AFE7070 [TI]

集成 NCO、双通道 14 位 65MSPS DAC、射频 IQ 调制器和 LVDS 输出选项;
AFE7070
型号: AFE7070
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 NCO、双通道 14 位 65MSPS DAC、射频 IQ 调制器和 LVDS 输出选项

射频
文件: 总45页 (文件大小:2324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
带有集成模拟正交调制器的双路 14 65 百万次采样/(MSPS) 数模转换  
查询样品: AFE7070  
1
特性  
应用范围  
最大采样率:65MSPS  
低功耗、紧凑型软件无线电  
低功耗:  
飞蜂窝和微蜂窝基站 (BTS)  
325mW 低压差分信令 (LVDS) 输出模式  
334mW 模拟输出模式  
时钟频率变换  
说明  
交叉 CMOS 输入,1.8-3.3V IOVDD  
AFE7070 是一款双路 14 65MSPS 数模转换器  
(DAC),此转换器具有集成的、可编程四阶基带滤波器  
和模拟正交调制器。 AFE7070 包括用于频率生成/转  
换的数控振荡器和用于提供 LO 和边带抑制功能的正交  
调制器校正电路等附加数字信号处理特性。 AFE7070  
有一个交叉的 14 1.8V 3.3V CMOS 输入。  
AFE7070 提供 RF 输出频率范围介于 100MHz 至  
2.7GHz 之间的 20MHz RF 信号带宽。 一个可选  
LVDS 输出可被用于将正交调制器输出转换为一个高达  
800MHz 的时钟信号。 使用 LVDS 输出时,总功耗小  
350mW;使用模拟 RF 输出时,总功耗小于  
334mW。  
针对独立数据和数模转换器 (DAC) 时钟的输入  
FIFO  
用于寄存器编程的 3 4 个引脚 SPI 接口  
复杂数控振荡器 (NCO) (DDS)32 位频率,16 位  
相位  
正交调制器校正:针对边带和本地振荡 (LO) 抑制  
的增益、相位、偏移  
支持可编程带宽的模拟基带滤波器:20MHz 最大射  
(RF) 带宽  
RF 输出:模拟(线性)或 LVDS(时钟)  
RF 频率范围:100MHz 2.7GHz  
封装:48 引脚四方扁平无引线 (QFN) 封装 (7mm  
x 7mm)  
AFE7070 采用 7mm x 7mm 48 引脚 QFN 封装。  
AFE7070 可在整个工业温度范围(-40°C 85°C)内  
工作。  
AVAILABLE OPTIONS  
TA  
ORDER CODE  
AFE7070IRGZ25  
AFE7070IRGZT  
AFE7070IRGZR  
PACKAGE DRAWING/TYPE  
TRANSPORT MEDIA  
QUANTITY  
25  
–40°C to 85°C  
RGZ / 48QFN quad flatpack no-lead  
Tape and reel  
250  
2500  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
English Data Sheet: SLOS761  
 
 
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
BLOCK DIAGRAM  
RESETB  
BG_BYP  
SCLK  
SDENB  
SDIO  
SPI/  
Registers  
1.2-V  
REF  
Dual  
DAC  
Quadrature  
Modulator  
ALARM_SDO  
D[13:0]  
NCO/  
Mixer  
(DDS)  
RF_OUT  
Demux  
Clock  
QMC  
IQ_FLAG  
SYNC_SLEEP  
Baseband  
Filter  
¸1,2,4  
CLK_IO  
LVDS_P/N  
¸2  
DACCLKP/N  
LO_P/N  
PIN CONFIGURATION  
RGZ Package  
(Top View)  
48 47 46 45 44 43 42 41 40 39 38 37  
DACCLKP  
1
ATEST  
36  
DACCLKN  
CLKVDD18  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TESTMODE  
ALARM_SDO  
3
DACVDD33  
CLK_IO  
4
LO_N  
LO_P  
5
IQ_FLAG  
SDENB  
6
AFE7070  
SYNC_SLEEP  
RESETB  
D13 (MSB)  
D12  
7
SCLK  
8
SDIO  
D0 (LSB)  
9
10  
11  
12  
D1  
GND  
GND  
DVDD18  
DVDD18  
13 14 15 16 17 18 19 20 21 22 23 24  
P0023-25  
2
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
PIN FUNCTIONS  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
MISC/SERIAL  
CMOS output for ALARM condition, active-low. The ALARM output functionality is defined through the  
CONFIG7 registers.  
ALARM_SDO  
34  
O
Optionally, it can be used as the unidirectional data output in 4-pin serial interface mode (CONFIG3  
sif_4pin = 1). 1.8-V to 3.3-V CMOS, set by IOVDD.  
RESETB  
SCLK  
8
I
I
I
Resets the chip when low. 1.8-V to 3.3-V CMOS, set by IOVDD. Internal pullup  
Serial interface clock. 1.8-V to 3.3-V CMOS, set by IOVDD. Internal pulldown  
30  
31  
SDENB  
Active-low serial data enable, always an input. 1.8-V to 3.3-V CMOS, set by IOVDD. Internal pullup  
Bidirectional serial data in 3-pin mode (default). In 4-pin interface mode (CONFIG3 sif_4pin), the SDIO  
pin is an input only. 1.8-V to 3.3-V CMOS, set by IOVDD. Internal pulldown  
SDIO  
29  
I/O  
DATA/CLOCK INTERFACE  
Single-ended input or output CMOS level clock for latching input data. 1.8-V to 3.3-V CMOS, set by  
IOVDD.  
CLK_IO  
5
I/O  
I
9, 10,  
14–23,  
27, 28  
Data bits 0 through 13. D13 is the MSB, D0 is the LSB. For complex data, channel I and channel Q are  
multiplexed. For NCO phase data, either 14 bits are transferred at the internal sample clock rate, or 8  
MSBs and 8 LSBs are interleaved on D[13:6]. 1.8-V to 3.3-V CMOS, set by IOVDD. Internal pulldown  
D[13:0]  
DACCLKP,  
DACCLKN  
1, 2  
6
I
I
I
Differential input clock for DACs.  
When register CONFIG1 iqswap is 0, IQ-FLAG high identifies the DACA sample in dual-input or dual-  
output clock modes. 1.8-V or 3.3-V CMOS, set by IOVDD. Internal pulldown  
IQ_FLAG  
Multi-function. Sync signal for signal processing blocks, TX ENABLE or SLEEP function. Selectable via  
SPI. 1.8-V to 3.3-V CMOS, set by IOVDD.  
SYNC_SLEEP  
RF  
7
Local oscillator input. Can be used differentially or single-ended by terminating the unused input  
through a capacitor and 50-Ω resistor to GND.  
LO_P, LO_N  
32, 33  
I
LVDS_P,  
LVDS_N  
45, 44  
42  
O
O
Differential LVDS output  
Analog RF output  
RF_OUT  
REFERENCE  
ATEST  
36  
47  
35  
O
I
Factory use only. Do not connect.  
BG_BYP  
Reference voltage decoupling – connect 0.1 µF to GND.  
Factory use only. Connect to GND.  
TESTMODE  
POWER  
I
IOVDD  
13, 24  
3
I
I
I
I
I
I
I
I
1.8-V to 3.3-V supply for CMOS I/Os  
CLKVDD18  
DVDD18  
1.8 V  
12, 25  
46  
1.8 V  
LVDSVDD18  
DACVDD18  
DACVDD33  
MODVDD33  
FUSEVDD18  
1.8 V  
37, 48  
4
1.8 V  
3.3 V  
38, 39  
40  
3.3 V  
Connect to 1.8 V to 3.3 V supply (1.8 V is preferred to lower power dissipation).  
11, 26,  
41, 43  
GND  
I
Ground  
Copyright © 2012–2013, Texas Instruments Incorporated  
3
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
DACVDD33, MODVDD33, FUSEVDD18, IOVDD(2)  
Supply voltage  
DVDD18, CLKVDD18, DACVDD18(2)  
range  
–0.5 V to 4 V  
–0.5 V to 2.3 V  
–0.5 V to 4 V  
D[13..0], IQ FLAG, SYNC_SLEEP, SCLK, SDENB, SDIO, ALARM_SDO,  
–0.5 V to IOVDD + 0.5 V  
RESETB , CLK_IO, TESTMODE  
DACCLKP, DACCLKN  
LVDS_P, LVDS_N  
Supply voltage  
range(2)  
–0.5 V to CLKVDD18 + 0.5 V  
–0.5 V to LVDSVDD18 + 0.5 V  
–0.5 V to DACVDD33 + 0.5 V  
–0.5 V to MODVDD33 + 0.5 V  
–40°C to 85°C  
BG_BYP, ATEST  
RFOUT, LO_P, LO_N  
Operating free-air temperature range, TA  
Storage temperature range  
–65°C to 150°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of these or any other conditions beyond those indicated under Recommended Operating Conditions is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Measured with respect to GND  
DC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sampling rate = 65 MSPS, DVDD18  
= 1.8 V, CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V, analog output  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bits  
V
DC SPECIFICATIONS  
DAC resolution  
REFERENCE OUTPUT  
Reference voltage  
POWER SUPPLY  
14  
1.14  
1.2  
1.26  
IOVDD  
I/O supply voltage  
Digital supply voltage  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
3.15  
3.15  
3.6  
1.89  
1.89  
1.89  
1.89  
3.6  
V
V
DVDD18  
CLKVDD18  
DACVDD18  
LVDSVDD18  
FUSEVDD18  
DACVDD33  
MODVDD33  
IIOVDD  
1.8  
1.8  
1.8  
1.8  
1.8  
3.3  
3.3  
Clock supply voltage  
V
DAC 1.8-V analog supply voltage  
LVDS analog supply voltage  
FUSE analog supply voltage  
DAC 3.3-V analog supply voltage  
Modulator analog supply voltage  
I/O supply current  
V
V
Connect to 1.8-V supply for lower power  
V
3.45  
3.45  
V
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDVDD18  
Digital supply current  
18  
ICLKVDD18  
Clock supply current  
IDACVDD18  
DAC 1.8-V supply current  
LVDS output supply current  
FUSE supply current  
ILVDSVDD18  
IFUSEVDD18  
IDACVDD33  
21  
DAC 3.3-V supply current  
Modulator supply current  
IMODVDD33  
68  
LVDS output: NCO, QMC active, fDAC = 40 MHz, IOVDD = 2.5  
V
337  
380  
380  
mW  
Analog output: NCO off, QMC active, fDAC = 65 MHz, IOVDD =  
2.5 V  
335  
80  
5
mW  
mW  
mW  
Power dissipation  
Sleep mode with clock, internal reference on, IOVDD = 2.5 V  
Sleep mode without clock, internal reference off, IOVDD = 2.5  
V
25  
POWER SUPPLY vs MODE  
3.3-V supplies (DACVDD33, MODVDD33, IOVDD)  
72  
47  
mA  
mA  
mW  
1.8-V supplies (DVDD18, CLKVDD18, DACVDD18,  
FUSEVD18, LVDSVDD18)  
NCO = 1 MHz, LVDS on, RF out off, no input data, 65 MSPS  
Power dissipation  
322  
4
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
DC ELECTRICAL CHARACTERISTICS (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sampling rate = 65 MSPS, DVDD18  
= 1.8 V, CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V, analog output  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.3-V supplies (DACVDD33, MODVDD33, IOVDD)  
71  
mA  
NCO = 1 MHz, LVDS on, RF out off,  
no input data, 40 MSPS  
1.8-V supplies (DVDD18, CLKVDD18, DACVDD18,  
FUSEVDD18, LVDSVDD18)  
32  
mA  
Power dissipation  
337  
102  
mW  
mA  
3.3-V supplies (DACVDD33, MODVDD33, IOVDD)  
1 MHz full-scale input, RF out on, LVDS output off,  
NCO off, QMC on, 65 MSPS  
1.8-V supplies (DVDD18, CLKVDD18, DACVDD18,  
FUSEVD18, LVDSVDD18)  
36  
mA  
Power dissipation  
334  
101  
mW  
mA  
3.3-V supplies (DACVDD33, MODVDD33, IOVDD)  
1 MHz full-scale input, RF out on, LVDS output off,  
NCO off, QMC off, 32.5 MSPS  
1.8-V supplies (DVDD18, CLKVDD18, DACVDD18,  
FUSEVD18, LVDSVDD18)  
22  
mA  
Power dissipation  
325  
mW  
Copyright © 2012–2013, Texas Instruments Incorporated  
5
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sampling rate = 65 MSPS, DVDD18  
= 1.8 V, CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 =  
3.3 V, analog output (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (D[13:0], IQ_FLAG, SDI, SCLK, SDENB, RESETB, SYNC_SLEEP, ALARM_SDO, CLK_IO)  
IOVDD = 3.3 V  
2.3  
1.75  
1.25  
VIH  
High-level input voltage  
Low-level input voltage  
IOVDD = 2.5 V  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
IOVDD = 2.5 V  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
IOVDD = 3.3 V  
V
1
0.75  
0.54  
80  
VIL  
V
IIH  
High-level input current  
Low-level input current  
Input capacitance  
DAC sample rate  
–80  
–80  
µA  
µA  
IIL  
80  
Ci  
5
pF  
fDAC  
fINPUT  
Interleaved data, fDAC = 1/2 × fINPUT  
Interleaved data, fINPUT = 2 × fDAC  
0
0
65  
MSPS  
MSPS  
Input data rate  
130  
DIGITAL OUTPUTS (ALARM_SDO, SDIO, CLK_IO)  
ILOAD = –100 µA  
ILOAD = –2 mA  
ILOAD = 100 µA  
ILOAD = 2 mA  
IOVDD – 0.2  
0.8 × IOVDD  
V
V
V
V
VOH  
High-level output voltage  
Low-level output voltage  
0.2  
VOL  
0.22 × IOVDD  
CLOCK INPUT (DACCLKP/DACCLKN)  
DACCLKP/N duty cycle  
40%  
0.4  
60%  
1
DACCLKP/N differential voltage  
V
Timing Parallel Data Input (D[13:0], IQ_FLAG, SYNC_SLEEP) – Dual Input Clock Mode  
tSU  
tH  
Input setup time  
Relative to CLK_IO rising edge  
Relative to CLK_IO rising edge  
1
1
3
ns  
ns  
ns  
Input hold time  
tLPH  
Input clock pulse high time  
Timing Parallel Data Input (D[13:0], IQ_FLAG, SYNC_SLEEP) – Dual Output Clock Mode  
tSU  
tH  
Input setup time  
Input hold time  
Relative to CLK_IO rising edge  
Relative to CLK_IO rising edge  
1
1
0.2  
0.2  
ns  
ns  
Timing Parallel Data Input (D[13:0], IQ_FLAG, SYNC_SLEEP) – Single Differential DDR and SDR Clock Modes  
tSU  
tH  
Input setup time  
Input hold time  
Relative to DACCLKP/N rising edge  
Relative to DACCLKP/N rising edge  
0
2
–0.8  
1
ns  
ns  
Timing – Serial Data Interface  
tS(SDENB)  
tS(SDIO)  
tH(SDIO)  
tSCLK  
Setup time, SDENB to rising edge of SCLK  
20  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, SDIO valid to rising edge of SCLK  
Hold time, SDIO valid to rising edge of SCLK  
Period of SCLK  
100  
40  
40  
10  
25  
tSCLKH  
tSCLKL  
tD(DATA)  
tRESET  
High time of SCLK  
Low time of SCLK  
Data output delay after falling edge of SCLK  
Minimum RESETB pulse duration  
6
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
AC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sampling rate = 65 MSPS, DVDD18  
= 1.8 V, CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 =  
3.3 V, analog output (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
LO INPUT  
fLO  
LO frequency range  
LO input power  
0.1  
–5  
15  
2.7  
5
GHz  
dBm  
PLO_IN  
LO port return loss  
LVDS OUTPUT  
fLVDS_OUT LVDS output frequency  
INTEGRATED BASEBAND FILTER  
100  
800  
MHz  
dB  
2.5 MHz  
5 MHz  
1
18  
42  
65  
1
Baseband attenuation at setting  
Filtertune = 8 relative to low-frequency  
signal  
10 MHz  
20 MHz  
10 MHz  
20 MHz  
40 MHz  
55 MHz  
Baseband attenuation at setting  
Filtertune = 0 relative to low-frequency  
signal  
18  
42  
58  
dB  
RMS phase deviation from linear phase across  
minimum or maximum cutoff frequency  
Baseband filter phase linearity  
Baseband filter amplitude ripple  
2
Degrees  
dB  
Frequency < 0.9 × nominal cutoff frequency  
0.5  
RF Output Parameters – fLO = 100 MHz, Analog Output  
POUT_FS Full-scale RF output power Full-scale 50-kHz digital sine wave  
–1  
63  
dBm  
dBm  
dBm  
dBc  
IP2  
IP3  
Output IP2  
Maximum LPF BW setting, fBB = 4.5, 5.5 MHz  
Maximum LPF BW setting, fBB = 4.5, 5.5 MHz  
Unadjusted, fBB = 50 kHz, full scale  
Output IP3  
18  
Carrier feedthrough  
Sideband suppression  
Output noise floor  
Output return loss  
45  
Unadjusted, fBB = 50 kHz, full scale  
27  
dBc  
30 MHz offset, fBB = 50 kHz, full scale  
137  
8.5  
dBc/Hz  
dB  
RF Output Parameters – fLO = 450 MHz, Analog Output  
POUT_FS Full-scale RF output power Full-scale 50-kHz digital sine wave  
0.2  
67  
dBm  
dBm  
dBm  
dBc  
IP2  
IP3  
Output IP2  
Max LPF BW setting, fBB = 4.5, 5.5 MHz  
Max LPF BW setting, fBB = 4.5, 5.5 MHz  
Unadjusted, fBB = 50 kHz, full scale  
Unadjusted, fBB = 50 kHz, full scale  
30 MHz offset, fBB = 50 kHz, full scale  
Output IP3  
19  
Carrier feedthrough  
Sideband Suppression  
Output noise floor  
Output return loss  
45  
38  
dBc  
143  
8.5  
dBc/Hz  
dB  
RF Output Parameters – fLO = 850 MHz, Analog Output  
POUT_FS Full-scale RF output power Full-scale 50-kHz digital sine wave  
0.3  
64  
dBm  
dBm  
dBm  
dBc  
IP2  
IP3  
Output IP2  
Max LPF BW setting, fBB = 4.5, 5.5 MHz  
Max LPF BW setting, fBB = 4.5, 5.5 MHz  
Unadjusted, fBB = 50 kHz, full scale  
Unadjusted, fBB = 50 kHz, full scale  
30 MHz offset, fBB = 50 kHz, full scale  
Output IP3  
19  
Carrier feedthrough  
Sideband suppression  
Output noise floor  
Output return loss  
41  
37  
dBc  
143  
8.5  
dBc/Hz  
dB  
1 WCDMA TM1 signal, PAR = 10 dB,  
POUT = –10 dBFS  
65  
61  
dBc  
dBc  
ACPR  
Adjacent-channel power ratio  
10-MHz LTE, PAR = 10 dB, POUT = –10 dBFS  
Copyright © 2012–2013, Texas Instruments Incorporated  
7
 
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
AC ELECTRICAL CHARACTERISTICS (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sampling rate = 65 MSPS, DVDD18  
= 1.8 V, CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 =  
3.3 V, analog output (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
1 WCDMA TM1 signal, PAR = 10 dB,  
POUT = –10 dBFS  
ALT1  
Alternate-channel power ratio  
66  
dBc  
RF Output Parameters – fLO = 2.1 GHz, Analog Output  
POUT_FS Fullscale RF output power  
–1.5  
50  
dBm  
dBm  
dBm  
dBc  
IP2  
IP3  
Output IP2  
Output IP3  
19  
Carrier feedthrough  
Sideband suppression  
Output noise floor  
Output return loss  
38  
42  
dBc  
30 MHz offset, fBB = 50 kHz, full scale  
141  
8.5  
dBc/Hz  
dB  
1 WCDMA TM1 signal, PAR = 10 dB,  
POUT = –10 dBFS  
ACPR  
ALT1  
Adjacent-channel power ratio  
65  
61  
65  
dBc  
dBc  
dBc  
20 MHz LTE, PAR = 10 dB,  
POUT = - 10 dBFS  
1 WCDMA TM1 signal, PAR = 10 dB,  
POUT = –10 dBFS  
Alternate-channel power ratio  
RF Output Parameters – fLO = 2.7 GHz, Analog Output  
POUT_FS Full-scale RF output power  
–3.6  
48  
dBm  
dBm  
dBm  
dBc  
IP2  
IP3  
Output IP2  
Output IP3  
17  
Carrier feedthrough  
Sideband suppression  
Output noise floor  
Output return loss  
36  
35  
dBc  
30 MHz offset, fBB = 50 kHz, full scale  
139  
8.5  
dBc/Hz  
dB  
RF Output Parameters – fLO = 622 MHz, LVDS Output, ÷4  
VOD  
VOC  
Differential output voltage  
Common-mode output voltage  
Output noise floor  
Assumes a 100-Ω differential load  
247 350  
454  
mV  
V
1.125 1.25 1.375  
13 MHz offset, fBB = 1 MHz  
Carrier feedthrough  
Unadjusted, fBB = 50 kHz, full scale  
Unadjusted, fBB = 50 kHz, full cale  
40  
40  
dBc  
dBc  
Sideband suppression  
8
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
TYPICAL PERFORMANCE PLOTS  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
2
1
2
1
−5 dBm  
0 dBm  
8 dBm  
−40°C  
25°C  
85°C  
0
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
LO Frequency (MHz)  
LO Frequency (MHz)  
G000  
G001  
Figure 1. Output Power vs LO Frequency and LO Power  
Figure 2. Output Power vs LO Frequency and Temperature  
2
1
3.15V  
3.3V  
3.45V  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
1000  
2000  
LO Frequency (MHz)  
3000  
4000  
G002  
Figure 3. Output Power vs LO Frequency and Supply Voltage  
20  
19  
18  
17  
16  
15  
14  
13  
12  
−5dBm  
0dBm  
8dBm  
−5  
−10  
−15  
−20  
Frequency = 1960 MHz  
Frequency = 2140 MHz  
11  
10  
−20  
−15  
−10  
−5  
1000  
2000  
3000  
4000  
CW Digital Input Power (dBFS)  
Frequency (MHz)  
G003  
G004  
Figure 4. Output Power vs Input Power and LO Frequency  
Figure 5. OIP3 vs LO Frequency and LO Power  
Copyright © 2012–2013, Texas Instruments Incorporated  
9
 
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
−40°C  
25°C  
85°C  
3.15V  
3.3V  
3.45V  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 6. OIP3 vs LO Frequency and Temperature  
Figure 7. OIP3 vs LO Frequency and Supply Voltage  
75  
75  
−5dBm  
0dBm  
8dBm  
−40°C  
25°C  
85°C  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G007  
G008  
Figure 8. OIP2 vs LO Frequency and LO Power  
Figure 9. OIP2 vs LO Frequency and Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
−25  
3.15V  
3.3V  
3.45V  
−5dBm  
0dBm  
8dBm  
−30  
−35  
−40  
−45  
−50  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G009  
G010  
Figure 10. OIP2 vs LO Frequency and Supply Voltage  
Figure 11. Unadjusted Carrier Feethrough vs LO Frequency  
and LO Power  
10  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
−25  
−30  
−35  
−40  
−45  
−50  
−25  
−30  
−35  
−40  
−45  
−50  
−40°C  
25°C  
85°C  
3.15V  
3.3V  
3.45V  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G011  
G012  
Figure 12. Unadjusted Carrier Feethrough vs LO Frequency  
and Temperature  
Figure 13. Unadjusted Carrier Feethrough vs LO Frequency  
and Supply Voltage  
−50  
−40  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
−45  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
900  
920  
940  
960  
980  
1920  
1940  
1960  
1980  
2000  
Frequency (MHz)  
Frequency (MHz)  
G013  
G014  
Figure 14. Adjusted Carrier Feethrough vs LO Frequency  
and Temperature at 940 MHz  
Figure 15. Adjusted Carrier Feethrough vs LO Frequency  
and Temperature at 1960 MHz  
−40  
−40  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
−45  
−45  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
2100  
2120  
2140  
2160  
2180  
2460  
2480  
2500  
2520  
2540  
Frequency (MHz)  
Frequency (MHz)  
G015  
G016  
Figure 16. Adjusted Carrier Feethrough vs LO Frequency  
and Temperature at 2140 MHz  
Figure 17. Adjusted Carrier Feethrough vs LO Frequency  
and Temperature at 2500 MHz  
Copyright © 2012–2013, Texas Instruments Incorporated  
11  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
−40  
−40°C  
25°C  
85°C  
−5dBm  
0dBm  
8dBm  
−45  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
50  
40  
30  
20  
3460  
3480  
3500  
3520  
3540  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G017  
G029  
Figure 18. Adjusted Carrier Feethrough vs LO Frequency  
and Temperature at 3500 MHz  
Figure 19. Unadjusted Sideband Suppression vs LO  
Frequency and LO Power  
60  
55  
−40°C  
3.15V  
25°C  
85°C  
3.3V  
3.45V  
55  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G028  
G027  
Figure 20. Unadjusted Sideband Suppression vs LO  
Frequency and Temperature  
Figure 21. Unadjusted Sideband Suppression vs LO  
Frequency and Supply Voltage  
90  
80  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
85  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
45  
40  
900  
920  
940  
960  
980  
1920  
1940  
1960  
1980  
2000  
Frequency (MHz)  
Frequency (MHz)  
G018  
G019  
Figure 22. Adjusted Sideband Suppression vs LO  
Frequency and Temperature at 940 MHz  
Figure 23. Adjusted Sideband Suppression vs LO  
Frequency and Temperature at 1960 MHz  
12  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
2100  
2120  
2140  
2160  
2180  
2460  
2480  
2500  
2520  
2540  
Frequency (MHz)  
Frequency (MHz)  
G020  
G021  
Figure 24. Adjusted Sideband Suppression vs LO  
Frequency and Temperature at 2140 MHz  
Figure 25. Adjusted Sideband Suppression vs LO  
Frequency and Temperature at 2500 MHz  
85  
70  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
65  
60  
3460  
3480  
3500  
3520  
3540  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G022  
G023  
Figure 26. Adjusted Sideband Suppression vs LO  
Frequency and Temperature at 3500 MHz  
Figure 27. WCDMA Adjacent-Channel Power Ratio (ACPR)  
vs Temperature  
70  
70  
−40°C  
25°C  
85°C  
3.15V  
3.3V  
3.45V  
65  
60  
65  
60  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G024  
G025  
Figure 28. WCDMA Adjacent-Channel Power Ratio (Alt-  
ACPR) vs Temperature  
Figure 29. WCDMA Adjacent-Channel Power Ratio (ACPR)  
vs Supply Voltage  
Copyright © 2012–2013, Texas Instruments Incorporated  
13  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
70  
65  
60  
−120  
−125  
−130  
−135  
−140  
−145  
3.15V  
3.3V  
3.45V  
6 MHz Offset  
30 MHz Offset  
1000  
2000  
3000  
4000  
−20  
−15  
−10  
−5  
Frequency (MHz)  
Digital Amplitude (dBFS)  
G026  
G030  
Figure 30. WCDMA Adjacent-Channel Power Ratio (Alt-  
ACPR) vs Supply Voltage  
Figure 31. Noise Spectral Density (NSD) vs Input Power and  
LO Frequency  
−130  
3.15V  
3.3V  
−135  
−140  
3.45V  
−135  
−140  
3.15V  
3.3V  
3.45V  
−145  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G031  
G032  
Figure 32. Noise Spectral Density (NSD) at 6-MHz Offset vs  
LO Frequency and Supply Voltage  
Figure 33. Noise Spectral Density (NSD) at 30-MHz Offset vs  
LO Frequency and Supply Voltage  
−132  
−137  
−135  
−140  
−40°C  
−40°C  
25°C  
25°C  
85°C  
85°C  
−142  
−145  
1000  
2000  
3000  
4000  
1000  
2000  
3000  
4000  
Frequency (MHz)  
Frequency (MHz)  
G033  
G034  
Figure 34. Noise Spectral Density (NSD) at 6-MHz Offset vs  
LO Frequency and Temperature  
Figure 35. Noise Spectral Density (NSD) at 30-MHz Offset  
vs. LO Frequency and Temperature  
14  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
TYPICAL PERFORMANCE PLOTS (continued)  
TA = 25°C, DAC sampling rate = 65 MSPS, single-tone IF = 1.1 MHz, two-tone IF = 1 MHz and 2 MHz, DVDD18 = 1.8 V,  
CLKVDD18 = 1.8 V, DACVDD18 = 1.8 V, FUSEVDD18 = 1.8 V, IOVDD = 3.3 V, DACVDD33 = 3.3 V, MODVDD33 = 3.3 V,  
analog output, unless otherwise noted  
−10  
−20  
−30  
−40  
−50  
Filter tune = 0  
Filter tune = 4  
−60  
Filter tune = 8  
5
10  
15  
20  
Baseband Frequency (MHz)  
G035  
Figure 36. Baseband Filter Response  
Copyright © 2012–2013, Texas Instruments Incorporated  
15  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
SERIAL INTERFACE  
The serial port of the AFE7070 is a flexible serial interface which communicates with industry-standard  
microprocessors and microcontrollers. The interface provides read/write access to all registers used to define the  
operating modes of the AFE7070. The serial port is compatible with most synchronous transfer formats and can  
be configured as a 3- or 4-pin interface by sif_4pin in CONFIG3 (bit6). In both configurations, SCLK is the serial  
interface input clock and SDENB is serial interface enable. For the 3-pin configuration, SDIO is a bidirectional pin  
for both data in and data out. For the 4-pin configuration, SDIO is data-in only and ALARM_SDO is data-out  
only. Data is input into the device with the rising edge of SCLK. Data is output from the device on the falling  
edge of SCLK.  
Each read/write operation is framed by signal SDENB (serial data-enable bar) asserted low for 2 to 5 bytes,  
depending on the data length to be transferred (1–4 bytes). The first frame byte is the instruction cycle, which  
identifies the following data transfer cycle as read or write, how many bytes to transfer, and the address to which  
to transfer the data. Table 1 indicates the function of each bit in the instruction cycle and is followed by a detailed  
description of each bit. Frame bytes 2 through 5 comprise the data transfer cycle.  
Table 1. Instruction Byte of the Serial Interface  
MSB  
7
LSB  
0
Bit  
6
5
4
3
2
1
Description  
R/W  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
R/W  
Identifies the following data transfer cycle as a read or write operation. A high indicates a read  
operation from the AFE7070, and a low indicates a write operation to the AFE7070.  
[N1 : N0]  
Identifies the number of data bytes to be transferred, as listed in Table 2. Data is transferred MSB  
first.  
Table 2. Number of Transferred Bytes Within One Communication Frame  
N1  
0
N0  
0
DESCRIPTION  
Transfer 1 byte  
Transfer 2 bytes  
Transfer 3 bytes  
Transfer 4 bytes  
0
1
1
0
1
1
[A4 : A0]  
Identifies the address of the register to be accessed during the read or write operation. For multi-  
byte transfers, this address is the starting address. Note that the address is written to the  
AFE7070 MSB first and counts down for each byte.  
Figure 37 shows the serial interface timing diagram for an AFE7070 write operation. SCLK is the serial interface  
clock input to AFE7070. Serial data enable SDENB is an active-low input to the AFE7070. SDIO is serial data in.  
Input data to the AFE7070 is clocked on the rising edges of SCLK.  
16  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
 
 
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Data Transfer Cycle(s)  
Instruction Cycle  
SDENB  
SCLK  
SDIO  
r/w N1 N0 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
(SDENB)  
ts  
t SCLK  
SDENB  
SCLK  
SDIO  
(SDIO)  
th  
tSCLKH tSCLKL  
(SDIO)  
ts  
Figure 37. Serial Interface Write Timing Diagram  
Figure 38 shows the serial interface timing diagram for an AFE7070 read operation. SCLK is the serial interface  
clock input to AFE7070. Serial data enable SDENB is an active-low input to the AFE7070. SDIO is serial data-in  
during the instruction cycle. In the 3-pin configuration, SDIO is data-out from the AFE7070 during the data  
transfer cycle(s), while ALARM_SDO is in a high-impedance state. In the 4-pin configuration, ALARM_SDO is  
data-out from the AFE7070 during the data transfer cycle(s). At the end of the data transfer, ALARM_SDO  
outputs low on the final falling edge of SCLK until the rising edge of SDENB, when it enters the high-impedance  
state.  
Data Transfer Cycle(s)  
Instruction Cycle  
SDENB  
SCLK  
SDIO  
N1 N0 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 0  
r/w  
0
D7 D6 D5 D4 D3 D2 D1 D0  
ALARM_SDO  
4 pin configuration  
output  
3 pin configuration  
output  
SDENB  
SCLK  
SDIO  
Data n  
Data n-1  
t (Data)  
ALARM_SDO  
d
Figure 38. Serial Interface Read Timing Diagram  
Copyright © 2012–2013, Texas Instruments Incorporated  
17  
 
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
REGISTER DESCRIPTIONS  
In the SIF interface there are three types of registers, NORMAL, READ_ONLY, and WRITE_TO_CLEAR. The  
NORMAL register type allows data to be written and read from the register. All 8 bits of the data are registered at  
the same time, but there is no synchronizing with an internal clock. All register writes are asynchronous with  
respect to internal clocks. READ_ONLY registers only allow reading of the registers—writing to them has no  
effect. WRITE_TO_CLEAR registers are just like NORMAL registers in that they can be written and read;  
however, when the internal signals set a bit high in these registers, that bit stays high until it is written to 0. This  
way, interrupts are captured and constant until dealt with and cleared.  
Register Map  
(MSB)  
bit 7  
(LSB)  
bit 0  
Name  
Address Default  
bit 6  
div2_sync_ena  
iqswap  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
CONFIG0  
CONFIG1  
0x00  
0x01  
0x10  
0x10  
div2_dacclk_ena  
twos  
clkio_sel  
clkio_out_ena_n  
data_clk_sel  
data_type  
fifo_ena  
sync_IorQ  
daca_  
complement  
dacb_  
complement  
trim_clk_rc_fltr  
lvds_clk_div  
Alarm_fifo_  
2away  
CONFIG2  
CONFIG3  
0x02  
0x03  
0xXX  
0x10  
Unused  
Unused  
sif_4pin  
Unused  
SLEEP  
Unused  
Unused  
SYNC  
Unused  
Alarm_fifo_1away  
msb_out  
alarm_or_sdo_  
ena  
TXENABLE  
sync_sleep_txenable_sel  
pd_clkrcvr_  
mask  
CONFIG4  
CONFIG5  
CONFIG6  
0x04  
0x05  
0x06  
0x0F  
0x00  
0x00  
fuse_pd  
offset_ena  
pd_lvds  
mixer_gain  
qmc_corr_ena  
pd_rf_out  
pd_clkrcvr  
mixer_ena  
pd_dac  
coarse_dac(3:0)  
filter_tune(4:0)  
pd_tf_out_  
pd_dac_mask  
mask  
pd_analogout_  
mask  
pd_analogout  
fifo_offset  
pd_lvds_mask  
alarm2away_  
ena  
alarm_1away_  
ena  
CONFIG7  
0x07  
0x13  
mask_2away  
mask_1away  
fifo_sync_mask  
CONFIG8  
CONFIG9  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x00  
0x7A  
0xB6  
0xEA  
0x45  
0x1A  
0x16  
0xAA  
0xC6  
0x24  
0x02  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0x82  
qmc_offseta (7:0)  
qmc_offsetb (7:0)  
CONFIG10  
CONFIG11  
CONFIG12  
CONFIG13  
CONFIG14  
CONFIG15  
CONFIG16  
CONFIG17  
CONFIG18  
CONFIG19  
CONFIG20  
CONFIG21  
CONFIG22  
CONFIG23  
CONFIG24  
CONFIG25  
CONFIG26  
CONFIG27  
CONFIG28  
CONFIG29  
CONFIG30  
CONFIG31  
qmc_offseta(12:8)  
qmc_offsetb(12:8)  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
qmc_gaina (7:0)  
qmc_gainb (7:0)  
qmc_phase (7:0)  
qmc_phase(9:8)  
qmc_gaini(10:8)  
qmc_gainq(10:8)  
freq (7:0)  
freq (15:8)  
freq (23:16)  
freq (31:24)  
phase (7:0)  
phase (15:8)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
titest_voh  
titest_vol  
Version(5:0)  
18  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Register name: CONFIG0; Address: 0x00  
BIT 7  
BIT 0  
div2_dacclk_ena  
0
div2_sync_ena  
0
clkio_sel  
0
clkio_out_ena_n data_clk_sel  
data_type  
0
fifo_ena  
0
sync_IorQ  
0
1
0
Table 3. Clock Mode Memory Programming  
Mode  
div2_dacclk_ena  
div2_sync_ena  
clkio_sel  
clkio_out_ena_n  
data_clk_sel  
Dual input clock(00)  
1
1
0
0
0
1
0
0
1
0
0
1
1
0
1
1
0
0
1
1
Dual output clock (01)  
Single differential DDR clock (10)  
Single differential SDR clock (11)  
div2_dacclk_ena: When set to 1, this enables the divide-by-2 in the DAC clock path. This must be set to 1  
when in dual-input clock mode or dual-output clock mode.  
div2_sync_ena:  
When set to 1, the divide-by-2 is synchronized with the iq_flag. It is only useful in the dual-  
clock modes when the divide-by-2 is enabled. Care must be take to ensure the input data  
and DAC clocks are correctly aligned.  
clkio_sel:  
This bit is used to determine which clock is used to latch the input data. This should be set  
according to Table 3.  
clkio_out_ena_n:  
data_clk_sel:  
data_type:  
When set to 0, the clock CLK_IO is an output. Depending on the mode, is should be set  
according to Table 3.  
This bit is used to determine which clock is used to latch the input data. This should be set  
according to Table 3.  
When asserted, the phase data is presented at the data interface. The phase data is then  
updated with each clock. The phase register then holds the value of the I and Q data to be  
used with the mix operation.  
fifo_ena:  
When asserted, the FIFO is enabled. Used in dual-input clock mode only. In all other  
modes, the FIFO is bypassed.  
sync_IorQ:  
When set to 0, sync is latched on the I phase of the input clock. When set to 1, sync is  
detected on the Q phase of the clock and is sent to the rest of the chip when the next I  
data is presented.  
Copyright © 2012–2013, Texas Instruments Incorporated  
19  
 
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Register name: CONFIG1; Address: 0x01  
BIT 7  
BIT 0  
twos  
0
iqswap  
0
trim_clk_rc_fltr  
daca_complement  
0
dacb_complement  
0
lvds_clk_div  
0
1
X
X
twos:  
iqswap:  
When asserted, the input to the chip is 2s complement, otherwise offset binary.  
When asserted, the DACA data is driven onto DACB and reverse.  
2 bits to trim the RC filter for LVDS out  
trim_clk_rc_fltr:  
daca_complement:  
When asserted, the output to DACA is complemented. This allows the user of the chip  
effectively to change the + and – designations of the PADs.  
dacb_complement:  
lvds_clk_div:  
When asserted, the output to DACB is complemented. This allows the user of the chip  
effectively to change the + and – designations of the PADs.  
lvds_clk_div  
LVDS Clock Division  
00  
01  
10  
11  
2
4
1
1
20  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Register name: CONFIG2; Address: 0x02  
Write-to-clear register bits remain asserted once set. Each bit must be written to 0 before another 1 can  
be captured.  
BIT 7  
unused  
0
BIT 0  
unused  
0
unused  
0
unused  
0
unused  
0
unused  
0
Alarm_fifo_2away  
1
Alarm_fifo_1away  
1
Alarm_fifo_2away: When asserted, the FIFO pointers are 2 away from collision. (WRITE_TO_CLEAR)  
Alarm_fifo_1away: When asserted, the FIFO pointers are 1 away from collision. (WRITE_TO_CLEAR)  
Register name: CONFIG3; Address: 0x03 (INTERFACE SELECTION)  
BIT 7  
BIT 0  
alarm_or_sdo_ena  
0
sif_4pin  
0
SLEEP  
0
TXenable  
1
SYNC  
0
sync_sleep_txenable_sel  
msb_out  
0
0
0
alarm_or_sdo_e When asserted, the output of the ALARM_SDO pin is enabled.  
na:  
sif_4pin:  
When asserted, the part is in 4-pin SPI mode. The data-out is output on the ALARM_SDO  
pin. If this bit is not enabled, the alarm signal is output on the ALARM_SDO pin.  
sleep:  
When asserted, all blocks programmed to go to sleep in CONFIG4 and CONFIG6 registers  
labeled pd_***_mask are powered down.  
TXenable:  
sync:  
When 0, the data path is zeroed. When 1, the device transmits.  
When written with a 1, the part is synced. To be resynced using the sif register, it must be  
reset to 0 by writing a 0 then write a 1 to the sif to sync.  
sync_sleep_  
txenable_sel:  
This is used to define the function of the SYNC_SLEEP pin. This pin can be used for multiple  
functions, but only one at a time. When it is set to control any one of the functions, all other  
functions are controlled by writing their respective sif register bits.  
sync_sleep_txenable  
_sel  
Pin controls  
00  
01  
10  
11  
All controlled by sif bit  
TXENABLE  
SYNC  
SLEEP  
msb_out:  
When set, and alarm_sdo_out_ena is also set, the ALARM_SDO pin outputs the value of  
daca bit 13.  
Copyright © 2012–2013, Texas Instruments Incorporated  
21  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Register name: CONFIG4; Address: 0x04  
BIT 7  
BIT 0  
1
fuse_pd  
0
mixer_gain  
0
pd_clkrcvr  
0
pd_clkrcvr_mask  
0
coarse_dac(3:0)  
1
1
1
fuse_pd:  
When set to 1, the fuses are powered down. This saves approximately 50 µA at 1.8 V for  
every intact fuse. The default value is 0.  
mixer_gain:  
When asserted, the complex mixer output is multiplied by 2. Only applied when the mixer is  
enabled (mixer_ena = 1).  
pd_clkrcvr:  
When asserted, the clock receiver is powered down.  
pd_clkrcvr_mask: When asserted, allows the clock receiver to be powered down with the SYNC_SLEEP pin or  
sleep register bit.  
coarse_dac:  
DAC full-scale current control  
Register name: CONFIG5; Address: 0x05  
BIT 7  
BIT 0  
0
offset_ena  
0
qmc_corr_ena  
0
mixer_ena  
0
filter_tune(4:0)  
0
0
0
0
offset_ena:  
When asserted, the qmc offset blk is enabled.  
When asserted, the qmc correction is enabled.  
qmc_corr_ena:  
mixer_ena:  
When asserted, the complex mix is performed. Otherwise, the mixer is bypassed.  
Bits used to change the bandwidth of the analog filters  
filter_tune(4:0):  
Register name: CONFIG6; Address: 0x06  
BIT 7  
BIT 0  
pd_lvds  
pd_rf_out  
0
pd_dac  
0
pd_analogout  
1
pd_lvds_mask pd_tf_out_mask pd_dac_mask pd_analogout_  
mask  
0
1
1
0
0
pd_lvds:  
When asserted, the LVDS output stage is powered down.  
When asserted, the RF output stage is powered down.  
When asserted, DACs are powered down.  
pd_rf_out:  
pd_dac:  
pd_analog_out:  
When asserted, the entire analog circuit after the DACs (filters, modulator, LO input, RF  
output stage, LVDS output) is powered down.  
The following are used to determine what blocks are powered down when the SYNC_SLEEP pin is used or the  
sleep register bit is set.  
pd_lvds_mask:  
pd_rf_out_mask: When asserted, allows the RF output to be powered down  
pd_dac_mask: When asserted, allows the DACs to be powered down  
When asserted, allows the LVDS to be powered down  
22  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Register name: CONFIG7; Address: 0x07  
BIT 7  
BIT 0  
mask_2away  
0
mask_1away fifo_sync_mask  
fifo_offset  
0
alarm_2away_ena  
1
alarm_1away_ena  
1
0
0
1
0
mask_2away:  
mask_1away:  
fifo_sync_mask:  
fifo_offset:  
When set to 1, the ALARM_SDO pin is not asserted when the FIFO pointers are 2 away  
from collision. The alarm still shows up in the CONFIG7 bits.  
When set to 1, the ALARM_SDO pin is not asserted when the FIFO pointers are 1 away  
from collision. The alarm still shows up in the CONFIG7 bits.  
When set to 1, the sync to the FIFO is masked off. Sync does not then reset the pointers.  
If the value is 0, when the sync is toggled the FIFO pointers are reset to the offset values.  
Used to set the offset pointers in the FIFO. Programs the starting location of the output  
side of the FIFO, allows the output pointer to be shifted from –4 to +3 (2s complement)  
positions with respect to its default position when synced. The default position for the  
output side pointer is 2. The input side pointer defaults to 0.  
alarm_2away_ena: When asserted, alarms from the FIFO that represent the pointers being 2 away from  
collision are enabled.  
alarm_1away_ena: When asserted, alarms from the FIFO that represent the pointers being 1 away from  
collision are enabled.  
Register name: CONFIG8; Address: 0x08  
BIT 7  
BIT 0  
qmc_offseta (7:0)  
0
0
0
0
0
0
0
0
qmc_offseta(7:0):  
Bits 7:0 of qmc_offseta. The complete registers qmc_offseta[12:0] and qmc_offsetb[12:0]  
are updated when CONFIG8 is written, so CONFIG9, CONFIG10, and CONFIG11 should  
be written before CONFIG8.  
Register name: CONFIG9; Address: 0x09  
BIT 7  
BIT 0  
0
qmc_offsetb (7:0)  
0
1
1
1
1
0
1
qmc_offsetb(7:0):  
Bits 7:0 of qmc_offsetb. The complete registers qmc_offseta[12:0] and qmc_offsetb[12:0]  
are updated when CONFIG8 is written, so CONFIG9, CONFIG10, and CONFIG11 should  
be written before CONFIG8.  
Register name: CONFIG10; Address: 0x0A  
BIT 7  
BIT 0  
Unused  
0
qmc_offseta(12:8)  
Unused  
1
Unused  
1
1
0
1
1
0
qmc_offsetb(12:8): Bits 12:8 of qmc_offseta. The complete registers qmc_offseta[12:0] and qmc_offsetb[12:0]  
are updated when CONFIG8 is written, so CONFIG9, CONFIG10, and CONFIG11 should  
be written before CONFIG8.  
Copyright © 2012–2013, Texas Instruments Incorporated  
23  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Register name: CONFIG11; Address: 0x0B  
BIT 7  
BIT 0  
Unused  
0
qmc_offsetb(12:8)  
Unused  
0
Unused  
1
1
1
1
0
1
qmc_offsetb(12:8):  
Bits 12:8 of qmc_offsetb. The complete registers qmc_offseta[12:0] and  
qmc_offsetb[12:0] are updated when CONFIG8 is written, so CONFIG9, CONFIG10, and  
CONFIG11 should be written before CONFIG8.  
Register name: CONFIG12; Address: 0x0C  
BIT 7  
BIT 0  
1
qmc_gaina (7:0)  
0
1
0
0
0
1
0
qmc_gaina(7:0):  
Bits 7:0 of qmc_gaina. The complete registers qmc_gaina[10:0], qmc_gainb[10:0] and  
qmc_phase[9:0] are updated when CONFIG12 is written, so CONFIG13, CONFIG14, and  
CONFIG15 should be written before CONFIG12.  
Register name: CONFIG13; Address: 0x0D  
BIT 7  
BIT 0  
0
qmc_gainb (7:0)  
0
0
0
1
1
0
0
qmc_gainb(7:0):  
Bits 7:0 of qmc_gainb. The complete registers qmc_gaina[10:0], qmc_gainb[10:0] and  
qmc_phase[9:0] are updated when CONFIG12 is written, so CONFIG13, CONFIG14, and  
CONFIG15 should be written before CONFIG12.  
Register name: CONFIG14; Address: 0x0E  
BIT 7  
BIT 0  
0
qmc_phase (7:0)  
0
0
0
1
0
1
1
qmc_phase(7:0)  
Bits 7:0 of qmc_phase. The complete registers qmc_gaina[10:0], qmc_gainb[10:0] and  
qmc_phase[9:0] are updated when CONFIG12 is written, so CONFIG13, CONFIG14, and  
CONFIG15 should be written before CONFIG12.  
Register name: CONFIG15; Address: 0x0F  
BIT 7  
BIT 0  
0
qmc_phase(9:8)  
qmc_gaina(10:8)  
qmc_gainb(10:8)  
1
1
0
1
0
1
0
qmc_phase(9:8):  
qmc_gaina(10:8):  
qmc_gainb(10:8):  
Bits 9:8 of qmc_phase value  
Bits 9:8 of qmc_gaina value  
Bits 9:8 of qmc_gainb value  
The complete registers qmc_gaina[10:0], qmc_gainb[10:0] and qmc_phase[9:0] are updated when CONFIG12  
is written, so CONFIG13, CONFIG14, and CONFIG15 should be written before CONFIG12.  
24  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Register name: CONFIG16; Address: 0x10  
BIT 7  
BIT 0  
freq (7:0)  
freq (15:8)  
freq (23:15)  
freq (31:24)  
phase (7:0)  
phase (15:8)  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
freq(7:0):  
Bits 7:0 of frequency value  
Register name: CONFIG17; Address: 0x11  
BIT 7  
BIT 0  
0
0
0
1
freq (15:8):  
Bits 15:8 of frequency value  
Register name: CONFIG18; Address: 0x12  
BIT 7  
BIT 0  
0
0
0
0
freq (23:15): Bits 23:15 of frequency value  
Register name: CONFIG19; Address: 0x13  
BIT 7  
BIT 0  
0
0
0
0
freq (31:24): Bits 31:24 of frequency value  
Register name: CONFIG20; Address: 0x14  
BIT 7  
BIT 0  
0
0
0
0
phase (7:0): Bits 7:0 of phase value  
Register name: CONFIG21; Address: 0x15  
BIT 7  
BIT 0  
0
0
0
0
phase (15:8):  
Bits 15:8 of phase value  
Register name: CONFIG22; Address: 0x16  
BIT 7  
BIT 0  
0
nco__sync_sleep(7:0)  
0
0
0
0
0
nco_sync_sleep(7:0):  
Set to 11110000 to use the SYNC_SLEEP pin to update the NCO frequency value;  
otherwise, set to 00000000. Note that register sync_sleep_txenable_sel in CONFIG3  
must be set to 10 to use the SYNC_SLEEP pin as a SYNC input.  
Copyright © 2012–2013, Texas Instruments Incorporated  
25  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Register name: CONFIG23; Address: 0x17  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
1
Register name: CONFIG24; Address: 0x18  
BIT 7  
BIT 0  
X
reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG25; Address: 0x19  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG26; Address: 0x1A  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG27; Address: 0x1B  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG28; Address: 0x1C  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG29; Address: 0x1D  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
X
Register name: CONFIG30; Address: 0x1E  
BIT 7  
BIT 0  
X
Reserved – Varies from device to device  
X
X
X
X
0
X
0
Register name: CONFIG31; Address: 0x1F  
BIT 7  
BIT 0  
0
titest_voh  
1
titest_vol  
0
Version(5:0)  
0
titest_voh:  
titest_voh:  
version:  
Bit held high for sif test purposes  
Bit held low for sif test purposes  
Version of the chip  
26  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
PARALLEL DATA INPUT  
The AFE7070 can input either complex I and Q data interleaved on D[13:0] at a data rate 2× the internal output  
sample clock frequency, 16-bit NCO phase data interleaved as 8 MSBs and 8 LSBs on pins D[13:6] at a data  
rate 2× the internal output sample clock frequency, or 14-bit NCO phase data at a data rate 1× the internal  
output sample clock frequency. These modes are described in detail in the CLOCK MODES section.  
CLOCK MODES  
The AFE7070 has four clock modes for providing the DAC sample clock and data latching clocks.  
Clock Mode  
CLK_IO  
FIFO  
DataLatch  
DACCLKFreqRatio  
DataFormat  
Progamming Bits  
1× or 2× internal  
sample clock  
Dual-input clock  
Input  
Enabled  
CLK_IO  
IQ or phase (MSB/LSB)  
2× internal sample  
clock  
Dual-output clock  
Output  
Disabled  
Disabled  
Disabled  
Disabled  
Disables  
CLK_IO  
DACCLK  
DACCLK  
IQ or phase (MSB/LSB)  
IQ or phase (MSB/LSB)  
14-bit phase-only  
See Table 3 in  
CONFIG0 decription.  
Single differential  
DDR clock  
1× internal sample  
clock  
Single differential  
SDR clock  
1× internal sample  
clock  
DUAL-INPUT CLOCK MODE  
In dual-input clock mode, the user provides both a differential DAC clock at pins DACCLKP/N at 2× the internal  
sample clock frequency and a second single-ended CMOS-level clock at CLK_IO for latching input data. The  
DACCLK is divided by 2 internally to provide the internal output sample clock, with the phase determined by the  
IQ_FLAG input. The IQ_FLAG signal can either be a repetitive high/low signal or a single event that is used to  
reset the clock divider phase and identify the I sample.  
CLK_IO is an SDR clock at the input data rate, or 2× the internal sample-clock frequency. The DAC clock and  
data clock must be frequency locked, and a FIFO is used internally to absorb the phase difference between the  
two clock domains. The phase relationship of CLK_IO and DACCLK can be any phase at the initial sync of the  
FIFO, and thereafter can move up to ±4 clock cycles before the FIFO input and output pointers overrun and  
cause data errors. In dual-input clock mode, the latency from input data to output samples is not controlled  
because the FIFO can introduce a one-clock cycle variation in latency, depending on the exact phase  
relationship between DACCLK and CLK_IO.  
An external sync must be given on the SYNC_SLEEP pin to reset/initialize internal signal processing blocks.  
Because the internal processing blocks process I and Q in parallel, the user can provide the sync signal during  
either the I or Q input times (or both). Note that the internal sync signal must propagate through the input FIFO,  
and therefore the latency of the sync updates of the signal processing blocks is not controlled.  
Copyright © 2012–2013, Texas Instruments Incorporated  
27  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Dual Input Clock Mode (SDR)  
DACCLKP  
DACCLKN  
Phase unconstrained (max +/- 4 clk after FIFO sync)  
CLK_IO  
(input)  
ts th  
D[13:0]  
I
Q
I
Q
I
Q
IQ_FLAG  
IQ  
Identification  
or  
SYNC_SLEEP  
SYNC_SLEEP  
or  
Sync  
(Initialization)  
SYNC_SLEEP  
Internal sync signal based on SYNC_SLEEP low to high, either I or Q  
Internal sample clock phase based on IQ_FLAG  
Internal  
SYNC  
Signal  
Internal  
Output  
Sample  
Clock  
Output  
waveform  
Figure 39. Dual-Input Clock Mode  
DUAL-OUTPUT CLOCK MODE  
In dual-output clock mode, the user provides a differential DAC clock at pins DACCLKP/N at 2× the internal  
sample clock frequency. The DACCLK is divided by 2 internally to provide the internal output sample clock, with  
the phase determined by the IQ_FLAG input. The IQ_FLAG signal can either be a repetitive high/low signal or a  
single event that is used to reset the clock divider phase and identify the I sample.  
The AFE7070 outputs a single-ended CMOS-level clock at CLK_IO for latching input data. CLK_IO is an SDR  
clock at the input data rate, or 2× the internal sample clock frequency. The CLK_IO clock can be used to drive  
the input data source (such as digital upconverter) that sends the data to the DAC. Note that the CLK_IO delay  
relative to the input DACCLK rising edge (td) in Figure 40) increases with increasing loads.  
An external sync can be given on the SYNC_SLEEP pin to reset/initialize internal signal processing blocks.  
Because the internal processing blocks process I and Q in parallel, the user can provide the sync signal during  
either the I or Q input times (or both).  
In the dual-output clock mode, the FIFO is bypassed, so the latency from the data input to the DAC output and  
the time from sync input to update of the signal processing block are deterministic.  
28  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
DACCLKP  
DACCLKN  
td  
CLK_IO  
(output)  
ts th  
I
D[13:0]  
Q
I
Q
I
Q
IQ_FLAG  
or  
IQ  
Identification  
IQ_FLAG  
SYNC_SLEEP  
or  
Sync  
(Initialization)  
SYNC_SLEEP  
Internal sync signal based on SYNC_SLEEP low to high, either I or Q  
Internal sample clock phase based on IQ_FLAG  
Internal  
SYNC  
Signal  
Internal  
Output  
Sample  
Clock  
Output  
waveform  
Figure 40. Dual-Output Clock Mode Timing Diagram  
SINGLE DIFFERENTIAL DDR CLOCK  
In single differential DDR clock mode, the user provides a differential clock to DACCLKP/N at the internal output  
sample clock frequency. The rising and falling edges of DACCLK are used to latch I and Q data, respectively.  
The internal output sample clock is derived from DACCLKP/N.  
An external sync can be given on the SYNC_SLEEP pin to reset/initialize internal signal processing blocks.  
Because the internal processing blocks process I and Q in parallel, the user can provide the sync signal during  
either the I or Q input times (or both).  
In the single differential DDR clock mode, the FIFO is bypassed, so the latency from the data input to the DAC  
output and the time from sync input to update of the signal processing block are deterministic.  
Copyright © 2012–2013, Texas Instruments Incorporated  
29  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
DACCLKP  
DACCLKN  
ts th  
I
I on rising edge, Q on falling edge  
D[13:0]  
Q
I
Q
I
Q
SYNC_SLEEP  
Sync  
or  
(Initialization)  
SYNC_SLEEP  
Internal sync signal based on SYNC_SLEEP low to high, either I or Q  
Internal sample clock based on DACCLK/C  
Internal  
SYNC  
Signal  
Internal  
Output  
Sample  
Clock  
Output  
waveform  
Figure 41. Single Clock Mode Timing Diagram  
SINGLE DIFFERENTIAL SDR CLOCK MODE  
In single differential SDR clock mode, the user provides a differential clock to DACCLKP/N at 1× the internal  
output sample clock frequency. This mode is only used for transferring 14-bit phase data, and therefore only  
requires one data latching per internal output sample clock. The internal output sample clock is derived from  
DACCLKP/N.  
An external sync can be given on the SYNC_SLEEP pin to reset/initialize internal signal processing blocks.  
In the single differential SDR clock mode, the FIFO is bypassed, so the latency from the data input to the DAC  
output and the time from sync input to update of the signal processing block are deterministic.  
30  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
DACCLKP  
DACCLKN  
ts  
th  
D[13:0]  
P(0)  
P(1)  
P(2)  
SYNC_SLEEP  
Internal sample clock based on DACCLK/C  
Internal  
Output  
Sample  
Clock  
Output  
waveform  
Figure 42. Single Differential SDR Clock Mode  
FIFO ALARMS  
The FIFO only operates when the write and read pointers are positioned properly. If either pointer over- or under-  
runs the other, samples are duplicated or skipped. To prevent this, register CONFIG2 can be used to track two  
FIFO-related alarms:  
alarm_fifo_2away: Occurs when the pointers are within two addresses of each other  
alarm_fifo_1away: Occurs when the pointers are within one address of each other  
These two alarm events are generated asynchronously with respect to the clocks and can be accessed through  
the ALARM_SDO pin by writing a 1 in register alarm_or_sdo_ena (CONFIG3[7]) and 0 in register sif_4pin  
(CONFIG3[6]).  
SYNCHRONIZATON  
The AFE7070 has a synchonization input pin, SYNC_SLEEP, that is sampled by the same clock mode as the  
input data to initialize signal processing blocks and optionally update NCO frequency and phase values. In the  
case of dual input clock mode, the sync signal must propagate through the input FIFO, which creates an  
uncertainty of ±1 clock cycle for the synchronization of the signal processing. In all other clock modes, the FIFO  
is bypassed; therefore the exact time of the SYNC_SLEEP input to sync event is deterministic, and multiple  
devices can be exactly synchronized.  
The function of the pin SYNC_SLEEP is determined by register sync_sleep_txenable_sel in CONFIG3; setting to  
10 configures the SYNC_SLEEP pin as a SYNC input.  
QUADRATURE MODULATOR CORRECTION (QMC) BLOCK  
The quadrature modulator correction (QMC) block provides a means for changing the phase balance of the  
complex signal to compensate for I and Q imbalance present in an analog quadrature modulator. The block  
diagram for the QMC block is shown in Figure 43. The QMC block contains three programmable parameters.  
Registers qmc_gaina(10:0) and qmc_gainb(10:0) control the I and Q path gains and are 11-bit values with a  
range of 0 to approximately 2.0. Register qmc_phase(9:0) controls the phase imbalance between I and Q and is  
a 10-bit value with a range of –1/8 to approximately +1/8. LO feedthrough can be minimized by adjusting the  
DAC offset feature described below.  
Copyright © 2012–2013, Texas Instruments Incorporated  
31  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
Figure 43. QMC Gain/Phase Block Diagram  
The LO feedthrough can be minimized by adjusting the DAC offset. Registers qmc_offseta(12:0) and  
qmc_offsetb(12:0) control the I and Q path offsets and are 13-bit values with a range of –4096 to 4095. The  
DAC offset value adds a digital offset to the digital data before digital-to-analog conversion. The qmc_gaina and  
qmc_gainb registers can be used to back off the signal before the offset to prevent saturation when the offset  
value is added to the digital signal.  
Figure 44. QMC Offset Block Diagram  
NUMERICALLY CONTROLLED OSCILLATOR (NCO)  
The AFE7070 contains a numerically controlled oscillator that can be used as either a data generation source or  
to provide sin and cos for fully complex mixing with input data. The NCO has a 32-bit frequency register  
freq(31:0) and a 16-bit phase register phase(15:0). The NCO tuning frequency is programmed in the CONFIG16  
through CONFIG19 registers. Phase offset is programmed in the CONFIG20 and CONFIG21 registers. A block  
diagram of the NCO is shown in Figure 45.  
32  
Copyright © 2012–2013, Texas Instruments Incorporated  
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
Figure 45. Numerically Controlled Oscillator (NCO)  
Synchronization of the NCO occurs by resetting the NCO accumulator to zero, which is described as follows.  
Frequency word freq in the frequency register is added to the accumulator every clock cycle, fDAC. The output  
frequency of the NCO is  
freq´fNCO_CLK  
fNCO  
=
232  
(1)  
With a complex input represented by IIN(t) and QIN(t), the output of FMIX IOUT(t) and QOUT(t) is  
(mixer_gain - 1)  
é
ù
t + d ´2  
NCO  
IOUT (t) = I (t) cos 2pf  
t + d - Q (t)sin 2p f  
(
)
(
)
IN  
NCO  
IN  
ë
û
(mixer_gain - 1)  
é
ù
t + d ´2  
NCO  
QOUT (t) = I (t) sin 2pf  
t + d + Q (t)cos 2p f  
(
)
(
)
IN  
NCO  
IN  
ë
û
(2)  
where t is the time since the last resetting of the NCO accumulator, δ is the phase offset value, and mixer_gain  
is either 0 or 1. δ is given by:  
16  
d = 2π ´ phase (15 : 0)/2  
(3)  
When register mixer_gain is set to 0, the gain through FMIX is sqrt(2)/2 or –3 dB. This loss in signal power is in  
most cases undesirable, and it is recommended that the gain function of the QMC block be used to increase the  
signal by 3 dB to compensate. With mixer_gain = 1, the gain through FMIX is sqrt(2) or 3 dB, which can cause  
clipping of the signal if IIN(t) and QIN(t) are simultaneously near full-scale amplitude and should therefore be used  
with caution.  
There are two methods to change the frequency and phase values in the NCO block.  
1. Synchronous updating: To update the NCO frequency and phase using the SYNC_SLEEP pin,  
sync_sleep_txenable_sel in the CONFIG3 register must be set to 10 and nco_sync_sleep in the CONFIG22  
register must be set to 11110000 should be written to the CONFIG22 register. With these settings, the  
frequency and phase register values only update the NCO frequency and phase values the pin  
SYNC_SLEEP is raised, which allows precise control of when the frequency is updated. The accumulator is  
not reset. There is a six-clock cycle latency from the time when the sync is clocked into the part until the new  
frequency value is used in the calculation of the accumulator.  
2. Non-synchronous updating: If the nco_sync_sleep register in CONFIG22 is set to 00000000, the frequency  
register value updates the NCO frequency value when the lowest register bits freq(7:0) in CONFIG16 are  
written. To assure updating with a complete frequency value, register bits freq(32:8) in CONFIG17,  
CONFIG18, and CONFIG19 should be written before CONFIG16. Likewise, the phase register value updates  
the NCO phase value when the lowest register bits phase(7:0) in CONFIG20 are written. To assure updating  
with a complete phase value, register bits phase(15:8) in CONFIG21 should be written before CONFIG20.  
Copyright © 2012–2013, Texas Instruments Incorporated  
33  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
ANALOG OUTPUT MODE  
The AFE7070 has two output modes. The analog output mode includes an an RF buffer amplifier and covers the  
full frequency range of output frequency listed in the AC Electrical Characteristics table. The RF output should be  
AC coupled and is intended to drive a 50-Ω load.  
LVDS OUTPUT MODE  
The AFE7070 provides an output mode where the modulator output is converted from an analog signal by a  
comparator to a digital LVDS output signal. The RF output frequency in the LVDS output mode is limited to  
frequencies below the specification listed in the AC Electrical Characteristics table.  
The output includes options for frequency division of ÷1, ÷2 and ÷4 (Figure 46), set in register lvds_clk_div in  
CONFIG1.  
/1,2,4  
LVDS P/N  
Figure 46. LVDS Output Option  
CMOS DIGITAL INPUTS  
Figure 47 through Figure 50 show schematics of the equivalent CMOS digital inputs and outputs of the AFE7070.  
All the CMOS digital inputs and outputs are relative to the IOVDD supply, which can vary from 1.8 V to 3.3 V.  
This facilitates the I/O interface and eliminates the need of level translation. See the specification table for logic  
thresholds. The pullup and pulldown circuitry is approximately equivalent to 100 kΩ.  
IOVDD  
25 W  
ALARM_SDO  
GND  
Figure 47. CMOS Digital Equivalent Circuit for ALARM_SDO Output  
34  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
 
AFE7070  
www.ti.com.cn  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
IOVDD  
800 W  
67 kW  
SDIO  
GND  
IOVDD  
GND  
Figure 48. CMOS Digital Equivalent Circuit for SDIO Bidirectional Input/Output  
IOVDD  
TESTMODE  
DATA(13:0)  
SCLK  
SYNC_SLEEP  
IQFLAG  
800 W  
67 kW  
GND  
Figure 49. CMOS Digital Equivalent Circuit for TESTMODE, DATA, SCLK, SYNC_SLEEP and IQFLAG  
Inputs  
Copyright © 2012–2013, Texas Instruments Incorporated  
35  
AFE7070  
ZHCSA89D – FEBRUARY 2012REVISED JANUARY 2013  
www.ti.com.cn  
IOVDD  
67 kW  
800 W  
RESET  
SDENB  
GND  
Figure 50. CMOS Digital Equivalent Circuit for RESET and SDENB Inputs  
spacer  
REVISION HISTORY  
Changes from Original (February 2012) to Revision A  
Page  
Changed the TYPICAL PERFORMANCE PLOTS of the Product Preview data sheet ........................................................ 9  
Changed the SERIAL INTERFACE of the Product Preview data sheet ............................................................................. 16  
Changes from Revision A (July 2012) to Revision B  
Page  
Changed the device status From: Product Preview To: Production ..................................................................................... 1  
Changes from Revision B (August 2012) to Revision C  
Page  
Added AFE7070IRGZ25 to AVAILABLE OPTIONS ............................................................................................................. 1  
Changes from Revision B (October 2012) to Revision D  
Page  
Changed the TYP value of fLO = 450 MHz, Analog Output noise floor From: 156 To: 143 .................................................. 7  
36  
Copyright © 2012–2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AFE7070IRGZR  
AFE7070IRGZT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500 RoHS & Green  
250  
NIPDAUAG  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AFE7070I  
AFE7070I  
RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AFE7070IRGZR  
VQFN  
RGZ  
48  
2500  
330.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AFE7070IRGZR  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY