AMC1211AQDWVRQ1 [TI]

2V 输入、精密电压检测基本隔离式放大器

| DWV | 8 | -40 to 125;
AMC1211AQDWVRQ1
型号: AMC1211AQDWVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2V 输入、精密电压检测基本隔离式放大器

| DWV | 8 | -40 to 125

放大器 分离技术 隔离技术 光电二极管
文件: 总35页 (文件大小:1803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
AMC1211-Q1 汽车类高阻2V 输入基础型隔离放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
功能安全型  
AMC1211-Q1 是一款隔离式精密放大器此放大器的  
输出与输入电路由抗电磁干扰性能极强的电容隔离层隔  
开。该隔离栅经认证可提供高达 3kVRMS 的基本电隔  
符合 DIN EN IEC 60747-17 (VDE 0884-17) 和  
UL1577 标准并且可支持高达 1000VRMS 的工作电  
压。  
可提供用于功能安全系统设计的文档  
• 针对隔离式电压测量优化2V 高阻抗输入电压范  
• 固定增益1  
• 低直流误差:  
该隔离层可将系统中以不同共模电压电平运行的各器件  
隔开防止高电压冲击导致低压侧器件电气损坏或对操  
作员造成伤害。  
– 失调电压误差±1.5mV最大值)  
– 温漂±10μV/°C最大值)  
– 增益误差±0.2%最大值)  
– 增益漂移±40ppm/°C最大值)  
– 非线性度0.04%最大值)  
• 高3.3V 工作电压  
AMC1211-Q1 的高阻抗输入针对与高阻抗电阻分压器  
或任何其他高阻抗电压信号源的连接进行了优化。出色  
的直流精度和低温漂支持在闭环系统中进行精确的隔离  
式电压检测和控制。集成的高侧电源电压缺失检测功能  
可简化系统级设计和诊断。  
CMTI30 kV/µs最小值)  
• 高侧电源缺失指示  
• 安全相关认证:  
AMC1211-Q1 采用宽体 8 引脚 SOIC 封装符合面向  
汽车应用的 AEC-Q100 支持 –40°C 至  
+125°C 的温度范围。  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 的  
4250VPK 基础型隔离  
封装信息(1)  
– 符UL1577 标准且长1 分钟3000VRMS  
隔离  
封装尺寸标称值)  
器件型号  
封装  
AMC1211-Q1  
DWV (SOIC, 8)  
5.85mm × 7.50mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 可用于以下应用的隔离式电压感应:  
牵引逆变器  
车载充电器  
直流/直流转换器  
VDC  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
R1  
AMC1211-Q1  
VDD1  
IN  
VDD2  
OUTP  
R2  
0..2V  
RSNS  
VCMout  
2 V  
ADC  
SHTDN  
GND1  
OUTN  
GND2  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS896  
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 21  
8.3 Best Design Practices...............................................24  
8.4 Power Supply Recommendations.............................24  
8.5 Layout....................................................................... 25  
9 Device and Documentation Support............................26  
9.1 Documentation Support............................................ 26  
9.2 接收文档更新通知..................................................... 26  
9.3 支持资源....................................................................26  
9.4 Trademarks...............................................................26  
9.5 Electrostatic Discharge Caution................................26  
9.6 术语表....................................................................... 26  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications ............................................ 6  
6.7 Safety-Related Certifications ..................................... 7  
6.8 Safety Limiting Values ................................................7  
6.9 Electrical Characteristics.............................................8  
6.10 Switching Characteristics........................................10  
6.11 Timing Diagram.......................................................10  
6.12 Insulation Characteristics Curves............................11  
6.13 Typical Characteristics............................................12  
7 Detailed Description......................................................18  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2022) to Revision C (November 2022)  
Page  
• 将部分中CMTI 额定值100kV/μs最小值更正30kV/μs最小值....................................... 1  
Added specified ambient temperature range to Recommended Operating Conditions table.............................4  
Corrected Rise, Fall, and Delay Time Definition timing diagram...................................................................... 10  
Changes from Revision A (June 2020) to Revision B (June 2022)  
Page  
• 将隔离标准DIN VDE V 0884-11 (VDE V 0884-11) 更改DIN EN IEC 60747-17 (VDE 0884-17)并相应更  
新了绝缘规安全相关认....................................................................................................................... 1  
• 将器件名称AMC1211A-Q1 更改AMC1211-Q1不影响可订购器件型号............................................... 1  
• 更改了部分..................................................................................................................................................1  
Changed pin names: VIN to IN, VOUTP to OUTP, and VOUTN to OUTN......................................................... 3  
Merged VOS specs for 4.5V VDD1 5.5 V and 3.0 V VDD1 5.5 V ranges..........................................8  
Changed VDD1 DC PSRR from 65 dB (typical) to 80 dB (typical)..............................................................8  
Changed VDD1UV (VDD1 falling) from 1.75 V / 2.53 V / 2.7 V to 2.4 V / 2.6 V / 2.8 V (minimum / typical /  
maximum)...........................................................................................................................................................8  
Changed Rise, Fall, and Delay Time Definition timing diagram....................................................................... 10  
Changed Isolation Capacitor Lifetime Projection figure ...................................................................................11  
Changed functional block diagram................................................................................................................... 18  
Deleted Failsafe Output section, added Analog Output section....................................................................... 20  
Changed Typical Application section and subsections.....................................................................................21  
Changed What To Do and What Not To Do section......................................................................................... 24  
Changed Layout section...................................................................................................................................25  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD1  
IN  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
SHTDN  
GND1  
Not to scale  
5-1. DWV Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
3
4
5
6
7
8
VDD1  
IN  
High-side power  
Analog input  
High-side power supply(1)  
Analog input  
SHTDN  
GND1  
GND2  
OUTN  
OUTP  
VDD2  
Digital input  
Shutdown input, active high, with internal pullup resistor (typical value: 100 kΩ)  
High-side analog ground  
High-side ground  
Low-side ground  
Analog output  
Analog output  
Low-side power  
Low-side analog ground  
Inverting analog output  
Noninverting analog output  
Low-side power supply(1)  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
0.3  
MAX  
UNIT  
High-side VDD1 to GND1  
6.5  
6.5  
Power-supply voltage  
Input voltage  
V
Low-side VDD2 to GND2  
0.3  
IN  
VDD1 + 0.5  
VDD1 + 0.5  
VDD2 + 0.5  
10  
GND1 6  
GND1 0.5  
GND2 0.5  
10  
V
SHTDN  
Output voltage  
Input current  
OUTP, OUTN  
V
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1), HBM ESD classification Level 2  
Charged-device model (CDM), per AEC Q100-011, CDM ESD classification Level C6  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
High-side power supply  
Low-side power supply  
ANALOG INPUT  
VDD1 to GND1  
VDD2 to GND2  
3
3
5
5.5  
5.5  
V
V
3.3  
VClipping  
VFSR  
Input voltage before clipping output  
Specified linear full-scale voltage  
IN to GND1  
IN to GND1  
2.516  
V
V
2
0.1  
ANALOG OUTPUT  
CLOAD Capacitive load  
Resistive load  
On OUTP or OUTN to GND2  
OUTP to OUTN  
500  
250  
1
pF  
RLOAD  
DIGITAL INPUT  
Input voltage  
TEMPERATURE RANGE  
TA Specified ambient temperature  
On OUTP or OUTN to GND2  
10  
kΩ  
SHTDN to GND1  
0
VDD1  
125  
V
°C  
40  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
DWV (SOIC)  
UNIT  
THERMAL METRIC(1)  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
84.6  
28.3  
41.1  
4.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
39.1  
n/a  
ΨJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VDD1 = VDD2 = 5.5 V  
VALUE  
98  
UNIT  
PD  
Maximum power dissipation (both sides)  
mW  
VDD1 = VDD2 = 3.6V  
VDD1 = 5.5 V  
56  
53  
PD1  
Maximum power dissipation (high-side)  
Maximum power dissipation (low-side)  
mW  
mW  
VDD1 = 3.6 V  
30  
VDD2 = 5.5 V  
45  
PD2  
VDD2 = 3.6 V  
26  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1211-Q1  
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Distance through insulation  
Comparative tracking index  
Material group  
Shortest pin-to-pin distance through air  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the insulation  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
mm  
mm  
µm  
V
8.5  
8.5  
21  
600  
I
CPG  
DTI  
CTI  
I-IV  
Rated mains voltage 150 VRMS  
Overvoltage category  
per IEC 60664-1  
I-III  
Rated mains voltage 300 VRMS  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak  
VIORM  
At AC voltage  
1400  
VPK  
isolation voltage  
At AC voltage (sine wave)  
At DC voltage  
1000  
1400  
VRMS  
VDC  
Maximum-rated isolation  
VIOWM  
working voltage  
Maximum transient  
VIOTM  
VTEST = VIOTM, t = 60 s (qualification test),  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
4250  
6000  
7800  
VPK  
VPK  
VPK  
isolation voltage  
VIMP  
Maximum impulse voltage(3)  
Tested in air, 1.2/50-µs waveform per IEC 62368-1  
Maximum surge  
Tested in oil (qualification test),  
1.2/50-µs waveform per IEC 62368-1  
VIOSM  
isolation voltage(4)  
Method a, after input/output safety test subgroups 2 and 3,  
Vpd(ini) = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
5  
5  
5  
5  
~1.5  
Method a, after environmental tests subgroup 1,  
Vpd(ini) = VIOTM, tini = 60 s, Vpd(m) = 1.3 × VIORM, tm = 10 s  
qpd  
Apparent charge(5)  
pC  
Method b1, at preconditioning (type test) and routine test,  
Vpd(ini) = VIOTM, tini = 1 s, Vpd(m) = 1.5 × VIORM, tm = 1 s  
Method b2, at routine test (100% production)(7)  
Vpd(ini) = VIOTM = Vpd(m); tini = tm = 1 s  
,
Barrier capacitance,  
input to output(6)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
pF  
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(6)  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO, t = 60 s (qualification test),  
VTEST = 1.2 × VISO, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package.  
(4) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier are tied together, creating a two-pin device.  
(7) Either method b1 or b2 is used in production.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
 
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
DIN EN IEC 60747-17 (VDE 0884-17),  
EN IEC 60747-17,  
Recognized under 1577 component recognition and  
DIN EN 61010-1 (VDE 0411-1) Clause : 6.4.3 ; 6.7.1.3 ; 6.7.2.1 ;  
6.7.2.2 ; 6.7.3.4.2 ; 6.8.3.1  
CSA component acceptance NO 5 programs  
Basic insulation  
Single protection  
Certificate number: 40047657  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to over-  
heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 84.6°C/W, VDDx = 5.5 V,  
268  
TJ = 150°C, TA = 25°C  
θJA = 84.6°C/W, VDDx = 3.6 V,  
TJ = 150°C, TA = 25°C  
θJA = 84.6°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
mA  
R
410  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1477  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.9 Electrical Characteristics  
typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
ANALOG INPUT  
VOS  
TCVOS  
RIN  
Input offset voltage(1) (2)  
Input offset thermal drift(1) (2) (5)  
Input resistance  
TA = 25°C(3)  
±0.4  
±3  
1
1.5  
mV  
1.5  
10  
10 µV/°C  
TA = 25℃  
GΩ  
IIB  
Input bias current  
3.5  
7
15  
nA  
pF  
IN = GND1, TA = 25℃  
fIN = 275 kHz  
15  
CIN  
Input capacitance  
ANALOG OUTPUT  
Nominal gain  
1
±0.05%  
±5  
V/V  
EG  
Gain error(1)  
0.2%  
TA = 25℃  
0.2%  
40  
TCEG  
Gain error drift(1) (6)  
Nonlineartity(1)  
40 ppm/°C  
0.04%  
±0.01%  
0.04%  
VIN = 2 VPP, VIN > 0 V,  
fIN = 10 kHz, BW = 10 kHz  
THD  
SNR  
Total harmonic distortion(4)  
dB  
87  
VIN = 2 VPP, fIN = 1 kHz, BW = 10 kHz  
VIN = 2 VPP, fIN = 10 kHz, BW = 100 kHz  
VIN = GND1, BW = 100 kHz  
vs VDD1, at DC  
79  
82.6  
70.9  
220  
Signal-to-noise ratio  
Output noise  
dB  
µVrms  
80  
85  
65  
70  
1.44  
vs VDD2, at DC  
PSRR  
Power-supply rejection ratio(2)  
dB  
vs VDD1, 10 kHz / 100-mV ripple  
vs VDD2, 10 kHz / 100-mV ripple  
VCMout  
Output common-mode voltage  
1.39  
220  
30  
1.49  
V
V
VOUT = (VOUTP VOUTN);  
VIN > VClipping  
VCLIPout  
Clipping differential output voltage  
2.49  
SHTDN = high, or VDD1 undervoltage,  
or VDD1 missing  
VFAILSAFE Failsafe differential output voltage  
V
2.6  
2.5  
BW  
Output bandwidth  
Output resistance  
275  
kHz  
ROUT  
On OUTP or OUTN  
<0.2  
Ω
On OUTP or OUTN, sourcing or sinking,  
IN = GND1, outputs shorted to  
either GND or VDD2  
Output short-circuit current  
14  
45  
mA  
CMTI  
Common-mode transient immunity  
kV/µs  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUT  
IIN  
Input current  
1
µA  
pF  
SHTDN pin, GND1 SHTDN VDD1  
70  
CIN  
Input capacitance  
SHTDN pin  
5
0.7 ×  
VDD1  
VIH  
VIL  
High-level input voltage  
V
V
0.3 ×  
VDD1  
Low-level input voltage  
POWER SUPPLY  
VDD1 rising  
2.5  
2.4  
2.7  
2.6  
2.45  
2.0  
6.0  
7.1  
1.3  
5.3  
5.9  
2.9  
2.8  
VDD1 undervoltage detection  
threshold  
VDD1UV  
VDD2UV  
V
V
VDD1 falling  
VDD2 rising  
2.2  
2.65  
2.2  
VDD2 undervoltage detection  
threshold  
VDD2 falling  
1.85  
3.0 V < VDD1 < 3.6 V, SHTDN = low  
4.5 V < VDD1 < 5.5 V, SHTDN = low  
SHTDN = VDD1  
8.4  
mA  
µA  
IDD1  
High-side supply current  
Low-side supply current  
9.7  
3.0 V < VDD2 < 3.6 V  
4.5 V < VDD2 < 5.5 V  
7.2  
8.1  
IDD2  
mA  
(1) The typical value includes one standard deviation (sigma) at nominal operating conditions.  
(2) This parameter is input referred.  
(3) The typical value is at VDD1 = 3.3 V.  
(4) THD is the ratio of the rms sum of the amplitudes of first five higher harmonics to the amplitude of the fundamental.  
(5) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (ValueMAX - ValueMIN) / TempRange  
(6) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1211-Q1  
 
 
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
Output signal rise time  
Output signal fall time  
TEST CONDITIONS  
MIN  
TYP  
1.3  
MAX  
UNIT  
µs  
tr  
tf  
1.3  
µs  
VDD1 step to 3.0 V with VDD2 3.0 V,  
to VOUTP, VOUTN valid, 0.1% settling  
tAS  
Analog settling time  
50  
100  
µs  
tEN  
Device enable time  
SHTDN high to low  
SHTDN low to high  
50  
3
100  
10  
µs  
µs  
tSHTDN  
Device shutdown time  
6.11 Timing Diagram  
2 V  
IN  
0 V  
tr  
tf  
OUTP  
OUTN  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
6-1. Rise, Fall, and Delay Time Definition  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
400  
300  
200  
100  
0
0
50  
100  
TA (°C)  
150  
200  
0
50  
100  
TA (èC)  
150  
200  
D001  
D002  
6-2. Thermal Derating Curve for Safety-Limiting 6-3. Thermal Derating Curve for Safety-Limiting  
Current per VDE  
Power per VDE  
1E+11  
1E+10  
1E+9  
1E+8  
1E+7  
1E+6  
1E+5  
1E+4  
1E+3  
1E+2  
1E+1  
Safety Margin Zone: 1200 VRMS, 40 Years  
Operating Zone: 1000 VRMS, 31 Years  
30%  
20%  
500  
1500  
2500  
3500  
4500  
Stress Voltage (VRMS  
5500  
)
6500  
7500  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1000 VRMS, operating lifetime = 31 years  
6-4. Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1211-Q1  
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
2.5  
2
1.5  
vs VDD1  
vs VDD2  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
Device 1  
Device 2  
Device 3  
-1.5  
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D006  
D005  
VDD1 = 5 V  
6-6. Input Offset Voltage vs Temperature  
6-5. Input Offset Voltage vs Supply Voltage  
2.5  
2
14  
12  
10  
8
Device 1  
Device 2  
Device 3  
1.5  
1
0.5  
0
6
-0.5  
-1  
4
-1.5  
-2  
2
-2.5  
-40 -25 -10  
0
100  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
1000  
fIN (kHz)  
10000  
D007  
D009  
VDD1 = 3.3 V  
6-7. Input Offset Voltage vs Temperature  
6-8. Input Capacitance vs Input Signal Frequency  
15  
12  
9
15  
12  
9
6
6
3
3
0
0
-3  
-6  
-9  
-12  
-15  
-3  
-6  
-9  
-12  
-15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD1 (V)  
5
5.25 5.5  
D011  
D010  
6-10. Input Bias Current vs Temperature  
6-9. Input Bias Current vs High-Side Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
VDD1  
VDD2  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D014  
D016  
6-11. Gain Error vs Supply Voltage  
6-12. Gain Error vs Temperature  
5
0
50  
0
-5  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
fIN (kHz)  
D04034  
D044  
6-13. Normalized Gain vs Input Frequency  
6-14. Output Phase vs Input Frequency  
0.04  
0.03  
0.02  
0.01  
0
5
4.5  
4
VOUTP  
VOUTN  
3.5  
3
2.5  
2
-0.01  
-0.02  
-0.03  
-0.04  
1.5  
1
0.5  
0
-0.2  
0
0.2 0.4 0.6 0.8 1  
VIN (V)  
1.2 1.4 1.6 1.8  
2
-0.1  
0.3  
0.7  
1.1  
1.5  
1.9  
2.3  
2.7  
D020  
VIN (V)  
D018  
6-16. Nonlinearity vs Input Voltage  
6-15. Output Voltage vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1211-Q1  
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
vs VDD1  
vs VDD2  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D022  
D021  
6-18. Nonlinearity vs Temperature  
6-17. Nonlinearity vs Supply Voltage  
-70  
-75  
-70  
-75  
vs VDD1  
vs VDD2  
-80  
-80  
-85  
-85  
-90  
-90  
Device 1  
Device 2  
Device 3  
-95  
-95  
-100  
-100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D024  
D023  
6-20. Total Harmonic Distortion vs Temperature  
6-19. Total Harmonic Distortion vs Supply Voltage  
1000  
72.5  
70  
67.5  
65  
100  
10  
1
62.5  
60  
57.5  
55  
52.5  
50  
47.5  
45  
0.1  
42.5  
0.1  
1
10  
Frequency (kHz)  
100  
1000  
0
0.2 0.4 0.6 0.8  
1
VIN (V)  
1.2 1.4 1.6 1.8  
2
D025  
D026  
6-21. Input-Referred Noise Density vs Frequency  
6-22. Signal-to-Noise Ratio vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
80  
77.5  
75  
80  
77.5  
75  
vs VDD1  
vs VDD2  
72.5  
70  
72.5  
70  
67.5  
65  
67.5  
65  
Device 1  
Device 2  
Device 3  
62.5  
60  
62.5  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D028  
D027  
6-24. Signal-to-Noise Ratio vs Temperature  
6-23. Signal-to-Noise Ratio vs Supply Voltage  
0
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
-20  
-40  
-60  
-80  
-100  
-120  
VDD1  
VDD2  
1.39  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D029  
D031  
100-mV ripple  
6-25. Power-Supply Rejection Ratio vs Ripple Frequency  
6-26. Output Common-Mode Voltage vs Low-Side Supply  
Voltage  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.39  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D033  
D032  
6-28. Output Bandwidth vs Low-Side Supply Voltage  
6-27. Output Common-Mode Voltage vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1211-Q1  
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
8.5  
8
7.5  
7
6.5  
6
5.5  
5
4.5  
4
IDD1 vs VDD1  
IDD2 vs VDD2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D034  
D035  
6-29. Output Bandwidth vs Temperature  
6-30. Supply Current vs Supply Voltage  
8.5  
8
4
3.5  
3
7.5  
7
2.5  
2
6.5  
6
5.5  
5
1.5  
1
4.5  
4
IDD1  
IDD2  
0.5  
0
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D036  
D037  
6-31. Supply Current vs Temperature  
6-32. Output Rise and Fall Time vs Low-Side Supply Voltage  
4
3.5  
3
3.8  
50% - 90%  
50% - 50%  
50% - 10%  
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.5  
2
1.5  
1
0.5  
0
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D038  
D040  
6-33. Output Rise and Fall Time vs Temperature  
6-34. IN to OUTP, OUTN Signal Delay vs Low-Side Supply  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
3.8  
50% - 90%  
50% - 50%  
50% - 10%  
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D042  
6-35. IN to OUTP, OUTN Signal Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1211-Q1  
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC1211-Q1 is a precision, single-ended input, isolated amplifier with a high input impedance and wide  
input voltage range. The input stage of the device drives a second-order, delta-sigma (ΔΣ) modulator. The  
modulator converts the analog input signal into a digital bitstream that is transferred across the isolation barrier  
and separates the high-side from the low-side. On the low-side, the received bitstream is processed by a fourth-  
order analog filter that outputs a differential signal at the OUTP and OUTN pins proportional to the input signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described in the  
ISO72x Digital Isolator Magnetic-Field Immunity application note. The digital modulation used in the AMC1211-  
Q1 to transmit data across the isolation barrier, and the isolation barrier characteristics, result in high reliability  
and high common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
AMC1211-Q1  
Analog Filter  
IN  
ΔΣ Modulator  
SHTDN  
GND1  
7.3 Feature Description  
7.3.1 Analog Input  
The single-ended, high-impedance input stage of the AMC1211-Q1 feeds a second-order, switched-capacitor,  
feed-forward ΔΣmodulator. The modulator converts the analog signal into a bitstream that is transferred across  
the isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signal IN. First, if the input voltage VIN exceeds the range specified  
in the Absolute Maximum Ratings table, the input current must be limited to the absolute maximum value  
because the electrostatic discharge (ESD) protection turns on. Secondly, the linearity and parametric  
performance of the device is ensured only when the analog input voltage remains within the linear full-scale  
range (VFSR) as specified in the Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.3.2 Isolation Channel Signal Transmission  
The AMC1211-Q1 uses an on-off keying (OOK) modulation scheme, as shown in 7-1, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier to  
represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1211-Q1 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides the  
input to the fourth-order analog filter. The AMC1211-Q1 transmission channel is optimized to achieve the highest  
level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the high-  
frequency carrier and RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-1. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1211-Q1  
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.3.3 Analog Output  
The AMC1211-Q1 provides a differential analog output on the OUTP and OUTN pins. For input voltages of VIN in  
the range from 0.1 V to +2 V, the device provides a linear response with a nominal gain of 1. For example, for  
an input voltage of 2 V, the differential output voltage (VOUTP VOUTN) is 2 V. At zero input (IN shorted to  
GND1), both pins output the same common-mode output voltage VCMout, as specified in the Electrical  
Characteristics table. For input voltages greater than 2 V but less than approximately 2.5 V, the differential  
output voltage continues to increase but with reduced linearity performance. The outputs saturate at a differential  
output voltage of VCLIPout, as shown in 7-2, if the input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VFAILSAFE  
VOUTN  
VCLIPout  
VOUTP  
VCMout  
0
2.516 V  
Input Voltage (VIN  
)
2 V  
7-2. Output Behavior of the AMC1211-Q1  
The AMC1211-Q1 output offers a fail-safe feature that simplifies diagnostics on a system level. 7-2 shows the  
fail-safe mode, in which the AMC1211-Q1 outputs a negative differential output voltage that does not occur  
under normal operating conditions. The fail-safe output is active in three cases:  
When the high-side supply VDD1 of the AMC1211-Q1 device is missing  
When the high-side supply VDD1 falls below the undervoltage threshold VDD1UV  
When the SHTDN pin is pulled high  
Use the maximum VFAILSAFE voltage specified in the Electrical Characteristics table as a reference value for fail-  
safe detection on a system level.  
7.4 Device Functional Modes  
The AMC1211-Q1 is operational when the power supplies VDD1 and VDD2 are applied, as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The high input impedance, low input bias current, low AC and DC errors, and low temperature drift make the  
AMC1211-Q1 a high-performance solution for automotive applications where voltage sensing in the presence of  
high common-mode voltage levels is required.  
8.2 Typical Application  
8-1 shows an OBC that uses the AMC1211-Q1 to monitor the DC bus voltage that can be as high as 600 V.  
The DC bus voltage is divided down to an approximate 2-V level across the bottom resistor (RSNS) of a high-  
impedance resistive divider that is sensed by the AMC1211-Q1. The output of the AMC1211-Q1 is a differential  
analog output voltage of the same value as the input voltage but is galvanically isolated from the high-side by a  
basic isolation barrier.  
The isolation barrier and high common-mode transient immunity (CMTI) of the AMC1211-Q1 ensure reliable and  
accurate operation in harsh and high-noise environments.  
+ DC-Bus  
DC-Link  
Number of unit resistors depends  
on design requirements.  
See design examples for details.  
DC/DC  
EMI  
Filter  
PFC  
Contactor  
SW  
RX1  
RX2  
L1  
L2  
L3  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
SW  
SW  
100 nF 1 uF  
AMC1211-Q1  
VDD1  
VDD2  
ICROSS  
RSNS  
IN  
OUTP  
OUTN  
GND2  
ADC  
SHTDN  
GND1  
SW  
N
1 uF 100 nF 100 pF  
N
DC-Bus  
8-1. Using the AMC1211-Q1 for DC Bus Voltage Sensing in an OBC  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
VALUE  
600 V (maximum)  
3.3 V or 5 V  
3.3 V or 5 V  
100 V  
DC bus voltage  
High-side supply voltage  
Low-side supply voltage  
Maximum resistor operating voltage  
Voltage drop across the sense resistor (RSNS) for a linear response  
Current through the resistive divider, ICROSS  
2 V (maximum)  
100 μA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1211-Q1  
 
 
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The 100-μA, cross-current requirement at the maximum DC bus voltage (600 V) determines that the total  
impedance of the resistive divider is 6 MΩ. The impedance of the resistive divider is dominated by the top  
portion (shown exemplary as RX1 and RX2 in 8-1) and the voltage drop across RSNS can be neglected for a  
moment. The maximum allowed voltage drop per unit resistor is specified as 100 V; therefore, the minimum  
number of unit resistors in the top portion of the resistive divider is 600 V / 100 V = 6. The calculated unit value is  
6 MΩ/ 6 = 1 MΩand matches a value from the E96 series.  
RSNS is sized such that the voltage drop across the resistor at the maximum DC-bus voltage (600 V) equals the  
linear full-scale range input voltage (VFSR) of the AMC1211-Q1, which is 2 V. The value of RSNS is calculated as  
RSNS = VFSR / (VDC-Bus, max VFSR) × RTOP, where RTOP is the total value of the top resistor string (6 × 1 MΩ=  
6 MΩ). RSNS is calculated as 20.07 kΩ. The next closest, lower value from the E96 series is 20 kΩ.  
8-2 summarizes the design of the resistive divider.  
8-2. Resistor Value Example  
PARAMETER  
VALUE  
1 MΩ  
Unit resistor value, RX  
Number of unit resistors  
Sense resistor value, RSNS  
Total resistance value  
6
20 kΩ  
6.02 MΩ  
99.7 μA  
1.993 V  
9.9 mW  
59.8 mW  
Resulting current through resistive divider, ICROSS  
Resulting full-scale voltage drop across sense resistor RSNS  
Power dissipated in unit resistor RX  
Total power dissipated in resistive divider  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.2.2.1 Input Filter Design  
Placing an RC filter in front of the isolated amplifier improves signal-to-noise performance of the signal path. In  
practice, however, the impedance of the resistor divider is high and only a small-value filter capacitor can be  
used to not limit the signal bandwidth to an unacceptable low value. Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the internal ΔΣmodulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale  
down the input voltage. In this case, a single capacitor (as shown in 8-2) is sufficient to filter the input signal.  
VDC  
R1  
AMC1211-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
100 pF  
IN  
RSNS  
SHTDN  
GND1  
8-2. Input Filter  
8.2.2.2 Differential to Single-Ended Output Conversion  
8-3 shows an example of a TLV900x-Q1-based signal conversion and filter circuit for systems using single-  
ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩ  
and C1 = C2 = 330 pF yields good performance.  
C1  
AMC1211-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
IN  
+
ADC  
To MCU  
SHTDN  
GND1  
TLV9001-Q1  
C2  
R4  
VREF  
8-3. Connecting the AMC1211-Q1 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see the  
18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1211-Q1  
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curve  
One important aspect of system design is the effective detection of an overvoltage condition to protect switching  
devices and passive components from damage. To power off the system quickly in the event of an overvoltage  
condition, a low delay caused by the isolated amplifier is required. 8-4 shows the typical full-scale step  
response of the AMC1211-Q1.  
VOUTP  
VOUTN  
VIN  
8-4. Step Response of the AMC1211-Q1  
8.3 Best Design Practices  
Do not leave the analog input (IN pin) of the AMC1211-Q1 unconnected (floating) when the device is powered up  
on the high-side. If the device input is left floating, the bias current may generate a negative input voltage that  
exceeds the specified input voltage range, causing the output of the device to be invalid.  
Do not connect protection diodes to the input (IN pin) of the AMC1211-Q1. Diode leakage current can introduce  
significant measurement error especially at high temperatures. The input pin is protected against high voltages  
by the ESD protection circuit and the high impedance of the external restive divider.  
8.4 Power Supply Recommendations  
In a typical application, the high-side (VDD1) of the AMC1211-Q1 is powered from an already existing, high-side,  
ground-referenced, 3.3-V or 5-V power supply in the system. Alternatively, the high-side supply can be  
generated from the low-side supply (VDD2) by an isolated DC/DC converter. A low-cost solution is based on the  
push-pull driver SN6501-Q1 and a transformer that supports the desired isolation voltage ratings.  
The AMC1211-Q1 does not require any specific power-up sequencing. The high-side power supply (VDD1) is  
decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side  
power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. 8-5 shows  
the proper decoupling layout for the AMC1211-Q1.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDC  
VDD1  
VDD2  
R1  
C2 1 µF  
C4 1 µF  
AMC1211-Q1  
C1 100 nF  
C3 100 nF  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
IN  
to RC filter / ADC  
to RC filter / ADC  
C5 100 pF  
RSNS  
SHTDN  
GND1  
8-5. Decoupling of the AMC1211-Q1  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
8.5 Layout  
8.5.1 Layout Guidelines  
8-6 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1211-Q1 supply pins) and placement of the other components required by the device. For  
best performance, place the sense resistor close to the device input pin (IN).  
8.5.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C4  
C3  
C2  
C1  
to RC filter / ADC  
to RC filter / ADC  
OUTP  
OUTN  
GND2  
INP  
AMC1211-Q1  
Top Metal  
Inner or Bottom Layer Metal  
Via  
8-6. Recommended Layout of the AMC1211-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1211-Q1  
 
 
 
AMC1211-Q1  
ZHCSHJ0C JUNE 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application note  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application note  
Texas Instruments, TLV900x-Q1 Low-Power, RRIO, 1-MHz Automotive Operational Amplifier data sheet  
Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, AMC1311EVM Users Guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1211-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1211AQDWVQ1  
AMC1211AQDWVRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWV  
DWV  
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
1211AQ1  
1211AQ1  
Samples  
Samples  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1211AQDWVRQ1  
SOIC  
DWV  
8
1000  
330.0  
16.4  
12.15  
6.2  
3.05  
16.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWV  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
AMC1211AQDWVRQ1  
8
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWV SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1211AQDWVQ1  
8
64  
505.46  
13.94  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

AMC122K50BCK

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.0012uF, Through Hole Mount
KEMET

AMC123J50AB

CAPACITOR, METALLIZED FILM, POLYESTER, 50V, 0.012uF, THROUGH HOLE MOUNT
KEMET

AMC123J50AC

CAPACITOR, METALLIZED FILM, POLYESTER, 50V, 0.012uF, THROUGH HOLE MOUNT
KEMET

AMC123J50ACK

Film Capacitor, Polyester, 50V, 5% +Tol, 5% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123J50BB

CAPACITOR, METALLIZED FILM, POLYESTER, 50V, 0.012uF, THROUGH HOLE MOUNT
KEMET

AMC123J50BC

CAPACITOR, METALLIZED FILM, POLYESTER, 50V, 0.012uF, THROUGH HOLE MOUNT
KEMET

AMC123J50BCK

Film Capacitor, Polyester, 50V, 5% +Tol, 5% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123K50AB

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123K50AC

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123K50ACK

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123K50BB

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.012uF, Through Hole Mount
KEMET

AMC123K50BC

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.012uF, Through Hole Mount
KEMET