output  
Analog output  
Analog output  
Negative output of reference buffer B. Negative reference input for  
ADC_B.  
Externally connect to the device GND.  
REFM_B  
REFP_A  
REFP_B  
9
Positive output of reference buffer A. Positive reference input for  
ADC_A.  
Connect a 10-µF decoupling capacitor between pin 31 and pin 32.  
31  
10  
Positive output of reference buffer B. Positive reference input for  
ADC_B.  
Connect a 10-µF decoupling capacitor between pin 9 and pin 10.  
SCLK  
SDI  
16  
15  
Digital input  
Digital input  
Clock input pin for the serial interface.  
Serial data input pin.  
This pin is used to program the device registers.  
SPI mode: data output 0 for channel A.  
Parallel byte mode: least significant bit (LSB) from the data byte.  
SDO-0/0A  
SDO-1/1A  
SDO-2/2A  
SDO-3/3A  
SDO-4/0B  
SDO-5/1B  
SDO-6/2B  
SDO-7/3B  
Thermal pad  
24  
23  
22  
21  
20  
19  
18  
17  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Power supply  
SPI mode: data output 1 for channel A.  
Parallel byte mode: LSB+1 from the data byte.  
SPI mode: data output 2 for channel A.  
Parallel byte mode: LSB+2 from the data byte.  
SPI mode: data output 3 for channel A.  
Parallel byte mode: LSB+3 from the data byte.  
SPI mode: data output 0 for channel B.  
Parallel byte mode: LSB+4 from the data byte.  
SPI mode: data output 1 for channel B.  
Parallel byte mode: LSB+5 from the data byte.  
SPI mode: data output 2 for channel B.  
Parallel byte mode: LSB+6 from the data byte.  
SPI mode: data output 3 for channel B.  
Parallel byte mode: most significant bit (MSB) from the data byte.  
Exposed thermal pad. TI recommends connecting this pin to the printed  
circuit board (PCB) ground.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
6
UNIT  
V
AVDD to GND  
DVDD to GND  
–0.3  
6
V
Digital input pins  
GND – 0.3  
GND – 0.3  
–0.3  
DVDD + 0.3  
DVDD + 0.3  
AVDD + 0.3  
GND + 0.1  
AVDD + 0.3  
10  
V
Digital output pins  
V
AINP_A, AINP_B to GND, AINM_A, AINM_B to GND  
REFM_A, REFM_B  
V
GND – 0.1  
GND – 0.3  
–10  
V
REFP_A, REFP_B, REFOUT, REFby2 to GND  
Input or output current to any pin except power-supply pin  
Junction temperature, TJ  
V
mA  
°C  
°C  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5
MAX  
5.5  
UNIT  
V
AVDD  
DVDD  
TA  
Analog supply voltage  
Digital supply voltage operating range  
Digital supply voltage for SCLK > 20 MHz  
Ambient temperature  
1.65  
2.35  
–40  
3.3  
3.3  
5.5  
V
5.5  
V
125  
°C  
6.4 Thermal Information  
ADS92x4R  
THERMAL METRIC(1)  
RHB (VQFN)  
UNIT  
32 PINS  
29  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.1  
9.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
9.4  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
6.5 Electrical Characteristics: ADS92x4R  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage (AINP_x -  
AINM_x)  
FSR(1)  
-4.096  
4.096  
V
V
Absolute input voltage (AINP_x or  
AINM_x to GND)  
VIN  
0
4.096  
2.248  
VCM  
IIN  
Common-mode input range  
Analog input leakage current  
1.848  
V
±1  
16  
1
µA  
Sample mode  
Ci  
Input capacitance  
pF  
Hold mode  
-3-dB input signal  
-0.1-dB input signal  
52  
4.2  
MHz  
MHz  
BW  
Analog input bandwidth  
VOLTAGE REFERENCE OUTPUT  
(2)  
VREFOUT  
REFOUT voltage  
VREFOUT drift  
2.496  
2.5  
5.5  
2.504  
15  
V
ΔVREF/ΔT  
ppm/°C  
ΔVREFOUT/ΔAVD  
D
AVDD variation 4.5 V to  
5.5 V  
VREFOUT line regulation  
REFOUT output current capability  
REFOUT capacitor  
200  
1.5  
1
µV/V  
µA  
IREFOUT  
|ΔVREF| < 2 mV  
For specified  
performance  
CREFOUT  
µF  
INTERNAL REFERENCE BUFFER  
GREFBUF  
Reference buffer Gain  
1.6388  
±0.2  
V/V  
mV  
EO-REFBUF  
Reference buffer output offset  
–1  
1
Reference buffer output offset  
temperature drift  
ΔEO-REFBUF/ΔT  
10  
µV/  
(VREFP_A  
VREFP_B  
-
Reference buffer output mismatch  
–500  
7
±50  
500  
27  
µV  
)
For specified  
performance, between  
each pair of REFP_x  
and REFM_x  
CREFP_x  
Reference buffer output capacitor  
10  
µF  
REFby2 OUTPUT  
VREFby2  
EN_REFBY2_OFFSET  
= 0  
2.043  
2.133  
2.048  
2.053  
2.163  
V
V
REFby2 output voltage  
EN_REFBY2_OFFSET  
= 1  
2.148  
±3  
IREFby2  
REFby2 output current capability  
REFby2 output capacitor  
mA  
µF  
1
With specified output  
capacitor  
REFby2 output noise  
10  
µVRMS  
Digital Outputs  
VOH  
High level output voltage  
Low level output voltage  
IOH = 500-µA source  
IOL = 500-µA sink  
0.8 × DVDD  
0
DVDD  
V
V
VOL  
0.2 × DVDD  
Digital Inputs  
VIH  
VIL  
VIH  
VIL  
High level input voltage  
Low level intput voltage  
High level input voltage  
Low level intput voltage  
0.7 × DVDD  
–0.3  
DVDD +0.3  
0.3 × DVDD  
DVDD +0.3  
0.2 × DVDD  
V
V
V
V
DVDD > 2.3 V  
0.8 × DVDD  
–0.3  
DVDD 2.3 V  
(1) Ideal input span; does not include gain or offset error.  
(2) Does not include the variation in voltage resulting from solder shift effects.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Electrical Characteristics: ADS92x4R (continued)  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply  
AVDD  
Analog supply voltage  
Digital supply voltage  
4.5  
5
3.3  
5.5  
5.5  
V
V
DVDD  
1.65  
fSAMPLE = 3 MSPS  
24.3  
30.4  
mA  
AVDD = 5 V, no  
conversion  
7.8  
1
mA  
µA  
IAVDD  
Analog supply current  
Power down (PD/RST  
Low)  
fSAMPLE = 3 MSPS,  
CSDO-x/y = 10 pF  
IDVDD  
Digital supply current  
2.8  
mA  
100-mVPP Ripple on  
AVDD of frequency <  
100kHz  
PSRR(3)  
Power-supply rejection ratio  
70  
dB  
(3) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-  
scale, unless otherwise specified.  
6.6 Electrical Characteristics: ADS9224R  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DC ACCURACY  
Resolution, no missing codes  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
16  
–0.5  
–2  
Bits  
DNL  
INL  
EO  
±0.2  
±1  
0.5  
2
LSB  
LSB  
LSB  
–9  
±1  
9
Cummulative gain error for ADC_x and  
REFBUF_x  
GE  
–0.02  
±0.01  
0.02 %FSR  
ΔGE/ΔT  
Gain drift  
5
ppm/°C  
LSB  
Transition noise  
Mid-code, PFS-1000, NFS+1000  
0.4  
AC ACCURACY  
fIN = 2 kHz  
91.3  
94.5  
93  
fIN = 100 kHz, FSR = -3 dBFS  
SNR(1)  
Signal-to-noise ratio  
dB  
fIN = 1 MHz, FSR = -3 dBFS, fSAMPLE  
2.9 MSPS  
=
89.5  
fIN = 2 kHz  
94.3  
92.7  
87.9  
–109  
–106  
-93  
SINAD(1)(2)  
Signal-to-noise plus distortion  
Total harmonic distortion  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = 2 kHz  
dB  
dB  
THD(1)(2)  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = 2 kHz  
112  
112  
100  
80  
SFDR(1)  
CMRR(1)  
Spurious-free dynamic range  
Common-mode rejection ratio  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = dc to 1-MHz, VIN = 100-mVPP  
dB  
dB  
(1) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-  
scale, unless otherwise specified.  
(2) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics: ADS9224R (continued)  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fIN_ADCA = 15 kHz at 10% FSR,  
fIN_ADCB = 25 kHz at 100% FSR  
ISOXT(1)  
Channel-to-channel isolation  
–120  
dB  
6.7 Electrical Characteristics: ADS9234R  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DC ACCURACY  
Resolution, no missing codes  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
14  
–0.5  
–1  
Bits  
DNL  
INL  
EO  
±0.15  
±0.3  
±0.8  
0.5  
1
LSB  
LSB  
LSB  
–3.5  
3.5  
Cummulative gain error for ADC_x and  
REFBUF_x  
GE  
–0.025  
±0.01  
0.025 %FSR  
ΔGE/ΔT  
Gain drift  
5
ppm/°C  
LSB  
Transition noise  
Mid-code, PFS-1000, NFS+1000  
0.3  
AC ACCURACY  
fIN = 2 kHz  
84.1  
85.6  
85.5  
85  
SNR(1)  
Signal-to-noise ratio  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = 2 kHz  
dB  
dB  
dB  
dB  
85.5  
85.4  
84.4  
–106  
–106  
–94  
109  
107  
101  
75  
SINAD(1)(2)  
THD(1)(2)  
SFDR(1)  
Signal-to-noise plus distortion  
Total harmonic distortion  
Spurious-free dynamic range  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = 2 kHz  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = 2 kHz  
fIN = 100 kHz, FSR = -3 dBFS  
fIN = 1 MHz, FSR = -3 dBFS  
fIN = dc to 1-MHz, VIN = 100-mVPP  
CMRR(1)  
ISOXT(1)  
Common-mode rejection ratio  
Channel-to-channel isolation  
dB  
dB  
fIN_ADCA = 15 kHz at 10% FSR,  
fIN_ADCB = 25 kHz at 100% FSR  
–115  
(1) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-  
scale, unless otherwise specified.  
(2) Calculated on the first nine harmonics of the input frequency.  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
6.8 Timing Requirements  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREFP_x/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
MIN  
NOM  
MAX UNIT  
CONVERSION CONTROL AND DATA TRANSFER (See 1 and 2)  
Delay time: CONVST high to CS Falling for zero cycle latency (zone  
(1)  
tD_CONVST_CS  
1 transfer)  
tDRDY  
ns  
ns  
Time between two adjacent CONVST rising edges for zero cycle  
latency (zone 1 transfer)  
(2)  
tDRDY+tREAD  
Time between two adjacent CONVST rising edges for zone 2  
transfer, ADS9224R  
tCYCLE  
333  
285  
ns  
Time between two adjacent CONVST rising edges for zone 2  
transfer, ADS9234R  
Sampling rate, ADS9224R  
fSAMPLE  
3
MSPS  
3.5  
Sampling rate, ADS9234R  
tACQ  
Acquisition time  
140  
15  
ns  
tD_CONVST_CS Delay time: CONVST high to CS falling for zone 2 transfer  
180  
ns  
ns  
ns  
tWL_CONVST  
tWH_CONVST  
Pulse duration : CONVST low  
Pulse duration : CONVST high  
15  
15  
SPI-COMPATIBLE AND PARALLEL BYTE PROTOCOL (See 3)  
tCLK  
Serial clock time period  
1/ fCLK  
0.45 × tCLK  
0.45 × tCLK  
12  
tPH_CLK  
tPL_CLK  
tSU_CSCK  
tSU_CKDI  
tHT_CKDI  
tHT_CKCS  
SCLK high time  
0.55 × tCLK  
0.55 × tCLK  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK low time  
Setup time: CS faling to first SCLK capture edge  
Setup Time: SDI data valid to SCLK capture edge  
Hold Time: SCLK capture edge to previous data valid on SDI  
Delay Time: last SCLK capture edge to CS rising  
Serial clock frequency for SPI protocols with single data rate  
Serial clock frequency for SPI protocols with double data rate  
Serial clock frequency for parallel byte protocol  
2.5  
1.5  
14  
60 MHz  
22 MHz  
45 MHz  
fCLK  
CLOCK RE-TIMER PROTOCOL WITH STROBE = SCLK (EXTERNAL CLOCK)(3)(See 4)  
Serial clock frequency with single data rate  
60 MHz  
22 MHz  
fCLK  
Serial clock frequency with double data rate  
ASYNCHRONOUS RESET AND POWER-DOWN TIMING (See 6)  
tWL-RST  
Pulse duration (low) for reset  
50  
500  
ns  
ns  
tWL-PD-min  
Minimum pulse duration (low) for power-down  
1000  
(1) See Switching Characteristics  
(2) See Protocols for Reading From the Device for tREAD  
(3) Other parameters are the same as the SPI-compatible and Parallel Byte Protocols.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
6.9 Switching Characteristics  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREF/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CONVERSION CONTROL AND DATA TRANSFER (See 1 and 2)  
Data ready time for present  
sample: CONVST high to  
READY high  
Zero cycle latency (zone 1  
transfer) for ADS9224R  
315  
280  
ns  
ns  
tDRDY  
Data ready time for present  
sample: CONVST high to  
READY high  
Zero cycle latency (zone 1  
transfer) for ADS9234R  
SPI-COMPATIBLE AND PARALLEL BYTE PROTOCOL (See 3)  
Delay time: CS falling to  
tDEN_CSDO  
12  
12  
ns  
ns  
data valid on SDO-x  
Delay time: CS rising edge  
tDZ_CSDO  
to SDO-x tristate  
Delay time: SCLK launch  
edge to next data valid on  
SDO-x  
SPI-compatible protocols with  
single data rate  
tD_CKDO  
tD_CKDO  
tD_CKDO  
15.8  
21  
ns  
ns  
ns  
Delay time: SCLK launch  
edge to next data valid on  
SDO-x  
SPI-compatible protocols with  
double data rate  
Delay time: SCLK launch  
edge to next data valid on  
SDO-x  
Parallel byte protocol  
21  
Aperture delay  
tA mismatch  
8
40  
2
ns  
ps  
ps  
tA  
tJITTER  
Aperture jitter  
CLOCK RE-TIMER PROTOCOL WITH STROBE = SCLK (EXTERNAL CLOCK)(1)(See 4)  
Time offset: STROBE edge  
tOFF_STROBE_DO  
-2.5  
2.5  
ns  
ns  
to next data valid on SDO-x  
Delay time: CS rising to  
tD_CS_READY  
READY displaying internal  
device state  
13.5  
Delay time: SCLK rising  
edge to STROBE rising  
tD_CKSTROBE_r  
tD_CKSTROBE_f  
21.5  
21.5  
ns  
ns  
Delay time: SCLK falling  
edge to STROBE falling  
tPH_STROBE  
tPL_STROBE  
Strobe output high time  
Strobe output low time  
0.45 × tSTR  
0.45 × tSTR  
0.55 × tSTR  
0.55 × tSTR  
ns  
ns  
CLOCK RE-TIMER PROTOCOL WITH STROBE = INTERNAL CLOCK (1)(See 5)  
Delay time : CS falling to  
tD_CS_STROBE  
15  
50  
ns  
ns  
1st STROBE rising  
Time offset : STROBE  
tOFF_STROBE_DO  
edge to next data valid on  
SDO-x  
-2.5  
2.5  
Delay time: CS rising to  
READY displaying internal  
device state  
tD_CS_READY  
tINTCLK  
13.5  
ns  
INTCLK period  
15  
16  
30  
60  
ns  
ns  
ns  
ns  
ns  
ns  
INTCLK  
tSTR  
STROBE period  
INTCLK / 2  
INTCLK / 4  
tWH_STR  
tWL_STR  
STROBE high period  
STROBE low period  
0.45 × tSTR  
0.45 × tSTR  
0.55 × tSTR  
0.55 × tSTR  
(1) Other parameters are the same as the SPI-compatible and Parallel Byte Protocols.  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Switching Characteristics (continued)  
at AVDD = 4.5 V to 5.5V, DVDD = 2.35 V to 5.5 V, VCM = VREF/2, Internal reference and maximum throughput (unless  
otherwise noted); minimum and maximum values at TA = -40to +125; typical values at TA = 25, AVDD = 5V, DVDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ASYNCHRONOUS RESET AND POWER-DOWN TIMING (See 6)  
tRST-WKUP  
Wake up time from reset  
1
150  
140  
150  
µs  
ms  
ms  
ms  
Wake up time from power-  
down  
(2)  
tPD-WKUP  
18  
15.6  
18  
tWKUP-REFOUT  
tREFP_x-SETTLE  
REFOUT wake-up time  
Reference buffer output  
settling time  
CREFP_x = 10µF  
(2) With CREFP_x = 10µF  
Sample  
”N+1‘  
Sample  
”N‘  
tcycle  
tWH_CONVST  
tWL_CONVST  
CONVST  
tD_CONVST_CS  
tREAD  
CS  
tD_CONVST_CS-min  
READY/STROBE(1)  
tDRDY  
tACQ  
ADCST  
Acquisition of Sample ”N+1‘  
(Internal)  
SCLK  
Output Data  
Sample ”N‘  
SDO-xx  
Zone 1  
(1) The READY output is required for data transfer with zero cycle latency. The STROBE output is required only for clock  
re-timer (CRT) protocols.  
1. Conversion Control and Data Transfer With Zero Cycle Latency (Zone 1 Transfer)  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Sample  
”N‘  
Sample  
”N+1‘  
tCYCLE  
tWH_CONVST  
tWL_CONVST  
CONVST  
tD_CONVST_CS  
tREAD  
CS  
tD_CONVST_CS-min  
tD_CONVST_CS-max  
tREAD-max  
ADCST  
tACQ  
Acquisition of  
(Internal)  
Sample ”N+1‘  
SCLK  
READY/STROBE(1)  
SDO-xx  
Output Data  
Sample ”N-1‘  
Zone 2  
(1) The READY output is not required for zone 2 data transfer. The STROBE output is required only for clock re-timer  
protocols.  
2. Conversion Control and Data Transfer With Wider Read Cycle (Zone 2 Transfer)  
tCLK  
tPH_CLK  
tPL_CLK  
CS  
SCLK(1)  
tSU_CKDI  
tHT_CKDI  
tSU_CSCK  
tHT_CKCS  
SCLK(1)  
SDI  
tD_CKDO  
SDO-x  
(SDR)  
tD_CKDO  
tDEN_CSDO  
tDZ_CSDO  
tD_CKDO  
SDO-x  
(DDR)  
SDO-x  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected. DDR is not supported with  
the parallel byte protocol.  
3. SPI-Compatible and Parallel Byte Protocols Timing  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
tCLK  
tPH_CK  
tPL_CK  
CS  
SCLK  
tD_CKSTROBE_f  
tD_CKSTROBE_r  
tSU_CSCK  
tHT_CKCS  
READY/  
STROBE  
SCLK  
tOFF_STROBE_DO  
tDEN_CSDO  
tDZ_CSDO  
tOFF_STROBE_DO  
SDO-x  
(DDR)  
SDO-x  
tD_CS_READY  
tOFF_STROBE_DO  
READY/  
STROBE  
SDO-x  
(SDR)  
4. Clock Re-Timer Protocol (External Clock) Timing  
tSTR  
READY/  
STROBE  
CS  
tPH_STROBE  
tPL_STROBE  
tOFF_STROBE_DO  
tDEN_CSDO  
tDZ_CSDO  
tOFF_STROBE_DO  
SDO-x  
(DDR)  
SDO-x  
tD_CS_READY  
tOFF_STROBE_DO  
SDO-x  
(SDR)  
READY/  
STROBE  
tD_CS_STROBE  
5. Clock Re-Timer Protocol (Internal Clock) Timing  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
tWL-RST-max  
tWL-RST  
tWL-RST-min  
tWL-PD  
RST/PD  
RST/PD  
Device in  
Acquisition  
Device in  
Acquisition  
ADCST(internal)  
ADCST(internal)  
tRST-WKUP  
tPD-WKUP  
Reset  
Power Down  
6. Asynchronous Reset and Power-Down Timing  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
6.10 Typical Characteristics: ADS9224R  
0
-20  
0
-40  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-120  
-160  
-200  
0
400000  
800000  
1200000  
1600000  
0
300000  
600000  
900000  
1200000  
1500000  
fIN, Input Frequency (Hz)  
fIN, Input Frequency (Hz)  
9224  
9224  
fIN = 100 kHz, SNR = 93.6 dB, THD = –107 dB  
fIN = 1 MHz, SNR = 90.65 dB, THD = –94.5 dB  
7. Typical FFT at fIN = 100 kHz  
8. Typical FFT at fIN = 1 MHz  
95.5  
95  
96  
94.5  
93  
SNR (dB)  
SINAD (dB)  
SNR (dB)  
SINAD (dB)  
94.5  
94  
91.5  
90  
93.5  
93  
88.5  
-60  
-30  
0
30  
60  
90  
120  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
Free-Air Temperature (èC)  
fIN, Input Frequency (KHz)  
9224  
9224  
fIN = 2 kHz  
fIN = 2 kHz  
9. Noise Performance vs Temperature  
10. Noise Performance vs Frequency  
-104  
-90  
-95  
-106  
-108  
-110  
-112  
-114  
-100  
-105  
-110  
-115  
-60  
-30  
0
30  
60  
90  
120  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
Free-Air Temperature (èC)  
fIN, Input Frequency (KHz)  
9224  
9224  
fIN = 2 kHz  
fIN = 2 kHz  
11. Distortion Performance vs Temperature  
12. Distortion Performance vs Frequency  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics: ADS9224R (接下页)  
1.6  
0.003  
0.0015  
0
0.8  
0
-0.0015  
-0.003  
-0.0045  
-0.8  
-1.6  
-2.4  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Free- Air Temperature (èC)  
Free-Air Temperature (èC)  
9224  
9224  
14. Gain Error vs Temperature  
13. Offset Error vs Temperature  
0.75  
0.5  
64000  
56000  
48000  
40000  
32000  
24000  
16000  
8000  
48689  
0.25  
0
16364  
-0.25  
-0.5  
480  
0
0
0
2
0
0
0
0
32765  
32767.5  
32770  
32772.5  
32775  
0
13107  
26214  
ADC output code  
39321  
52428  
65535  
9224  
Output Codes  
9224  
Standard deviation = 0.44 LSB  
Typical DNL = ±0.2 LSB  
15. DC Input Histogram  
16. Typical DNL  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0.3  
0.25  
0.2  
0.15  
0.1  
Maximum  
Minimum  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
0
13107  
26214  
39321  
52428  
65535  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
ADC output code  
Free-Air Temperature (èC)  
9224  
9224  
Typical INL = ±0.5 LSB  
17. Typical INL  
18. DNL vs Temperature  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Typical Characteristics: ADS9224R (接下页)  
3
2.504  
2.502  
2.5  
Maximum  
Minimum  
2
1
0
2.498  
2.496  
2.494  
-1  
-2  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
9224  
9224  
19. INL vs Temperature  
20. VREFOUT vs Temperature  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
24.9  
24.8  
24.7  
24.6  
24.5  
24.4  
24.3  
24.2  
24.1  
24  
Dynamic IAVDD (mA)  
Static IAVDD (mA)  
6
23.9  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
9244  
9234  
21. AVDD Current vs Temperature  
22. AVDD Current vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
6.11 Typical Characteristics: ADS9234R  
0
-20  
0
-40  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-120  
-160  
-200  
0
400000  
800000  
1200000  
1600000  
0
300000 600000 900000 1200000 1500000 1800000  
fIN, Input Frequency (Hz)  
fIN, Input Frequency (Hz)  
9234  
9234  
fIN = 100 kHz, SNR = 85.5 dB, THD = –106 dB  
fIN = 1 MHz, SNR = 85.2 dB, THD = –94 dB  
23. Typical FFT at fIN = 100 kHz  
24. Typical FFT at fIN = 1 MHz  
86.4  
86  
86.5  
86  
SNR (dB)  
SINAD (dB)  
SNR (dB)  
SINAD (dB)  
85.6  
85.2  
84.8  
84.4  
85.5  
85  
84.5  
84  
-60  
-30  
0
30  
60  
90  
120  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
Free-Air Temperature (èC)  
fIN, Input Frequency (KHz)  
9234  
9234  
fIN = 2 kHz  
fIN = 2 kHz  
25. Noise Performance vs Temperature  
26. Noise Performance vs Frequency  
-100  
-85  
-90  
-102.5  
-105  
-95  
-107.5  
-110  
-100  
-105  
-110  
-112.5  
-60  
-30  
0
30  
60  
90  
120  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
Free-Air Temperature (èC)  
fIN, Input Frequency (KHz)  
9234  
9234  
fIN = 2 kHz  
fIN = 2 kHz  
27. Distortion Performance vs Temperature  
28. Distortion Performance vs Frequency  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Typical Characteristics: ADS9234R (接下页)  
0.4  
0.002  
0.0015  
0.001  
0.0005  
0
0.3  
0.2  
0.1  
0
-0.0005  
-0.1  
-60  
-30  
0
30  
60  
90  
120  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
9234  
9234  
30. Gain Error vs Temperature  
29. Offset Error vs Temperature  
0.4  
0.2  
0
17500  
15000  
12500  
10000  
7500  
5000  
2500  
0
-0.2  
-0.4  
0
0
15  
0
0
0
0
3000  
6000  
ADC output code  
9000  
12000  
15000  
8189  
8190  
8191  
8192  
8193  
8194  
8195  
8196  
9234  
9234  
ADC Output Code  
Typical DNL = ±0.15 LSB  
Standard deviation = 0.44 LSB  
32. Typical DNL  
31. DC Input Histogram  
0.5  
0.3  
0.45  
0.3  
Maximum  
Minimum  
0.1  
0.15  
0
-0.1  
-0.3  
-0.5  
-0.15  
-0.3  
0
3000  
6000  
9000  
12000  
15000  
-60  
-30  
0
30  
60  
90  
120  
150  
ADC Output Code  
Free-Air Temperature (èC)  
9234  
9234  
Typical INL = ±0.25 LSB  
33. Typical INL  
34. DNL vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics: ADS9234R (接下页)  
0.9  
Maximum  
Minimum  
0.6  
0.3  
0
-0.3  
-0.6  
-60  
-30  
0
30  
60  
90  
120  
150  
Free-Air Temperature (èC)  
9234  
35. INL vs Temperature  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
7 Detailed Description  
7.1 Overview  
The device belongs to a family of dual, high-speed, simultaneous-sampling, analog-to-digital converters (ADCs).  
The device supports fully differential input signals and a full-scale input range equal to 2 × VREFP_x  
.
When a conversion is initiated, the difference voltage between the AINP_x and AINM_x pins is sampled on the  
internal capacitor array. The device uses an internal clock to perform conversions. During the conversion  
process, both analog inputs are disconnected from the sampling capacitors. At the end of conversion process,  
the device reconnects the sampling capacitors to the AINP_x and AINM_x pins and enters an acquisition phase.  
The device has internal reference and reference buffers to provide the charge required by the ADCs during  
conversion. The device includes a reference voltage for the ADCs.  
The enhanced serial programming interface (eSPI) digital interface is backward-compatible with traditional SPI  
protocols. eSPI configurable features simplify board layout, timing, and firmware and support high throughput at  
lower clock speeds, thus allowing an easy interface with a variety of microcontrollers, digital signal processors  
(DSPs), and field-programmable gate arrays (FPGAs). The device also provides a byte mode and a wide read  
cycle to reduce the clock frequency required for data transfer. The device includes a clock re-timer (CRT) to  
ensure data integrity when data are transferred through digital isolators. The device also supports double data  
rate (DDR) with SPI-compatible serial interface modes and with a clock re-timer.  
7.2 Functional Block Diagram  
REFM_A  
REFP_A  
DVDD  
AVDD  
REFOUT  
REFby2  
AVDD  
REFby2  
AVDD  
Reference  
Voltage  
2.5 V  
REFBUF_A  
CONVST  
CS  
AINP_A  
AINM_A  
ADC_A  
SCLK  
SDI  
AVDD  
Serial  
Interface  
AINP_B  
AINM_B  
READY/STROBE  
ADC_B  
SDO-x/y  
SDO-x/y  
AVDD  
REFBUF_B  
REFOUT  
REFM_B  
REFP_B  
GND  
PD/RST  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.3 Feature Description  
The device is comprised of seven modules: two converters (ADC_A, ADC_B), two reference buffers  
(REFBUF_A, REFBUF_B), the REFby2 buffer, the reference voltage, and the serial interface, as shown in the  
Functional Block Diagram section.  
The converter module samples and converts the analog input into an equivalent digital output code. The  
reference buffers provide the charge required by the converters for the conversion process. The serial interface  
module facilitates communication and data transfer between the device and the host controller. The REFby2  
buffer provides the common-mode voltage for the amplifiers input driving the analog of the device. The reference  
voltage is used by the converters for conversion process.  
7.3.1 Converter Modules  
As shown in 36, both converter modules sample the analog input signal, compare this signal with the  
reference voltage (between the pair of REFP_x and REFM_x pins), and generate an equivalent digital output  
code. The converter module receives the PD/RST and CONVST inputs from the interface module, and output the  
ADCST signal and the conversion result back to the interface module.  
REFP_x  
DVDD  
AVDD  
PD/RST  
CONVST  
CS  
OSC  
RST  
SCLK  
AINP_x  
AINM_x  
CONVST  
ADCST  
Sample-  
and-Hold  
Circuit  
SDI  
Serial  
Interface  
SDO-x/y  
Conversion  
Result  
SDO-x/y  
AGND  
READY/STROBE  
ADC_A  
ADC_B  
GND  
REFM_x  
36. Converter Modules  
7.3.1.1 Analog Input With Sample-and-Hold  
This device supports unipolar, fully differential, analog input signals. 37 shows a small-signal equivalent circuit  
of the sample-and-hold circuit. Each sampling switch is represented by a resistance (RS1 and RS2, typically 120  
Ω) in series with an ideal switch (SW1 and SW2). The sampling capacitors, CS1 and CS2, are typically 16 pF.  
RS1  
SW1  
AINP_x  
1 pF  
1 pF  
CS1  
AVDD  
CS2  
GND  
GND  
RS2  
SW2  
AINM_x  
Device in Hold Mode  
37. Analog Input Structure for Converter Module  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Feature Description (接下页)  
During the acquisition process, both inputs are individually sampled on CS1 and CS2, respectively. During the  
conversion process, both converters convert for the respective voltage difference between the sampled values:  
VAINP_x – VAINM_x  
.
公式 1 and 公式 2 provide the full-scale input range (FSR) and common-mode voltage (VCM), supported at the  
analog inputs for reference voltage (VREFOUT) on the REFOUT pin.  
FSR = ±1.6384 × VREFOUT = 3.2768 × VREFOUT  
VCM = 0.8192 × VREFOUT ± 0 .2 V  
(1)  
(2)  
7.3.1.2 ADC Transfer Function  
The device output is in two's compliment format. 1 and 38 show the ideal transfer characteristics for the  
device. 公式 3 gives the least significant bit (LSB) for the ADC.  
1 LSB = FSR / 2R  
where  
FSR is defined in 公式 1  
R = Resolution of the device  
(3)  
PFSC  
MC  
NFSC  
A
B
C
VIN  
Analog Input  
(AINP_x œ AINM_x)  
38. Ideal Transfer Characteristics  
1. Transfer Characteristics  
INPUT VOLTAGE  
(AINP_x-AINM_x)  
IDEAL OUTPUT CODE IDEAL OUTPUT CODE  
STEP  
CODE  
DESCRIPTION  
(R = 16)  
(R = 14)  
A
B
C
–(1.6384 × VREFOUT – 1 LSB)  
0 LSB to 1 LSB  
NFSC  
MC  
Negative full-scale code  
Mid code  
8000  
2000  
0000  
0000  
(1.6384 × VREFOUT – 1 LSB)  
PFSC  
Positive full-scale code  
7FFF  
1FFF  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
 
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.3.2 Internal Reference Voltage  
The device features an internal reference source with a nominal output value of 2.5 V. The ADC internal  
reference voltage is brought out on the REFOUT pin. A 1-µF decoupling capacitor (CREFOUT), as shown in 39,  
is recommended to be placed between the REFOUT pin and GND pin. The capacitor must be placed as close to  
the REFOUT pin as possible. The output impedance of the internal band-gap circuit creates a low-pass filter with  
this capacitor to band-limit the noise of the reference. The initial accuracy specification for the internal reference  
can be degraded if the die is exposed to any mechanical or thermal stress. Heating the device when being  
soldered to a printed circuit board (PCB) and any subsequent solder reflow is a primary cause for shifts in the  
VREF value.  
All performance characteristics of the device are specified with the internal reference buffer and a specified value  
of CREFP_x. As shown in 39, place a decoupling capacitor CREFP_x between the REFP_x and REFM_x pins as  
close to the device as possible.  
AVDD  
GREFBUF  
Internal  
VREF  
2.5 V  
œ
REFP_x  
REFBUF_x  
REFOUT  
+
CREFOUT  
CREFP_x  
REFM_x  
GND  
39. Connection Diagram for Reference and Reference Buffers  
7.3.3 Reference Buffers  
On the CONVST rising edge, both converters start converting the sampled value on the analog input, and the  
internal capacitors are switched to the REFP_x pins. Most of the switching charge required during the conversion  
process is provided by the external decoupling capacitor CREFP_x. If the charge lost from CREFP_x is not  
replenished before the next CONVST rising edge, the subsequent conversion occurs with this different reference  
voltage and causes a proportional error in the output code. To eliminate these errors, the internal reference  
buffers of the device maintains the voltage on the REFP_x pins. The reference buffers have a gain of GREFBUF  
as specified in the Specifications section. The voltage at the REFP_x pins can be calculated as VREFP_x  
GREFBUF × VREFOUT  
,
=
.
7.3.4 REFby2 Buffer  
The device includes a REFby2 buffer for setting the common-mode voltage required by the converter modules.  
The REFby2 output can be used to drive the VOCM common-mode input pin of the fully differential amplifiers  
(similar to the THS4551). The REFby2 output can be increased by 100 mV (for specifications of the REFby2  
output, see the Specifications section) for providing headroom from GND for the fully differential amplifier. To  
increase the REFby2 output, set the EN_REFby2_OFFSET bit to 1 in the REFby2_OFFSET register. 40  
depicts a block diagram for the REFby2 buffer.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
AVDD  
REFP_A  
REFby2 with EN_REFby2_OFFSET = 1  
100 mV  
œ
R
R
REFby2  
REFby2  
REFby2 with EN_REFby2_OFFSET = 0  
+
VREFP_A/2  
CREFby2  
EN_REFby2_  
OFFSET  
REFM_A  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
40. REFby2 Buffer  
7.3.5 Data Averaging  
The device can be configured to average two or four samples and provide the averaged value as output data. To  
configure the data averaging, configure the DATA_AVG_CFG register.  
7.3.5.1 Averaging of Two Samples  
To enable averaging of two samples, set the EN_DATA_AVG bits in the DATA_AVG_CFG register to 10b. In this  
mode, the device averages two samples and provides the average of two samples as output data. The output  
data rate reduces by a factor of two. In this mode, the host must provide two pulses separated by a time of tCYCLE  
(see tCYCLE for a zone 2 transfer in the Specifications section) on the CONVST pin. The device sets the READY  
pin high after a time of tDRDY (see tDRDY in the Specifications section) from the second rising edge on the  
CONVST pin. After the READY pin is set high, the host can read the data by using one of the protocols for  
reading from the device. The host can read the data while providing the two CONVST pulses for acquiring the  
next two samples. The host must keep tREAD < [2 × tCYCLE]. 41 provides the timing for the averaging of two  
samples.  
Sample  
Sample  
Sample  
Sample  
”N‘  
”N+1‘  
”N+3‘  
”N+2‘  
tcycle  
CONVST  
tWL_CONVST  
tDRDY  
READY/STROBE  
tREAD  
CS  
SCLK  
SDO-xx  
Output Data = [Sample ”N‘ + Sample ”N+1]/2  
41. Timing for Averaging of Two Samples  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.3.5.2 Averaging of Four Samples  
To enable averaging of four samples, set the EN_DATA_AVG bits in the DATA_AVG_CFG register to 11b. In  
this mode, the device averages four samples and provides the average of four samples as output data. The  
output data rate reduces by a factor of four. In this mode, the host must provide four pulses separated by a time  
of tCYCLE (see tCYCLE for a zone 2 transfer in the Specifications section) on the CONVST pin. The device sets the  
READY pin high after a time of tDRDY (see tDRDY in the Specifications section) from the fourth rising edge on the  
CONVST pin. After the READY pin is set high, the host can read the data by using one of the protocols for  
reading from the device. The host can read the data while providing the four CONVST pulses for acquiring the  
next four samples. The host must keep tREAD < [4 × tCYCLE]. 42 provides the timing for the averaging of four  
samples.  
Sample  
”N‘  
Sample  
”N+1‘  
Sample  
”N+3‘  
Sample  
”N+5‘  
Sample  
”N+6‘  
Sample  
”N+7‘  
Sample  
”N+2‘  
Sample  
”N+4‘  
tcycle  
CONVST  
tWL_CONVST  
tDRDY  
READY/STROBE  
tREAD  
CS  
SCLK  
SDO-xx  
Output Data = [Sample ”N‘ + Sample ”N+1+ Sample ”N+2+ Sample ”N+3]/4  
42. Timing for Averaging of Four Samples  
7.4 Device Functional Modes  
This device supports three functional states: RST or power-down, ACQ, and CNV. The device state is  
determined by the status of the CONVST and PD/RST control signals provided by the host controller.  
7.4.1 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state at power-up, when  
coming out of power down, after any asynchronous reset, and by the ADCST signal (internal). A PD/RST falling  
edge takes the device from ACQ state to RST state. A CONVST rising edge takes the device from ACQ state to  
CNV state.  
7.4.2 CNV State  
The device moves from ACQ state to CNV state and starts conversion on a rising edge of a CONVST pin. The  
conversion process uses an internal clock. The host must provide a minimum time of tCYCLE between two  
subsequent start of conversions.  
7.4.3 Reset or Power-Down  
The PD/RST pin is an asynchronous digital input for the device. The pulse duration (low) on the PD/RST pin  
decides the state for the device (reset or power-down). 43 provides the timing diagram for these states. On  
power-up or after reset the device supports the SPI-00-S protocol for configuring the device and the SPI-00-S-  
SDR protocol for reading the data from the device. See the Protocols for Reading From the Device and Protocols  
for Configuring the Device sections for details.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Device Functional Modes (接下页)  
tWL-RST-max  
tWL-RST  
tWL-RST-min  
tWL-PD  
RST/PD  
RST/PD  
Device in  
Acquisition  
Device in  
Acquisition  
ADCST(internal)  
ADCST(internal)  
tRST-WKUP  
tPD-WKUP  
Reset  
Power Down  
43. Reset or Power Down  
7.4.3.1 Reset  
To enter reset state, the host controller pulls and keeps the PD/RST pin low for a duration of tWL_RST (tWL_RST-min  
WL_RST tWL_RST-max).  
t
In reset state, the device terminates the ongoing conversion or acquisition process and all configuration registers  
(see the Register Maps section) are reset to their default values.  
After a delay of tRST-WKUP, the device enters ACQ state.  
7.4.3.2 Power-Down  
To enter power-down state, the host controller pulls and keeps the PD/RST pin low for a minimum duration of  
tWL_PD  
.
In power-down state, all device blocks are powered down and all configuration registers (see the Register Maps  
section) are reset to their default values.  
To exit power-down state, the host controller pulls the PD/RST pin high. After a delay of tPD-WKUP, the device  
powers up and enters ACQ state.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.4 Conversion Control and Data Transfer Frame  
The device supports two modes of conversion control and data transfer, one with zero cycle latency (zone 1  
transfer) and another with a wide read cycle (zone 2 transfer).  
7.4.4.1 Conversion Control and Data Transfer Frame With Zero Cycle Latency (Zone 1 Transfer)  
In this mode of conversion control and data transfer, the device starts conversion on the rising edge of CONVST.  
The CONVST pin can be pulled low after a minimum time of tWH_CONVST. After the conversion is finished, the  
rising edge of the READY/STROBE pin indicates that the data are ready and the data can be read by the host.  
After the READY pin is set high, as shown in 44, the host must pull CS low and provide clocks on the SCLK  
pin to read the data in zone 1 without cycle latency. For a zone 1 transfer, the host must provide a minimum  
delay time of tD_CONVST_CS (= tDRDY) between the rising edge of CONVST and the falling edge of CS.  
The data for the present sample (sample N) is provided by the device on the SDO pins. After all bits are read,  
the host can pull the CS pin high to end the data transfer frame. After pulling CS high, the host can pull the  
CONVST pin high to start the next conversion. The host must keep the SDI pin low (NOP0) or high (NOP1) for  
conversion control and for getting conversion results from the device. In this mode of conversion control, the time  
between two adjacent rising edges of the CONVST signal (tCYCLE) is determined as tCYCLE = tDRDY + tREAD  
.
Sample  
”N+1‘  
Sample  
”N‘  
tcycle  
tWH_CONVST  
tWL_CONVST  
CONVST  
tD_CONVST_CS  
tREAD  
CS  
tD_CONVST_CS-min  
READY/STROBE(1)  
tDRDY  
tACQ  
ADCST  
Acquisition of Sample ”N+1‘  
(Internal)  
SCLK  
Output Data  
Sample ”N‘  
SDO-xx  
Zone 1  
(1) The READY output is required for data transfer with zero cycle latency. The STROBE output is required only for clock  
re-timer (CRT) protocols. See the READY/STROBE Output section for details.  
(2) For tREAD with different data transfer protocols; see the Protocols for Reading From the Device section.  
(3) fSample = 1 / tcycle  
.
44. Conversion Control and Data Transfer Frame With Zero Cycle Latency (Zone 1 Transfer)  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Device Functional Modes (接下页)  
7.4.4.2 Conversion Control and Data Transfer Frame With Wide Read Cycle (Zone 2 Transfer)  
In this mode of conversion control and data transfer, the device starts conversion on the rising edge of CONVST.  
The CONVST pin can be pulled low after a minimum time of tWH_CONVST. After a time of tD_CONVST_CS (see  
tD_CONVST_CS for zone 2 transfer in the Specifications section), the host must pull CS low and provide clocks on  
the SCLK pin to read the data in zone 2. As shown in 45, a zone 2 transfer provides more read time (tread).  
The read time available for reading data is maximized when tD_CONVST_CS is set to the minimum permissible  
value. The data for the previous sample (sample N-1) is provided by the device on the SDO pins. After all bits  
are read, the host can pull the CS pin high to end the data transfer frame. After pulling CS high, the host can pull  
the CONVST pin high to start the next conversion. In this mode of conversion control, a minimum time of tCYCLE  
(see tCYCLE for zone 2 transfer in the Specifications section) is required between two adjacent rising edges of the  
CONVST signal. The host must keep the SDI pin low (NOP0) or high (NOP1) for conversion control and for  
getting conversion results from the device.  
Sample  
”N‘  
Sample  
”N+1‘  
tCYCLE  
tWH_CONVST  
tWL_CONVST  
CONVST  
tD_CONVST_CS  
tREAD  
CS  
tD_CONVST_CS-min  
tREAD-max  
tD_CONVST_CS-max  
ADCST  
tACQ  
Acquisition of  
(Internal)  
Sample ”N+1‘  
SCLK  
READY/STROBE(1)  
SDO-xx  
Output Data  
Sample ”N-1‘  
Zone 2  
(1) The READY output is not required for zone 2 data transfer. The STROBE output is required only for clock re-timer  
(CRT) protocols. See the READY/STROBE Output section for details.  
(2) For tREAD with different data transfer protocols; see the Protocols for Reading From the Device section.  
(3) fSample = 1 / tcycle  
.
45. Conversion Control and Data Transfer Frame With Wide Read Cycle (Zone 2 Transfer)  
For optimum performance with zone 2 transfer, TI recommends masking the READY  
output by setting the READY_MASK bit in the OUTPUT_DATA_WORD_CFG register and  
using a data transfer protocol with a bus width of more than 2 SDOs or the parallel byte  
protocol to keep [tD_CONVST_CS + tREAD] below 150 ns. See the Protocols for Reading From  
the Device section for details on different protocols for reading the data.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.5 READY/STROBE Output  
The READY/STROBE pin has multiple functions. The READY and STROBE signals are multiplexed to this pin.  
When CS is low, STROBE is output and when CS is high, READY is output.  
7.5.1 READY Output  
After power-up or after exiting power-down (a rising edge on PD/RST), the READY signal is set high. After a time  
of 0.9 ms, this signal goes low, indicating that the device is initialized and the registers can be configured.  
However, conversions can be performed with the desired accuracy only after a time of tPD-WKUP (see the  
Specifications section). After power-up, for a zone 1 transfer (see 44), the device starts conversion on the  
CONVST rising edge and the READY pin remains low during the conversion process. After a time of tDRDY, the  
conversion process completes, READY is set high, and data can be read by the host. The host can read data by  
bringing CS high and by providing clocks on SCLK. After CS is brought low, READY is set low.  
For a zone 2 transfer, TI recommends masking the READY output by setting the READY_MASK bit in the  
OUTPUT_DATA_WORD_CFG register.  
7.5.2 STROBE Output  
In clock re-timer protocols, the device sends out data on the SDO lines with synchronized clock on the STROBE  
line. The data are synchronized to the rising edge of the STROBE pulses. In CRT protocols, the host can use the  
STROBE output for latching the data. The STROBE for the CRT protocols is either derived from the external  
SCLK provided by the host or from the internal oscillator. The STROBE signal is held low for protocols other than  
the CRT protocols.  
7.6 Programming  
7.6.1 Output Data Word  
The output data word, as shown in 2, consists of a conversion result of N bits, where N is the width of the  
output data word. The output data word is provided on data lines (SDO-xx) for each ADC.  
2. Output Data Word  
WIDTH OF  
OUTPUT DATA  
WORD (N)  
MSB OF CONVERSION  
RESULT WITH LEFT  
ALIGNMENT  
MSB OF CONVERSION  
RESULT WITH RIGHT  
ALIGNMENT  
RESOLUTION  
OF DEVICE (R)  
CONTENT OF OUTPUT  
DATA WORD(1)(2)  
DEVICE  
16-bit conversion in 2's  
compliment format  
ADS9224R  
ADS9234R  
16  
14  
16  
16  
DN-1 (= D15  
)
)
DN-1 (= D15  
)
)
14-bit conversion in 2's  
compliment format  
DN-1 (= D13  
DN-3 (= D13  
(1) The device provides register data in the output data word during register read operation.  
(2) When a fixed pattern data is enabled, the device provides a fixed pattern in the output data word.  
For ADS9234R devices with 14-bit resolution, the output data word can be left-aligned or right-aligned by  
configuring the DATA_RIGHT_ALIGNED bit. With left alignment, the device appends zeros in the end of the  
output data word. With right alignment, the device appends MSBs in the beginning of the output data word. 46  
shows the data alignment in the data output word.  
D13  
D12  
D11  
D1  
D0  
0
0
Left Aligned Data with Zeros appended at the end  
D13  
D13  
D13  
D12  
D2  
D1  
D0  
Right Aligned Data with MSBs appended in the beginning (Sign Extension)  
46. Data Alignment for ADS9234R Devices  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
7.6.2 Data Transfer Protocols  
This device features an enhanced-SPI digital interface that allows the host controller to operate at slower SCLK  
speeds and still achieve the required throughput and response time. The enhanced-SPI digital interface module  
offers three options to reduce the SCLK speed required for data transfer:  
Increase the width of the output data bus (dual SDO, quad SDO, or parallel byte)  
Enable double data rate (DDR) transfer  
Wider read cycle by extending the data transfer window (zone 2 transfer)  
These three options can be combined to achieve further reduction in SCLK speed.  
7.6.2.1 Protocols for Reading From the Device  
The protocols for the data-read operation can be broadly classified into five categories:  
1. Legacy, SPI-compatible protocols (SPI-xy-S-SDR)  
2. SPI-compatible protocols with bus width options and single data rate (SPI-xy-D-SDR and SPI-xy-Q-SDR)  
3. SPI-compatible protocols with bus width options and double data rate (SPI-x1-S-DDR, SPI-x1-D-DDR, and  
SPI-x1-Q-DDR)  
4. Clock re-timer (CRT) protocols (CRT-S-SDR, CRT-D-SDR, CRT-Q-SDR, CRT-S-DDR, CRT-D-DDR, and  
CRT-Q-DDR)  
5. Parallel byte protocol (PB-xy-AB-SDR, PB-xy-AA-SDR)  
7.6.2.1.1 Legacy, SPI-Compatible Protocols (SPI-xy-S-SDR)  
The device supports legacy, SPI-compatible protocols with all combinations of clock phase and polarity. In this  
data transfer protocol, the device provides data from ADC_A on SDO-0A and data from ADC_B on SDO-0B. On  
power-up or after reset, the device supports the SPI-00-S-SDR protocol for reading data from the device. 3  
provides the details of different legacy SPI protocols to read data from the device.  
3. SPI-xy-S-SDR Protocols for Reading From Device  
SCLK POLARITY  
(CPOL(2)  
SCLK PHASE  
MSB LAUNCH  
EDGE  
BUS  
WIDTH  
PROTOCOL(1)  
tREAD  
TIMING DIAGRAM  
(5)(6)  
(3)(4)  
)
(CPHA(2)  
)
SPI-00-S-SDR  
SPI-01-S-SDR  
SPI-10-S-SDR  
SPI-11-S-SDR  
Low (CPOL= 0)  
Low (CPOL= 0)  
High (CPOL= 1)  
High (CPOL= 1)  
Rising (CPHA = 0)  
Falling (CPHA = 1)  
Falling (CPHA = 0)  
Rising (CPHA = 1)  
CS falling  
1st SCLK rising  
CS falling  
1
1
1
1
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
47  
48  
47  
48  
1st SCLK falling  
(1) For legacy SPI-compatible protocols, set the SDO_PROTOCOL bits in PROTOCOL_CFG register to 000b.  
(2) Configure the SPI_CPOL and SPI_CPHA bits in the PROTOCOL_CFG register for the desired CPOL and CPHA.  
(3) With SCLK 30 MHz, TI recommends data capture on the launch edge for the next bit.  
(4) With SCLK < 30 MHz, data can be captured either on the same edge as the SCLK phase or on the launch edge for the next bit.  
(5) tREAD is the read time for reading the 16-bit output data word. k = (tSU_CSCK + tHT_CKCS).  
(6) For ADS9234R devices, the read time for reading the 14-bit output data word is [13.5 × tCLK + k].  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
47 and 48 show timing diagrams for the SPI-00-S-SDR, SPI-10-SDR and SPI-01-S-SDR, SPI-11-SDR  
protocols, respectively.  
CS  
CS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
D0  
D0  
A
SDO-0A  
SDO-0B  
DN-1  
DN-2  
DN-3  
A
B
A
B
A
B
SDO-0A  
SDO-0B  
DN-1  
DN-2  
DN-3  
D0  
D0  
A
B
A
B
A
B
A
B
DN-1  
DN-2  
DN-3  
B
DN-1  
DN-2  
DN-3  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
48. SPI-01-S-SDR and SPI-11-S-SDR Protocols  
47. SPI-00-S-SDR and SPI-10-S-SDR Protocols  
7.6.2.1.2 SPI-Compatible Protocols With Bus Width Options and Single Data Rate (SPI-xy-D-SDR and SPI-xy-Q-SDR)  
In this data transfer protocol, the bus width of reading data from each ADC can be increased to two SDOs or four  
SDOs. All combinations of clock phase and polarity are supported. The read time required for reading the output  
data word reduces with increases in bus width and, thus, tCYCLE for zone 1 transfer reduces. The SDOs that are  
not enabled by the BUS_WIDTH register are set to tri-state. 4 provides the details of different SPI protocols  
with bus width options and single data rate to read data from the device.  
4. SPI-xy-D-SDR and SPI-xy-Q-SDR Protocols for Reading From Device  
SCLK POLARITY  
(CPOL)(2)  
SCLK PHASE  
(CPHA)(3)(4)  
MSB LAUNCH  
EDGE  
BUS  
PROTOCOL(1)  
tREAD  
TIMING DIAGRAM  
(6)(7)  
WIDTH(5)  
SPI-00-D-SDR  
SPI-01-D-SDR  
SPI-10-D-SDR  
SPI-11-D-SDR  
SPI-00-Q-SDR  
SPI-01-D-SDR  
SPI-10-D-SDR  
SPI-11-D-SDR  
Low (CPOL = 0)  
Low (CPOL = 0)  
High (CPOL = 1)  
High (CPOL = 1)  
Low (CPOL = 0)  
Low (CPOL = 0)  
High (CPOL = 1)  
High (CPOL = 1)  
Rising (CPHA = 0)  
Falling (CPHA = 1)  
Falling (CPHA = 0)  
Rising (CPHA = 1)  
Rising (CPHA = 0)  
Falling (CPHA = 1)  
Falling (CPHA = 0)  
Rising (CPHA = 1)  
CS falling  
1st SCLK rising  
CS falling  
2
2
2
2
4
4
4
4
[7.5 × tCLK + k]  
[7.5 × tCLK + k]  
[7.5 × tCLK + k]  
[7.5 × tCLK + k]  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
49  
50  
49  
50  
51  
52  
51  
52  
1st SCLK falling  
CS falling  
1st SCLK rising  
CS falling  
1st SCLK falling  
(1) For SPI-compatible protocols with bus width options and SDR, set the SDO_PROTOCOL bits in the PROTOCOL_CFG register to 000b.  
(2) Configure the SPI_CPOL and SPI_CPHA bits in the PROTOCOL_CFG register for the desired CPOL and CPHA.  
(3) With SCLK 30 MHz, TI recommends data capture on the launch edge for the next bit.  
(4) With SCLK < 30 MHz, data can be captured either on the same edge as the SCLK phase or on the launch edge for the next bit.  
(5) For configuring the bus width, configure the BUS_WIDTH register.  
(6) tREAD is the read time for reading the 16-bit output data word. k = (tSU_CSCK + tHT_CKCS).  
(7) For ADS9234R devices, the read time for reading the 14-bit output data word is [6.5 × tCLK + k] for a bus width of 2 and [3.5 × tCLK + k]  
for a bus width of 4.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
49, 50, 51, and 52 show timing diagrams for the SPI-00-D-SDR and SPI-10-D-SDR, SPI-01-D-SDR  
and SPI-11-D-SDR, SPI-00-Q-SDR and SPI-10-Q-SDR, and SPI-01-Q-SDR and SPI-11-Q-SDR protocols,  
respectively.  
CS  
CS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
D1  
D0  
SDO-1A  
SDO-0A  
DN-1  
DN-3  
DN-5  
A
A
D1A  
A
A
SDO-1A  
SDO-0A  
DN-1  
DN-3  
DN-5  
A
A
A
A
A
A
D0  
A
DN-2  
DN-4  
DN-6  
A
A
DN-2  
DN-4  
DN-6  
A
A
SDO-1B  
SDO-0B  
DN-1  
DN-2  
DN-3  
DN-4  
DN-5  
DN-6  
D1  
B
B
B
B
B
B
B
SDO-1B  
SDO-0B  
DN-1  
DN-3  
DN-5  
D1  
D0  
B
B
B
B
B
B
B
B
D0  
B
DN-2  
DN-4  
DN-6  
End of  
Frame  
Launch of  
2nd Bit  
End of  
Frame  
Launch of  
1st Bit  
Launch of  
1st Bit  
Launch of  
2nd Bit  
49. SPI-00-D-SDR and SPI-10-D-SDR Protocols  
50. SPI-01-D-SDR and SPI-11-D-SDR Protocols  
CS  
CS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
SDO-3A  
SDO-2A  
SDO-1A  
SDO-0A  
DN-5  
DN-9  
D3  
A
DN-1  
A
A
A
D3  
D2  
SDO-3A  
SDO-2A  
SDO-1A  
SDO-0A  
DN-9  
DN-1  
DN-2  
DN-3  
DN-4  
DN-5  
DN-6  
DN-7  
DN-8  
A
A
A
A
A
A
DN-6  
DN-10  
D2  
A
DN-2  
A
A
A
DN-10  
A
A
DN-7  
DN-12  
D1  
A
DN-3  
A
A
A
D1A  
DN-11  
A
A
A
A
DN-8  
DN-13  
D0  
A
DN-4  
A
A
A
D0  
A
DN-12  
A
A
SDO-3B  
SDO-2B  
SDO-1B  
SDO-0B  
DN-5  
DN-9  
B
D3  
B
DN-1  
B
B
SDO-3B  
SDO-2B  
DN-1  
DN-5  
DN-9  
B
D3  
D2  
B
B
B
B
B
B
DN-6  
DN-10  
D2  
B
DN-2  
B
B
B
DN-2  
DN-5  
DN-10  
B
DN-7  
DN-12  
D1  
B
DN-3  
B
B
B
SDO-1B  
SDO-0B  
DN-3  
DN-7  
DN-11  
D1  
D0  
B
B
B
B
B
B
B
B
DN-8  
DN-13  
D0  
B
DN-4  
B
B
B
DN-4  
DN-8  
DN-12  
Launch of  
1st Bit  
End of  
Frame  
Launch of  
2nd Bit  
Launch of  
2nd Bit  
Launch of  
1st Bit  
End of  
Frame  
52. SPI-01-Q-SDR and SPI-11-Q-SDR Protocols  
51. SPI-00-Q-SDR and SPI-10-Q-SDR Protocols  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6.2.1.3 SPI-Compatible Protocols With Bus Width Options and Double Data Rate (SPI-x1-S-DDR, SPI-x1-D-DDR,  
SPI-x1-Q-DDR)  
In this data transfer protocol, the data rate for data transfer can be increased to double data rate. With double  
data rate, the device launches data on both edges (rising and falling) of the SCLK. The device supports both  
polarities of the clock and only one phase of clock (CPHA = 1). The read time required for reading the output  
data word reduces with increases in bus width and data rate. The SDOs that are not enabled by the  
BUS_WIDTH register are set to tri-state. 5 provides the details of different SPI protocols with bus width  
options and double data rate to read data from the device.  
5. SPI-x1-S-DDR, SPI-x1-D-DDR, and SPI-x1-Q-DDR Protocols for Reading From Device  
SCLK POLARITY  
(CPOL)(2)  
MSB LAUNCH  
EDGE  
BUS  
(4)(5)  
PROTOCOL(1)  
SCLK PHASE(2)  
tREAD  
TIMING DIAGRAM  
WIDTH(3)  
SPI-01-S-DDR  
SPI-11-S-DDR  
SPI-01-D-DDR  
SPI-11-D-DDR  
SPI-01-Q-DDR  
SPI-11-Q-DDR  
Low (CPOL = 0)  
High (CPOL = 1)  
Low (CPOL = 0)  
High (CPOL = 1)  
Low (CPOL = 0)  
High (CPOL = 1)  
Falling (CPHA = 1)  
Rising (CPHA = 1)  
Falling (CPHA = 1)  
Rising (CPHA = 1)  
Falling (CPHA = 1)  
Rising (CPHA = 1)  
1st SCLK rising  
1st SCLK falling  
1st SCLK rising  
1st SCLK falling  
1st SCLK rising  
1st SCLK falling  
1
1
2
2
4
4
[9 × tCLK + k]  
[9 × tCLK + k]  
[5 × tCLK + k]  
[5 × tCLK + k]  
[3 × tCLK + k]  
[3 × tCLK + k]  
53  
53  
54  
54  
55  
55  
(1) For SPI-compatible protocols with bus width options and DDR, set the SDO_PROTOCOL bits in the PROTOCOL_CFG register to 001b.  
(2) Configure the SPI_CPOL bits in the PROTOCOL_CFG register for the desired CPOL. The device supports CPHA = 1 only for SPI-  
compatible protocols with bus width options and DDR.  
(3) For configuring the bus width, configure the BUS_WIDTH register.  
(4) tREAD is the read time for reading the 16-bit output data word. k = (tSU_CSCK + tHT_CKCS).  
(5) For ADS9234R devices, the read time for reading the 14-bit output data word is [7.5 × tCLK + k] for a bus width of 1, [3.5 × tCLK + k] for a  
bus width of 2, and [3 × tCLK + k] for a bus width of 4.  
53, 54, and 55 illustrate timing diagrams for the SPI-01-S-DDR and SPI-11-S-DDR, SPI-01-D-DDR and  
SPI-11-D-DDR, and SPI-01-Q-DDR and SPI-11-Q-DDR protocols, respectively.  
CS  
CS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
SDO-1A  
DN-5  
D3  
DN-1  
A
A
A
DN-3  
D1  
A
A
A
SDO-0A  
DN-3  
D1  
A
DN-1  
A
A
DN-2  
D0  
A
A
SDO-0A  
SDO-1B  
DN-6  
D2  
D3  
D2  
DN-2  
A
B
A
B
B
A
B
DN-4  
DN-3  
DN-4  
D0  
D1  
A
B
DN-5  
DN-1  
SDO-0B  
B
DN-3  
D0  
B
DN-1  
B
D1  
B
B
DN-2  
B
SDO-0B  
DN-6  
D0  
DN-2  
B
B
B
B
End of  
Frame  
Launch of  
2nd Bit  
Launch of  
1st Bit  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
53. SPI-01-S-DDR and SPI-11-S-DDR Protocols  
54. SPI-01-D-DDR and SPI-11-D-DDR Protocols  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
CS  
CPOL = 0  
CPOL = 1  
SCLK  
SDO-3A  
SDO-2A  
SDO-1A  
SDO-0A  
DN-5 A  
DN-6 A  
DN-7 A  
DN-8 A  
DN-9 A  
D3 A  
D2 A  
D1 A  
D0 A  
DN-1 A  
DN-2 A  
DN-3 A  
DN-4 A  
DN-10 A  
DN-12 A  
DN-13 A  
SDO-3B  
SDO-2B  
SDO-1B  
SDO-0B  
DN-5 B  
DN-6 B  
DN-7 B  
DN-8 B  
DN-9 B  
D3 B  
D2 B  
D1 B  
D0 B  
DN-1 B  
DN-2 B  
DN-3 B  
DN-4 B  
DN-10 B  
DN-12 B  
DN-13 B  
Launch of  
1st Bit  
End of  
Frame  
Launch of  
2nd Bit  
55. SPI-01-Q-DDR and SPI-11-Q-DDR Protocols  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6.2.1.4 Clock Re-Timer (CRT) Protocols (CRT-S-SDR, CRT-D-SDR, CRT-Q-SDR, CRT-S-DDR, CRT-D-DDR, CRT-Q-  
DDR)  
In clock re-timer (CRT) protocols, the device sends out data on the SDO lines with a synchronized clock on the  
STROBE line. The data are synchronized to the rising edges of the STROBE pulses. For CRT protocols with a  
single data rate, the host can capture data on the falling edges of the STROBE pulses. For double data rate, the  
host must capture data on both edges of STROBE. The clock source for the STROBE output can be selected as  
an external clock (SCLK) or an internal clock by configuring the CRT_CLK_SELECT bits in the CRT_CFG  
register. For reading data from the device, SCLK is only required when the STROBE output is selected as an  
external clock. The SDOs that are not enabled by the BUS_WIDTH register are set to tri-state. 6 provides the  
details of different CRT protocols to read data from the device.  
6. CRT-S-SDR, CRT-D-SDR, CRT-Q-SDR, CRT-S-DDR, CRT-D-DDR, and CRT-Q-DDR Protocols for  
Reading From Device  
MSB LAUNCH  
EDGE  
1st STROBE  
rising  
1st STROBE  
rising  
1st STROBE  
rising  
1st STROBE  
rising  
1st STROBE  
rising  
1st STROBE  
rising  
BUS  
(4)  
PROTOCOL(1) SCLK POLARITY(2)  
CAPTURE EDGE  
STROBE falling  
STROBE falling  
STROBE falling  
tREAD  
TIMING DIAGRAM  
WIDTH(3)  
CRT-S-SDR  
CRT-D-SDR  
CRT-Q-SDR  
CRT-S-DDR  
CRT-D-DDR  
CRT-Q-DDR  
Low (CPOL = 0)  
Low (CPOL = 0)  
Low (CPOL = 0)  
Low (CPOL = 0)  
Low (CPOL = 0)  
Low (CPOL = 0)  
1
2
4
1
2
4
[15.5 × tSTROBE + m]  
[7.5 × tSTROBE + m]  
[3.5 × tSTROBE + m]  
[7.5 × tSTROBE + m]  
[3.5× tSTROBE + m]  
[1.5 × tSTROBE + m]  
56  
58  
60  
57  
59  
61  
STROBE rising and  
falling  
STROBE rising and  
falling  
STROBE rising and  
falling  
(1) For CRT protocols with SDR, set the SDO_PROTOCOL bits in the PROTOCOL_CFG register to 010b. For CRT protocols with DDR, set  
the SDO_PROTOCOL bits to 011b in the PROTOCOL_CFG register.  
(2) The device only supports CPOL = 0 for CRT protocols with an external clock.  
(3) For configuring the bus width, configure the BUS_WIDTH register.  
(4) tREAD is the read time for reading the 16-bit output data word. For an external clock m = (tSU_CSCK + tHT_CKCS), and for an internal clock  
m = tD_CS_STROBE  
.
56 through 61 illustrate timing diagrams for the CRT-S-SDR, CRT-S-DDR, CRT-D-SDR, CRT-D-DDR,  
CRT-Q-SDR, and CRT-Q-DDR protocols, respectively.  
CS  
CS  
CPOL = 0  
SCLK  
SCLK  
CPOL = 0  
READY/STROBE  
SDO-0A  
READY/STROBE  
SDO-0A  
DN-2  
D1  
D0  
D0  
DN-3  
DN-1  
A
A
A
A
A
B
D0  
A
DN-1  
DN-2  
DN-3  
A
B
A
B
A
B
SDO-0B  
DN-1  
DN-2  
DN-3  
D1  
B
B
B
B
SDO-0B  
DN-1  
DN-2  
DN-3  
D0  
B
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
Launch of 1st  
Bit  
Launch of  
2nd Bit  
End of  
Frame  
57. CRT-S-DDR Protocol  
56. CRT-S-SDR Protocol  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
CS  
CS  
SCLK  
CPOL = 0  
SCLK  
CPOL = 0  
READY/STROBE  
SDO-1A  
READY/STROBE  
SDO-1A  
DN-5  
D3  
D2  
DN-1  
A
A
A
A
DN-3  
A
A
A
D1  
D0  
A
A
D1  
D0  
A
A
DN-1  
DN-3  
DN-5  
A
A
A
A
A
A
SDO-0A  
DN-2  
DN-4  
DN-6  
A
SDO-0A  
DN-2  
DN-4  
DN-6  
SDO-1B  
SDO-0B  
DN-1  
DN-3  
DN-5  
D3  
D2  
D1  
D0  
B
B
B
B
B
B
B
B
DN-1  
DN-3  
DN-5  
D1  
D0  
B
B
B
B
B
B
B
B
SDO-1B  
SDO-0B  
DN-4  
DN-2  
DN-6  
B
B
DN-2  
DN-4  
DN-6  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
59. CRT-D-DDR Protocol  
58. CRT-D-SDR Protocol  
CS  
CS  
CPOL = 0  
SCLK  
SCLK  
CPOL = 0  
READY/STROBE  
SDO-3A  
READY/STROBE  
SDO-3A  
DN-9  
D3  
D2  
DN-1  
A
A
A
DN-5  
A
A
A
D3  
DN-9  
A
DN-1  
DN-5  
A
A
A
SDO-2A  
DN-2  
DN-6  
DN-10  
A
A
A
D2  
D1  
A
A
DN-2  
DN-6  
DN-10  
A
SDO-2A  
SDO-1A  
A
A
SDO-1A  
SDO-0A  
DN-11  
D1  
DN-3  
DN-7  
DN-11  
DN-3  
A
DN-7  
A
A
A
A
A
A
D0  
A
B
DN-4  
DN-8  
DN-12  
A
A
A
B
DN-4  
DN-8  
DN-12  
D0  
D3  
SDO-0A  
SDO-3B  
A
A
B
A
B
DN-1  
DN-5  
B
DN-9  
SDO-3B  
SDO-2B  
B
B
DN-1  
DN-5  
DN-9  
DN-10  
DN-11  
DN-12  
D3  
D2  
D1  
D0  
B
B
DN-2  
DN-6  
DN-10  
D2  
B
B
B
DN-2  
DN-3  
DN-4  
DN-6  
DN-7  
DN-8  
SDO-2B  
SDO-1B  
B
B
B
B
B
B
B
B
SDO-1B  
SDO-0B  
DN-3  
DN-7  
DN-11  
D1  
D0  
B
B
B
B
B
B
B
B
DN-4  
DN-8  
DN-12  
SDO-0B  
B
B
B
B
End of  
Frame  
Launch of  
1st Bit  
Launch of  
2nd Bit  
Launch of  
1st Bit  
Launch of  
2nd Bit  
End of  
Frame  
60. CRT-Q-SDR Protocol  
61. CRT-Q-DDR Protocol  
For reading data, SCLK is only required when the STROBE output is selected as SCLK (external clock) in the  
CRT_CFG register. However, for configuring registers, SCLK is always required.  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6.2.1.5 Parallel Byte Protocols (PB-xy-AB-SDR, PB-xy-AA-SDR)  
In parallel byte protocols, the device sends out data from each ADC on all SDO lines in a byte format. The  
device supports all combinations of CPOL and CPHA in these protocols. The format of the data byte for these  
protocols can be set by the PARALLEL_MODE_DATA_FORMAT bits in the OUTPUT_DATA_WORD_CFG  
register. The device only supports a single data rate (SDR) in parallel byte protocols. 7 provides the details of  
different parallel byte protocols to read data from the device.  
7. PB-xy-AB-SDR, PB-xy-AA-SDR Protocols for Reading Data  
SCLK POLARITY  
(CPOL)(2)  
SCLK PHASE  
(CPHA)  
MSB LAUNCH  
EDGE  
DATA  
TIMING  
DIAGRAM  
(4)  
PROTOCOL(1)  
tREAD  
FORMAT(3)  
PB-00-AB-SDR  
PB-01-AB-SDR  
PB-10-AB-SDR  
Low (CPOL = 0)  
Low (CPOL = 0)  
High (CPOL = 1)  
Rising (CPHA = 0)  
Falling (CPHA = 1) 1st SCLK rising  
CS falling  
AB  
AB  
AB  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
62  
63  
62  
Falling (CPHA = 1)  
Rising (CPHA = 0)  
Rising (CPHA = 0)  
CS falling  
1st SCLK  
falling  
PB-11-AB-SDR  
High (CPOL = 1)  
AB  
[3.5 × tCLK + k]  
63  
PB-00-AA-SDR  
PB-01-AA-SDR  
PB-10-AA-SDR  
Low (CPOL = 0)  
Low (CPOL = 0)  
High (CPOL = 1)  
CS falling  
AA  
AA  
AA  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
[3.5 × tCLK + k]  
64  
65  
64  
Falling (CPHA = 1) 1st SCLK rising  
Falling (CPHA = 1)  
CS falling  
1st SCLK  
falling  
PB-11-AA-SDR  
High (CPOL = 1)  
Rising (CPHA = 0)  
AA  
[3.5 × tCLK + k]  
65  
(1) For parallel byte protocols, set the SDO_PROTOCOL bits in the PROTOCOL_CFG register to 1xxb.  
(2) Configure the SPI_CPOL and SPI_CPHA bits in the PROTOCOL_CFG register for the desired CPOL and CPHA.  
(3) For selecting the data format for parallel byte protocols, configure the PARALLEL_MODE_DATA_FORMAT bits in the  
OUTPUT_DATA_WORD_CFG register.  
(4) tREAD is the read time for reading the 16-bit output data word. k = (tSU_CSCK + tHT_CKCS).  
62, 63, 64, and 65 illustrate timing diagrams for the PB-00-AB-SDR and PB-10-AB-SDR, protocols,  
PB-01-AB-SDR and PB-11-AB-SDR, PB-00-AA-SDR and PB-10-AA-SDR, and PB-01-AA-SDR and PB-11-AA-  
SDR, respectively.  
CS  
CS  
CPOL = 0  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
CPOL = 1  
SDO-7  
SDO-6  
SDO-5  
SDO-4  
DN-9 A  
DN-1 A  
DN-2 A  
DN-3 A  
DN-4 A  
DN-9 B  
DN-1 B  
SDO-7  
SDO-6  
SDO-5  
SDO-4  
DN-9 A  
DN-1 A  
DN-2 A  
DN-3 A  
DN-4 A  
DN-9 B  
DN-1 B  
DN-10 A  
DN-10 B  
DN-2 B  
DN-10 A  
DN-10 B  
DN-2 B  
DN-11 A  
DN-11 B  
DN-3 B  
DN-11 A  
DN-11 B  
DN-3 B  
DN-12 A  
DN-12 B  
DN-4 B  
DN-12 A  
DN-12 B  
DN-4 B  
SDO-3  
SDO-2  
DN-5 A  
DN-6 A  
DN-7 A  
DN-8 A  
DN-5 B  
D3 B  
D3 A  
D2 A  
D1A  
D0 A  
SDO-3  
SDO-2  
DN-5 A  
DN-6 A  
DN-7 A  
DN-8 A  
DN-5 B  
D3 B  
D3 A  
D2 A  
D1A  
D0 A  
DN-5 B  
D2 B  
DN-5 B  
D2 B  
SDO-1  
SDO-0  
DN-7 B  
D1 B  
SDO-1  
SDO-0  
DN-7 B  
D1 B  
DN-8 B  
D0 B  
DN-8 B  
D0 B  
End of  
Frame  
Launch  
Launch  
Launch  
Launch  
End of  
Frame  
of 1st Bit  
of 2nd Bit  
of 1st Bit  
of 2nd Bit  
62. PB-00-AB-SDR and PB-10-AB-SDR Protocols  
63. PB-01-AB-SDR and PB-11-AB-SDR Protocols  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
CS  
CS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
SDO-7  
SDO-6  
SDO-5  
SDO-4  
DN-9 A  
SDO-7  
SDO-6  
SDO-5  
SDO-4  
DN-1 A  
DN-2 A  
DN-3 A  
DN-4 A  
DN-9 B  
DN-1 A  
DN-2 A  
DN-3 A  
DN-4 A  
DN-9 A  
DN-9 B  
DN-1 B  
DN-1 B  
DN-10 A  
DN-10 A  
DN-10 B  
DN-10 B  
DN-2 B  
DN-2 B  
DN-11 A  
DN-11 A  
DN-11 B  
DN-11 B  
DN-3 B  
DN-3 B  
DN-12 B  
DN-12 A  
DN-12 A  
DN-12 B  
DN-4 B  
DN-4 B  
SDO-3  
SDO-2  
DN-5 A  
DN-6 A  
DN-7 A  
DN-8 A  
D3 B  
SDO-3  
SDO-2  
D3 A  
D2 A  
D1A  
D0 A  
DN-5 B  
DN-5 B  
DN-5 A  
DN-6 A  
DN-7 A  
DN-8 A  
D3 B  
D3 A  
D2 A  
D1A  
D0 A  
D2 B  
DN-5 B  
DN-5 B  
D2 B  
SDO-1  
SDO-0  
D1 B  
DN-7 B  
SDO-1  
SDO-0  
DN-7 B  
D1 B  
D0 B  
DN-8 B  
DN-8 B  
D0 B  
Launch  
Launch  
End of  
Frame  
Launch  
of 1st Bit  
Launch  
End of  
Frame  
of 1st Bit  
of 2nd Bit  
of 2nd Bit  
64. PB-00-AA-SDR and PB-10-AA-SDR Protocols  
65. PB-01-AA-SDR and PB-11-AA-SDR Protocols  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6.2.2 Device Setup  
The enhanced-SPI digital interface and the device configuration registers offer multiple operation modes. This  
section describes how to select the hardware connection topology to meet different system requirements.  
7.6.2.2.1 Single Device: All Enhanced-SPI Options  
66 shows the connections between a host controller and a single device in order to exercise all options  
provided by the enhanced-SPI digital interface.  
DVDD  
Isolation  
(Optional)  
PD/RST  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
TI Device  
SDO-0x  
SDO-1x  
SDO-2x  
SDO-3x  
READY/STROBE  
66. Enhanced-SPI Digital Interface, All Pins  
7.6.2.2.2 Single Device: Minimum Pins for a Standard SPI Interface  
67 shows the minimum-pin interface for applications using a standard SPI protocol.  
DVDD  
Isolation  
(Optional)  
(Optional)  
PD/RST  
(Optional)  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
TI Device  
SDO-0x  
SDO-1x  
SDO-2x  
SDO-3x  
(Optional)  
READY/STROBE  
67. SPI Interface, Minimum Pins  
The CS, SCLK, SDI, and SDO-0x pins constitute a standard SPI port of the host controller. The CONVST pin is  
tied to CS, and the PD/RST pin is tied to DVDD. The SDO-1x, SDO-2x, and SDO-3x pins have no external  
connections. The following features are also available:  
Control the CONVST pin independently to get additional timing flexibility.  
Control PD/RST pin independently to add asynchronous reset functionality.  
Monitor the READY/STROBE pin for additional timing benefits.  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
7.6.2.3 Protocols for Configuring the Device  
The device supports an SPI protocol for writing into the device with all combinations of clock polarity and phase.  
On power-up or after reset, the device supports the SPI-00-S protocol for configuring the device. of As shown in  
8, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI- 01-S, SPI-10-  
S, or SPI-11-S) to write data to the device.  
8. SPI Protocols for Configuring the Device  
SCLK  
SCLK POLARITY  
(2)  
PROTOCOL  
PHASE  
MSB CAPTURE EDGE  
tWRITE  
TIMING DIAGRAM  
(CPOL)(1)  
(CPHA)(1)  
Rising  
(CPHA = 0)  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low (CPOL= 0)  
Low (CPOL= 0)  
High (CPOL= 1)  
High (CPOL= 1)  
1st SCLK rising  
1st SCLK falling  
1st SCLK falling  
1st SCLK rising  
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
[15.5 × tCLK + k]  
68  
69  
68  
69  
Falling  
(CPHA = 1)  
Falling  
(CPHA = 1)  
Rising  
(CPHA = 0)  
(1) Configure the SPI_CPOL and SPI_CPHA bits in the PROTOCOL_CFG register for the desired CPOL and CPHA.  
(2) tWRITE is the write time for writing the 16-bit data word. k = (tSU_CSCK + tHT_CKCS).  
68 and 69 show timing diagrams for the SPI-00-S, SPI-10-S and SPI-01-S, SPI-11-S protocols,  
respectively, for configuring the device.  
CS  
CS  
CPOL = 0  
SCLK  
CPOL = 0  
CPOL = 1  
CPOL = 1  
SCLK  
SDI  
C15  
C14  
C13  
C0  
SDI  
C15  
C14  
C13  
C0  
Capture  
of 1st Bit  
Capture  
of 2nd Bit  
End of  
Frame  
Capture  
of 1st Bit  
Capture  
of 2nd Bit  
End of  
Frame  
69. SPI-01-S and SPI-11-S Protocols for Configuring the  
68. SPI-00-S and SPI-10-S Protocols for Configuring the  
Device  
Device  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6.3 Reading and Writing Registers  
To read a register or write into a register, the host must provide a 16-bit command frame C[15:0] on SDI. A  
command frame consists of an OPCODE[3:0], ADDRESS[3:0], and DATA[7:0]. The host must keep the CONVST  
signal high for reading and writing the registers. 70 shows the command frame. 9 provides the details of  
commands for reading and writing registers.  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
A1  
C8  
A0  
C7  
D7  
C6  
D6  
C5  
D5  
C4  
D4  
C3  
D3  
C2  
D2  
C1  
D1  
C0  
D0  
OP3 OP2 OP1 OP0  
A3  
A2  
OPCODE  
ADDRESS  
DATA  
70. Command Frame C[15:0]  
9. Commands for Reading and Writing Registers  
OPCODE[3:0]  
DESCRIPTION  
ADDRESS[3:0]  
N/A  
DATA[7:0]  
Command for conversion control and reading conversion  
results  
0000  
0001  
0010  
NOP0  
N/A  
4-bit register  
address  
WRITE  
Command for writing registers  
Command for reading registers  
8-bit register data  
00h or FFh  
4-bit register  
address  
READ(1)  
Bits with values of 1 in DATA  
are set and bits with values of 0  
in register data are not  
changed.  
Command for setting specific bits in a register without  
changing the other bits  
4-bit register  
address  
0101  
Set bit  
Bits with values of 1 in DATA  
are cleared and bits with values  
of 0 in register data are not  
changed.  
Command for clearing specific bits in a register without  
changing the other bits  
4-bit register  
address  
0110  
1111  
Clear bit  
NOP1  
Command for conversion control and reading conversion  
results  
N/A  
N/A  
Remain  
ing  
combin  
ations  
These commands are reserved  
and are treated by the device  
as no operation  
xxxxxxxxx  
xxxxxxxxx  
Reserved  
(1) Register data for READ command is provided by device in the next frame.  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
7.7 Register Maps  
7.7.1 ADS92x4R Registers  
Table 10 lists the ADS92x4R registers. All register offset addresses not listed in Table 10 should be considered  
as reserved locations and the register contents should not be modified.  
Table 10. ADS92X4R Registers  
Offset  
Acronym  
Register Name  
Section  
0h  
DEVICE_STATUS  
Device status register  
DEVICE_STATUS  
Register (Offset =  
0h) [reset = 0h]  
1h  
2h  
3h  
4h  
5h  
POWER_DOWN_CFG  
PROTOCOL_CFG  
BUS_WIDTH  
Power down configuration register  
Protocol configuration register  
POWER_DOWN_C  
FG Register (Offset  
= 1h) [reset = 0h]  
PROTOCOL_CFG  
Register (Offset =  
2h) [reset = 0h]  
Bus width configuration register  
Clock re-timer configuration register  
Output data word configuration register  
BUS_WIDTH  
Register (Offset =  
3h) [reset = 0h]  
CRT_CFG  
CRT_CFG Register  
(Offset = 4h) [reset  
= 0h]  
OUTPUT_DATA_WORD_CFG  
OUTPUT_DATA_W  
ORD_CFG Register  
(Offset = 5h) [reset  
= 0h]  
6h  
7h  
DATA_AVG_CFG  
REFBY2_OFFSET  
Data averaging configuration register  
REFby2 offset selection register  
DATA_AVG_CFG  
Register (Offset =  
6h) [reset = 0h]  
REFBY2_OFFSET  
Register (Offset =  
7h) [reset = 0h]  
Complex bit access types are encoded to fit into small table cells. Table 11 shows the codes that are used for  
access types in this section.  
Table 11. ADS92x4R Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
Copyright © 2018–2019, Texas Instruments Incorporated  
43  
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.7.1.1 DEVICE_STATUS Register (Offset = 0h) [reset = 0h]  
DEVICE_STATUS is shown in Figure 71 and described in Table 12.  
Return to the Summary Table.  
Device status register  
Figure 71. DEVICE_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
ZONE2_TRAN AVG_ERROR  
SFER  
RESERVED  
R-00000b  
R/W-0b  
R/W-0b  
R-0b  
Table 12. DEVICE_STATUS Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00000b  
0b  
Description  
7-3  
2
RESERVED  
Reserved bits. Do not write to these bits. Read returns 00000b  
ZONE2_TRANSFER  
R/W  
This bit is set when the device operates in zone 2 transfer mode with  
a wide read cycle. This bit is a sticky bit. Write 1 to this bit to clear.  
1
0
AVG_ERROR  
RESERVED  
R/W  
R
0b  
0b  
This bit is set when the device receives a falling edge of CS before  
the current averaging operation is complete. This bit is a sticky bit.  
Write 1 to this bit to clear.  
Reserved bits. Do not write to this bit. Read returns 0b.  
7.7.1.2 POWER_DOWN_CFG Register (Offset = 1h) [reset = 0h]  
POWER_DOWN_CFG is shown in Figure 72 and described in Table 13.  
Return to the Summary Table.  
Power down configuration register  
Figure 72. POWER_DOWN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
PD_REFBY2  
R/W-0b  
RESERVED  
R-0b  
PD_ADCB  
R/W-0b  
RESERVED  
R-0b  
PD_ADCA  
R/W-0b  
PD_REF  
R/W-0b  
Table 13. POWER_DOWN_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00b  
0b  
Description  
7-6  
5
RESERVED  
PD_REFBY2  
Reserved bits. Do not write to these bits. Read returns 00b.  
This bit powers down REFby2 output.  
R/W  
0b = _1 : REFby2 is not powered down.  
1b = _2 : REFby2 is powered down.  
4
3
RESERVED  
PD_ADCB  
R
0b  
0b  
Reserved bits. Do not write to this bit. Read returns 0b.  
This bit powers down ADC_B and REFBUF_B.  
0b = _1 : ADC_B and REFBUF_B are not powered down.  
1b = _2 : ADC_B and REFBUF_B are powered down.  
R/W  
2
1
RESERVED  
PD_ADCA  
R
0b  
0b  
R/W  
This bit powers down ADC_A and REFBUF_A.  
0b = _1 : ADC_A and REFBUF_A are not powered down.  
1b = _2 : ADC_A and REFBUF_A are powered down.  
This bit powers down ADC's internal reference.  
0
PD_REF  
R/W  
0b  
0b = _1 : ADC internal reference is not powered down.  
1b = _2 : ADC internal reference is powered down.  
44  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
7.7.1.3 PROTOCOL_CFG Register (Offset = 2h) [reset = 0h]  
PROTOCOL_CFG is shown in Figure 73 and described in Table 14.  
Return to the Summary Table.  
Protocol configuration register  
Figure 73. PROTOCOL_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
SDO_PROTOCOL[2:0]  
R/W-000b  
RESERVED  
R-00b  
SPI_CPOL  
R/W-0b  
SPI_CPHA  
R/W-0b  
Table 14. PROTOCOL_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0b  
Description  
Reserved bit. Do not write to this bit. Read returns 0b.  
RESERVED  
6-4  
SDO_PROTOCOL[2:0]  
R/W  
000b  
These bits set the protocol for reading data from the device.  
000b = _1 : Legacy, SPI compatible protocols (SPI-xy-S-SDR); SPI  
compatible protocols with bus width options and SDR (SPI-xy-D-  
SDR and SPI-xy-Q-SDR) protocols.  
001b = _2 : SPI compatible protocols with bus width options and  
DDR (SPI-x1-S-DDR, SPI-x1-D-DDR, SPI-x1-Q-DDR) protocols.  
010b = _3 : Clock re-timer (CRT) protocols with SDR (CRT-S-SDR,  
CRT-D-SDR, CRT-Q-SDR).  
011b = _4 : CRT protocols with DDR (CRT-S-DDR, CRT-D-DDR,  
CRT-Q-DDR).  
100b = _5 : Parallel byte protocol. Writing 1xx enables parallel byte  
protocol.  
101b = _6 : Parallel byte protocol. Writing 1xx enables parallel byte  
protocol.  
110b = _7 : Parallel byte protocol. Writing 1xx enables parallel byte  
protocol.  
111b = _8 : Parallel byte protocol. Writing 1xx enables parallel byte  
protocol.  
3-2  
1
RESERVED  
SPI_CPOL  
R
00b  
0b  
Reserved bits. Do not write to these bits. Read returns 00b.  
R/W  
This bit sets the clock polarity for reading data from the device and  
writing data into the device.  
0b = _1 : CPOL = 0  
1b = _2 : CPOL = 1  
0
SPI_CPHA  
R/W  
0b  
This bit sets the clock phase for reading data from the device and  
writing data into the device.  
0b = _1 : CPHA = 0  
1b = _2 : CPHA = 1  
7.7.1.4 BUS_WIDTH Register (Offset = 3h) [reset = 0h]  
BUS_WIDTH is shown in Figure 74 and described in Table 15.  
Return to the Summary Table.  
Bus width configuration register  
Figure 74. BUS_WIDTH Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
SDO_WIDTH[1:0]  
R/W-00b  
Copyright © 2018–2019, Texas Instruments Incorporated  
45  
 
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Table 15. BUS_WIDTH Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
000000b  
00b  
Description  
RESERVED  
SDO_WIDTH[1:0]  
Reserved bits. Do not write to these bits. Read returns 000000b.  
R/W  
These bits set the number of SDO lines for reading data from the  
device. If the device is configured for parallel byte protocol, then  
SDO_WIDTH is ignored and the device sends data over all eight  
SDO lines as per the parallel byte protocol.  
00b = _1 : One SDO per ADC.  
01b = _2 : One SDO per ADC.  
10b = _3 : Dual SDO per ADC.  
11b = _4 : Quad SDO per ADC.  
7.7.1.5 CRT_CFG Register (Offset = 4h) [reset = 0h]  
CRT_CFG is shown in Figure 75 and described in Table 16.  
Return to the Summary Table.  
Clock re-timer configuration register  
Figure 75. CRT_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CRT_CLK_SELECT[1:0]  
R/W-00b  
Table 16. CRT_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000000b  
00b  
Description  
7-2  
1-0  
RESERVED  
Reserved bits. Do not write to these bits. Read returns 000000b.  
CRT_CLK_SELECT[1:0]  
R/W  
These bits select the clock source for the strobe output for CRT  
protocols.  
00b = _1 : Serial clock (SCLK) is used for STROBE output.  
01b = _2 : INTCLK is used for the STROBE output.  
10b = _3 : INTCLK/2 is used for the STROBE output.  
11b = _4 : INTCLK/4 is used for the STROBE output.  
7.7.1.6 OUTPUT_DATA_WORD_CFG Register (Offset = 5h) [reset = 0h]  
OUTPUT_DATA_WORD_CFG is shown in Figure 76 and described in Table 17.  
Return to the Summary Table.  
Output data word configuration register  
Figure 76. OUTPUT_DATA_WORD_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
READY_MASK PARALLEL_M  
ODE_DATA_F  
RESERVED  
R-00b  
FIXED_PATTE DATA_RIGHT_  
RN_DATA  
ALIGNED  
ORMAT  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
46  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
Table 17. OUTPUT_DATA_WORD_CFG Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R
Reset  
00b  
0b  
Description  
RESERVED  
READY_MASK  
Reserved bits. Do not write to these bits. Read returns 00b.  
R/W  
This bit masks the READY output. The STROBE output is provided  
in CRT protocols even if READY_MASK is set to 1. TI recommends  
masking the READY output for the Conversion Control and Data  
Transfer Frame With Wide Read Cycle (Zone 2 Transfer) section.  
0b = _1 : Does not mask the READY output.  
1b = _2 : Masks the READY output.  
4
PARALLEL_MODE_DATA R/W  
_FORMAT  
0b  
This bit selects the format for the output data word in the parallel  
byte protocol.  
0b = _1 : Data format AA: byte from ADC_A followed by byte from  
ADC_A (PB-xy-AA-zDR protocol).  
1b = _2 : Data format AB: byte from ADC_A followed by byte from  
ADC_B (PB-xy-AB-zDR protocol).  
3-2  
1
RESERVED  
R
00b  
0b  
Reserved bits. Do not write to these bits. Read returns 00b.  
This bit enables a fixed pattern in the output data word.  
FIXED_PATTERN_DATA R/W  
0b = _1 : Device provides the conversion results from the register  
data in the output word.  
1b = _2 : Device provides a fixed pattern (A55AA55Ah) in the output  
data word.  
0
DATA_RIGHT_ALIGNED R/W  
0b  
This bit enables the right alignment in the output data word for  
ADS9234R device.  
0b = _1 : Data are left-aligned in the output data word.  
1b = _2 : Data are right-aligned in the output data word.  
7.7.1.7 DATA_AVG_CFG Register (Offset = 6h) [reset = 0h]  
DATA_AVG_CFG is shown in Figure 77 and described in Table 18.  
Return to the Summary Table.  
Data averaging configuration register  
Figure 77. DATA_AVG_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
EN_DATA_AVG[1:0]  
R/W-00b  
Table 18. DATA_AVG_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000000b  
00b  
Description  
7-2  
1-0  
RESERVED  
Reserved bits. Do not write to these bits. Read returns 000000b.  
These bits enable averaging of conversion results.  
00b = _1 : No averaging.  
EN_DATA_AVG[1:0]  
R/W  
01b = _2 : No averaging.  
10b = _3 : Enables averaging of two conversion results.  
11b = _4 : Enables averaging of four conversion results.  
7.7.1.8 REFBY2_OFFSET Register (Offset = 7h) [reset = 0h]  
REFBY2_OFFSET is shown in Figure 78 and described in Table 19.  
Return to the Summary Table.  
REFby2 offset selection register  
Copyright © 2018–2019, Texas Instruments Incorporated  
47  
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Figure 78. REFBY2_OFFSET Register  
7
6
5
4
3
2
1
0
RESERVED  
EN_REFBY2_  
OFFSET  
R-0000000b  
R/W-0b  
Table 19. REFBY2_OFFSET Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
Reserved bits. Do not write to these bits. Read returns 0000000b.  
This bit enables the offset for the REFby2 output.  
EN_REFBY2_OFFSET  
R/W  
0b = _1 : Offset for the REFby2 output is disabled.  
1b = _2 : Offset for the REFby2 output is enabled and the REFby2  
output increases by 100 mV.  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This section presents general principles for designing these circuits, followed by an application circuit designed  
using the ADS92x4R.  
8.1.1 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a charge  
kickback filter. The amplifier is used for signal conditioning of the input signal and the low output impedance of  
the amplifier provides a buffer between the signal source and the switched-capacitor inputs of the ADC. The  
charge kickback filter helps attenuate the sampling charge injection from the switched-capacitor input stage of  
the ADC, and band-limits the wideband noise contributed by the front-end circuit. Careful design of the front-end  
circuit is critical to meet the linearity and noise performance of the ADS92x4R.  
8.1.1.1 Charge-Kickback Filter  
The charge-kickback filter is an RC filter at the input pins of the ADC that filters the broadband noise from the  
front-end drive circuitry, and attenuates the sampling charge injection from the switched-capacitor input stage of  
the ADC. A filter capacitor, CFLT (as shown in 79), is connected from each input pin of the ADC to the ground.  
This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the  
internal sample-and-hold capacitors during the acquisition process. Generally, the value of this capacitor must be  
at least 20 times the specified value of the ADC sampling capacitance. For the ADS92x4R, the input sampling  
capacitance is equal to 16 pF; therefore, for optimal performance, keep CFLT greater than 320 pF. This capacitor  
must be a C0G- or NP0-type. The type of dielectric used in C0G or NP0 ceramic capacitors provides the most  
stable electrical properties over voltage, frequency, and temperature changes.  
RFLT  
CFLT  
Device  
RFLT  
CFLT  
79. Charge Kickback Filter  
Driving capacitive loads can degrade the phase margin of the input amplifier, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT helps with amplifier stability, but adds distortion as a result of interactions  
with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal  
frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability of the  
driver amplifier and distortion performance of the design. Always verify the stability and settling behavior of the  
driving amplifier and charge-kickback filter by TINA-TI™ SPICE simulation. Keep the tolerance of the selected  
resistors less than 1% to keep the inputs balanced.  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance  
goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the ADC sample-and-hold capacitor and the  
RC filter (the charge-kickback filter) at the inputs of the ADC. Higher bandwidth amplifiers offer faster settling  
times when driving the capacitive load of the charge-kickback filter, thus reducing harmonic distortion at  
higher input frequencies. 公式 4 describes the unity gain bandwidth (UGB) of the amplifier to be selected in  
order to maintain the overall stability of the input driver circuit:  
«
÷
1
UGB í 4 ì  
2p  
ì RFLT ì CFLT  
(4)  
Distortion. Both the ADC and the input driver introduce distortion in a data acquisition block. 公式 5 shows  
that to make sure that the distortion performance of the data acquisition system is not limited by the front-end  
circuit, the distortion of the input driver must be at least 10 dB less than the distortion of the ADC:  
THDAMP Ç THDADC - 10  
(
dB  
)
(5)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to make sure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. 公式 6 explains that noise from the input driver circuit  
is band-limited by designing a low cutoff frequency, charge-kickback filter:  
2
SNR  
(
dB  
)
÷
V
÷
-
1
_ AMP_PP  
p
2
1
5
VREF  
2
20  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
f
«
NG ì 2 ì  
÷
÷
6.6  
«
where  
V1 / f_AMP_PP is the peak-to-peak flicker noise in μV  
en_RMS is the amplifier broadband noise density in nV/Hz  
f–3dB is the 3-dB bandwidth of the charge-kickback filter  
NG is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration  
(6)  
Settling Time. For DC signals with fast transients that are common in a multiplexed application, the input  
signal must settle within an 16-bit accuracy at the device inputs during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, amplifier data sheets  
specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired  
16-bit accuracy. Therefore, always verify the settling behavior of the input driver by TINA-TI SPICE  
simulations before selecting the amplifier.  
For additional details on SAR ADC input architecture and SAR ADC driver amplifier design, see the TI Precision  
Labs for ADCs.  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
8.2 Typical Application  
10 µF  
1 µF  
GND  
REFP_A  
5
31  
32 REFP_M  
REFBUF_A  
4
REFOUT  
11  
12  
GND  
1 k  
GND  
Internal  
VREF  
1 µF  
AVDD  
330pF  
1 k  
4ꢀ  
4ꢀ  
AVDD  
AINP_A  
+
-
1
3300 pF  
REFby2  
29  
30  
VOCM  
ADC_A  
THS4551  
1 µF  
1 kꢀ  
2
-
+
AINM_A  
GND  
GND  
330pF  
Serial  
Interface  
GND  
ADS92x4R  
1 kꢀ  
DVDD  
GND  
28  
27  
AVDD  
-
330pF  
1 µF  
1 kꢀ  
4ꢀ  
AINP_B  
8
+
3300 pF  
REFby2  
THS4551  
VOCM  
ADC_B  
1 kꢀ  
4ꢀ  
-
7
+
AINM_B  
GND  
330pF  
Internal  
VREF  
REFBUF_B  
1 kꢀ  
GND  
REFby2  
3
10  
9
REFP_B  
GND  
REFM_B  
4
10 µF  
1 µF  
80. DAQ Circuit for Lowest Distortion and Noise With the ADS92x4R for a 100-kHz Input Signal  
8.2.1 Design Requirements  
The design parameters are listed in 20 for this example.  
20. Design Parameters  
DESIGN PARAMETER  
ADC sample rate  
Analog input signal  
SNR  
EXAMPLE VALUE  
3 MSPS  
100 kHz, 8.192 VPP, fully differential  
> 92 dB  
THD  
< –105dB  
INL  
< ±1 LSB  
Power supply  
5-V analog, 3.3-V digital  
8.2.2 Detailed Design Procedure  
80 shows an application circuit for this example. The device incorporates an internal 2.5-V reference voltage  
and independent matched reference buffers for each ADC. The internal reference output (REFOUT) is decoupled  
with a 1-µF capacitor. The matched reference buffers provide a gain of 1.6384 V/V and generate a high-  
precision, 4.096-V reference voltage for each ADC channel. Decouple the reference buffer outputs (the REFP_A  
and REFP_B pins) with the REFM_A and REFM_B pins, respectively, with 10-µF decoupling capacitors. The  
circuit in 80 shows a fully-differential data acquisition (DAQ) block optimized for low distortion and noise using  
the THS4551 and the ADS92x4R. Both differential ADC inputs are driven using a high-bandwidth, low-distortion,  
fully differential amplifier (FDA) designed in a gain of 1 V/V and an optimal RC charge-kickback filter before going  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
 
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
to the ADC. Generally, the distortion from the input driver must be at least 10 dB less than the ADC distortion.  
Therefore, these circuits use the low-power THS4551 as an input driver that provides exceptional AC  
performance because of its extremely low-distortion and high bandwidth specifications. In addition, the  
components of the charge kickback filter are selected to keep the noise from the front-end circuit low without  
adding distortion. This front-end circuit configuration requires a differential signal at the input of the FDA and  
provides a differential output to drive the ADC inputs. The FDA establishes a fixed common-mode voltage at the  
ADC inputs using the VOCM input pin from the FDA. The ADS92x4R incorporates a REFby2 buffer output for  
setting the common-mode voltage. The ADS92x4R REFby2 output is decoupled using a 1-µF capacitor and  
connected to each FDA VOCM input pin. Each VOCM pin is decoupled using a 0.1-µF capacitor. For a complete  
schematic, see the ADS9224REVM-PDK user's guide located in the ADS9224R SAR analog to digital converter  
evaluation module tool folder.  
8.2.3 Application Curves  
81 provides the typical FFT for the circuit in 80 and 82 provides the typical INL for the circuit in 80.  
2
1.5  
1
0
-30  
-60  
0.5  
0
-90  
-0.5  
-1  
-120  
-150  
-180  
-1.5  
-2  
0
200000  
400000  
600000  
800000  
1000000  
-35000 -25000 -15000 -5000  
5000 15000 25000 35000  
Frequency(Hz)  
Output Code  
D001  
D002  
SNR = 92.8 dB, THD = –105 dB, ENOB = 14.9 bits  
INL = ±0.8 LSB, DNL = ±0.2 LSB  
82. Typical INL  
81. Typical FFT With 100-kHz Signal  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
9 Power Supply Recommendations  
The devices have two separate power supplies: AVDD and DVDD. The reference buffers, internal reference  
voltage, and converter modules (ADC_A and ADC_B) operate on AVDD. The serial interface operates on DVDD.  
AVDD and DVDD can be independently set to any value within their permissible ranges.  
To operate the device with SCLK more than 20-MHz, TI recommends to set the DVDD voltage as: 2.35 V ≤  
DVDD 5.5 V.  
As shown in 83, connect pins 12 and 29 together and place 1-µF decoupling capacitors between pin 12  
(AVDD) and pin11 (GND), and between pin 29 (AVDD) and pin 30 (GND). To decouple the DVDD supply, place  
a 1-µF decoupling capacitor between pin 28 (DVDD) and pin 27 (GND).  
1 µF  
1 µF  
29  
11  
GND  
12  
30  
GND  
AVDD AVDD  
AVDD  
AVDD  
Internal  
VREF  
REFBUF_A  
AVDD  
DVDD  
GND  
28  
27  
AINP_A  
1 µF  
ADC_A  
AINM_A  
AINP_B  
Serial  
Interface  
ADC_B  
AVDD  
AINM_B  
Internal  
VREF  
REFBUF_B  
AVDD  
83. Power-Supply Decoupling  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
 
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
This section provides some layout guidelines for achieving optimum performance with the ADS92x4R.  
10.1.1 Signal Path  
As illustrated in 84, the analog input signals are routed in opposite directions to the digital connections. The  
reference decoupling components are kept away from the switching digital signals. This arrangement prevents  
noise generated by digital switching activity from coupling to sensitive analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1  
nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place  
all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner  
layers to minimize via length to ground.  
10.1.3 Decoupling of Power Supplies  
Place the decoupling capacitors on AVDD and DVDD within 20 mil from the respective pins, and use a 15-mil via  
to ground from each capacitor. Avoid placing vias between any supply pin and the respective decoupling  
capacitor.  
10.1.4 Reference Decoupling  
Dynamic currents are present at the REFP_x and REFM_x pins during the conversion phase, and excellent  
decoupling is required to achieve optimum performance. Place a 10-µF, X7R-grade, ceramic capacitor with at  
least a 10-V rating, as illustrated in 84. Select 0603- or 0805-size capacitors to keep equivalent series  
inductance (ESL) low. Connect the REFM_x pins to the decoupling capacitor before a ground via. Also place  
decoupling capacitors on the REFOUT and REFby2 pins.  
10.1.5 Differential Input Decoupling  
Dynamic currents are also present at the differential analog inputs of the ADS92x4R. Use C0G- or NPO-type  
capacitors to decouple these inputs because with these type of capacitors, capacitance stays almost constant  
over the full input voltage range. Lower-quality capacitors (such as X5R and X7R) have large capacitance  
changes over the full input-voltage range that may cause degradation in the performance of the device.  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
10.2 Layout Example  
CFLT_A_1  
RFLT_A_1  
CDIFF_A  
CREFP_A  
RFLT_A_2  
CAVDD  
CDVDD  
CFLT_A_2  
32  
25  
24  
1
CREFby2  
ADS92x4  
CREFOUT  
17  
16  
8
9
CFLT_B_2  
CREFP_B  
CAVDD  
RFLT_B_2  
RFLT_B_1  
CFLT_B_1  
CDIFF_B  
NOTE: Dimensions are in cm.  
84. Example Layout for the ADS92x4R  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
ADS9224R  
ADS9234R  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
TI 高精度 ADC 实验室  
11.2 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)THS4551 低噪声、高精度的 150MHz 全差分放大器》数据表  
德州仪器 (TI)《在电机控制应用中用于光学编码器的 12 1MSPS 单电源双通道数据采集系统》参考指南  
德州仪器 (TI)REF50xx 低噪声、极低漂移、精密电压基准》数据表  
德州仪器 (TI)OPAx350 高速单电源轨至轨运算放大器 MicroAmplifier 系列》数据表  
德州仪器 (TI)THS452x 极低功耗、负轨输入、轨至轨输出、全差分放大器》数据表  
德州仪器 (TI)ADS9224REVM-PDK 用户指南》  
11.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
21. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
ADS9224R  
ADS9234R  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS9224R  
ADS9234R  
www.ti.com.cn  
ZHCSIJ5C AUGUST 2018REVISED JUNE 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS9224RIRHBR  
ADS9224RIRHBT  
ADS9234RIRHBR  
ADS9234RIRHBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS9224  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
ADS9224  
ADS9234  
ADS9234  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS9234RIRHBR

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9234RIRHBT

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS926

14-Bit, 500kHz, Low-Power Sampling A/D Converters
ETC

ADS929

14-Bit, 2MHz, Low-Power Sampling A/D Converters
ETC

ADS930

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS930

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
TI

ADS930E

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS930E

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
TI

ADS930E/1K

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, PDSO28, SSOP-28
BB

ADS930E/1K

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
TI

ADS930E/1KG4

8-Bit, 30 MSPS ADC SE/Diff Inputs w/ Internal Ref. and Low Power, Powerdown 28-SSOP
TI

ADS930E1K

8-Bit, 30MHz Sampling ANALOG-TO-DIGITAL CONVERTER
TI