ALM2403-Q1 [TI]

适用于旋转变压器应用且具有低失真的汽车类双通道高电压功率运算放大器;
ALM2403-Q1
型号: ALM2403-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于旋转变压器应用且具有低失真的汽车类双通道高电压功率运算放大器

变压器 放大器 运算放大器
文件: 总30页 (文件大小:2151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
ALM2403-Q1 适用于旋转变压器驱动且具有集成保护功能的  
汽车类低失真双通道运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
提供功能安全  
ALM2403-Q1 是一款双电源运算放大器其特性和性  
能使该器件更适合基于旋转变压器的应用。该器件具有  
高增益带宽和压摆率以及连续高输出电流驱动功能非  
常适合为激励旋转变压器初级线圈提供所需的低失真和  
差分高振幅激励。尤其在易受故障影响的电线上驱动模  
拟信号时电流限制和过热检测功能可增强整体系统稳  
健性。  
可帮助进行功能安全系统设计的文档  
• 高输出电流驱动500 mA 峰值电流每通道)  
– 取代分立式运算放大器和晶体管  
• 两个电源的宽电源电压范围24 V)  
• 过热关断  
具有散热焊盘和低 RθJA 的小型 HTSSOP 封装能够向  
负载提供高电流时更大程度地减小布板空间。  
ALM2403-Q1 具有更高增益带宽该器件可配置为滤  
波器级同时仍提供高输出驱动从而显著减小旋转变  
压器驱动信号链的总解决方案尺寸。这种缩小的解决方  
案尺寸是 ALM2403-Q1 在汽车和工业应用中的一项关  
键优势。  
• 电流限制  
• 实现IQ 应用的关断引脚  
21MHz 增益带宽50V/µs 的压摆率  
• 封装14 HTSSOP (PWP)  
2 应用  
• 基于旋转变压器的汽车和工业应用  
逆变器和电机控制  
• 制动系统  
电动助力转(EPS)  
后视镜模块  
汽车电子视镜  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
ALM2403-Q1  
HTSSOP (14)  
5.00mm × 4.40mm  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
伺服驱动器功率级模块  
飞行控制系统  
35  
VS = 24 V  
VS = 15 V  
VS = 5 V  
30  
25  
+
Sin  
Þ
ALM2403-Q1  
20  
15  
10  
5
Cos  
+
Þ
Resolver  
GND  
简化版原理图  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
Frequency (Hz)  
输出电压与频率间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA37  
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 15  
8.3 Power Supply Recommendations.............................19  
8.4 Layout....................................................................... 19  
9 Device and Documentation Support............................22  
9.1 Documentation Support............................................ 22  
9.2 接收文档更新通知..................................................... 22  
9.3 支持资源....................................................................22  
9.4 Trademarks...............................................................22  
9.5 静电放电警告............................................................ 22  
9.6 术语表....................................................................... 22  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2020) to Revision A (May 2022)  
Page  
• 将特性 中的输出电流从 650mA 更改为 500mA..................................................................................................1  
• 更改了首页图中的标题和 Y 轴单位.....................................................................................................................1  
Changed pin names to synchronize pin naming throughout document..............................................................3  
Changed thermal pad description text for clarity................................................................................................ 3  
Changed voltage range for VOTF/SH_DN in the Absolute Maximum Ratings ....................................................... 4  
Changed all VS voltages to single-supply nomenclature in the Electrical Characteristics and Typical  
Chacteristics ...................................................................................................................................................... 5  
Deleted test conditions from enable high and low input voltages in the Electrical Characteristics ....................5  
Moved shutdown current parameter to Power Supply section in the Electrical Characteristics ........................ 5  
Changed Figures 6-12 through 6-16 to correct axis units and values................................................................ 7  
Changed functional block diagram to correct inaccuracies.............................................................................. 12  
Changed EMC capacitance from 50 nF to 10 nF in Table 8-1, Design Parameters ........................................16  
Added test condition to first bullet of Detailed Design Procedure ....................................................................17  
Changed R3 to R2 in 2nd paragraph of Filter Design section.......................................................................... 17  
Changed terms in Equation 4 to Equation 6 for clarity..................................................................................... 18  
Changed Figure 8-4, 2nd-Order MFB LP Filter AC Output Characteristics .....................................................19  
Changed values in Table 8-2, Signal Attenuation vs Frequency ..................................................................... 19  
Changed Figure 8-6, ALM2403-Q1 Layout Example, to match EVM layout.................................................... 20  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
2
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN1–  
IN1+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V–  
OUT1  
V+  
OTF/SH_DN  
IN2+  
Thermal Pad  
V+  
IN2–  
V+  
V–  
OUT2  
NC  
NC  
8
Not to scale  
5-1. PWP Package, 14-Pin HTSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
IN1–  
IN1+  
1
Input  
Input  
Inverting op amp input for channel 1  
2
Noninverting op amp input for channel 1  
Overtemperature flag and shutdown (see 7-1, Shutdown Truth Table)  
Noninverting op amp input for channel 2  
Inverting op amp input for channel 2  
3
OTF/SH_DN Input/Output  
4
IN2+  
IN2–  
V–  
Input  
Input  
5
6, 14  
Negative supply pin (both negative supply pins must be used and connected together)  
No internal connection (do not connect)  
Op amp output for channel 2  
7, 8  
NC  
9
OUT2  
V+  
Output  
10, 11, 12  
13  
Positive supply pin  
OUT1  
Output  
Op amp output for channel 1  
Connect the exposed thermal pad to the most negative supply on the device, V, for best  
thermal performance. The thermal pad can also be left floating electrically; the heat spread  
of the pad can be thermally maximized and conducted into the PCB.  
Thermal Pad  
Thermal Pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
26  
±13  
Single-supply, VS = (V+) GND  
VS  
Supply voltage  
V
Dual-supply, VS = (V+) (V)  
Common-mode  
(V+) + 0.7  
(V) 0.7  
(V) 0.2  
Signal input voltage  
V
(V+) (V) +  
Differential  
0.2  
VOTF/SH_DN OTF/SH_DN pin voltage  
Signal input current  
V
(V) + 5.7  
±10  
mA  
Output short circuit(2)  
Continuous  
Continuous  
150  
TA  
Operating temperature  
Junction temperature  
Storage temperature  
°C  
°C  
°C  
55  
TJ  
150  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
NOM  
MAX  
24  
UNIT  
V
Single-supply, VS = (V+) GND  
Dual-supply, VS = (V+) (V)  
VS  
TA  
Supply voltage  
±2.5  
40  
±12  
125  
Operating temperature  
°C  
6.4 Thermal Information  
ALM2403-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
14 PINS  
46.9  
42.1  
22.6  
1.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
22.5  
5.9  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
4
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
 
 
 
 
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 25°C, VS = V+ = 24 V, V= GND, RL = 10 kconnected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
±6  
±15  
±10  
±25  
±50  
±47  
±50  
mV  
dVOS/dT  
Input offset voltage drift  
TA = 40°C to +125°C  
μV/°C  
VS = 5 V to 24 V  
Power-supply rejection  
ratio  
PSRR  
μV/V  
VS = 5 V to 24 V, TA = 40°C to +125°C  
Channel separation  
f = 10 kHz  
120  
10  
dB  
INPUT BIAS CURRENT  
±100  
±100  
±200  
±100  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
10  
IOS  
Input offset current  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
8
150  
22  
µVRMS  
nV/Hz  
fA/Hz  
Input voltage noise  
density  
eN  
iN  
f = 100 kHz  
f = 1 kHz  
Input current noise  
48  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
(V+) + 0.2  
V
(V) 0.2  
49  
72  
94  
59  
(V) 0.5 V < VCM < (V+) + 0.5 V, 10 V VS < 24 V  
(V) 0.2 V < VCM < (V+) + 0.2 V,  
TA = 40°C to +125°C, 10 V < VS < 24 V  
52  
80  
Common-mode rejection  
ratio  
(V) + 2.5 V < VCM < (V+) 2.5 V,  
10 V < VS < 24 V  
CMRR  
dB  
(V) + 2.5 V < VCM < (V+) 2.5 V,  
TA = 40°C to +125°C, 10 V < VS < 24 V  
75  
44  
(V) 0.5 V < VCM < (V+) + 0.5 V, 5 V < VS < 24 V  
INPUT CAPACITANCE  
ZID  
Differential  
1 || 2  
1 || 2  
GΩ|| pF  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
103  
96  
111  
104  
(V) + 0.5 V < VO < (V+) 0.5 V,  
VS = 24 V  
TA = 40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
96  
(V) + 1.5 V < VO < (V+) 1.5 V,  
RL = 225 , VS = 24 V  
94  
TA = 40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product VS = 24 V  
21  
50  
MHz  
Slew rate  
10-V step, gain = +1  
V/μs  
To 0.1%, 10-V step , gain = +1, CL = 10 pF  
To 0.1%, 10-V step , gain = 1, CL = 10 pF  
VIN × gain > VS  
0.31  
0.40  
0.28  
tS  
Settling time  
μs  
Overload recovery time  
μs  
Total harmonic distortion VS = 15 V, VO = 10 Vpp, gain = 1,  
+ noise  
THD+N  
74  
dB  
f = 10 kHz, RL = 100 Ω  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = V+ = 24 V, V= GND, RL = 10 kconnected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Voltage output swing  
from rail  
IOUT = ±5 mA  
35  
60  
mV  
mA  
Sinking  
400  
500  
ISC  
Short-circuit current  
Sourcing  
ENABLE  
VIH_OTF  
VIL_OTF  
Enable high input voltage  
Enable low input voltage  
Enable hysteresis  
1.2  
V
V
0.5  
220  
5
mV  
μs  
tOTF/SH_DN Enable start-up time  
POWER SUPPLY  
IO = 0 A  
3.6  
5.5  
6
IQ  
Total quiescent current  
mA  
IO = 0 A, TA = 40°C to +125°C  
ISD  
Shutdown current  
VOTF/SH_DN = 0 V  
260  
μA  
TEMPERATURE  
Thermal shutdown  
172  
150  
°C  
°C  
Thermal shutdown  
recovery  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
6
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA= 25°C, VS = 24 V, VCM = VS/2, and RL = 10 kΩ(unless otherwise noted)  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
0
-25 -20 -15 -10  
-5  
0
5
10  
15  
20  
25  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
D000  
D001  
Offset Voltage (mV)  
Offset Voltage Drift (mV/èC)  
235 channels  
235 channels  
6-1. Offset Voltage Production Distribution  
6-2. Offset Voltage Drift Production Distribution  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
2
3
4
5
6
Supply Voltage (V)  
7
8
9
10  
11  
12  
Temperature (èC)  
D016  
D018  
5 typical units  
5 typical units  
6-3. Offset voltage vs Temperature  
6-4. Offset Voltage vs Power Supply  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
210  
180  
150  
120  
90  
Gain  
Phase  
0
-5  
-10  
-15  
-20  
-25  
60  
30  
-20  
100m  
0
10k 100k 1M 10M 100M  
-12.5 -10 -7.5 -5 -2.5  
0
Input Common-mode Voltage (V)  
2.5  
5
7.5 10 12.5  
1
10  
100  
1k  
Frequency (Hz)  
D017  
D002  
5 typical units  
6-5. Offset Voltage vs Input Common-Mode Voltage  
6-6. Open-Loop Gain and Phase vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA= 25°C, VS = 24 V, VCM = VS/2, and RL = 10 kΩ(unless otherwise noted)  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
G = +1  
PSRR+  
PSRR-  
G = -1  
G = +10  
G = +100  
-10  
-20  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
D004  
D005  
CLOAD = 200 nF, RL = 50 Ω  
6-7. Closed-Loop Gain vs Frequency  
6-8. PSRR vs Frequency  
0.1  
-60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RLOAD = 100 W  
RLOAD = 600 W  
RLOAD = 2 kW  
RLOAD = 10 kW  
CMRR  
0.05  
0.03  
0.02  
0.01  
-80  
0.005  
0.003  
0.002  
0.001  
-100  
0.0005  
0.0003  
0.0002  
0.0001  
-120  
20k  
20  
200  
2k  
Frequency (Hz)  
D008  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k 1M 10M 100M  
VO = 10 VPP, gain = 1 V/V,  
D006  
measurement bandwidth = 80 kHz  
6-10. THD+N Ratio vs Frequency  
6-9. CMRR vs Frequency  
0.1  
0.01  
-60  
35  
G+1, RLOAD = 100 W  
G+1, RLOAD = 10 kW  
G-1, RLOAD = 100 W  
G-1, RLOAD = 10 kW  
VS = 24 V  
VS = 15 V  
VS = 5 V  
30  
25  
20  
15  
10  
5
-80  
0.001  
-100  
0.0001  
-120  
10  
10m  
100m 1  
Output Amplitude (VRMS  
)
D011  
0
Input signal frequency = 1 kHz,  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
measurement bandwidth = 80 kHz  
Frequency (Hz)  
6-12. Output Voltage vs Frequency  
6-11. THD+N vs Output Amplitude  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
8
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA= 25°C, VS = 24 V, VCM = VS/2, and RL = 10 kΩ(unless otherwise noted)  
12  
11  
10  
9
6
5
4
3
2
1
0
40C  
25C  
85C  
125C  
8
40C  
25C  
85C  
125C  
7
6
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Output Current (A)  
Output Current (A)  
VS = 12 V  
VS = 12 V  
6-13. Output Voltage Swing vs Output Source Current  
6-14. Output Voltage Swing vs Output Sink Current  
24  
12  
40C  
25C  
22  
10  
8
85C  
125C  
20  
18  
16  
14  
12  
6
4
40C  
25C  
85C  
125C  
2
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6 0.65  
Output Current (A)  
Output Current (A)  
VS = 24 V  
VS = 24 V  
6-15. Output Voltage Swing vs Output Source Current  
6-16. Output Voltage Swing vs Output Sink Current  
10000  
8
6
1000  
100  
10  
VS = ê2.5 V  
4
2
0
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D007  
0
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
D027  
5 typical units  
6-17. Input Voltage Spectral Noise Density vs Frequency  
6-18. Quiescent Current vs Power Supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA= 25°C, VS = 24 V, VCM = VS/2, and RL = 10 kΩ(unless otherwise noted)  
6.5  
6
100000  
10000  
1000  
100  
5.5  
5
4.5  
4
3.5  
3
10  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k 1M 10M 100M  
Temperature (èC)  
D029  
D012  
5 typical units  
6-19. Quiescent Current vs Temperature  
6-20. Open-Loop Output Impedance vs Frequency  
40  
95  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
35  
30  
25  
20  
15  
10  
5
0
10  
100  
Capactiance (pF)  
1000  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitance (pF)  
D032  
D033  
10-mV output step, gain = 1 V/V  
10-mV output step, gain = 1 V/V  
6-22. Small-Signal Overshoot vs Capacitive Load  
6-21. Small-Signal Overshoot vs Capacitive Load  
VIN (V)  
VOUT (V)  
VIN (V)  
VOUT (V)  
Time (100 ms/div)  
Time (200 ns/div)  
D034  
D038  
Gain = 1 V/V  
6-23. No Phase Reversal  
6-24. Large-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA= 25°C, VS = 24 V, VCM = VS/2, and RL = 10 kΩ(unless otherwise noted)  
G = 1 V/V, VIN = 10 VPP  
G = 1 V/V, VIN = 10 VPP  
6-26. Settling Time  
6-25. Settling Time  
700  
600  
500  
400  
300  
200  
120  
100  
80  
60  
40  
Sourcing  
Sinking  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D015  
D041  
PRF_PEAK = 10 dBm  
6-27. Short-Circuit Current vs Temperature  
6-28. EMIRR vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ALM2403-Q1 is a dual-power op amp qualified for use in automotive applications. Key features for this  
device are low offset voltage, high output current drive capability, and high FPBW capability. The device also  
offers protection features such as thermal shutdown and current limit. The 14-pin HTSSOP package minimizes  
board space and power dissipation.  
7.2 Functional Block Diagram  
V+  
12  
13  
PMOS Current Limiting and  
Biasing  
IN1+  
IN1–  
2
1
+
EMI  
OUT1  
OTA  
Rejection  
NMOS Current Limiting and  
Biasing  
5 V  
V
14  
EN  
OTF/SH_DN  
3
V+  
Thermal Detection  
V+  
V+  
11  
10  
PMOS Current Limiting and  
Biasing  
IN2+  
4
+
EMI  
OTA  
9
OUT2  
Rejection  
IN2–  
V
NMOS Current Limiting and  
Biasing  
5
6
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
12  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Overtemperature and Shutdown Pin (OTF/SH_DN)  
The overtemperature and shutdown pin, OTF/SH_DN, is bidirectional and allows both op amps to be put into a  
low IQ state (approximately 200 µA per amplifier) when forced low or to less than VIL_OTF. As a result of being  
bidirectional, and the respective enable and disable functionality, this pin must be pulled high or greater than  
VIH_OTF through a pullup resistor. The use of a 10-kΩ pullup resistor leads to a drive current of approximately  
210 µA when used with a pullup voltage of 3.3 V.  
When the junction temperature of the ALM2403-Q1 exceeds the specified limits, OTF/SH_DN goes low to alert  
the application that both the outputs have turned off because of an overtemperature event.  
When OTF/SH_DN is pulled low and the op amps are shut down, the op amps are in an open loop, even when  
there is negative feedback applied. This occurrence is due to the loss of the open-loop gain in the op amps when  
the biasing is disabled.  
7.3.2 Thermal Shutdown  
If the die temperature exceeds safe limits, all outputs are disabled, and the OTF/SH_DN pin is driven low. After  
the die temperature has fallen to a safe level, operation automatically resumes. The OTF/SH_DN pin is released  
after operation has resumed.  
When operating the die at a high temperature, the op amp toggles on and off between the thermal shutdown  
hysteresis. In this event, the safe limits for the die temperature must be taken in to account. Do not continuously  
operate the device in thermal hysteresis for long periods of time.  
7.3.3 Current-Limit and Short-Circuit Protection  
Each op amp in the ALM2403-Q1 has separate internal current limiting for the PMOS (high-side) and NMOS  
(low-side) output transistors. If the output is shorted to ground, then the PMOS (high-side) current limit is  
activated, and limits the current to 500 mA nominally. If the output is shorted to supply, then the NMOS (low-side)  
current limit is activated and limits the current to 400 mA nominally at 25°C. The current limit value is inversely  
proportional to temperature; therefore, the current limit value increases at low temperatures.  
When current is limited, the safe limits for the die temperature must be taken in to account. With too much power  
dissipation, the die temperature can surpass thermal shutdown limits; the op amp shuts down and reactivates  
after the die has fallen below thermal limits.  
CAUTION  
Do not continuously operate the device in thermal hysteresis for long periods of time because this  
action may cause irreversible damage to the device.  
7.3.4 Input Common-Mode Range  
The input common-mode range of the ALM2403-Q1 is between (V) 0.2 V and (V+) + 0.2 V. Staying within  
this range allows the op amps to perform and operate within specification. Operating beyond these limits can  
cause distortion and nonlinearities.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
7.3.5 Reverse Body Diodes in Output-Stage Transistors  
Designed as a high-voltage, high current operational amplifier, the ALM2403-Q1 delivers robust output drive  
capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing  
capability. Different load conditions change the ability of the amplifier to swing close to the rails.  
Each output transistor has internal reverse diodes between drain and source that conduct if the output is forced  
to greater than the supply or less than ground (reverse current flow). These diodes can be used as flyback  
protection in inductive-load-driving applications. Limit the use of these diodes to pulsed operation in order to  
minimize junction temperature overheating due to (VF × IF). Internal current-limiting circuitry does not operate  
when current is flown in the reverse direction and the reverse diodes are active. A method to protect these  
reverse body diodes is shown in 8.2.2.1.2.  
7.3.6 EMI Filtering  
Op amps vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If conducted  
EMI enters the op amp, the dc offset observed at the amplifier output may shift from the nominal value while EMI  
is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While  
all op-amp pin functions can be affected by EMI, the signal input pins are likely to be the most susceptible. The  
ALM2403-Q1 incorporates an internal input low-pass filter that reduces the amplifiers response to EMI. Both  
common-mode and differential mode filtering are provided by this filter.  
Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational  
amplifier over a broad frequency spectrum extending from 10 MHz to 990 MHz. The EMI rejection ratio (EMIRR)  
metric allows op amps to be directly compared by the EMI immunity. Detailed information can also be found in  
the EMI Rejection Ratio of Operational Amplifiers application report, available for download from www.ti.com.  
7.4 Device Functional Modes  
7.4.1 Open-Loop and Closed-Loop Operation  
As a result of the very-high, open-loop dc gain of the ALM2403-Q1, the device functions as a comparator in  
open loop for most applications. A majority of electrical characteristics are verified in negative feedback, closed-  
loop configurations. Certain dc electrical characteristics, like offset, may have a higher drift across temperature  
and lifetime when continuously operated in open loop over the lifetime of the device.  
7.4.2 Shutdown  
When the OTF/SH_DN pin is left floating or is grounded, the op amp shuts down to a low IQ state and does not  
operate; the op amp outputs go to a high-impedance state.  
7-1. Shutdown Truth Table  
PIN NAME  
LOGIC STATE  
High ( > VIH_OTF )  
Low ( < VIL_OTF )  
OP AMP STATE  
Operating  
OTF/SH_DN  
Shutdown (low IQ state)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
14  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The ALM2403-Q1 is a dual-power op amp with performance and protection features that are optimal for many  
applications. For op amps, there are many general design consideration that must be taken into account. The  
following subsections describe what to consider for most closed-loop applications. 8.2 gives a specific  
example of the ALM2403-Q1 being used in a resolver application.  
8.1.1 Capacitive Load and Stability  
The ALM2403-Q1 is designed for applications where driving a capacitive load is required. As with all op amps,  
specific instances can occur where the ALM2403-Q1 device can become unstable. The particular op-amp circuit  
configuration, layout, gain, and output loading are some of the factors to consider when establishing whether or  
not an amplifier is stable in operation. An op amp in a unity-gain (1-V/V) buffer configuration that drives a  
capacitive load exhibits a greater tendency to become unstable compared to an amplifier operated at a higher-  
noise gain. The capacitive load, in conjunction with the op-amp output resistance, creates a pole within the  
feedback loop that degrades the phase margin. The degradation of the phase margin increases as the  
capacitive loading increases. When operating in a unity-gain configuration, the ALM2403-Q1 remains stable with  
a pure capacitive load up to approximately 30 pF. Increasing the amplifier closed-loop gain allows the amplifier to  
drive increasingly larger capacitance. This increased capability is evident when observing the overshoot  
response of the amplifier at higher voltage gains.  
One technique for increasing the capacitive load drive capability of the amplifier operating in a unity-gain  
configuration is to insert a small resistor (RS; typically, 100 mΩto 10 Ω) in series with the output, as shown in 图  
8-1. This resistor significantly reduces the overshoot and ringing associated with large capacitive loads.  
V+  
RS  
œ
VOUT  
CL  
+
RL  
+
VIN  
œ
8-1. Capacitive Load Drive  
8.2 Typical Application  
High-power ac and brushless dc (BLDC) motor-drive applications need position feedback to efficiently and  
accurately drive the motor. Position feedback can be achieved by using optical encoders, hall sensors, or  
resolvers. Resolvers are the main choice when environmental or longevity requirements are challenging and  
extensive.  
A resolver acts as a transformer with one primary coil and two secondary coils. The primary coil, or excitation  
coil, is located on the rotor of the resolver. As the rotor of the resolver spins, the excitation coil induces a current  
into the sine and cosine sensing coils. These coils are oriented 90 degrees from one another, and the voltage  
from the sine and cosine coils is translated into a vector position by the microcontroller or resolver-to-digital  
converter chip.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
Resolver excitation coils can have a very low dc resistance (< 100 Ω), requiring a sink and a source of up to 200  
mA from the excitation driver. The ALM2403-Q1 can source and sink this current while providing current-limiting  
and thermal-shutdown protection. Incorporating these protections in a resolver design can increase the life of the  
end product.  
The input to the ALM2403-Q1 can be an analog sine wave generated by the resolver-to-digital converter chip or  
a pulse-width modulation (PWM) signal generated from a microcontroller I/O pin. In the case of the latter, a filter  
stage is needed to extract a lower bandwidth sine wave from the PWM signal. This sine wave would then be the  
input signal to the ALM2403-Q1. As a result of high gain bandwidth, the ALM2403-Q1 can be configured as a  
filter stage while providing the required output drive. This configuration significantly reduces the total solution  
size and design complexity of the resolver-drive signal chain. The fundamental design steps to achieve this  
functionality are shown in this application example, and can be applied to other inductive-load applications as  
well.  
R2  
C3  
R1  
R3  
VOUT1  
C1  
œ
C2  
PWM input  
+
VBIAS  
ALM2403-Q1 channel 1  
CEMC  
Sin  
C4  
R5  
CEMC  
Cos  
Resolver  
VOUT1  
R4  
œ
+
VBIAS  
ALM2403-Q1 channel 2  
8-2. Resolver-Based Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
Ambient temperature range  
Available supply voltages  
EMC capacitance (CL)  
EXAMPLE VALUE  
40°C to +125°C  
15 V  
10 nF  
Resolver excitation input voltage  
Excitation frequency  
7 VRMS  
10 kHz  
PWM signal frequency  
320 kHz  
3.3 V  
PWM signal amplitude  
Functional safety capable  
Short-to-battery protection  
Yes  
Yes  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
16  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
When using the ALM2403-Q1 in a resolver application, determine:  
Resolver excitation input impedance or resistance and inductance: ZO = 100 + j188, R = 100 Ω, and  
L = 3 mH at 10 kHz  
Resolver transformation ratio (VSINCOS / VEXC): 0.5 V/V at 10 kHz  
Package and RθJA: HTSSOP, 46.9°C/W  
Op amp maximum junction temperature: 150°C  
Op amp bandwidth: 21 MHz  
Op amp slew rate: 50 V/µS  
8.2.2.1 Resolver Excitation Amplifier Combined With MFB 2nd-Order, Low-Pass Filter  
R2  
6 kΩ  
C1  
159 nF  
C3 1 nF  
R1  
2 kΩ  
R3  
2 kΩ  
œ
VOUT1  
PWM input  
C2  
12 nF  
VBIAS  
+
ALM2403-Q1  
SD1 1N5827  
15 V  
8-3. Two-Pole MFB Filter  
When designing a low-pass filter, the most important design criteria is to decide the corner frequency. In this  
design example, the resolver excitation frequency is 10 kHz and PWM frequency is 320 kHz. Thus, we want to  
make sure that the low-pass filter corner frequency is greater than 10 kHz, and there is maximum attenuation of  
harmonic interference generated from the PWM signal. 8-3 shows a single channel of the ALM2403-Q1  
configured as a 2-pole multiple feedback (MFB) filter with a 40 dB/decade rolloff. The MFB topology enables a  
steep rolloff while reducing BOM count. The output from this circuit is a sine wave that can then be inverted  
using the second channel of the ALM2403-Q1; see 8-2. Thus, both ALM2403-Q1 channels combined provide  
the required resolver excitation signal.  
8.2.2.1.1 Filter Design  
The corner frequency of the 2nd-order MFB filter is set to approximately twenty times less than the PWM  
frequency. The corner frequency defined at 3 dB is shown in 方程1.  
1
f
=
(1)  
p
2 × π ×  
R × C × R × C  
3 3 2 2  
The 2nd-order MFB active filter uses an inverted input topology and the op amp gain is determined by the ratios  
of resistors R2 and R1:  
R
2
Gain = −  
(2)  
R
1
The gain settings are based on the output drive requirements and PWM signal amplitude. With different gain  
settings, the filter characteristics, such as rolloff, can change. The design must be fine-tuned to meet optimal  
performance needs.  
The quality (Q) factor of the low-pass filter is configured with Q = 1. The purpose of designing for this Q factor is  
to minimize attenuation around the corner frequency of 10 kHz, thus extending the pass-band gain. The Q factor  
of the 2nd-order MFB filter is given by 方程3:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
C
/C  
3
2
Q =  
(3)  
R
/R  
+
R
/R  
+
R × R /R  
3 2 1  
3
2
2
3
8.2.2.1.2 Short-to-Battery Protection  
Resolver-based applications require the power op amp stage to provide the resolver excitation signal over long  
cables. In many applications, such as automotive traction inverters, the cables are housed in a harness and a  
short-circuit condition between different cables in the same harness can occur. In this situation, the output of the  
ALM2403-Q1 can see a higher voltage than provided at the positive supply pin. This condition causes the body  
diode in the output stage PMOS to become forward-biased and start conducting. As a precaution, use a blocking  
diode in series with the positive power supply; see also 8-3.  
For related information, see the ALM2403-Q1 Overvoltage Protection of Resolver-Based Circuits application  
note.  
8.2.2.2 Power Dissipation and Thermal Reliability  
Power dissipation is critical to many industrial and automotive applications. Resolvers are typically chosen over  
other position feedback techniques because of reliability and accuracy in harsh conditions and high  
temperatures.  
The ALM2403-Q1 is capable of high output current with power-supply voltages up to 24 V. Internal power  
dissipation increases when operating at high supply voltages. The power dissipated in the op amp (POPA) is  
calculated using 方程4:  
V
OUT  
P
=
V V  
× I  
=
V V ×  
OUT  
(4)  
OPA  
S
OUT  
OUT  
S
R
L
To calculate the worst-case power dissipation in the op amp, the ac and dc cases must be considered  
separately.  
In the case of constant output current (dc) to a resistive load, the maximum power dissipation in the op amp  
occurs when the output voltage is half the positive supply voltage. This calculation assumes that the op amp is  
sourcing current from the positive supply to a grounded load. If the op amp sinks current from a grounded load,  
modify 方程5 to include the negative supply voltage instead of the positive.  
2
V
V
S
S
P
= P  
=
(5)  
OPA MAX⎽DC  
OPA  
2
4 × R  
L
The ac maximum of average power dissipation in the op amp for a sinusoidal output current (ac) to a resistive  
load occurs when the peak output voltage is 2/π times the supply voltage, given symmetrical supply voltages,  
as shown in 方程6:  
2
2 × V  
OPA  
π
2 × V  
S
S
P
= P  
=
(6)  
OPA PEAK⎽AC  
2
π
× R  
L
After the total power dissipation is determined, the junction temperature at the worst expected ambient  
temperature case must be determined by using 方程7:  
T
= P  
× R  
+ T  
A MAX  
(7)  
J MAX  
OPA  
θJA  
8.2.2.2.1 Improving Package Thermal Performance  
The value of RθJA depends on the printed circuit board (PCB) layout. An external heat sink, a cooling  
mechanism such as a cold air fan, or both, can help reduce RθJA, and thus improve device thermal capabilities.  
See TIs design support web page at www.ti.com/thermal for general guidance on improving device thermal  
performance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
18  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
 
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3 Application Curves  
The roll of characteristics and output waveform for the designed MFB filter are shown in 8-4 and 8-5. The  
attenuation is specified in 8-2.  
25  
0
300  
250  
200  
150  
100  
50  
12  
11  
10  
9
-25  
8
7
-50  
6
-75  
5
4
-100  
-125  
-150  
3
2
0
Gain  
Phase  
1
-50  
0
1
10  
100  
1000 10000 100000  
Frequency (Hz)  
1M  
10M  
0
100  
200  
Time (ms)  
300  
400  
500  
D051  
8-4. 2nd-Order MFB LP Filter AC Output  
8-5. 2nd-Order MFB LP Filter DC Output  
Characteristics  
8-2. Signal Attenuation vs Frequency  
2ND-ORDER MFB LPF FREQUENCY  
ATTENUATION  
(dB)  
(kHz)  
DC  
9.54  
9.70  
10.0  
15.4  
6.54  
19  
3.54  
30  
4.38  
45.9  
320  
8.3 Power Supply Recommendations  
The ALM2403-Q1 is recommended for continuous operation from 5 V to 24 V (±2.5 V to ±12 V) for VS, and many  
specifications apply from 40°C to +125°C.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling from noisy or high-  
impedance power supplies.  
CAUTION  
Supply voltages larger than 26 V can permanently damage the device (see 6.1).  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
 
 
 
 
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current. For more detailed information, see  
Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
keeping the traces separate is not possible, then cross the sensitive trace perpendicular, as opposed to in  
parallel with the noisy trace.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
8.4.2 Layout Example  
This layout does not verify optimum thermal impedance performance. See TIs design support web page at  
www.ti.com/thermal for general guidance on improving device thermal performance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
20  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
To  
For optimal thermal performance,  
connect exposed pad to as much  
top-layer copper as possible, as well  
as vias to underlying ground layers.  
Supply  
Voltage  
Connect a ceramic  
bypass capacitor from  
V+ at pin 12 to GND  
through vias and metal  
on an internal layer.  
Input 1  
V–  
IN1–  
IN1+  
Output, Channel 1  
OUT1  
OTF/SH_DN  
IN2+  
V+  
To  
Supply  
V+  
Voltage  
Input 2  
V+  
IN2–  
OUT2  
V–  
Output, Channel 2  
NC  
NC  
Connect a ceramic  
bypass capacitor from  
V+ at pin 10 to GND  
through vias and metal  
on an internal layer.  
To  
Supply  
Voltage  
8-6. ALM2403-Q1 Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ALM2403-Q1  
English Data Sheet: SBOSA37  
ALM2403-Q1  
ZHCSMT3A NOVEMBER 2020 REVISED MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following: ALM2403-Q1 Evaluation Module user's guide.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA37  
22  
Submit Document Feedback  
Product Folder Links: ALM2403-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ALM2403QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
A2403Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ALM2403QPWPRQ1  
HTSSOP PWP  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
ALM2403QPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ALM2403QPWPRQ1

适用于旋转变压器应用且具有低失真的汽车类双通道高电压功率运算放大器 | PWP | 14 | -40 to 125
TI

ALM31122-BLKG

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31122-TR1G

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31122-TR2G

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31222-BLKG

1-Watt High Linearity Amplifier
AVAGO

ALM31222-TR1G

1-Watt High Linearity Amplifier
AVAGO

ALM31222-TR2G

1-Watt High Linearity Amplifier
AVAGO

ALM65

AC-DC Power Supplies
XPPOWER

ALM65US12

AC-DC Power Supplies
XPPOWER

ALM65US15

AC-DC Power Supplies
XPPOWER

ALM65US19

AC-DC Power Supplies
XPPOWER

ALM65US24

AC-DC Power Supplies
XPPOWER