AFE4490_14 [TI]

Integrated Analog Front-End for Pulse Oximeters;
AFE4490_14
型号: AFE4490_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Integrated Analog Front-End for Pulse Oximeters

文件: 总69页 (文件大小:1728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
Integrated Analog Front-End for  
Heart Rate Monitors and Low-Cost Pulse Oximeters  
Check for Samples: AFE4400  
1
FEATURES  
APPLICATIONS  
23  
Fully-Integrated Analog Front-End for  
Pulse Oximeter Applications:  
Low-Cost Medical Pulse Oximeter Applications  
Optical HRM  
Flexible Pulse Sequencing and  
Timing Control  
Industrial Photometry Applications  
Transmit:  
DESCRIPTION  
The AFE4400 is a fully-integrated analog front-end  
(AFE) that is ideally suited for pulse oximeter  
applications. The device consists of a low-noise  
receiver channel with an integrated analog-to-digital  
converter (ADC), an LED transmit section, and  
diagnostics for sensor and LED fault detection. The  
AFE4400 is a very configurable timing controller. This  
flexibility enables the user to have complete control of  
the device timing characteristics. To ease clocking  
requirements and provide a low-jitter clock to the  
AFE4400, an oscillator is also integrated that  
functions from an external crystal. The device  
communicates to an external microcontroller or host  
processor using an SPI™ interface.  
Integrated LED Driver  
(H-Bridge or Push/Pull)  
95-dB Dynamic Range  
LED Current:  
Programmable to 50 mA with 8-Bit  
Current Resolution  
Low Power:  
100 µA + Average LED Current  
Programmable LED On-Time  
Independent LED2 and LED1 Current  
Reference  
Receive Channel with High Dynamic Range:  
The AFE4400 is a complete AFE solution packaged  
in a single, compact QFN-40 package (6 mm ×  
13 Noise-Free Bits (0.1 Hz to 5 Hz)  
Low Power: < 670 µA at 3.3-V Supply  
Flexible Receive Sample Time  
6
mm) and is specified over the operating  
temperature range of 0°C to +70°C.  
Supply  
(2.2 V to 3.6 V)  
Flexible Transimpedance Amplifier with  
Programmable LED Settings  
AFE4400  
Integrated Digital Ambient Estimation and  
Subtraction  
RX  
RED  
Amb (RED)  
AFE  
SPI  
SPI Interface  
TIA  
ûADC  
IR  
Integrated Fault Diagnostics:  
Amb (IR)  
Photodiode  
Photodiode and LED Open and  
Short Detection  
Diagnostic  
PD Open or Short  
Timing  
Controller  
Cable Off  
Cable On/Off Detection  
LED Open or Short  
Supplies:  
Rx = 2.0 V to 3.6 V  
Tx = 3.0 V to 3.6 V  
LED  
Current  
Control  
DAC  
LED  
Driver  
LED  
Package: Compact QFN-40 (6 mm × 6 mm)  
Specified Temperature Range: 0°C to +70°C  
Tx  
OSC  
AFE  
Tx Driver  
Supply  
5-V Supply  
32 kHz  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
FAMILY AND ORDERING INFORMATION  
LED DRIVE  
CURRENT  
(mA, max)  
OPERATING  
TEMPERATURE  
RANGE  
LED DRIVE  
CONFIGURATION  
POWER SUPPLY  
(V)  
PRODUCT  
PACKAGE-LEAD  
AFE4400  
QFN-40  
Bridge, push-pull  
50  
3 to 3.6  
0°C to +70°C  
50, 75, 100,  
150, and 200  
AFE4490  
QFN-40  
Bridge, push-pull  
3 to 5.25  
–40°C to +85°C  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
VALUE  
UNIT  
V
AVDD to AVSS  
–0.3 to +7  
DVDD to DGND  
–0.3 to +7  
V
AGND to DGND  
–0.3 to +0.3  
V
Analog input to AVSS  
Digital input to DVDD  
Input current to any pin except supply pins(2)  
AVSS – 0.3 to AVDD + 0.3  
V
DVSS – 0.3 to DVDD + 0.3  
V
±7  
±50  
mA  
mA  
mA  
°C  
°C  
°C  
Momentary  
Input current  
Continuous  
±7  
Operating temperature range  
Storage temperature range, Tstg  
Maximum junction temperature, TJ  
Human body model (HBM)  
0 to +70  
–60 to +150  
+125  
±4000  
±1500  
V
V
JEDEC standard 22, test method A114-C.01, all pins  
Electrostatic discharge  
(ESD) ratings  
Charged device model (CDM)  
JEDEC standard 22, test method C101, all pins  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing beyond the supply rails must be current-limited  
to 10 mA or less.  
THERMAL INFORMATION  
AFE4400  
THERMAL METRIC(1)  
RHA (QFN)  
UNITS  
40 PINS  
35  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
31  
26  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
n/a  
θJCbot  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
RECOMMENDED OPERATING CONDITIONS  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
SUPPLIES  
VALUE  
UNIT  
RX_ANA_SUP  
RX_DIG_SUP  
TX_CTRL_SUP  
AFE analog supply  
2.0 to 3.6  
2.0 to 3.6  
V
V
V
AFE digital supply  
Transmit controller supply  
3.0 to 3.6  
(1) (2)  
[3.0 or (1.4 + VLED + VCABLE  
)
,
H-bridge configuration  
V
whichever is greater] to 5.25  
LED_DRV_SUP  
Transmit LED driver supply  
(1) (2)  
Common anode  
configuration  
[3.0 or (1.3 + VLED + VCABLE)  
,
V
V
whichever is greater] to 5.25  
Difference between LED_DRV_SUP and TX_CTRL_SUP  
–0.3 to +0.3  
TEMPERATURE  
Specified temperature range  
Storage temperature range  
0 to +70  
°C  
°C  
–60 to +150  
(1) VLED refers to the voltage drop across the external LED connected between the TXP and TXM pins (in H-bridge mode) and from the  
TXP and TXM pins to LED_DRV_SUP (in the common anode configuration).  
(2) VCABLE refers to voltage drop across any cable, connector, or any other component in series with the LED.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Minimum and maximum specifications are at TA = –20°C to +85°C. Typical specifications are at +25°C.  
All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PERFORMANCE (Full-Signal Chain)  
RF = 10 kΩ  
RF = 25 kΩ  
RF = 50 kΩ  
RF = 100 kΩ  
RF = 250 kΩ  
RF = 500 kΩ  
RF = 1 MΩ  
50  
20  
10  
5
µA  
µA  
µA  
IIN_FS  
Full-scale input current  
µA  
2
µA  
1
µA  
0.5  
µA  
PRF  
Pulse repetition frequency  
PRF duty cycle  
61  
5000  
25%  
SPS  
DCPRF  
RF = 10 kΩ  
RF = 1 MΩ  
50  
µA  
µA  
IIN_FS  
Full-scale input current  
0.5  
fCM = 50 Hz and 60 Hz, LED1 and LED2 with  
RSERIES = 1 MΩ, RF = 500 kΩ  
80  
dB  
dB  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
fCM = 50 Hz and 60 Hz, LED1-AMB and  
LED2-AMB with RSERIES = 1 MΩ,  
RF = 500 kΩ  
100  
fPS = 50 Hz, 60 Hz at PRF = 200 Hz  
fPS = 50 Hz, 60 Hz at PRF = 600 Hz  
With respect to ripple on LED_DRV_SUP  
With respect to ripple on TX_CTRL_SUP  
100  
106  
75  
dB  
dB  
dB  
dB  
PSRRLED  
PSRRTx  
PSRR, transmit LED driver  
PSRR, transmit control  
60  
With respect to ripple on RX_ANA_SUP and  
RX_DIG_SUP  
PSRRRx  
PSRR, receiver  
60  
dB  
Total integrated noise current, input-referred  
(receiver with transmitter loop back,  
0.1-Hz to 5-Hz bandwidth)  
RF = 100 kΩ, PRF = 625 Hz, duty cycle = 5%  
RF = 500 kΩ, PRF = 625 Hz, duty cycle = 5%  
36  
13  
pARMS  
pARMS  
RF = 100 kΩ, PRF = 625 Hz, duty cycle = 5%  
RF = 500 kΩ, PRF = 625 Hz, duty cycle = 5%  
14.3  
13.5  
Bits  
Bits  
Noise-free bits (receiver with transmitter loop  
back, 0.1-Hz to 5-Hz bandwidth)  
NFB  
RECEIVER FUNCTIONAL BLOCK LEVEL SPECIFICATION  
RF = 500 kΩ, ambient cancellation enabled,  
stage 2 gain = 4, PRF = 1300 Hz,  
LED duty cycle = 25%  
1.4  
5
pARMS  
Total integrated noise current, input referred  
(receiver alone) over 0.1-Hz to 5-Hz bandwidth  
RF = 500 kΩ, ambient cancellation enabled,  
stage 2 gain = 4, PRF = 1300 Hz,  
LED duty cycle = 5%  
pARMS  
I-V TRANSIMPEDANCE AMPLIFIER  
See the Receiver Channel section  
G
Gain  
RF = 10 kΩ to 1 MΩ  
V/µA  
for details  
Gain accuracy  
Feedback resistance  
±7%  
10k, 25k, 50k, 100k, 250k,  
500k, and 1M  
RF  
Ω
Feedback resistor tolerance  
Feedback capacitance  
RF  
CF  
CF  
±20%  
5, 10, 25, 50, 100, and 250  
pF  
Feedback capacitor tolerance  
Full-scale differential output voltage  
Common-mode voltage on input pins  
±20%  
1
V
V
Set internally  
0.9  
Includes equivalent capacitance of  
photodiode, cables, EMI filter, and so forth  
External differential input capacitance  
Shield output voltage, VCM  
10  
1000  
pF  
V
With a 1-kΩ series resistor and a 10-nF  
decoupling capacitor to ground  
0.9  
4
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum specifications are at TA = –20°C to +85°C. Typical specifications are at +25°C.  
All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz,  
unless otherwise noted.  
PARAMETER  
AMBIENT CANCELLATION STAGE  
Gain  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1, 1.414, 2, 2.828, and 4  
V/V  
µA  
Current DAC range  
0
10  
Current DAC step size  
LOW-PASS FILTER  
1
µA  
Low-pass corner frequency  
3-dB attenuation  
500  
0.004  
0.041  
Hz  
dB  
dB  
Duty cycle = 25%  
Duty cycle = 10%  
Pass-band attenuation, 2 Hz to 10 Hz  
ANALOG-TO-DIGITAL CONVERTER  
Resolution  
22  
Bits  
SPS  
V
See the ADC Operation and Averaging  
Module section  
Sample rate  
4 × PRF  
±1.2  
ADC full-scale voltage  
ADC conversion time  
See the ADC Operation and Averaging  
Module section  
50  
2
PRF / 4  
µs  
ADC reset time  
tCLK  
TRANSMITTER  
Selectable, 0 to 50  
Output current range  
(see the LEDCNTRL: LED Control  
Register for details)  
mA  
LED current DAC error  
Output current resolution  
±10%  
8
Bits  
dB  
dB  
dB  
At 5-mA output current  
At 25-mA output current  
At 50-mA output current  
95  
Transmitter noise dynamic range,  
over 0.1-Hz to 5-Hz bandwidth  
95  
95  
At 50-mA output current,  
H-bridge LED driver configuration  
1.4 + (voltage drop across LED,  
cable, and so forth) to 5.25  
V
V
Voltage on TXP (or TXM) pin when low-side  
switch connected to TXP (or TXM) turns on  
At 50-mA output current,  
common anode LED driver configuration  
1.3 + (voltage drop across LED,  
cable, and so forth) to 5.25  
Minimum sample time of LED1 and LED2  
pulses  
50  
µs  
LED_ON = 0  
1
50  
µA  
µA  
LED current DAC leakage current  
LED current DAC linearity  
LED_ON = 1  
Percent of full-scale current  
From zero current to 50 mA  
From 50 mA to zero current  
0.5%  
7
µs  
µs  
Output current settling time  
(with resistive load)  
7
DIAGNOSTICS  
Start of diagnostics after the DIAG_EN  
register bit is set.  
End of diagnostic is indicated by DIAG_END  
going high.  
4k cycles  
of 4-MHz  
clock  
Duration of diagnostics state machine  
16  
Open fault resistance  
Short fault resistance  
> 100  
< 10  
kΩ  
kΩ  
INTERNAL OSCILLATOR  
With an 8-MHz crystal connected to the XIN,  
XOUT pins  
fCLKOUT  
CLKOUT frequency  
4
50%  
200  
MHz  
µs  
CLKOUT duty cycle  
With an 8-MHz crystal connected to the XIN,  
XOUT pins  
Crystal oscillator start-up time  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum specifications are at TA = –20°C to +85°C. Typical specifications are at +25°C.  
All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL CLOCK  
Maximum allowable external clock jitter  
External clock input frequency  
50  
ps  
MHz  
V
±10%  
8
Voltage input high (VIH  
)
0.75 × RX_DIG_SUP  
0.25 × RX_DIG_SUP  
External clock input voltage  
Voltage input low (VIL)  
V
TIMING  
Wake-up time from complete power-down  
Wake-up time from Rx power-down  
Wake-up time from Tx power-down  
Active low RESET pulse duration  
1000  
100  
1000  
1
ms  
µs  
ms  
ms  
tRESET  
DIAG_END pulse duration at the completion of  
diagnostics  
CLKOUT  
cycles  
tDIAGEND  
4
1
CLKOUT  
cycle  
tADCRDY  
ADC_RDY pulse duration  
DIGITAL SIGNAL CHARACTERISTICS  
AFE_PDN, SCLK, SPISIMO, SPISTE,  
RESET  
DVDD +  
0.1  
VIH  
Logic high input voltage  
0.8 DVDD  
> 1.3  
V
AFE_PDN, SCLK, SPISIMO, SPISTE,  
RESET  
VIL  
IIN  
Logic low input voltage  
Logic input current  
–0.1  
–10  
< 0.4 0.2 DVDD  
10  
V
µA  
V
0 V < VDigitalInput < DVDD  
DIAG_END, LED_ALM, PD_ALM, SPISOMI,  
ADC_RDY, CLKOUT  
> (RX_DIG_SUP –  
0.2 V)  
VOH  
Logic high output voltage  
0.9 DVDD  
DIAG_END, LED_ALM, PD_ALM, SPISOMI,  
ADC_RDY, CLKOUT  
VOL  
Logic low output voltage  
< 0.4 0.1 DVDD  
V
SUPPLY CURRENT  
RX_ANA_SUP = 3.0 V, with 8-MHz clock  
running, Rx stage 2 disabled  
0.6  
mA  
Receiver analog supply current  
RX_ANA_SUP = 3.0 V, with 8-MHz clock  
running, Rx stage 2 enabled  
0.7  
0.27  
55  
mA  
mA  
µA  
Receiver digital supply current  
LED driver supply current  
RX_DIG_SUP = 3.0 V  
LED_DRV  
_SUP  
With zero LED current setting  
TX_CTRL  
_SUP  
Transmitter control supply current  
15  
3
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Receiver current only  
(RX_ANA_SUP)  
Receiver current only  
(RX_DIG_SUP)  
3
Complete power-down (using AFE_PDN pin)  
Transmitter current only  
(LED_DRV_SUP)  
1
Transmitter current only  
(TX_CTRL_SUP)  
1
Receiver current only  
(RX_ANA_SUP)  
220  
220  
2
Power-down Rx alone  
Power-down Tx alone  
Receiver current only  
(RX_DIG_SUP)  
Transmitter current only  
(LED_DRV_SUP)  
Transmitter current only  
(TX_CTRL_SUP)  
2
6
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum specifications are at TA = –20°C to +85°C. Typical specifications are at +25°C.  
All specifications are at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER DISSIPATION  
Normal operation (excluding LEDs)  
Power-down  
2.84  
0.1  
mW  
mW  
Quiescent power dissipation  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
1
µA  
Power-down with the  
AFE_PDN pin  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
1
5
µA  
µA  
µA  
0.1  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
1
µA  
Power-down with the  
PDNAFE register bit  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
1
15  
20  
µA  
µA  
µA  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
50  
µA  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
15  
220  
220  
µA  
µA  
µA  
Power-down Rx  
Power-down Tx  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
2
µA  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
2
600  
230  
µA  
µA  
µA  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
55  
µA  
After reset, with 8-MHz  
clock running  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
15  
600  
230  
µA  
µA  
µA  
LED_DRV_SUP current value.  
Does not include LED current.  
LED_DRV_SUP  
55  
µA  
With stage 2 mode  
enabled and 8-MHz clock  
running  
TX_CTRL_SUP  
RX_ANA_SUP  
RX_DIG_SUP  
15  
700  
270  
µA  
µA  
µA  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
PARAMETRIC MEASUREMENT INFORMATION  
SERIAL INTERFACE TIMING  
tCLK  
XIN  
tSTECLK  
SPI STE  
tSPICLK  
tCLKSTEH  
31  
23  
7
0
SCLK  
tCLKSTEL  
tSIMOHD  
tSIMOSU  
A7  
A6  
A1  
A0  
SPI SIMO  
tSOMIHD  
tSOMIPD  
tSOMIPD  
D22  
D17 D16  
D23  
D7  
D6  
D1  
D0  
SPI SOMI  
5}v[š ꢀꢁŒꢂ, can be high or low.  
(1) The SPI_READ register bit must be enabled before attempting a register read.  
(2) Specify the register address whose contents must be read back on A[7:0].  
(3) The AFE outputs the contents of the specified register on the SOMI pin.  
Figure 1. Serial Interface Timing Diagram, Read Operation (1)(2)(3)  
8
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
PARAMETRIC MEASUREMENT INFORMATION (continued)  
tSTECLK  
SPI STE  
31  
23  
0
SCLK  
tSIMOHD  
tSIMOSU  
A7  
A6  
A1  
A0  
D23  
D22  
D1  
D0  
SPI SIMO  
Figure 2. Serial Interface Timing Diagram, Write Operation  
Table 1. Timing Requirements for Figure 1 and Figure 2  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
tCLK  
Clock frequency on XIN pin  
8
tSCLK  
Serial shift clock period  
62.5  
10  
tSTECLK  
tCLKSTEH,L  
tSIMOSU  
tSIMOHD  
tSOMIPD  
tSOMIHD  
STE low to SCLK rising edge, setup time  
SCLK transition to SPI STE high or low  
SIMO data to SCLK rising edge, setup time  
Valid SIMO data after SCLK rising edge, hold time  
SCLK falling edge to valid SOMI, setup time  
SCLK rising edge to invalid data, hold time  
ns  
10  
ns  
10  
ns  
10  
ns  
17  
ns  
0.5  
tSCLK  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
PIN CONFIGURATION  
RHA PACKAGE  
QFN-40  
(Top View)  
40 39 38 37 36 35 34 33 32 31  
INN  
INP  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CLKOUT  
RESET  
RX_ANA_GND  
VCM  
3
ADC_RDY  
SPISTE  
4
DNC(1)  
DNC  
5
SPISIMO  
SPISOMI  
SCLK  
6
BG  
VSS  
7
8
PD_ALM  
LED_ALM  
DIAG_END  
TX_REF  
DNC  
9
10  
11 12 13 14 15 16 17 18 19 20  
(1) DNC = Do not connect.  
10  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
PIN DESCRIPTIONS  
NAME  
NO.  
FUNCTION  
DESCRIPTION  
Output signal that indicates ADC conversion completion.  
Can be connected to the interrupt input pin of an external microcontroller.  
ADC_RDY  
AFE_PDN  
BG  
28  
Digital  
AFE-only power-down input; active low.  
Can be connected to the port pin of an external microcontroller.  
20  
7
Digital  
Reference  
Digital  
Decoupling capacitor for internal band-gap voltage to ground.  
(2.2-µF decoupling capacitor to ground)  
Buffered 4-MHz output clock output.  
Can be connected to the clock input pin of an external microcontroller.  
CLKOUT  
30  
21  
Output signal that indicates completion of diagnostics.  
Can be connected to the port pin of an external microcontroller.  
DIAG_END  
Digital  
DNC(1)  
INN  
5, 6, 10, 34, 35  
Do not connect these pins. Leave as open circuit.  
1
2
Analog  
Analog  
Supply  
Receiver input pin. Connect to photodiode anode.  
INP  
Receiver input pin. Connect to photodiode cathode.  
LED driver ground pin, H-bridge. Connect to common board ground.  
LED_DRV_GND  
12, 13, 16  
LED driver supply pin, H-bridge. Connect to an external power supply capable of supplying the  
large LED current, which is drawn by this supply pin.  
LED_DRV_SUP  
LED_ALM  
PD_ALM  
17, 18  
22  
Supply  
Digital  
Digital  
Digital  
Output signal that indicates an LED cable fault.  
Can be connected to the port pin of an external microcontroller.  
Output signal that indicates a PD sensor or cable fault.  
Can be connected to the port pin of an external microcontroller.  
23  
AFE-only reset input, active low.  
Can be connected to the port pin of an external microcontroller  
RESET  
29  
RX_ANA_GND  
RX_ANA_SUP  
RX_DIG_GND  
RX_DIG_SUP  
SCLK  
3, 36, 40  
33, 39  
19, 32  
31  
Supply  
Supply  
Supply  
Supply  
SPI  
Rx analog ground pin. Connect to common board ground.  
Rx analog supply pin; 0.1-µF decoupling capacitor to ground  
Rx digital ground pin. Connect to common board ground.  
Rx digital supply pin; 0.1-µF decoupling capacitor to ground  
SPI clock pin  
24  
SPISIMO  
26  
SPI  
SPI serial in master out  
SPISOMI  
25  
SPI  
SPI serial out master in  
SPISTE  
27  
SPI  
SPI serial interface enable  
TX_CTRL_SUP  
TX_REF  
11  
Supply  
Reference  
Analog  
Analog  
Transmit control supply pin (0.1-µF decoupling capacitor to ground)  
Tx reference voltage  
9
TXN  
14  
LED driver out B, H-bridge output. Connect to LED.  
LED driver out B, H-bridge output. Connect to LED.  
TXP  
15  
Input common-mode voltage output.  
VCM  
VSS  
4
8
Reference  
Supply  
Connect a series resistor (1 kΩ) and a decoupling capacitor (10 nF) to ground.  
The voltage across the capacitor can be used to shield (guard) the INP, INM traces.  
Substrate ground. Connect to common board ground.  
Crystal oscillator pins.  
XOUT  
37  
Digital  
Connect an external 8-MHz crystal between these pins with the correct load capacitor  
(as specified by vendor) to ground.  
Crystal oscillator pins.  
XIN  
38  
Digital  
Connect an external 8-MHz crystal between these pins with the correct load capacitor  
(as specified by vendor) to ground.  
(1) Leave pins as open circuit. Do not connect.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, RX_ANA_SUP = RX_DIG_SUP = 3.0 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz, unless  
otherwise noted.  
900  
800  
700  
600  
500  
400  
15.00  
14.95  
14.90  
14.85  
14.80  
14.75  
14.70  
14.65  
Stage 2 & Amb Cancel Disabled  
Stage 2 & Amb Cancel Enabled  
PRF = 600Hz  
RX_ANA_SUP = RX_DIG_SUP  
PRF = 600Hz  
Stage 2 Gain = 4  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C001  
RX Supply Voltage (V)  
C002  
TX_CTRL_SUP Voltage (V)  
Figure 3. TOTAL Rx CURRENT vs Rx SUPPLY VOLTAGE  
Figure 4. TX_CTRL_SUP CURRENT vs  
TX_CTRL_SUP VOLTAGE  
48.0  
47.8  
47.6  
47.4  
47.2  
47.0  
46.8  
46.6  
46.4  
600  
500  
400  
300  
200  
100  
0
Duty Cycle = 1%  
Duty Cycle = 5%  
Duty Cycle = 10%  
Duty Cycle = 15%  
Duty Cycle = 20%  
Duty Cycle = 25%  
For each setting RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low  
Pleth currents (0.125uA, 0.25uA & 0.5uA).  
Noise is calculated in 5Hz B/W.  
46.2  
With LED Current = 0mA  
46.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
10  
20  
30  
40  
50  
C003  
C004  
LED_DRV_SUP Voltage (V)  
Pleth Current (A)  
Figure 5. LED_DRV_SUP CURRENT vs  
LED_DRV_SUP VOLTAGE  
Figure 6. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 100 Hz)  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
Duty Cycle = 1%  
Duty Cycle = 5%  
Duty Cycle = 10%  
Duty Cycle = 15%  
Duty Cycle = 20%  
Duty Cycle = 25%  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
For each setting RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low  
Pleth currents (0.125uA, 0.25uA & 0.5uA).  
Noise is calculated in 5Hz B/W.  
For each setting RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low  
Pleth currents (0.125uA, 0.25uA & 0.5uA.)  
Noise is calculated in 5Hz band.  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C005  
Pleth Current (A)  
C006  
Pleth Current (A)  
Figure 7. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 300 Hz)  
Figure 8. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 600 Hz)  
12  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, RX_ANA_SUP = RX_DIG_SUP = 3.0 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz, unless  
otherwise noted.  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
For each setting RF adjustedfor Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for  
Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
Noise is calculated in 5Hz band.  
Duty Cycle = 1%  
Duty Cycle = 5%  
Duty Cycle = 10%  
Duty Cycle = 15%  
Duty Cycle = 20%  
Duty Cycle = 25%  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
For each RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low  
Pleth currents (0.125uA, 0.25uA & 0.5uA).  
Noise is calculated in 5Hz band.  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C007  
C008  
Pleth Current (A)  
Pleth Current (A)  
Figure 9. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 1200 Hz)  
Figure 10. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 2500 Hz)  
1400  
1200  
1000  
800  
600  
400  
200  
0
16  
For each setting RF adjusted for Full-Scale Output.  
For each setting RF adjustedfor Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for  
Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
Noise is calculated in 5Hz band.  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
Amb Cancellation & stage 2 Gain = 4 used for Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
RMS noise is calculated in 5Hz B/W & NFB is calculated using 6.6 ì RMS noise.  
15  
14  
13  
12  
11  
10  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C009  
C010  
Pleth Current (A)  
Pleth Current (A)  
Figure 11. INPUT-REFERRED NOISE CURRENT vs  
PLETH CURRENT (PRF = 5000 Hz)  
Figure 12. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 100 Hz)  
16  
16  
For each setting RF adjusted for Full-Scale Output.  
For each setting RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low pleth currents (0.125uA, 0.25uA & 0.5uA.)  
RMS noise is calculated in 5Hz B/W & NFB is calculated using 6.6 ì RMS noise.  
Amb Cancellation & stage 2 Gain = 4 used for Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
RMS noise is calculated in 5Hz B/W & NFB is calculated using 6.6 ì RMS noise.  
15  
14  
13  
12  
11  
10  
15  
14  
13  
12  
11  
10  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C011  
C012  
Pleth Current (A)  
Pleth Current (A)  
Figure 13. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 300 Hz)  
Figure 14. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 600 Hz)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, RX_ANA_SUP = RX_DIG_SUP = 3.0 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz, unless  
otherwise noted.  
16  
15  
14  
13  
12  
11  
10  
16  
15  
14  
13  
12  
11  
10  
For each setting RF adjusted for Full-Scale Output.  
Amb Cancellation & stage 2 Gain = 4 used for Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
RMS noise is calculated in 5Hz B/W & NFB is calculated using 6.6 ì RMS noise.  
Duty Cycle = 1%  
Duty Cycle = 5%  
Duty Cycle = 10%  
Duty Cycle = 15%  
Duty Cycle = 20%  
Duty Cycle = 25%  
Duty Cycle = 1%  
Duty Cycle = 5%  
Duty Cycle = 10%  
Duty Cycle = 15%  
Duty Cycle = 20%  
Duty Cycle = 25%  
For each setting RF adjusted for Full-  
Scale Output.  
Amb Cancellation & stage 2 Gain = 4  
used for Low Pleth currents (0.125uA,  
0.25uA & 0.5uA).  
RMS noise is calculated in 5Hz B/W &  
NFB is calculated using 6.6 ì RMS noise.  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C013  
C014  
Pleth Current (A)  
Pleth Current, uA  
Figure 15. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 1200 Hz)  
Figure 16. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 2500 Hz)  
16  
120  
110  
100  
90  
15  
14  
13  
12  
11  
10  
80  
Duty cycle 1%  
Duty cycle 5%  
Duty cycle 10%  
Duty cycle 15%  
Duty cycle 20%  
Duty cycle 25%  
For each setting RF adjusted for Full-Scale  
Output.  
Amb Cancellation & stage 2 Gain = 4 used for  
Low Pleth currents (0.125uA, 0.25uA & 0.5uA).  
RMS noise is calculated in 5Hz B/W & NFB is  
calculated using 6.6 ì RMS noise.  
70  
TX_CTRL_SUP = LED_DRV_SUP = 3V  
TX Vref = 0.5V  
60  
50  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
C015  
C016  
Pleth Current, uA  
% of Full-Scale LED Current  
Figure 17. NOISE-FREE BITS vs PLETH CURRENT  
(PRF = 5000 Hz)  
Figure 18. TRANSMITTER DYNAMIC RANGE  
(5-Hz BW)  
500  
Expected + 1%  
Actual DAC Current  
Expected - 1%  
50  
40  
30  
20  
10  
0
400  
300  
200  
100  
0
œ100  
œ200  
œ300  
œ400  
œ500  
TX_REF = 0.5V  
50  
TX Reference Voltage = 0.5V  
0
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
C021  
C022  
TX LED DAC Setting  
TX LED DAC Setting  
Figure 19. TRANSMITTER DAC CURRENT STEP ERROR  
(50 mA, Max)  
Figure 20. TRANSMITTER CURRENT LINEARITY  
(50-mA Range)  
14  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, RX_ANA_SUP = RX_DIG_SUP = 3.0 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz, unless  
otherwise noted.  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
TX_RANGE = 50mA,  
Data from 2326 devices  
TX_RANGE = 50mA,  
Data from 2326 devices  
LED Current (mA)  
LED Current (mA)  
C023  
C024  
Figure 21. LED CURRENT WITH Tx DAC SETTING = 10  
(2 mA)  
Figure 22. LED CURRENT WITH Tx DAC SETTING = 25  
(5 mA)  
400  
400  
TX_RANGE = 50mA,  
TX_RANGE = 50mA,  
Data from 7737 devices  
Data from 2326 devices  
300  
300  
200  
100  
0
200  
100  
0
LED Current (mA)  
LED Current (mA)  
C025  
C026  
Figure 23. LED CURRENT WITH Tx DAC SETTING = 51  
(10 mA)  
Figure 24. LED CURRENT WITH Tx DAC SETTING = 102  
(20 mA)  
800  
700  
600  
400  
TX_RANGE = 50mA,  
Data from 7737 devices  
300  
200  
100  
0
500  
400  
300  
200  
100  
RX_ANA_SUP = 2V (STG2=DIS)  
RX_ANA_SUP = 2V (STG2=EN)  
RX_DIG_SUP=2V  
RX_ANA_SUP = 3.3V (STG2=DIS)  
RX_ANA_SUP = 3.3V (STG2=EN)  
RX_DIG_SUP=3.3V  
100  
300  
500  
700  
900  
1100  
C028  
PRF, Hz  
LED Current (mA)  
C027  
Figure 25. LED CURRENT WITH Tx DAC SETTING = 255  
(50 mA)  
Figure 26. RECEIVER SUPPLIES vs PRF  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, RX_ANA_SUP = RX_DIG_SUP = 3.0 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, and fCLK = 8 MHz, unless  
otherwise noted.  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TX_CTRL_SUP = LED_DRV_SUP = 3V TO 3.6V  
RX_ANA_SUP (STG2DIS)  
RX_ANA_SUP (STG2EN)  
RX_DIG_SUP  
TX_CTRL_SUP  
LED_DRV_SUP  
TX_CTRL_SUP  
LED_DRV_SUP  
0
0.50  
0.75  
1.00  
0
10  
20  
30  
40  
50  
60  
70  
C029  
C030  
TX_VREF, V  
Temperature, C  
Figure 27. TRANSMITTER SUPPLIES vs TX_REF  
Figure 28. POWER SUPPLIES vs TEMPERATURE  
100  
80  
60  
40  
20  
0
PRF = 1200 Hz, Duty cycle = 10%  
1) RF = 100K, Stage 2 & ambient cancellation disabled  
2) RF = 500K, Stage 2 & ambient cancellation enabled with stage 2 gain = 4  
STG2=DIS, 5Hz BW (Note 2)  
STG2=EN, 5Hz BW (Note 3)  
STG2=DIS, 20Hz BW (Note 2)  
STG2=EN, 20Hz BW (Note 3)  
15  
STG2=DIS, 5Hz BW (Note 2)  
STG2=EN, 5Hz BW (Note 3)  
STG2=DIS, 20Hz BW (Note 2)  
STG2=EN, 20Hz BW (Note 3)  
PRF = 1200 Hz, Duty cycle = 10%  
1) RF = 100K, Stage 2 & ambient cancellation disabled  
2) RF = 500K, Stage 2 & ambient cancellation enabled with stage 2 gain = 4  
10  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
C032  
Temperature, C  
C031  
Temperature, C  
Figure 29. INPUT-REFERRED NOISE vs TEMPERATURE  
Figure 30. NOISE-FREE BITS vs TEMPERATURE  
0
œ10  
œ20  
œ30  
œ40  
5% Duty cycle  
25% Duty cycle  
œ50  
1
10  
100  
C033  
Input signal frequency, Hz  
Figure 31. FILTER RESPONSE vs DUTY CYCLE  
16  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
OVERVIEW  
The AFE4400 is a complete analog front-end (AFE) solution targeted for pulse oximeter applications. The device  
consists of a low-noise receiver channel, an LED transmit section, and diagnostics for sensor and LED fault  
detection. To ease clocking requirements and provide the low-jitter clock to the AFE, an oscillator is also  
integrated that functions from an external crystal. The device communicates to an external microcontroller or host  
processor using an SPI interface. Figure 32 shows a detailed block diagram for the AFE4400. The blocks are  
described in more detail in the following sections.  
Device  
Reference  
CF  
SPISTE  
SPISIMO  
SPISOMI  
SCLK  
RF  
SPI  
+
+
+
Digital  
Filter  
INP  
Stage 2  
Gain  
TIA  
Buffer  
4G ADC  
Filter  
CPD  
INN  
RF  
CF  
Photodiode  
Control  
VCM  
Timing  
AFE_PDN  
ADC_RDY  
RESET  
Controller  
CF  
TXN  
TXP  
LED  
LED  
Driver  
LED Current  
Control DAC  
DIAG_END  
LED_ALM  
DNC(1)  
DNC(1)  
DNC(1)  
Diagnostic  
Signals  
Diagnostics  
PD_ALM/ADC Reset  
OSC  
8 MHz  
Figure 32. Detailed Block Diagram  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
RECEIVER CHANNEL  
This section describes the functionality of the receiver channel.  
Receiver Front-End  
The receiver consists of a differential current-to-voltage (I-V) transimpedance amplifier that converts the input  
photodiode current into an appropriate voltage, as shown in Figure 33. The feedback resistor of the amplifier (RF)  
is programmable to support a wide range of photodiode currents. Available RF values include: 1 MΩ, 500 kΩ,  
250 kΩ, 100 kΩ, 50 kΩ, 25 kΩ, and 10 kΩ.  
Rx  
SLED2  
CONVLED2  
LED2  
CF  
RF  
RF  
ADC  
ADC Output Rate  
PRF Sa/sec  
Amb  
LED1  
+
+
Stage 2  
Gain  
SLED2_amb  
SLED1  
+
CONVLED2_amb  
CONVLED1  
TIA  
CPD  
Buffer  
ûADC  
RF  
RF  
CF  
ADC Convert  
ADC Clock  
Amb  
Ambient  
DAC  
CONVLED1_amb  
SLED1_amb  
I-V Amplifier  
Filter  
Buffer  
ADC  
Amb cancellation DAC  
Ambient-cancellation current can be set digitally using SPI interface.  
Figure 33. Receiver Front-End  
The RF amplifier and the feedback capacitor (CF) form a low-pass filter for the input signal current. Always ensure  
that the low-pass filter has sufficiently high bandwidth (as shown by Equation 1) because the input current  
consists of pulses. For this reason, the feedback capacitor is also programmable. Available CF values include:  
5 pF, 10 pF, 25 pF, 50 pF, 100 pF, and 250 pF. Any combination of these capacitors can also be used.  
Rx Sample Time  
RF ´ CF £  
10  
(1)  
The output voltage of the I-V amplifier includes the pleth component (the desired signal) and a component  
resulting from the ambient light leakage; see . The I-V amplifier is followed by the second stage, which consists  
of a current digital-to-analog converter (DAC) that sources the cancellation current and an amplifier that gains up  
the pleth component alone. The amplifier has five programmable gain settings: 1, 1.414, 2, 2.828, and 4. The  
gained-up pleth signal is then low-pass filtered (500-Hz bandwidth) and buffered before driving a 22-bit ADC. The  
current DAC has a cancellation current range of 10 µA with 10 steps (1 µA each). The DAC value can be digitally  
specified with the SPI interface.  
The output of the ambient cancellation amplifier is separated into LED2 and LED1 channels. When LED2 is on,  
the amplifier output is filtered and sampled on capacitor CR. Similarly, the LED1 signal is sampled on the CLED1  
capacitor when LED1 is ON. In between the LED2 and LED1 pulses, the idle amplifier output is sampled to  
estimate the ambient signal on capacitors CLED2_amb and CLED1_amb  
.
The sampling duration is termed the Rx sample time and is programmable for each signal, independently. The  
sampling can start after the I-V amplifier output is stable (to account for LED and cable settling times). The Rx  
sample time is used for all dynamic range calculations; the minimum time supported is 50 µs.  
18  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
A single, 22-bit ADC converts the sampled LED2, LED1, and ambient signals sequentially. Each conversion  
takes 25% of the pulse repetition period and provides a single digital code at the ADC output. As discussed in  
the Receiver Timing section, the conversions are staggered so that the LED2 conversion starts after the end of  
the LED2 sample phase, and so on. This configuration also means that the Rx sample time for each signal is no  
greater than 25% of the pulse repetition period.  
Note that four data streams are available at the ADC output (LED2, LED1, ambient LED2, and ambient LED1) at  
the same rate as the pulse repetition frequency. The ADC is followed by a digital ambient subtraction block that  
additionally outputs the (LED2 – ambient LED2) and (LED1 – ambient LED1) data values.  
Ambient Cancellation Scheme  
The receiver provides digital samples corresponding to ambient duration. The host processor (external to the  
AFE) can use these ambient values to estimate the amount of ambient light leakage. The processor must then  
set the value of the ambient cancellation DAC using the SPI, as shown in Figure 34.  
Device  
Host Processor  
LED2 Data  
ADC Output Rate  
PRF Samples per Second  
Ambient (LED2)  
Data  
Front End  
(LED2 œ Ambient)  
Data  
Ambient Estimation Block  
SPI  
Interface  
Ambient information is available in the host  
processor.  
ADC  
Rx  
SPI  
Digital  
Block  
The processor can:  
* Read ambient data  
LED1 Data  
Ambient (LED1)  
Data  
* Estimate ambient value to  
be cancelled  
* Set the value to be used by the ambient  
cancellation DAC using the SPI of AFE  
(LED1 œ Ambient)  
Data  
Digital Control for Ambient-Cancellation DAC  
Figure 34. Ambient Cancellation Loop (Closed by the Host Processor)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Using the set value, the ambient cancellation stage subtracts the ambient component and gains up only the pleth  
component of the received signal; see Figure 35. The amplifier gain is programmable to 1, 1.5, 2, 3, and 4.  
ICANCEL  
Cf  
Rg  
Rf  
IPLETH + IAMB  
Ri  
Rx  
VDIFF  
Ri  
Rf  
Rg  
ICANCEL  
Cf  
Value of ICANCEL set using  
the SPI interface.  
Figure 35. Front-End (I-V Amplifier and Cancellation Stage)  
The differential output of the second stage is VDIFF, as given by Equation 2:  
RF  
RF  
VDIFF = 2 ´ IPLETH  
´
+ IAMB  
´
- ICANCEL ´ RG  
RI  
RI  
where:  
RI = 100 kΩ,  
IPLETH = photodiode current pleth component,  
IAMB = photodiode current ambient component, and  
ICANCEL = the cancellation current DAC value (as estimated by the host processor).  
(2)  
20  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
Receiver Control Signals  
LED2 sample phase (SLED2): When this signal is high, the amplifier output corresponds to the LED2 on-time.  
The amplifier output is filtered and sampled into capacitor CLED2. To avoid settling effects resulting from the LED  
or cable, program SLED2 to start after the LED turns on. This settling delay is programmable.  
Ambient sample phase (SLED2_amb): When this signal is high, the amplifier output corresponds to the LED2 off-  
time and can be used to estimate the ambient signal (for the LED2 phase). The amplifier output is filtered and  
sampled into capacitor CLED2_amb  
.
LED1 sample phase (SLED1): When this signal is high, the amplifier output corresponds to the LED1 on-time.  
The amplifier output is filtered and sampled into capacitor CLED1. To avoid settling effects resulting from the LED  
or cable, program SLED1 to start after the LED turns on. This settling delay is programmable.  
Ambient sample phase (SLED1_amb): When this signal is high, the amplifier output corresponds to the LED1 off-  
time and can be used to estimate the ambient signal (for the LED1 phase). The amplifier output is filtered and  
sampled into capacitor CLED1_amb  
.
LED2 convert phase (CONVLED2): When this signal is high, the voltage sampled on CLED2 is buffered and  
applied to the ADC for conversion. The conversion time duration is always 25% of the pulse repetition period. At  
the end of the conversion, the ADC provides a single digital code corresponding to the LED2 sample.  
Ambient convert phases (CONVLED2_amb, CONVLED1_amb): When this signal is high, the voltage sampled on  
CLED2_amb (or CLED1_amb) is buffered and applied to the ADC for conversion. The conversion time duration is  
always 25% of the pulse repetition period. At the end of the conversion, the ADC provides a single digital code  
corresponding to the ambient sample.  
LED1 convert phase (CONVLED1): When this signal is high, the voltage sampled on CLED1 is buffered and  
applied to the ADC for conversion. The conversion time duration is always 25% of the pulse repetition period. At  
the end of the conversion, the ADC provides a single digital code corresponding to the LED1 sample.  
Receiver Timing  
See Figure 36 for a timing diagram detailing the control signals related to the LED on-time, Rx sample time, and  
the ADC conversion times for each channel.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
N+1  
N+2  
N+1  
Plethysmograph Signal  
N
N
Photodiode Current  
Or  
I-V Output  
Ambient Level  
(Dark Level)  
SR,  
Sample RED  
SR_amb  
,
Sample Ambient  
(RED Phase)  
CONVR,  
RED ADC Converts  
(RED œ Ambient)  
SIR,  
Sample IR  
SIR_amb  
,
Sample Ambient  
(IR Phase)  
CONVIR,  
IR ADC Converts  
(IR œ Ambient)  
ADCLKR,  
Red ADC  
Sample Clock  
ADCLKIR,  
IR ADC  
Sample Clock  
RED  
N+1  
RED ADC  
Output Data  
RED  
N
IR ADC  
IR  
IR  
Output Data  
N-1  
N
NOTE: Relationship to the AFE4400 EVM is: LED1 = IR and LED2 = RED.  
Figure 36. Rx Timing Diagram  
22  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
CLOCKING AND TIMING SIGNAL GENERATION  
The crystal oscillator generates a master clock signal using an external 8-MHz crystal. A divide-by-2 block  
converts the 8-MHz clock to 4 MHz, which is used by the AFE to operate the timer modules, ADC, and  
diagnostics. The 4-MHz clock is buffered and output from the AFE in order to clock an external microcontroller.  
The clocking functionality is shown in Figure 37.  
Timer  
Module  
Divide-  
by-2  
ADC  
Diagnostics  
Module  
Oscillator  
XIN  
XOUT  
CLKOUT  
4 MHz  
8-MHz Crystal  
Figure 37. AFE Clocking  
TIMER MODULE  
See Figure 38 for a timing diagram detailing the various timing edges that are programmable using the timer  
module. The rising and falling edge positions of 11 signals can be controlled. The module uses a single 16-bit  
counter (running off of the 4-MHz clock) to set the time-base.  
All timing signals are set with reference to the pulse repetition period (PRP). Therefore, a dedicated compare  
register compares the 16-bit counter value with the reference value specified in the PRF register. Every time that  
the 16-bit counter value is equal to the reference value in the PRF register, the counter is reset to '0'.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
LED2 (RED LED)  
On Signal  
tLED LED on-time  
LED1 (IR LED)  
On Signal  
Ç 0.25 T.  
Rx sample time = tLED œ settle time.  
SLED2_amb  
,
Sample Ambient  
[LED2 (RED) Phase]  
SLED1  
,
Sample LED1 (IR)  
SLED1_amb  
,
Sample Ambient  
[LED1 (IR) Phase]  
SLED2  
,
Sample LED2 (RED)  
CONVLED2  
,
Convert LED2 (RED) Sample  
CONVLED2_amb  
,
Convert Ambient Sample  
[LED2 (RED) Phase]  
CONVLED1  
,
Convert LED1 (IR) Sample  
CONVLED1_amb  
,
Convert Ambient Sample  
[LED1 (IR) Phase]  
ADC Conversion  
ADC Reset  
ADC_RDY Pin  
Pulse Repetition Period  
T = 1 / PRF  
NOTE: Programmable edges are shown in blue and red.  
Figure 38. AFE Control Signals  
24  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
For the 11 signals in Figure 36, the start and stop edge positions are programmable with respect to the PRF  
period. Each signal uses a separate timer compare module that compares the counter value with  
preprogrammed reference values for the start and stop edges. All reference values can be set using the SPI  
interface.  
When the counter value equals the start reference value, the output signal is set. When the counter value equals  
the stop reference value, the output signal is reset. Figure 39 shows a diagram of the timer compare register.  
With a 4-MHz clock, the edge placement resolution is 0.25 µs. The ADC conversion signal requires four pulses in  
each PRF clock period. The 11th timer compare register uses four sets of start and stop registers to control the  
ADC conversion signal.  
Set  
START  
STOP  
Start Reference Register  
Output  
Signal  
Counter  
Input  
Reset  
Stop Reference Register  
Timer Compare Register  
Enable  
Figure 39. Compare Register  
The ADC conversion signal requires four pulses in each PRF clock period. Timer compare register 11 uses four  
sets of start and stop registers to control the ADC conversion signal, as shown in Figure 40.  
Reset  
CLKIN  
16-Bit Counter  
Reset  
Enable  
Counter  
S
R
Start  
Stop  
PRF  
Pulse  
Timer Compare  
16-Bit Register 1  
Timer Compare  
16-Bit PRF Register  
RED LED  
IR LED  
En  
En  
En  
En  
En  
En  
En  
S
R
Start  
Stop  
S
R
Start  
Stop  
CONVR,  
Convert RED Sample  
Timer Compare  
16-Bit Register 2  
Timer Compare  
16-Bit Register 7  
S
R
Start  
Stop  
S
R
SR  
Start  
Stop  
CONVIR  
,
Timer Compare  
16-Bit Register 3  
Timer Compare  
16-Bit Register 8  
Sample RED  
Convert IR Sample  
En  
CONVIR_amb  
,
S
R
Start  
Stop  
S
R
SIR  
Sample IR  
Start  
Stop  
Timer Compare  
16-Bit Register 4  
Timer Compare  
16-Bit Register 9  
Convert Ambient Sample  
(IR Phase)  
En  
En  
CONVR_amb  
,
S
R
S
R
Start  
Stop  
Start  
Stop  
Timer Compare  
16-Bit Register 5  
Timer Compare  
16-Bit Register 10  
Convert Ambient Sample  
(RED Phase)  
SR_amb  
,
Sample Ambient  
(red phase)  
START-A  
STOP-A  
S
R
Start  
Stop  
SIR_amb  
Sample Ambient  
(IR phase)  
,
Timer Compare  
16-Bit Register 6  
En  
START-B  
STOP-B  
ADC  
Timer Compare  
Conversion  
16-Bit Register 11  
START-C  
STOP-D  
START-D  
STOP-D  
En  
Timer Module  
Figure 40. Timer Module  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: AFE4400  
 
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Using the Timer Module  
The timer module registers can be used to program the start and end instants in units of 4-MHz clock cycles.  
These timing instants and the corresponding registers are listed in Table 2.  
Note that the device does not restrict the values in these registers; thus, the start and end edges can be  
positioned anywhere within the pulse repetition period. Care must be taken by the user to program suitable  
values in these registers to avoid overlapping the signals and to make sure none of the edges exceed the value  
programmed in the PRP register. Writing the same value in the start and end registers results in a pulse duration  
of one clock cycle. The following steps describe the timer sequencing configuration:  
1. With respect to the start of the PRP period (indicated by timing instant t0 in Figure 41), the following  
sequence of conversions must be followed in order: convert LED2 LED2 ambient LED1 LED1  
ambient.  
2. Also, starting from t0, the sequence of sampling instants must be staggered with respect to the respective  
conversions as follows: sample LED2 ambient LED1 LED1 ambient LED2.  
3. Finally, align the edges for the two LED pulses with the respective sampling instants.  
Table 2. Clock Edge Mapping to SPI Registers  
TIME INSTANT  
(See Figure 41 and  
Figure 42)  
EXAMPLE  
(Decimal)  
DESCRIPTION  
Start of pulse repetition period  
Start of sample LED2 pulse  
End of sample LED2 pulse  
Start of LED2 pulse  
CORRESPONDING REGISTER ADDRESS AND REGISTER BITS  
No register control  
t0  
t1  
LED2STC[15:0], register 01h  
4800  
6399  
4800  
6399  
0
t2  
LED2ENDC[15:0], register 02h  
LED2LEDSTC[15:0], register 03h  
LED2LEDENDC[15:0], register 04h  
ALED2STC[15:0], register 05h  
t3  
t4  
End of LED2 pulse  
t5  
Start of sample LED2 ambient pulse  
End of sample LED2 ambient pulse  
Start of sample LED1 pulse  
End of sample LED1 pulse  
Start of LED1 pulse  
t6  
ALED2ENDC[15:0], register 06h  
LED1STC[15:0], register 07h  
1599  
1600  
3199  
1600  
3199  
3200  
4799  
2
t7  
t8  
LED1ENDC[15:0], register 08h  
LED1LEDSTC[15:0], register 09h  
LED1LEDENDC[15:0], register 0Ah  
ALED1STC[15:0], register 0Bh  
ALED1ENDC[15:0], register 0Ch  
LED2CONVST[15:0], register 0Dh  
t9  
t10  
t11  
t12  
t13  
End of LED1 pulse  
Start of sample LED1 ambient pulse  
End of sample LED1 ambient pulse  
Start of convert LED2 pulse  
LED2CONVEND[15:0], register 0Eh  
Must start one AFE clock cycle after the ADC reset pulse ends.  
t14  
End of convert LED2 pulse  
1599  
ALED2CONVST[15:0], register 0Fh  
Must start one AFE clock cycle after the ADC reset pulse ends.  
t15  
t16  
t17  
t18  
t19  
Start of convert LED2 ambient pulse  
End of convert LED2 ambient pulse  
Start of convert LED1 pulse  
1602  
3199  
3202  
4799  
4802  
ALED2CONVEND[15:0], register 10h  
LED1CONVST[15:0], register 11h  
Must start one AFE clock cycle after the ADC reset pulse ends.  
End of convert LED1 pulse  
LED1CONVEND[15:0], register 12h  
ALED1CONVST[15:0], register 13h  
Must start one AFE clock cycle after the ADC reset pulse ends.  
Start of convert LED1 ambient pulse  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
End of convert LED1 ambient pulse  
Start of first ADC conversion reset pulse  
End of first ADC conversion reset pulse  
ALED1CONVEND[15:0], register 14h  
ADCRSTCNT0[15:0], register 15h  
ADCRSTENDCT0[15:0], register 16h  
6399  
0
0
Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h  
1600  
1600  
3200  
3200  
4800  
4800  
6399  
End of second ADC conversion reset pulse  
Start of third ADC conversion reset pulse  
End of third ADC conversion reset pulse  
Start of fourth ADC conversion reset pulse  
End of fourth ADC conversion reset pulse  
End of pulse repetition period  
ADCRSTENDCT1[15:0], register 18h  
ADCRSTSTCT2[15:0], register 19h  
ADCRSTENDCT2[15:0], register 1Ah  
ADCRSTSTCT3[15:0], register 1Bh  
ADCRSTENDCT3[15:0], register 1Ch  
PRPCOUNT[15:0], register 1Dh  
26  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
LED2 (RED LED)  
On Signal  
t3  
t4  
LED1 (IR LED)  
On Signal  
t9  
t10  
SLED2_amb  
,
Sample Ambient  
[LED2 (RED) Phase]  
t6  
t5  
SLED1  
,
Sample LED1 (IR)  
t7  
t8  
SLED1_amb  
,
Sample Ambient  
[LED1 (IR) Phase]  
t11  
t12  
SLED2  
,
Sample LED2 (RED)  
t1  
t2  
t13  
CONVLED2  
,
t14  
Convert LED2 (RED) Sample  
CONVLED2_amb  
,
Convert Ambient Sample  
[LED2 (RED) Phase]  
t15  
t16  
CONVLED1  
Convert LED1 (IR) Sample  
,
t17  
t18  
CONVLED1_amb  
,
Convert Ambient Sample  
[LED1 (IR) Phase]  
t19  
t20  
ADC Conversion  
ADC Reset  
t23  
t25  
t27  
t21  
t28  
t22  
t24  
t26  
Pulse Repetition Period,  
One Cycle  
t0  
t29  
(1) RED = LED2, IR = LED1.  
Figure 41. Programmable Clock Edges  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
CONVLED2  
Convert LED2 (RED) Sample  
,
t14  
t13  
CONVLED2_amb  
Convert Ambient Sample  
[LED2 (RED) Phase]  
,
t16  
t15  
t18  
CONVLED1  
Convert LED1 (IR) Sample  
,
t17  
CONVLED1_amb  
Convert Ambient Sample  
[LED1 (IR) Phase]  
,
t20  
t19  
ADC Conversion  
One 4-MHz  
Clock Cycle  
t21  
t23  
t22  
t25  
t24  
t27  
t26  
ADC Reset  
t28  
Pulse Repetition Period,  
One Cycle  
t0  
t29  
(1) RED = LED2, IR = LED1.  
Figure 42. Relationship Between the ADC Reset and ADC Conversion Signals  
28  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ADC OPERATION AND AVERAGING MODULE  
The ADC reset signal must be positioned at 25% intervals of the pulse repetition period (that is, 0%, 25%, 50%,  
and 75%). After the falling edge of the ADC reset signal, the ADC conversion phase starts (refer to Figure 42).  
Each ADC conversion takes 50 µs.  
The ADC operates with averaging. The averaging module averages multiple ADC samples and reduce noise to  
improve dynamic range because the ADC conversion time is usually shorter than 25% of the pulse repetition  
period. Figure 43 shows a diagram of the averaging module.  
Rx Digital  
ADC Reset  
22-Bits  
ADC Output Rate  
PRF Samples per Second  
Register  
42  
LED2 Data  
LED2 Data  
ADC  
Register  
43  
Ambient  
(LED2) Data  
LED2_Ambient Data  
ADC  
Averager  
Register  
44  
LED1 Data  
LED1 Data  
Ambient  
(LED1) Data  
Register  
45  
LED1_Ambient Data  
ADC Reset  
ADC Convert  
ADC Clock  
Register  
30  
Number of Averages  
Figure 43. Averaging Module  
Operation With Averaging  
In this mode, the ADC digital samples are accumulated and averaged after every 50 µs. At the next rising edge  
of the ADC reset signal, the average value (22-bit) is written into the output registers sequentially as follows (see  
Figure 44):  
At the 25% reset signal, the averaged 22-bit word is written to register 2Ah.  
At the 50% reset signal, the averaged 22-bit word is written to register 2Bh.  
At the 75% reset signal, the averaged 22-bit word is written to register 2Ch.  
At the next 0% reset signal, the averaged 22-bit word is written to register 2Dh. The contents of registers 2Ah  
and 2Bh are written to register 2Eh and the contents of registers 2Ch and 2Dh are written to register 2Fh.  
At the rising edge of the ADC_RDY signal, the contents of all six result registers can be read out.  
The number of samples to be used per conversion phase is preset to 3.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
ADC Conversion  
ADC Data  
2
3
4
6
7
8
10 11 12  
14 15 16  
18 19 20  
1
5
9
13  
17  
ADC Reset  
0%  
Average of  
ADC data 13 to 15 are written  
into register 45.  
75%  
Average of  
ADC data 9 to 11 are  
written into  
50%  
25%  
Average of  
ADC data 1 to 3 are  
written into  
0%  
Average of  
ADC data 5 to 7  
are written into  
register 43.  
register 42.  
register 44.  
Register 42 and register 43  
are written into register 46.  
Register 44 and register 45  
are written into register 47.  
ADC_RDY Pin  
Pulse repetition period  
T = 1/PRF  
0 T  
1.0 T  
NOTE: This example shows data 3 averages.  
Figure 44. ADC Data with Averaging  
30  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
RECEIVER SUBSYSTEM POWER PATH  
The block diagram in Figure 45 shows the AFE4400 Rx subsystem power routing.  
1.8 V  
RX_ANA_SUP  
(2.0 V to 3.6 V)  
RX_ANA_SUP to  
1.8-V Regulator  
Rx Analog Modules  
RX_DIG_SUP to  
1.8-V Regulator  
1.8 V  
RX_DIG_SUP  
(2.0 V to 3.6 V)  
Rx I/O  
Block  
I/O  
Pins  
Rx Digital  
Device  
Figure 45. Receive Subsystem Power Routing  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
TRANSMIT SECTION  
The transmit section integrates the LED driver and the LED current control section with 8-bit resolution. This  
integration is designed to meet a dynamic range of better than 105 dB (based on a 1-sigma LED current noise).  
The LED2 and LED1 reference currents can be independently set. The current source (ILED) locally regulates and  
ensures that the actual LED current tracks the specified reference.  
Two LED driver schemes are supported:  
An H-bridge drive for a two-terminal back-to-back LED package, as shown in Figure 46. The minimum H-  
bridge supply voltage must be 2.5 V + (maximum voltage drop across the LED).  
A push-pull drive for a three-terminal LED package; see Figure 47. The minimum external supply voltage =  
2.0 V + (maximum voltage drop across the LED).  
3.3-V Supply  
H-Bridge Supply  
External  
Supply  
Tx  
CBULK  
H-Bridge  
LED2_ON  
LED1_ON  
H-Bridge  
Driver  
LED2_ON  
Or  
LED1_ON  
LED2 Current  
Reference  
LED  
Current  
Control  
ILED  
8-Bit Resolution  
LED1 Current  
Reference  
Register  
Register  
LED2 Current Reference  
LED1 Current Reference  
Figure 46. Transmit: H-Bridge Drive  
32  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
3.3-V Supply  
H-Bridge Supply  
External  
Supply  
CBULK  
Tx  
LED2_ON  
LED1_ON  
H-Bridge  
Driver  
LED2_ON  
Or  
LED1_ON  
LED2 Current  
Reference  
LED  
Current  
Control  
ILED  
8-Bit Resolution  
LED1 Current  
Reference  
Register  
Register  
RED Current Reference  
IR Current Reference  
Figure 47. Transmit: Push-Pull LED Drive for Common Anode LED Configuration  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Transmitter Power Path  
The block diagram in Figure 48 shows the AFE4400 Tx subsystem power routing.  
TX_CTRL_SUP_3.3V  
Tx Reference  
and  
Control  
LED_DRV_SUP_3.3V  
LED  
Current  
Control  
DAC  
Tx LED  
Bridge  
Device  
Figure 48. Transmit Subsystem Power Routing  
LED Power Reduction During Periods of Inactivity  
The diagram in Figure 49 shows how LED bias current passes 50 µA whenever LED_ON occurs. In order to  
minimize power consumption in periods of inactivity, the LED_ON control must be turned off. Furthermore, the  
TIMEREN bit in the CONTROL1 register should be disabled by setting the value to '0'.  
Note that depending on the LEDs used, the LED may sometimes appear dimly lit even when the LED current is  
set to 0 mA. This appearance is because of the switching leakage currents (as shown in Figure 49) inherent to  
the timer function. The dimmed appearance does not effect the ambient light level measurement because during  
the ambient cycle, LED_ON is turned off for the duration of the ambient measurement.  
0 mA to 50 mA  
(See the LEDRANGE bits  
in the LEDCNTRL register.)  
1 mA  
50 mA  
LED_ON  
Figure 49. LED Bias Current  
34  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
DIAGNOSTICS  
The device includes diagnostics to detect open or short conditions of the LED and photosensor, LED current  
profile feedback, and cable on or off detection.  
Photodiode-Side Fault Detection  
Figure 50 shows the diagnostic for the photodiode-side fault detection.  
Internal  
TX_CTRL_SUP  
10 k  
10 kꢀ  
1 kꢀ  
Cable  
Rx On/Off  
INM  
INP  
To Rx Front-End  
Rx On/Off  
GND Wires  
PD Wires  
LED Wires  
Legend for Cable  
Figure 50. Photodiode Diagnostic  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Transmitter-Side Fault Detection  
Figure 51 shows the diagnostic for the transmitter-side fault detection.  
Internal  
TX_CTRL_SUP  
10 k  
10 kꢀ  
Cable  
TX_OUTP  
D
C
TX_OUTM  
GND Wires  
PD Wires  
LED DAC  
LED Wires  
Legend for Cable  
Figure 51. Transmitter Diagnostic  
36  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
Diagnostics Module  
The diagnostics module, when enabled, checks for nine types of faults sequentially. The results of all faults are latched in 11 separate flags. At the end of  
the sequence, the state of the 11 flags are combined to generate two interrupt signals: PD_ALM for photodiode-related faults and LED_ALM for transmit-  
related faults. The status of all flags can also be read using the SPI interface. Table 3 details each fault and flag used. Note that the diagnostics module  
requires all AFE blocks to be enabled in order to function reliably.  
Table 3. Fault and Flag Diagnostics(1)  
MODULE  
SEQ.  
FAULT  
FLAG1  
FLAG2  
FLAG3  
FLAG4  
FLAG5  
FLAG6  
FLAG7  
FLAG8  
FLAG9  
FLAG10  
FLAG11  
No fault  
0
0
0
0
0
0
0
0
0
0
0
Rx INP cable shorted to LED  
cable  
1
2
3
1
Rx INM cable shorted to LED  
cable  
1
PD  
Rx INP cable shorted to GND  
cable  
1
Rx INM cable shorted to  
GND cable  
4
5
6
1
PD open or shorted  
1
1
Tx OUTM line shorted to  
GND cable  
1
Tx OUTP line shorted to  
GND cable  
7
1
LED  
8
9
LED open or shorted  
LED open or shorted  
1
1
1
(1) Resistances below 10 kΩ are considered to be shorted.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Figure 52 shows the timing for the diagnostic function.  
DIAG_EN Register Bit = 1  
Diagnostic State  
Machine  
Diagnostic State Machine  
Diagnostic Starts  
Diagnostic Ends  
DIAG_END Pin  
tWIDTH = Four 4-MHz  
Clock Cycles  
tDIAG  
Figure 52. Diagnostic Timing Diagram  
By default, the diagnostic function takes tDIAG = 8 ms to complete.  
38  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
SERIAL PROGRAMMING INTERFACE  
The SPI-compatible serial interface consists of four signals: SCLK (serial clock), SPISOMI (serial interface data  
output), SPISIMO (serial interface data input), and SPISTE (serial interface enable).  
The serial clock (SCLK) is the serial peripheral interface (SPI) serial clock. SCLK shifts in commands and shifts  
out data from the device. SCLK features a Schmitt-triggered input and clocks data out on the SPISOMI. Data are  
clocked in on the SPISIMO pin. Even though the input has hysteresis, TI recommends keeping SCLK as clean  
as possible to prevent glitches from accidentally shifting the data. When the serial interface is idle, hold SCLK  
low.  
The SPI serial out master in (SPISOMI) pin is used with SCLK to clock out the AFE4400 data. The SPI serial in  
master out (SPISIMO) pin is used with SCLK to clock in data to the AFE4400. The SPI serial interface enable  
(SPISTE) pin enables the serial interface to clock data on the SPISIMO pin in to the device.  
READING AND WRITING DATA  
The device has a set of internal registers that can be accessed by the serial programming interface formed by  
the SPISTE, SCLK, SPISIMO, and SPISOMI pins.  
Writing Data  
When SPISTE is low,  
Serially shifting bits into the device is enabled.  
Serial data (on the SPISIMO pin) are latched at every SCLK rising edge.  
The serial data are loaded into the register at every 32nd SCLK rising edge.  
In case the word length exceeds a multiple of 32 bits, the excess bits are ignored. Data can be loaded in  
multiples of 32-bit words within a single active SPISTE pulse. The first eight bits form the register address and  
the remaining 24 bits form the register data. Figure 53 shows a diagram of the write timing.  
SPISTE  
SPISIMO  
SCLK  
A7  
A6  
A1  
A0  
D23 D22  
D17 D16  
D15 D14  
D9  
D8  
D7  
D6  
D1  
D0  
Don‘t care, can be high or low.  
Figure 53. AFE SPI Write Timing Diagram  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: AFE4400  
 
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Reading Data  
The AFE4400 includes a mode where the contents of the internal registers can be read back on the SPISOMI  
pin. This mode may be useful as a diagnostic check to verify the serial interface communication between the  
external controller and the AFE. To enable this mode, first set the SPI_READ register bit using the SPI write  
command, as described in the Writing Data section. In the next command, specify the SPI register address with  
the desired content to be read. Within the same SPI command sequence, the AFE outputs the contents of the  
specified register on the SPISOMI pin. Figure 54 shows a timing diagram for the SPI read operation.  
SPISTE  
SPISIMO  
SPISOMI  
A7  
A6  
A1  
A0  
D23 D22  
D17 D16  
D15 D14  
D9  
D8  
D7  
D6  
D1  
D0  
SCLK  
Don‘t care, can be high or low.  
(1) The SPI_READ register bit must be enabled before attempting a serial readout from the AFE.  
(2) Specify the register address of the content that must be readback on bits A[7:0].  
(3) The AFE outputs the contents of the specified register on the SPISOMI pin.  
Figure 54. AFE SPI Read Timing Diagram  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be done in  
one of two ways:  
Through a hardware reset by applying a low-going pulse on the RESET pin, or  
By applying a software reset. Using the serial interface, set SW_RESET (bit D3 in register 00h) high. This  
setting initializes the internal registers to the default values and then self-resets to '0'. In this case, the RESET  
pin is kept high (inactive).  
AFE SPI Interface Design Considerations  
Note that when the AFE4400 is deselected, the SPISOMI, CLKOUT, ADC_RDY, PD_ALM, LED_ALM, and  
DIAG_END digital output pins do not enter a 3-state mode. This condition, therefore, must be taken into account  
when connecting multiple devices to the SPI port and for power-management considerations.  
AFE REGISTER MAP  
The AFE consists of a set of registers that can be used to configure it, such as receiver timings, I-V amplifier  
settings, transmit LED currents, and so forth. The registers and their contents are listed in Table 4. These  
registers can be accessed using the AFE SPI interface.  
40  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
Table 4. AFE Register Map  
ADDRESS  
REGISTER DATA  
NAME  
Hex  
Dec  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CONTROL0  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LED2STC  
LED2ENDC  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LED2STC[15:0]  
LED2ENDC[15:0]  
2
LED2LEDSTC  
LED2LEDENDC  
ALED2STC  
3
LED2LEDSTC[15:0]  
LED2LEDENDC[15:0]  
ALED2STC[15:0]  
4
5
ALED2ENDC  
6
ALED2ENDC[15:0]  
LED1STC[15:0]  
LED1STC  
7
LED1ENDC  
8
LED1ENDC[15:0]  
LED1LEDSTC  
LED1LEDENDC  
ALED1STC  
9
LED1LEDSTC[15:0]  
LED1LEDENDC[15:0]  
ALED1STC[15:0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
ALED1ENDC  
ALED1ENDC[15:0]  
LED2CONVST[15:0]  
LED2CONVEND[15:0]  
ALED2CONVST[15:0]  
LED2CONVST  
LED2CONVEND  
ALED2CONVST  
ALED2CONVEND  
LED1CONVST  
LED1CONVEND  
ALED1CONVST  
ALED1CONVEND  
ADCRSTCNT0  
ADCRSTENDCT0  
ADCRSTSTCT1  
ADCRSTENDCT1  
ADCRSTSTCT2  
ADCRSTENDCT2  
ADCRSTSTCT3  
ADCRSTENDCT3  
PRPCOUNT  
ALED2CONVEND[15:0]  
LED1CONVST[15:0]  
LED1CONVEND[15:0]  
ALED1CONVST[15:0]  
ALED1CONVEND[15:0]  
ADCRSTCT0[15:0]  
ADCRENDCT0[15:0]  
ADCRSTCT1[15:0]  
ADCRENDCT1[15:0]  
ADCRSTCT2[15:0]  
ADCRENDCT2[15:0]  
ADCRSTCT3[15:0]  
ADCRENDCT3[15:0]  
PRPCT[15:0]  
CONTROL1  
1E  
30  
0
0
0
0
0
0
0
0
0
0
0
0
CLKALMPIN[2:0]  
0
0
0
0
0
0
1
0
SPARE1  
TIAGAIN  
1F  
20  
31  
32  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Table 4. AFE Register Map (continued)  
ADDRESS  
NAME  
REGISTER DATA  
Hex  
Dec  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TIA_AMB_GAIN  
LEDCNTRL  
21  
33  
0
0
0
0
AMBDAC[3:0]  
0
0
0
0
STG2GAIN[2:0]  
CF_LED[4:0]  
RF_LED[2:0]  
22  
23  
34  
35  
0
0
0
0
0
0
0
0
0
0
0
1
0
LED1[7:0]  
LED2[7:0]  
CONTROL2  
0
1
0
0
0
0
0
1
0
0
0
0
0
SPARE2  
SPARE3  
24  
25  
26  
27  
28  
36  
37  
38  
39  
40  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SPARE4  
RESERVED1  
RESERVED2  
ALARM  
29  
41  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LED2VAL  
ALED2VAL  
2A  
2B  
2C  
2D  
2E  
2F  
42  
43  
44  
45  
46  
47  
LED2VAL[23:0]  
ALED2VAL[23:0]  
LED1VAL[23:0]  
ALED1VAL[23:0]  
LED1VAL  
ALED1VAL  
LED2-ALED2VAL  
LED1-ALED1VAL  
LED2-ALED2VAL[23:0]  
LED1-ALED1VAL[23:0]  
DIAG  
30  
48  
0
0
0
0
0
0
0
0
0
0
0
42  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
AFE REGISTER DESCRIPTION  
CONTROL0: Control Register 0 (Address = 00h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
D12  
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
TIM_  
SPI_  
READ  
SW_RST DIAG_EN COUNT_  
RST  
This register is used for AFE software and count timer reset, diagnostics enable, and SPI read functions.  
Bits D[23:4]  
Bit D3  
Must be '0'  
SW_RST: Software reset  
0 = No action (default after reset)  
1 = Software reset applied; resets all internal registers to the default values and self-clears  
to '0'  
Bit D2  
DIAG_EN: Diagnostic enable  
0 = No action (default after reset)  
1 = Diagnostic mode is enabled and the diagnostics sequence starts when this bit is set.  
At the end of the sequence, all fault status are stored in the DIAG: Diagnostics Flag  
Register. Afterwards, the DIAG_EN register bit self-clears to '0'.  
Bit D1  
Bit D0  
TIM_CNT_RST: Timer counter reset  
0 = Disables timer counter reset, required for normal timer operation (default after reset)  
1 = Timer counters are in reset state  
SPI READ: SPI read  
0 = SPI read is disabled (default after reset)  
1 = SPI read is enabled  
LED2STC: Sample LED2 Start Count Register (Address = 01h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED2STC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LED2STC[15:0]  
This register sets the start timing value for the LED2 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2STC[15:0]: Sample LED2 start count  
The contents of this register can be used to position the start of the sample LED2 signal with  
respect to the pulse repetition period (PRP), as specified in the PRPCOUNT register. The  
count is specified as the number of  
4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
D12  
LED2ENDC: Sample LED2 End Count Register (Address = 02h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
0
0
0
0
0
0
LED2ENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LED2ENDC[15:0]  
This register sets the end timing value for the LED2 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2ENDC[15:0]: Sample LED2 end count  
The contents of this register can be used to position the end of the sample LED2 signal with  
respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the  
number of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
LED2LEDSTC: LED2 LED Start Count Register (Address = 03h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED2LEDSTC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED2LEDSTC[15:0]  
This register sets the start timing value for when the LED2 signal turns on.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2LEDSTC[15:0]: LED2 start count  
The contents of this register can be used to position the start of the LED2 with respect to the  
PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-  
MHz clock cycles. Refer to the Using the Timer Module section for details.  
LED2LEDENDC: LED2 LED End Count Register (Address = 04h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED2LEDENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED2LEDENDC[15:0]  
This register sets the end timing value for when the LED2 signal turns off.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2LEDENDC[15:0]: LED2 end count  
The contents of this register can be used to position the end of the LED2 signal with respect  
to the PRP, as specified in the PRPCOUNT register. The count is specified as the number  
of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
44  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ALED2STC: Sample Ambient LED2 Start Count Register (Address = 05h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
ALED2STC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALED2STC[15:0]  
This register sets the start timing value for the ambient LED2 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED2STC[15:0]: Sample ambient LED2 start count  
The contents of this register can be used to position the start of the sample ambient LED2  
signal with respect to the PRP, as specified in the PRPCOUNT register. The count is  
specified as the number of 4-MHz clock cycles. Refer to the Using the Timer Module section  
for details.  
ALED2ENDC: Sample Ambient LED2 End Count Register (Address = 06h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
0
ALED2ENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ALED2ENDC[15:0]  
This register sets the end timing value for the ambient LED2 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED2ENDC[15:0]: Sample ambient LED2 end count  
The contents of this register can be used to position the end of the sample ambient LED2  
signal with respect to the PRP, as specified in the PRPCOUNT register. The count is  
specified as the number of 4-MHz clock cycles. Refer to the Using the Timer Module section  
for details.  
LED1STC: Sample LED1 Start Count Register (Address = 07h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED1STC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED1STC[15:0]  
This register sets the start timing value for the LED1 signal sample.  
Bits D[23:17]  
Bits D[16:0]  
Must be '0'  
LED1STC[15:0]: Sample LED1 start count  
The contents of this register can be used to position the start of the sample LED1 signal with  
respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the  
number of  
4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
LED1ENDC: Sample LED1 End Count (Address = 08h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
LED1ENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LED1ENDC[15:0]  
This register sets the end timing value for the LED1 signal sample.  
Bits D[23:17]  
Bits D[16:0]  
Must be '0'  
LED1ENDC[15:0]: Sample LED1 end count  
The contents of this register can be used to position the end of the sample LED1 signal with  
respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the  
number of  
4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
LED1LEDSTC: LED1 LED Start Count Register (Address = 09h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED1LEDSTC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED1LEDSTC[15:0]  
This register sets the start timing value for when the LED1 signal turns on.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED1LEDSTC[15:0]: LED1 start count  
The contents of this register can be used to position the start of the LED1 signal with respect  
to the PRP, as specified in the PRPCOUNT register. The count is specified as the number  
of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
LED1LEDENDC: LED1 LED End Count Register (Address = 0Ah, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED1LEDENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED1LEDENDC[15:0]  
This register sets the end timing value for when the LED1 signal turns off.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED1LEDENDC[15:0]: LED1 end count  
The contents of this register can be used to position the end of the LED1 signal with respect  
to the PRP, as specified in the PRPCOUNT register. The count is specified as the number  
of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
46  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ALED1STC: Sample Ambient LED1 Start Count Register (Address = 0Bh, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
ALED1STC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALED1STC[15:0]  
This register sets the start timing value for the ambient LED1 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED1STC[15:0]: Sample ambient LED1 start count  
The contents of this register can be used to position the start of the sample ambient LED1  
signal with respect to the PRP, as specified in the PRPCOUNT register. The count is  
specified as the number of 4-MHz clock cycles. Refer to the Using the Timer Module section  
for details.  
ALED1ENDC: Sample Ambient LED1 End Count Register (Address = 0Ch, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
0
ALED1ENDC[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ALED1ENDC[15:0]  
This register sets the end timing value for the ambient LED1 signal sample.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED1ENDC[15:0]: Sample ambient LED1 end count  
The contents of this register can be used to position the end of the sample ambient LED1  
signal with respect to the PRP, as specified in the PRPCOUNT register. The count is  
specified as the number of 4-MHz clock cycles. Refer to the Using the Timer Module section  
for details.  
LED2CONVST: LED2 Convert Start Count Register (Address = 0Dh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED2CONVST[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED2CONVST[15:0]  
This register sets the start timing value for the LED2 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2CONVST[15:0]: LED2 convert start count  
The contents of this register can be used to position the start of the LED2 conversion signal  
with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as  
the number of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
LED2CONVEND: LED2 Convert End Count Register (Address = 0Eh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED2CONVEND[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LED2CONVEND[15:0]  
This register sets the end timing value for the LED2 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED2CONVEND[15:0]: LED2 convert end count  
The contents of this register can be used to position the end of the LED2 conversion signal  
with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as  
the number of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
ALED2CONVST: LED2 Ambient Convert Start Count Register (Address = 0Fh, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
0
ALED2CONVST[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ALED2CONVST[15:0]  
This register sets the start timing value for the ambient LED2 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED2CONVST[15:0]: LED2 ambient convert start count  
The contents of this register can be used to position the start of the LED2 ambient  
conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The  
count is specified as the number of 4-MHz clock cycles. Refer to the Using the Timer  
Module section for details.  
ALED2CONVEND: LED2 Ambient Convert End Count Register (Address = 10h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
0
ALED2CONVEND[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ALED2CONVEND[15:0]  
This register sets the end timing value for the ambient LED2 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED2CONVEND[15:0]: LED2 ambient convert end count  
The contents of this register can be used to position the end of the LED2 ambient  
conversion signal with respect to the PRP. The count is specified as the number of 4-MHz  
clock cycles. Refer to the Using the Timer Module section for details.  
48  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
LED1CONVST: LED1 Convert Start Count Register (Address = 11h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED1CONVST[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LED1CONVST[15:0]  
This register sets the start timing value for the LED1 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED1CONVST[15:0]: LED1 convert start count  
The contents of this register can be used to position the start of the LED1 conversion signal  
with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as  
the number of 4-MHz clock cycles. Refer to the Using the Timer Module section for details.  
LED1CONVEND: LED1 Convert End Count Register (Address = 12h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
LED1CONVEND[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
LED1CONVEND[15:0]  
This register sets the end timing value for the LED1 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
LED1CONVEND[15:0]: LED1 convert end count  
The contents of this register can be used to position the end of the LED1 conversion signal  
with respect to the PRP. The count is specified as the number of 4-MHz clock cycles. Refer  
to the Using the Timer Module section for details.  
ALED1CONVST: LED1 Ambient Convert Start Count Register (Address = 13h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
0
ALED1CONVST[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ALED1CONVST[15:0]  
This register sets the start timing value for the ambient LED1 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED1CONVST[15:0]: LED1 ambient convert start count  
The contents of this register can be used to position the start of the LED1 ambient  
conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The  
count is specified as the number of 4-MHz clock cycles. Refer to the Using the Timer  
Module section for details.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
ALED1CONVEND: LED1 Ambient Convert End Count Register (Address = 14h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
ALED1CONVEND[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALED1CONVEND[15:0]  
This register sets the end timing value for the ambient LED1 conversion.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ALED1CONVEND[15:0]: LED1 ambient convert end count  
The contents of this register can be used to position the end of the LED1 ambient  
conversion signal with respect to the PRP. The count is specified as the number of 4-MHz  
clock cycles. Refer to the Using the Timer Module section for details.  
ADCRSTCNT0: ADC Reset 0 Start Count Register (Address = 15h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTCNT0[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ADCRSTCNT0[15:0]  
This register sets the start position of the ADC0 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTCNT0[15:0]: ADC RESET 0 start count  
The contents of this register can be used to position the start of the ADC reset conversion  
signal (default value after reset is 0000h). Refer to the Using the Timer Module section for  
details.  
ADCRSTENDCT0: ADC Reset 0 End Count Register (Address = 16h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D3  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTENDCT0[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
ADCRSTENDCT0[15:0]  
This register sets the end position of the ADC0 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTENDCT0[15:0]: ADC RESET 0 end count  
The contents of this register can be used to position the end of the ADC reset conversion  
signal (default value after reset is 0000h). Refer to the Using the Timer Module section for  
details.  
50  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ADCRSTSTCT1: ADC Reset 1 Start Count Register (Address = 17h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTSTCT1[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTSTCT1[15:0]  
This register sets the start position of the ADC1 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTSTCT1[15:0]: ADC RESET 1 start count  
The contents of this register can be used to position the start of the ADC reset conversion.  
Refer to the Using the Timer Module section for details.  
ADCRSTENDCT1: ADC Reset 1 End Count Register (Address = 18h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTENDCT1[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTENDCT1[15:0]  
This register sets the end position of the ADC1 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTENDCT1[15:0]: ADC RESET 1 end count  
The contents of this register can be used to position the end of the ADC reset conversion.  
Refer to the Using the Timer Module section for details.  
ADCRSTSTCT2: ADC Reset 2 Start Count Register (Address = 19h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTSTCT2[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTSTCT2[15:0]  
This register sets the start position of the ADC2 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTSTCT2[15:0]: ADC RESET 2 start count  
The contents of this register can be used to position the start of the ADC reset conversion.  
Refer to the Using the Timer Module section for details.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
ADCRSTENDCT2: ADC Reset 2 End Count Register (Address = 1Ah, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTENDCT2[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTENDCT2[15:0]  
This register sets the end position of the ADC2 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTENDCT2[15:0]: ADC RESET 2 end count  
The contents of this register can be used to position the end of the ADC reset conversion.  
Refer to the Using the Timer Module section for details.  
ADCRSTSTCT3: ADC Reset 3 Start Count Register (Address = 1Bh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTSTCT3[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTSTCT3[15:0]  
This register sets the start position of the ADC3 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTSTCT3[15:0]: ADC RESET 3 start count  
The contents of this register can be used to position the start of the ADC reset conversion.  
Refer to the Using the Timer Module section for details.  
ADCRSTENDCT3: ADC Reset 3 End Count Register (Address = 1Ch, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
ADCRSTENDCT3[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ADCRSTENDCT3[15:0]  
This register sets the end position of the ADC3 reset conversion signal.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
ADCRSTENDCT3[15:0]: ADC RESET 3 end count  
The contents of this register can be used to position the end of the ADC reset conversion  
signal (default value after reset is 0000h). Refer to the Using the Timer Module section for  
details.  
52  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
PRPCOUNT: Pulse Repetition Period Count Register (Address = 1Dh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
0
0
0
0
0
0
0
PRPCOUNT[15:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PRPCOUNT[15:0]  
This register sets the device pulse repetition period count.  
Bits D[23:16]  
Bits D[15:0]  
Must be '0'  
PRPCOUNT[15:0]: Pulse repetition period count  
The contents of this register can be used to set the pulse repetition period (in number of  
clock cycles of the 4-MHz clock).  
CONTROL1: Control Register 1 (Address = 1Eh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
D12  
0
0
0
0
0
0
0
0
0
0
D11  
D10  
D9  
D8  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
CLKALMPIN[2:0]  
TIMEREN  
This register configures the clock alarm pin and timer.  
Bits D[23:12]  
Bits D[11:9]  
Must be '0'  
CLKALMPIN[2:0]: Clocks on ALM pins  
Internal clocks can be brought to the PD_ALM and LED_ALM pins for monitoring.  
Note that the CLKALMPIN[2:0] register bits must be set before using this register bit.  
Table 5 defines the settings for the two alarm pins.  
Bit D8  
TIMEREN: Timer enable  
0 = Timer module is disabled and all internal clocks are off (default after reset)  
1 = Timer module is enabled  
Bits D[7:2]  
Bit D1  
Must be '0'  
Must be '1'  
Must be '0'  
Bit D0  
Table 5. PD_ALM and LED_ALM Pin Settings  
CLKALMPIN[2:0]  
PD_ALM PIN SIGNAL  
Sample LED2  
LED2 pulse  
LED_ALM PIN SIGNAL  
Sample LED1  
LED1 pulse  
000  
001  
010  
011  
100  
101  
110  
111  
Sample LED2  
LED2 convert  
LED2 ambient  
No output  
Sample LED1 pulse  
LED1 convert  
LED1 ambient  
No output  
No output  
No output  
No output  
No output  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: AFE4400  
 
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
SPARE1: SPARE1 Register For Future Use (Address = 1Fh, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
This register is a spare register and is reserved for future use.  
Bits D[23:0] Must be '0'  
TIAGAIN: Transimpedance Amplifier Gain Setting Register (Address = 20h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
This register is reserved for factory use.  
Bits D[23:0] Must be '0'  
54  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
TIA_AMB_GAIN: Transimpedance Amplifier and Ambient Cancellation Stage Gain Register  
(Address = 21h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
STAGE2  
EN  
0
0
0
AMBDAC[3:0]  
0
0
D11  
0
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
STG2GAIN[2:0]  
CF_LED[4:0]  
RF_LED[2:0]  
This register configures the ambient light cancellation amplifier gain, cancellation current, and filter corner  
frequency.  
Bits D[23:20]  
Bits D[19:16]  
Must be '0'  
AMBDAC[3:0]: Ambient DAC value  
These bits set the value of the cancellation current.  
0000 = 0 µA (default after reset)  
0001 = 1 µA  
1000 = 8 µA  
1001 = 9 µA  
0010 = 2 µA  
1010 = 10 µA  
0011 = 3 µA  
0100 = 4 µA  
0101 = 5 µA  
0110 = 6 µA  
1011 = Do not use  
1100 = Do not use  
1101 = Do not use  
1110 = Do not use  
1111 = Do not use  
0111 = 7 µA  
Bit D15  
Bit D14  
Must be '0'  
STAGE2EN: Stage 2 enable  
0 = Stage 2 is bypassed (default after reset)  
1 = Stage 2 is enabled with the gain value specified by the STG2GAIN[2:0] bits  
Must be '0'  
Bits D[13:11]  
Bits D[10:8]  
STG2GAIN[2:0]: Stage 2 gain setting  
000 = 0 dB, or linear gain of 1 (default after reset)  
001 = 3 dB, or linear gain of 1.414  
010 = 6 dB, or linear gain of 2  
011 = 9 dB, or linear gain of 2.818  
100 = 12 dB, or linear gain of 4  
101 = Do not use  
110 = Do not use  
111 = Do not use  
Bits D[7:3]  
Bits D[2:0]  
CF_LED[4:0]: Program CF for LEDs  
00000 = 5 pF (default after reset)  
00001 = 5 pF + 5 pF  
00010 = 15 pF + 5 pF  
00100 = 25 pF + 5 pF  
01000 = 50 pF + 5 pF  
10000 = 150 pF + 5 pF  
Note that any combination of these CF settings is also supported by setting multiple bits to  
'1'. For example, to obtain CF = 100 pF, set D[7:3] = 01111.  
RF_LED[2:0]: Program RF for LEDs  
000 = 500 kΩ  
001 = 250 kΩ  
010 = 100 kΩ  
011 = 50 kΩ  
100 = 25 kΩ  
101 = 10 kΩ  
110 = 1 MΩ  
111 = None  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
LEDCNTRL: LED Control Register (Address = 22h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D1  
D12  
LEDCUR  
OFF  
0
0
0
0
1
LED1[7:0]  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
LED1[7:0]  
LED2[7:0]  
This register sets the LED current range and the LED1 and LED2 drive current.  
Bits D[23:18]  
Bit D17  
Must be '0'  
LEDCUROFF: Turns the LED current source on or off  
0 = On (50 mA)  
1 = Off  
Bit D16  
Must be '1'  
Bits D[15:8]  
LED1[7:0]: Program LED current for LED1 signal  
Use these register bits to specify the LED current setting for LED1 (default after reset is  
00h).  
The nominal value of the LED current is given by Equation 3, where the full-scale LED  
current is 50 mA.  
Bits D[7:0]  
LED2[7:0]: Program LED current for LED2 signal  
Use these register bits to specify the LED current setting for LED2 (default after reset is  
00h).  
The nominal value of LED current is given by Equation 4, where the full-scale LED current is  
50 mA.  
LED1[7:0]  
´ Full-Scale Current  
256  
(3)  
LED2[7:0]  
´ Full-Scale Current  
256  
(4)  
56  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
 
 
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
CONTROL2: Control Register 2 (Address = 23h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
D12  
0
0
0
0
0
1
0
0
0
D11  
D10  
0
D9  
D8  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
TXBRG  
MOD  
XTAL  
DIS  
PDNTX  
PDNRX PDNAFE  
This register controls the LED transmitter, crystal, and the AFE, transmitter, and receiver power modes.  
Bits D[23:18]  
Bit D17  
Must be '0'  
Must be '1'  
Bits D[16:12]  
Bit D11  
Must be '0'  
TXBRGMOD: Tx bridge mode  
0 = LED driver is configured as an H-bridge (default after reset)  
1 = LED driver is configured as a push-pull  
Bit D10  
Bit D9  
Must be '0'  
XTALDIS: Crystal disable mode  
0 = The crystal module is enabled; the 8-MHz crystal must be connected to the XIN and  
XOUT pins  
1 = The crystal module is disabled; an external 8-MHz clock must be applied to the XIN pin  
Bit D8  
Must be '1'  
Bits D[7:3]  
Bit D2  
Must be '0'  
PDN_TX: Tx power-down  
0 = The Tx is powered up (default after reset)  
1 = Only the Tx module is powered down  
Bit D1  
Bit D0  
PDN_RX: Rx power-down  
0 = The Rx is powered up (default after reset)  
1 = Only the Rx module is powered down  
PDN_AFE: AFE power-down  
0 = The AFE is powered up (default after reset)  
1 = The entire AFE is powered down (including the Tx, Rx, and diagnostics blocks)  
SPARE2: SPARE2 Register For Future Use (Address = 24h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
This register is a spare register and is reserved for future use.  
Bits D[23:0] Must be '0'  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
SPARE3: SPARE3 Register For Future Use (Address = 25h, Reset Value = 0000h)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
This register is a spare register and is reserved for future use.  
Bits D[23:0] Must be '0'  
SPARE4: SPARE4 Register For Future Use (Address = 26h, Reset Value = 0000h)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
0
0
0
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
This register is a spare register and is reserved for future use.  
Bits D[23:0] Must be '0'  
RESERVED1: RESERVED1 Register For Factory Use Only (Address = 27h, Reset Value = XXXXh)  
D23  
X(1)  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
X
X
X
X
X
X
X
X
X
X
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
(1) X = don't care.  
This register is reserved for factory use. Readback values vary between devices.  
RESERVED2: RESERVED2 Register For Factory Use Only (Address = 28h, Reset Value = XXXXh)  
D23  
X(1)  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
X
X
X
X
X
X
X
X
X
X
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
(1) X = don't care.  
This register is reserved for factory use. Readback values vary between devices.  
58  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
ALARM: Alarm Register (Address = 29h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
D12  
0
0
0
0
0
0
0
0
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
ALMPIN  
CLKEN  
This register controls the Alarm pin functionality.  
Bits D[23:8]  
Bit D7  
Must be '0'  
ALMPINCLKEN: Alarm pin clock enable  
0 = Disables the monitoring of internal clocks; the PD_ALM and LED_ALM pins function as  
diagnostic fault alarm output pins (default after reset)  
1 = Enables the monitoring of internal clocks; these clocks can be brought out on PD_ALM  
and LED_ALM selectively (depending on the value of the CLKALMPIN[2:0] register bits).  
Bits D[6:0]  
Must be '0'  
LED2VAL: LED2 Digital Sample Value Register (Address = 2Ah, Reset Value = 0000h)  
D23  
D11  
D22  
D21  
D9  
D20  
D8  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D0  
LED2VAL[23:0]  
D10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LED2VAL[23:0]  
Bits D[23:0]  
LED2VAL[23:0]: LED2 digital value  
This register contains the digital value of the latest LED2 sample converted by the ADC. The  
ADC_RDY signal goes high each time that the contents of this register are updated. The  
host processor must readout this register before the next sample is converted by the AFE.  
ALED2VAL: Ambient LED2 Digital Sample Value Register (Address = 2Bh, Reset Value = 0000h)  
D23  
D22  
D21  
D9  
D20  
D8  
D19  
D7  
D18  
D17  
D16  
D4  
D15  
D3  
D14  
D2  
D13  
D1  
D12  
D0  
ALED2VAL[23:0]  
D11  
D10  
D6  
D5  
ALED2VAL[23:0]  
Bits D[23:0]  
ALED2VAL[23:0]: LED2 ambient digital value  
This register contains the digital value of the latest LED2 ambient sample converted by the  
ADC. The ADC_RDY signal goes high each time that the contents of this register are  
updated. The host processor must readout this register before the next sample is converted  
by the AFE.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
D12  
LED1VAL: LED1 Digital Sample Value Register (Address = 2Ch, Reset Value = 0000h)  
D23  
D11  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
LED1VAL[23:0]  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LED1VAL[23:0]  
Bits D[23:0]  
LED1VAL[23:0]: LED1 digital value  
This register contains the digital value of the latest LED1 sample converted by the ADC. The  
ADC_RDY signal goes high each time that the contents of this register are updated. The  
host processor must readout this register before the next sample is converted by the AFE.  
ALED1VAL: Ambient LED1 Digital Sample Value Register (Address = 2Dh, Reset Value = 0000h)  
D23  
D22  
D21  
D9  
D20  
D8  
D19  
D7  
D18  
D17  
D16  
D4  
D15  
D3  
D14  
D2  
D13  
D1  
D12  
D0  
ALED1VAL[23:0]  
D11  
D10  
D6  
D5  
ALED1VAL[23:0]  
Bits D[23:0]  
ALED1VAL[23:0]: LED1 ambient digital value  
This register contains the digital value of the latest LED1 ambient sample converted by the  
ADC. The ADC_RDY signal goes high each time that the contents of this register are  
updated. The host processor must readout this register before the next sample is converted  
by the AFE.  
LED2-ALED2VAL: LED2-Ambient LED2 Digital Sample Value Register  
(Address = 2Eh, Reset Value = 0000h)  
D23  
D11  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D1  
D12  
D0  
LED2-ALED2VAL[23:0]  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
LED2-ALED2VAL[23:0]  
Bits D[23:0]  
LED2-ALED2VAL[23:0]: (LED2 – LED2 ambient) digital value  
This register contains the digital value of the LED2 sample after the LED2 ambient is  
subtracted. The host processor must readout this register before the next sample is  
converted by the AFE.  
Note that this value is inverted when compared to waveforms shown in many publications.  
LED1-ALED1VAL: LED1-Ambient LED1 Digital Sample Value Register  
(Address = 2Fh, Reset Value = 0000h)  
D23  
D11  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D1  
D12  
D0  
LED1-ALED1VAL[23:0]  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
LED1-ALED1VAL[23:0]  
Bits D[23:0]  
LED1-ALED1VAL[23:0]: (LED1 – LED1 ambient) digital value  
This register contains the digital value of the LED1 sample after the LED1 ambient is  
subtracted from it. The host processor must readout this register before the next sample is  
converted by the AFE.  
Note that this value is inverted when compared to waveforms shown in many publications.  
60  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
AFE4400  
www.ti.com  
SBAS601D DECEMBER 2012REVISED MAY 2013  
DIAG: Diagnostics Flag Register (Address = 30h, Reset Value = 0000h)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
0
D12  
0
0
0
0
0
0
0
0
PD_ALM  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LED_  
ALM  
LED1  
OPEN  
LED2  
OPEN  
OUTPSH OUTNSH  
GND GND  
INNSC  
GND  
INPSC  
GND  
INNSC  
LED  
INPSC  
LED  
LEDSC  
PDOC  
PDSC  
This register is read only. This register contains the status of all diagnostic flags at the end of the diagnostics  
sequence. The end of the diagnostics sequence is indicated by the signal going high on DIAG_END pin.  
Bits D[23:13]  
Bit D12  
Read only  
PD_ALM: Power-down alarm status diagnostic flag  
This bit indicates the status of PD_ALM (and the PD_ALM pin).  
0 = No fault (default after reset)  
1 = Fault present  
Bit D11  
Bit D10  
Bit D9  
Bit D8  
Bit D7  
Bit D6  
Bit D5  
Bit D4  
LED_ALM: LED alarm status diagnostic flag  
This bit indicates the status of LED_ALM (and the LED_ALM pin).  
0 = No fault (default after reset)  
1 = Fault present  
LED1OPEN: LED1 open diagnostic flag  
This bit indicates that LED1 is open.  
0 = No fault (default after reset)  
1 = Fault present  
LED2OPEN: LED2 open diagnostic flag  
This bit indicates that LED2 is open.  
0 = No fault (default after reset)  
1 = Fault present  
LEDSC: LED short diagnostic flag  
This bit indicates an LED short.  
0 = No fault (default after reset)  
1 = Fault present  
OUTPSHGND: OUTP to GND diagnostic flag  
This bit indicates that OUTP is shorted to the GND cable.  
0 = No fault (default after reset)  
1 = Fault present  
OUTNSHGND: OUTN to GND diagnostic flag  
This bit indicates that OUTN is shorted to the GND cable.  
0 = No fault (default after reset)  
1 = Fault present  
PDOC: PD open diagnostic flag  
This bit indicates that PD is open.  
0 = No fault (default after reset)  
1 = Fault present  
PDSC: PD short diagnostic flag  
This bit indicates a PD short.  
0 = No fault (default after reset)  
1 = Fault present  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: AFE4400  
AFE4400  
SBAS601D DECEMBER 2012REVISED MAY 2013  
www.ti.com  
Bit D3  
Bit D2  
Bit D1  
Bit D0  
INNSCGND: INN to GND diagnostic flag  
This bit indicates a short from the INN pin to the GND cable.  
0 = No fault (default after reset)  
1 = Fault present  
INPSCGND: INP to GND diagnostic flag  
This bit indicates a short from the INP pin to the GND cable.  
0 = No fault (default after reset)  
1 = Fault present  
INNSCLED: INN to LED diagnostic flag  
This bit indicates a short from the INN pin to the LED cable.  
0 = No fault (default after reset)  
1 = Fault present  
INPSCLED: INP to LED diagnostic flag  
This bit indicates a short from the INP pin to the LED cable.  
0 = No fault (default after reset)  
1 = Fault present  
62  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: AFE4400  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2013  
PACKAGING INFORMATION  
Orderable Device  
AFE4400RHAR  
AFE4400RHAT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-3-260C-168 HR  
AFE4400  
AFE4400  
ACTIVE  
RHA  
250  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-May-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AFE4400RHAR  
AFE4400RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-May-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AFE4400RHAR  
AFE4400RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

AFE44I30

用于可穿戴设备光学生物传感、具有 FIFO 和 I2C 的超低功耗集成模拟前端 (AFE)
TI

AFE44I30YZR

用于可穿戴设备光学生物传感、具有 FIFO 和 I2C 的超低功耗集成模拟前端 (AFE) | YZ | 30 | -40 to 85
TI

AFE44I30YZT

用于可穿戴设备光学生物传感、具有 FIFO 和 I2C 的超低功耗集成模拟前端 (AFE) | YZ | 30 | -40 to 85
TI

AFE44I31YZR

用于可穿戴设备光学生物传感、具有 FIFO 和 I2C 的超低功耗集成模拟前端 (AFE) | YZ | 30 | -40 to 85
TI

AFE44S30

用于可穿戴式光学生物传感、具有 FIFO 和 SPI 的超低功耗集成模拟前端 (AFE)
TI

AFE44S30YZR

用于可穿戴式光学生物传感、具有 FIFO 和 SPI 的超低功耗集成模拟前端 (AFE) | YZ | 30 | -40 to 85
TI

AFE44S30YZT

用于可穿戴式光学生物传感、具有 FIFO 和 SPI 的超低功耗集成模拟前端 (AFE) | YZ | 30 | -40 to 85
TI

AFE4500

用于生物阻抗分析和电、光学生物传感的集成模拟前端 (AFE)
TI

AFE4500YBGR

用于生物阻抗分析和电、光学生物传感的集成模拟前端 (AFE) | YBG | 42 | -40 to 85
TI

AFE4500YBGT

用于生物阻抗分析和电、光学生物传感的集成模拟前端 (AFE) | YBG | 42 | -40 to 85
TI

AFE4900

适用于可穿戴光学和电生物传感的超低功耗集成型 AFE
TI

AFE4900YZR

适用于可穿戴光学和电生物传感的超低功耗集成型 AFE | YZ | 30 | -20 to 70
TI