AMC1351-Q1 [TI]

汽车类 0-5V 输入、精密电压检测增强型隔离式放大器;
AMC1351-Q1
型号: AMC1351-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 0-5V 输入、精密电压检测增强型隔离式放大器

放大器
文件: 总34页 (文件大小:1951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
具有 5V 电压AMC1351-Q1 精密增型隔离放大器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准:  
温度等级 1–40°C +125°CTA  
提供功能安全  
AMC1351-Q1 是一款隔离式精密放大器,此放大器的  
输出与输入电路由抗电磁干扰性能极强的隔离栅隔开。  
该隔离栅经认证可提供高达 5kVRMS 的增强型电隔离,  
符合 VDE V 0884-11 UL1577 标准,并且可支持最  
1.5kVRMS 的工作电压。  
可帮助进行功能安全系统设计的文档  
线性输入电压范围:-0.25 V 5 V  
高输入阻抗:1.25mΩ(典型值)  
固定增益:0.4 V/V  
该隔离栅可将系统中以不同共模电压电平运行的各器件  
隔开,并保护低压侧免受可能有害的电压冲击。  
低直流误差:  
AMC1351-Q1 的高阻抗输入针对与高阻抗电阻分压  
器或具有高输出电阻的其他电压信号源的连接进行了优  
化。具有出色的精度和低温漂,可支持精确的直流电压  
检测,适用于直流/直流转换器、变频器、电机驱动或  
其他必须支持高共模电压的应用。  
失调电压误差 ±1.5mV(最大值)  
温漂:±15µV/°C(最大值)  
增益误差:±0.2%(最大值)  
增益漂移:±35ppm/°C(最大值)  
非线性 ±0.02%(最大值)  
高侧和低侧运行电压:3.3V 5V  
CMTI100kV/µs(最小值)  
失效防护输出  
AMC1351-Q1 采用宽体 8 引脚 SOIC 封装,符合面  
向汽车应用的 AEC-Q100 准,并支持 –40°C 至  
+125°C 的温度范围。  
安全相关认证:  
器件信息(1)  
– 7070-VPK 增强型隔离,符合 DIN VDE V  
器件型号  
封装  
封装尺寸(标称值)  
0884-112017-01  
AMC1351-Q1  
SOIC (8)  
5.85mm × 7.50mm  
符合 UL1577 标准且长达 1 分钟的 5000VRMS  
隔离  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
可用于以下应用的隔离式电压感应:  
牵引逆变器  
车载充电器  
直流/直流转换器  
混合动力汽车/电动汽车直流充电器  
VDC  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
R1  
AMC1351-Q1  
VDD1  
IN  
VDD2  
OUTP  
R2  
0..5V  
RSNS  
VCMout  
2 V  
ADC  
GND1  
GND1  
OUTN  
GND2  
典型应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBASAB4  
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
6.8 Safety Limiting Values.................................................7  
6.9 Electrical Characteristics.............................................8  
6.10 Switching Characteristics........................................10  
6.11 Timing Diagram.......................................................10  
6.12 Insulation Characteristics Curves............................11  
6.13 Typical Characteristics............................................12  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
8.3 What To Do and What Not To Do..............................25  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Documentation Support.......................................... 28  
11.2 接收文档更新通知................................................... 28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
December 2021  
REVISION  
NOTES  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD1  
IN  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
GND1  
GND1  
Not to scale  
5-1. DWV Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
VDD1  
IN  
High-side power  
Analog input  
High-side power supply(1)  
Analog input  
High-side analog ground reference for input amplifier. Connect to pin 4. Do not leave  
unconnected.  
3
GND1  
High-side ground  
4
5
6
7
8
GND1  
GND2  
OUTN  
OUTP  
VDD2  
High-side ground  
Low-side ground  
Analog output  
High-side analog ground  
Low-side analog ground  
Inverting analog output  
Noninverting analog output  
Low-side power supply(1)  
Analog output  
Low-side power  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
–0.3  
MAX  
UNIT  
High-side VDD1 to GND1  
6.5  
Power-supply voltage  
V
Low-side VDD2 to GND2  
–0.3  
6.5  
Analog input voltage  
Analog output voltage  
Input current  
IN  
–1  
15  
VDD2 + 0.5  
10  
V
V
OUTP, OUTN  
GND2 – 0.5  
–10  
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
,
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011,  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD1  
VDD2  
High-side power-supply  
Low-side power-supply  
VDD1 to GND1  
VDD2 to GND2  
3
3
5
5.5  
5.5  
V
V
3.3  
ANALOG INPUT  
VClipping Input voltage before clipping output  
VFSR Specified linear full-scale voltage  
ANALOG OUTPUT  
6.25  
V
V
–0.25  
5
On OUTP or OUTN to GND2  
OUTP to OUTN  
500  
250  
1
CLOAD  
Capacitive load  
pF  
kΩ  
RLOAD  
TEMPERATURE RANGE  
TA Specified ambient temperature  
Resistive load  
On OUTP or OUTN to GND2  
10  
–40  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
 
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.4 Thermal Information  
AMC1351-Q1  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
84.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
28.3  
RθJB  
ψJT  
Junction-to-board thermal resistance  
41.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.9  
ψJB  
39.1  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
96  
UNIT  
PD  
Maximum power dissipation (both sides) VDD1 = VDD2 = 5.5 V  
mW  
VDD1 = 3.6 V  
Maximum power dissipation (high-side)  
VDD1 = 5.5 V  
29  
PD1  
mW  
mW  
51  
VDD2 = 3.6 V  
Maximum power dissipation (low-side)  
VDD2 = 5.5 V  
26  
PD2  
45  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1351-Q1  
 
 
 
 
AMC1351-Q1  
www.ti.com.cn  
UNIT  
ZHCSNE9 – DECEMBER 2021  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
≥ 8.5  
≥ 8.5  
mm  
mm  
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double  
insulation  
DTI  
CTI  
Distance through insulation  
≥ 0.021  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
≥ 600  
I
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
per IEC 60664-1  
DIN VDE V 0884-11 (VDE V 0884-11): 2017-01  
Maximum repetitive peak  
isolation voltage  
VIORM  
At AC voltage  
2120  
VPK  
At AC voltage (sine wave)  
1500  
2120  
7070  
8480  
VRMS  
VDC  
Maximum-rated isolation  
working voltage  
VIOWM  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
isolation voltage  
VIOTM  
VPK  
VPK  
Maximum surge  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
VIOSM  
8000  
≤ 5  
isolation voltage(2)  
Method a, after input/output safety test subgroups 2 and 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
≤ 5  
qpd  
Apparent charge(3)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875  
× VIORM, tm = 1 s  
≤ 5  
Barrier capacitance,  
input to output(4)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
Ω
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(4)  
VIO = 500 V at 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5000 VRMS or 7071 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(4) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11):  
2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition  
Reinforced insulation  
Single protection  
Certificate number: pending  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A  
failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to  
over-heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 84.6°C/W, VDDx = 5.5 V,  
TJ = 150°C, TA = 25°C  
270  
IS  
Safety input, output, or supply current  
mA  
RθJA = 84.6°C/W, VDDx = 3.6 V,  
TJ = 150°C, TA = 25°C  
410  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 84.6°C/W, TJ = 150°C, TA = 25°C  
1480  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1351-Q1  
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, IN =  
–0.25 V to +5 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
TA = 25°C, IN = GND1,  
–1.5  
–2.5  
±0.3  
–0.8  
1.5  
mV  
2.5  
4.5 V ≤ VDD1 ≤ 5.5 V(1)  
VOS  
Offset voltage(2)  
TA = 25°C, IN = GND1,  
3.0 V ≤ VDD1 ≤ 5.5 V(3)  
ΔVOS  
Offset voltage long-term stability  
Offset voltage thermal drift(5)  
10 years at TA = 55℃  
0(7)  
±3  
mV  
TCVOS  
IN = GND1  
–15  
1
15 µV/°C  
Offset voltage thermal drift  
long-term stability  
10 years at TA = 55,  
IN = GND1  
ΔTCVOS  
0(7)  
mV/°C  
RIN  
Input resistance  
1.25  
0(7)  
5
1.5  
MΩ  
ppm  
ΔRIN  
TCRIN  
CIN  
Input resistance long-term stability 10 years at TA = 55℃  
Input resistance thermal drift  
Input capacitance  
–40≤ TA ≤ 85℃  
ppm/°C  
pF  
fIN = 275 kHz  
4
ANALOG OUTPUT  
Nominal gain  
0.40  
±0.05%  
0(7)  
V/V  
EG  
Gain error(1)  
TA = 25℃  
–0.2%  
–35  
0.2%  
ΔEG  
TCEG  
Gain error long-term stability  
Gain error thermal drift(1) (6)  
10 years at TA = 55℃  
±10  
35 ppm/°C  
ppm/°C  
Gain error thermal drift  
long-term stability  
ΔTCEG  
10 years at TA = 55℃  
0(7)  
Nonlineartity(1)  
–0.02%  
±0.003%  
0.2  
0.02%  
Nonlinearity thermal drift  
ppm/°C  
dB  
VIN = 5 VPP, fIN = 10 kHz,  
BW = 100 kHz  
THD  
SNR  
Total harmonic distortion(4)  
–82  
79  
VIN = 5 VPP, fIN = 1 kHz,  
BW = 10 kHz  
75  
Signal-to-noise ratio  
Output noise  
dB  
VIN = 5 VPP, fIN = 10 kHz,  
BW = 100 kHz  
69  
IN = GND1, BW = 100 kHz  
PSRR vs VDD1, DC  
250  
–67  
–80  
µVrms  
PSRR vs VDD2, DC  
Power-supply rejection ratio(2)  
dB  
PSRR vs VDD1 with 10-kHz,  
100-mV ripple  
PSRR  
–65  
PSRR vs VDD2 with 10-kHz,  
100-mV ripple  
–64  
1.44  
2.49  
VCMout  
Output common-mode voltage  
1.39  
275  
1.49  
–2.5  
V
V
VOUT = (VOUTP – VOUTN),  
VIN > VClipping  
VCLIPout  
Clipping differential output voltage  
VFail-safe  
BW  
Fail-safe differential output voltage VDD1 undervoltage or VDD1 missing  
Output bandwidth  
–2.57  
300  
V
kHz  
Ω
ROUT  
Output resistance  
On OUTP or OUTN  
< 0.2  
On OUTP or OUTN, sourcing or sinking,  
IN = GND1, outputs shorted to  
either GND or VDD2  
Output short-circuit current  
14  
mA  
CMTI  
Common-mode transient immunity  
100  
150  
kV/µs  
POWER SUPPLY  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, IN =  
–0.25 V to +5 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.7  
2.6  
2.45  
2.0  
6.0  
7.0  
5.3  
5.9  
MAX UNIT  
VDD1 rising  
2.5  
2.9  
V
2.8  
VDD1 undervoltage detection  
threshold  
VDD1UV  
VDD2UV  
IDD1  
VDD1 falling  
2.4  
VDD2 rising  
2.2  
2.65  
V
2.2  
VDD2 undervoltage detection  
threshold  
VDD2 falling  
1.85  
3.0 V < VDD1 < 3.6 V  
4.5 V < VDD1 < 5.5 V  
3.0 V < VDD2 < 3.6 V  
4.5 V < VDD2 < 5.5 V  
8.1  
mA  
9.3  
High-side supply current  
Low-side supply current  
7.2  
mA  
8.1  
IDD2  
(1) The typical value includes one standard deviation (sigma) at nominal operating conditions.  
(2) This parameter is input referred.  
(3) The typical value is at VDD1 = 3.3 V.  
(4) THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental.  
(5) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (VOS,MAX - VOS,MIN) / TempRange where VOS,MAX and VOS,MIN refer to the maximum and minimum VOS values measured  
within the temperature range (–40 to 125).  
(6) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %)  
measured within the temperature range (–40 to 125).  
(7) Value is below measurement capability.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1351-Q1  
 
 
 
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.3  
1.3  
1
MAX  
UNIT  
µs  
tr  
tf  
Output signal rise time  
Output signal fall time  
µs  
IN to OUTx signal delay (50% – 10%)  
IN to OUTx signal delay (50% – 50%)  
IN to OUTx signal delay (50% – 90%)  
Unfiltered output  
Unfiltered output  
Unfiltered output  
1.5  
2.1  
3
µs  
1.6  
2.5  
µs  
µs  
VDD1 step to 3.0 V with VDD2 ≥ 3.0 V, to  
VOUTP and VOUTN valid, 0.1% settling  
tAS  
Analog settling time  
500  
800  
µs  
6.11 Timing Diagram  
5 V  
IN  
2.5 V  
0 V  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
6-1. Rise, Fall, and Delay Time Definition  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
600  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD1 = VDD2 = 3.6 V  
VDD1 = VDD2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
TA (°C)  
100  
125  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
D070  
D069  
6-3. Thermal Derating Curve for Safety-Limiting Power per  
6-2. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1351-Q1  
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
0.1  
TA = -40 C  
0.08  
TA = 25 C  
TA = 125 C  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-1  
0
1
2
3
4
5
6
7
VIN (V)  
D074  
Total uncalibrated output error is defined as:  
(VOUT – VIN × G) / (VClipping × G), where G is the nominal gain  
of the device (0.4 V/V) and VClipping is 6.25 V  
6-6. Total Uncalibrated Output Error vs Input Voltage  
6-5. Output Voltage vs Input Voltage  
2.5  
2
2.5  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D027  
D027b  
6-7. Input Offset Voltage vs High-Side Supply Voltage  
6-8. Input Offset Voltage vs Low-Side Supply Voltage  
2.5  
1.25  
Device 1  
Device 2  
2
Device 3  
1.24  
1.23  
1.22  
1.21  
1.2  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
D073  
D026  
6-10. Input Impedance vs Temperature  
6-9. Input Offset Voltage vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D020  
D020b  
6-11. Gain Error vs High-Side Supply Voltage  
6-12. Gain Error vs Low-Side Supply Voltage  
0.02  
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
0.015  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.1  
-0.2  
-0.3  
-1  
0
1
2
3
4
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VIN (V)  
D028  
Temperature (°C)  
D021  
6-14. Nonlinearity vs Input Voltage  
6-13. Gain Error vs Temperature  
0.02  
0.02  
0.015  
0.01  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
0.015  
0.01  
0.005  
0
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.005  
-0.01  
-0.015  
-0.02  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D029  
D029b  
6-15. Nonlinearity vs High-Side Supply Voltage  
6-16. Nonlinearity vs Low-Side Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
Device 1  
Device 2  
Device 3  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VIN (V)  
D049  
6-17. Nonlinearity vs Temperature  
6-18. Total Harmonic Distortion vs Input Voltage  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-60  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D056  
D056b  
6-19. Total Harmonic Distortion vs High-Side Supply Voltage 6-20. Total Harmonic Distortion vs Low-Side Supply Voltage  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Temperature (°C)  
D059  
VIN (V)  
D032  
6-21. Total Harmonic Distortion vs Temperature  
6-22. Signal-to-Noise Ratio vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D034  
D034b  
6-23. Signal-to-Noise Ratio vs High-Side Supply Voltage  
6-24. Signal-to-Noise Ratio vs Low-Side Supply Voltage  
75  
1000  
Device 1  
Device 2  
74  
Device 3  
73  
100  
10  
1
72  
71  
70  
69  
68  
67  
66  
65  
0.1  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Frequency (kHz)  
D017  
Temperature (°C)  
D035  
6-26. Input-Referred Noise Density vs Frequency  
6-25. Signal-to-Noise Ratio vs Temperature  
-66  
-68  
-70  
-72  
-74  
-76  
0
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-20  
-40  
-60  
-80  
-100  
0.01  
0.1  
1
10  
100  
1000  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
fIN (kHz)  
D038  
D037  
6-28. Common-Mode Rejection Ratio vs Input Frequency  
6-27. Common-Mode Rejection Ratio vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
-66  
-68  
-70  
-72  
-74  
-76  
0
Device 1  
Device 2  
Device 3  
-20  
-40  
-60  
-80  
VDD1  
VDD2  
-100  
0.01  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ripple Frequency (kHz)  
Temperature (°C)  
D041  
D039  
fIN = 10 kHz  
6-30. Power-Supply Rejection Ratio vs Ripple Frequency  
6-29. Common-Mode Rejection Ratio vs Temperature  
0
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
VDD1  
VDD2  
-20  
-40  
-60  
-80  
-100  
1.39  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
Temperature (°C)  
D042  
D009  
fRipple = 10 kHz  
6-31. Power-Supply Rejection Ratio vs Temperature  
6-32. Common-Mode Output Voltage vs Supply Voltage  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
1.39  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1
10  
100  
1000  
Temperature (°C)  
fIN (kHz)  
D010  
D007  
6-33. Common-Mode Output Voltage vs Temperature  
6-34. Normalized Gain vs Input Frequency  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
0°  
-45°  
320  
310  
300  
290  
280  
Device 1  
Device 2  
Device 3  
-90°  
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
1
10  
100  
1000  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
fIN (kHz)  
D008  
D011  
6-35. Output Phase vs Input Frequency  
Device 1  
6-36. Bandwidth vs Supply Voltage  
320  
310  
300  
290  
280  
8
7.5  
7
Device 2  
Device 3  
6.5  
6
5.5  
5
4.5  
4
IDD1 vs VDD1  
IDD2 vs VDD2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
Temperature (°C)  
D012  
D043  
6-37. Bandwidth vs Temperature  
6-38. Supply Current vs Supply Voltage  
8
7.5  
7
3
2.5  
2
6.5  
6
1.5  
1
5.5  
5
0.5  
0
4.5  
4
IDD1  
IDD2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
Temperature (°C)  
D044  
D065  
6-39. Supply Current vs Temperature  
6-40. Output Rise and Fall Time vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, IN = 0 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
3
2.5  
2
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
1.5  
1
0.5  
0
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
Temperature (°C)  
D066  
D067  
6-41. Output Rise and Fall Time vs Temperature  
6-42. Input to Output Signal Delay vs Supply Voltage  
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D068  
6-43. Input to Output Signal Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC1351-Q1 is a single-ended input, precision, isolated amplifier with a high input-impedance and wide  
input-voltage range. The input stage of the device drives a second-order, delta-sigma (ΔΣ) modulator. The  
modulator converts the analog input signal into a digital bitstream that is transferred across the isolation barrier  
that separates the high-side from the low-side. On the low-side, the received bitstream is processed by a  
fourth-order analog filter that outputs a differential signal at the OUTP and OUTN pins proportional to the input  
signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described  
in the ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the  
AMC1351-Q1 to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in  
high reliability and common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
INP  
VDD2  
OUTP  
OUTN  
GND2  
Diagnostics  
Modulator  
Analog Filter  
GND1  
GND1  
AMC1351-Q1  
7.3 Feature Description  
7.3.1 Analog Input  
The single-ended, high-impedance input stage of the AMC1351-Q1 feeds a second-order, switched-capacitor,  
feed-forward ΔΣ modulator. The modulator converts the analog signal into a bitstream that is transferred across  
the isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signal IN. First, if the input voltage VIN exceeds the range  
specified in the Absolute Maximum Ratings table, the input current must be limited to the absolute maximum  
value because the electrostatic discharge (ESD) protection turns on. In addition, the linearity and parametric  
performance of the device is ensured only when the analog input voltage remains within the linear full-scale  
range (VFSR) as specified in the Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1351-Q1  
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
7.3.2 Isolation Channel Signal Transmission  
The AMC1351-Q1 uses an on-off keying (OOK) modulation scheme, as shown in 7-1, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier  
to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1351-Q1 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides  
the input to the fourth-order analog filter. The AMC1351-Q1 transmission channel is optimized to achieve the  
highest level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the  
high-frequency carrier and RX, TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-1. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
7.3.3 Analog Output  
The AMC1351-Q1 provides a differential analog output on the OUTP and OUTN pins. For input voltages (VIN)  
in the range from –0.25 V to 5 V, the device provides a linear response with a nominal gain of 0.4 V/V. For  
example, for an input voltage of 5 V, the differential output voltage (VOUTP – VOUTN) is 2 V. At zero input (IN  
shorted to GND1), both pins output the same common-mode output voltage VCMout, as specified in the Electrical  
Characteristics table. For input voltages greater than 5 V but less than approximately 6.25 V, the differential  
output voltage continues to increase but with reduced linearity performance. The outputs saturate at a differential  
output voltage of VCLIPout, as shown in 7-2, if the input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VFail-safe  
VOUTN  
VCLIPout  
VOUTP  
VCMout  
0
6.25 V  
Input Voltage (VIN  
)
5 V  
7-2. Output Behavior of the AMC1351-Q1  
The AMC1351-Q1 output offers a fail-safe feature that simplifies diagnostics on a system level. 7-2 shows the  
behavior in fail-safe mode, in which the AMC1351-Q1 outputs a negative differential output voltage that does not  
occur under normal operating conditions. The fail-safe output is active:  
When the high-side supply VDD1 of the AMC1351-Q1 device is missing  
When the high-side supply VDD1 falls below the undervoltage threshold VDD1UV  
Use the maximum VFail-safe voltage specified in the Electrical Characteristics table as a reference value for  
fail-safe detection on a system level.  
7.4 Device Functional Modes  
The AMC1351-Q1 is operational when the power supplies VDD1 and VDD2 are applied as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The high input impedance, low input bias current, excellent accuracy, and low temperature drift make the  
AMC1351-Q1 a high-performance solution for automotive applications where voltage sensing in the presence of  
high common-mode voltage levels is required.  
8.2 Typical Application  
Isolated amplifiers are widely used for voltage measurements in high-voltage applications that must be isolated  
from a low-voltage domain. A typical application is the sensing of the DC bus voltage in a frequency inverter.  
With its wide, 5-V input voltage range, the AMC1351-Q1 is designed for isolated DC voltage-sensing  
applications where accurate voltage monitoring is required in high-noise environments.  
8-1 shows a simplified schematic of the AMC1351-Q1 in a typical motor drive application. The DC bus voltage  
is divided down to an approximate 5-V level across the bottom resistor (RSNS) of a high-impedance resistor  
divider that is sensed by the AMC1351-Q1. The AMC1351-Q1 digitizes the analog input signal on the high-side,  
transfers the data across the isolation barrier to the low-side, and reconstructs an analog signal that is presented  
as a differential voltage on the output pins.  
The high-impedance input and the high common-mode transient immunity (CMTI) of the AMC1351-Q1 ensure  
reliable and accurate operation even in high-noise environments.  
+ DC Link  
Number of unit resistors depends  
on design requirements.  
See design examples for details.  
R1  
LS Gate Driver Supply  
Low-side supply  
(3.3 V or 5 V)  
M
3~  
R2  
100 nF 1 uF  
AMC1351-Q1  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
IN  
ADC  
GND1  
GND1  
1 uF 100 nF  
RSNS  
DC Link  
8-1. Using the AMC1351-Q1 for DC Link Voltage Sensing in Frequency Inverters  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
190-VDC LINE VOLTAGE  
120 VRMS ±10%, 60 Hz  
190 V  
360-VDC LINE VOLTAGE  
230 VRMS ±10%, 50 Hz  
360 V  
System input voltage  
DC bus voltage (max)  
High-side supply voltage  
Low-side supply voltage  
3.3 V or 5 V  
3.3 V or 5 V  
3.3 V or 5 V  
3.3 V or 5 V  
Maximum resistor operating voltage  
75 V  
75 V  
Voltage drop across the sense resistor (RSNS) for a linear response  
5 V (maximum)  
100 μA  
5 V (maximum)  
100 μA  
Current through the resistive divider (ICROSS  
)
8.2.2 Detailed Design Procedure  
This discussion covers the 360-VDC example. The procedure for calculating the resistive divider for the 190-VDC  
use case is identical.  
The 100-μA, cross-current requirement at peak input voltage (360 V) determines that the total impedance of  
the resistive divider is 3.6 MΩ. The impedance of the resistive divider is dominated by the top resistors (shown  
exemplary as R1 and R2 in 8-1) and the voltage drop across RSNS can be neglected for a short time. The  
maximum allowed voltage drop per unit resistor is specified as 75 V; therefore, the total minimum number of unit  
resistors in the top portion of the resistive divider is 360 V / 75 V = 5. The calculated unit value is 3.6 MΩ / 5 =  
720 kΩ and the next closest value from the E96 series is 715 kΩ.  
The effective sense resistor value RSNSEFF is the parallel combination of the external resistor RSNS and the  
input impedance of the AMC1351-Q1, RIN. RSNSEFF is sized such that the voltage drop across the impedance at  
maximum input voltage (360 V) equals the linear full-scale input voltage (VFSR) of the AMC1351-Q1 (that is, 5 V).  
RSNSEFF is calculated as RSNSEFF = VFSR / (VPeak – VFSR) × RTOP, where RTOP is the total value of top resistor  
string (5 × 715 kΩ = 3575 kΩ). The resulting value for RSNSEFF is 9.96 kΩ. In a final step, RSNS is calculated as  
RSNS = RIN × RSNSEFF / (RIN – RSNSEFF). With RIN = 1.25 MΩ (typical), RSNS equals 52.47 kΩ and the next  
closest value from the E96 series is 52.3 kΩ.  
8-2 summarizes the design of the resistive divider.  
8-2. Resistor Value Examples  
PARAMETER  
190-VDC LINE VOLTAGE  
360-VDC LINE VOLTAGE  
Unit resistor value (RTOP  
)
634 kΩ  
3
715 kΩ  
5
Number of unit resistors in RTOP  
Sense resistor value (RSNS)  
51.1 kΩ  
1953.1 kΩ  
97.3 μA  
4.971 V  
6 mW  
49.9 kΩ  
3624.9 kΩ  
99.3 μA  
4.956 V  
7.1 mW  
35.8 mW  
Total resistance value (RTOP + RSNS)  
Resulting current through resistive divider (ICROSS  
)
Resulting full-scale voltage drop across sense resistor RSNS  
Peak power dissipated in RTOP unit resistors  
Total peak power dissipated in resistive divider  
18.5 mW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
8.2.2.1 Input Filter Design  
Placing an RC filter in front of the isolated amplifier improves signal-to-noise performance of the signal path. In  
practice, however, the impedance of the resistor divider is so high that adding a filter capacitor on the IN pin  
limits the signal bandwidth to an unacceptable low limit, such that the filter capacitor is omitted. When used,  
design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the internal ΔΣ modulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale  
down the input voltage. In that case, no additional resistor is needed and a single capacitor (as shown in 8-2)  
is sufficient to filter the input signal.  
VDC  
R1  
AMC1351-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
1 nF  
IN  
RSNS  
GND1  
GND1  
8-2. Input Filter  
8.2.2.2 Differential to Single-Ended Output Conversion  
8-3 shows an example of a TLVx313-Q1-based signal conversion and filter circuit for systems using single-  
ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP – VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩ  
and C1 = C2 = 330 pF yields good performance.  
C1  
AMC1351-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
IN  
+
ADC  
To MCU  
GND1  
GND1  
TLV313-Q1  
C2  
R4  
VREF  
8-3. Connecting the AMC1351-Q1 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see  
the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
8.2.3 Application Curve  
One important aspect of system design is the effective detection of an overvoltage condition to protect switching  
devices and passive components from damage. To power off the system quickly in the event of an overvoltage  
condition, a low delay caused by the isolated amplifier is required. 8-4 shows the typical full-scale step  
response of the AMC1351-Q1.  
VOUTP  
VOUTN  
VIN  
8-4. Step Response of the AMC1351-Q1  
8.3 What To Do and What Not To Do  
Do not leave the analog input (IN) of the AMC1351-Q1 unconnected (floating) when the device is powered up on  
the high-side. If the device input is left floating, the bias current may generate a positive or negative input voltage  
and the output of the device is undetermined.  
Do not connect protection diodes to the input (IN) of the AMC1351-Q1. Diode leakage current can introduce  
significant measurement error especially at high temperatures. The input pin is protected against high voltages  
by its ESD protection circuit and the high impedance of the external restive divider  
Connect both GND1 pins to the high-side ground potential. Do not leave one of the GND1 pins unconnected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1351-Q1  
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
In a typical application, the high-side power supply (VDD1) for the AMC1351-Q1 is generated either from a  
gate-driver supply on the high-side (as shown in 8-1), or from the low-side supply (VDD2) by an isolated  
DC/DC converter. A low-cost solution is based on the push-pull driver SN6501 and a transformer that supports  
the desired isolation voltage ratings.  
The AMC1351-Q1 does not require any specific power-up sequencing. The high-side power supply (VDD1)  
is decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side  
power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible.  
VDC  
VDD1  
VDD2  
R1  
R2  
C2 1 µF  
C4 1 µF  
AMC1351-Q1  
C1 100 nF  
C3 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
IN  
to RC filter / ADC  
to RC filter / ADC  
RSNS  
GND1  
GND1  
9-1. Decoupling of the AMC1351-Q1  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1351-Q1 supply pins) and placement of the other components required by the device. For  
best performance, place the sense resistor close to the device input pin (IN).  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C2  
C1  
C4  
C3  
to RC filter / ADC  
to RC filter / ADC  
IN  
OUTP  
OUTN  
GND2  
AMC1351-Q1  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC1351-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1351-Q1  
 
 
 
 
AMC1351-Q1  
ZHCSNE9 – DECEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, TLVx313-Q1 Low-Power, Rail-to-Rail In/Out, 750-μV Typical Offset, 1-MHz Operational  
Amplifier for Cost-Sensitive Systems data sheet  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
Texas Instruments, Best in Class Radiated Emissions EMI Performance with the AMC1300B-Q1 Isolated  
Amplifier technical white paper  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1351-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1351QDWVRQ1  
ACTIVE  
SOIC  
DWV  
8
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
AMC1351Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AMC1351-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2022  
Catalog : AMC1351  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1351DWV

0-5V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1351DWVR

0-5V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1351QDWVRQ1

汽车类 0-5V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC13DCKD

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKD-S288

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKH

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKH-S288

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKI

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKI-S288

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKN

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKN-S288

CONN EDGE DUAL FMALE 26POS 0.100
ETC

AMC13DCKS

CONN EDGE DUAL FMALE 26POS 0.100
ETC